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Motivated by the experimental observation of collapses and revivals of Bose matter wave field, we inves-
tigate correlation functions of cold bosons in an optical lattice. Within a simple model we examine two kinds
of states: one that employs the commonly used notion of coherent states, and one that obeys the total number
of atoms conservation. We identify rare situations at which these states behave differently. Typically, however,
their predictions coincide and so: As a function of “interaction time” the interference pattern in the density
undergoes collapse and revival. Exactly at revival times the system mimics the ideal gas case, in which all
correlation functions factorize, while in the collapsed phase of the evolution the system effectively behaves as
if initially there was no long-range coherence. Even in the latter case though, an interference pattern should be
seen in a single experiment. We stress the role of column averaging, which in fact corresponds to an averaged
observation of an ensemble of two-dimensional realizations. We also note that, contrary to the common belief,
an interference pattern should also be seen in a single observation of a Mott state.
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I. INTRODUCTION phase the system effectively behaves as if there was no site-

Cold bosons in optical lattices have gained a lot of atten{0-Sit¢ coherence, as pointed out in Sec. IV. Even then,
tion recently because of the ease and precision with whicf10ugh, the second-order correlation function shows non-
they can be manipulated]. For example, it was an optical trivial structure and interference pattern should be seen in a
lattice that enabled the observation of collapses and revivai§ingle photograph. Counterintuitively, this is also the case for
of a matter wave fieldi2]. Even though the theoretical analy- Mott insulator, as shown in Sec. V, and it is extremely diffi-
sis of this experiment provided by authors is based on theult to tell these states apart on the basis of a single or many
notion of coherent states and as such is—in principle, ameasurements. We conclude in Sec. VI.
least—inadequate to describe systems with total number of
atoms fixed, it seems to work quite well. It is our purpose to
describe this experiment more accurately, in particular to ex-
amine the role of total number of atoms conservation and The experiment in which collapses and revivals of the
identify situations in which it will clearly manifest itself. matter wave field were observé®] was composed of a few

This will be achieved with the aid of correlation func- steps. After preparing a Bose-Einstein condensate in a har-
tions. Contrary to the common belief, there is no need tamonic oscillator potential, an optical lattice potential was
build a separate experimental setup to measure higher-ordslowly raised. The height of this lattice has been chosen such
correlation functions in atomic systems—it is enough to anathat the system was still completely in the superfluid regime.
lyze photographs of a cloud of atoms. Such photographsThen, the intensity of light creating the lattice was rapidly
which are typically obtained in the final stage of experimentsncreased and the resulting optical lattice was so high that the
with cold gases, are nothing else but a simultaneous detetdnneling between the sites was strongly suppressed. Was
tion of many atoms and therefore probe the correlation functhis raising done adiabatically, the system would move to the
tion of the order of the number of atoni3]. And since the  Mott insulating phase; but because it was done rapidly, the
observed system comprises of a fixed number of atoms, it iatom number distribution at each well from a superfluid state
described by a Fock state; consequently it is possible to revas preserved at the high lattice potential, thus producing a
construct low-order correlation functions out of these meamixture of Fock states with different number of atoms at
surementg4]. Having the possibility of measuring correla- each well. The system was then left to evolve for some time,
tion functions, it is justified to investigate them theoretically which was varied from experiment to experimente will
as well. call it interaction time and denofB. Finally, after switching

The article is organized as follows. In Sec. Il we start withoff all potentials the atomic cloud was allowed to expand
a brief description of the experiment in which collapses andreely for timet before shooting a photograph. As a function
revivals of a matter wave field were observed. On this basisf the interaction timeT a collapse and a revival of the
two states of the system are introduced: one that obeys thaterference pattern were seen.
total number of atom conservation and one that violates it We are going to describe this experiment via a simple
(the latter for comparisgnCorrelation functions correspond- model which nonetheless includes the most relevant features
ing to both states are calculated and investigated in Sec. IIbf the system. For example, we will neglect the nonunifor-
Inter alia, we identify situations in which predictions of the mity of the optical lattice stemming from additional har-
two examined states differ. We also note that in the collapsedonic oscillator potentialgone used to create the Bose-

Il. THE EXPERIMENT
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Einstein condensate and another one associated with widths ©o *

of laser beamys but consider a system composed\6atoms |feor(T))y =€ P2 > - a2t e
distributed amondC equivalent lattice sites instead. The no- n=0n=0  ng=0

tion of atom densityp=N/ K, will be used interchangeably. chl(-r) "'CnK(T)|nlan21 N, (6)

The wells’ exact shape is also not important since we are
going to assume that atoms are so cold that they do not hawehere the coefficients,(T) are defined as before arnd|?
enough energy to occupy states other than the ground statep for consistency.
which is justified by the fact that the most important part of As far as a subsystem composed of a fixed number of
the evolution—the one from which collapses and revivalswells is concerned, the multinomial state approaches the co-
stem—takes place when lattice potential is very high ancherent one when the number of atoms and the number of
when the energy of an atom is far less than the energy gap igells are increased in such a way that the density is kept
the first excited state. constant. In this limit—let us call it thermodynamic limit in
Prior to turning on the strong optical lattice the systemanalogy with statistical mechanics—the remaining part of the
was in a superfluid state and so right after raising the potensystem serves as a particle reservoir and not surprisingly the
tial the distribution of atoms between wells is multinomial. distribution of atoms factorizes and becomes poissonian in

Hence the state of the system is each well independently, as it is for coherent states.
- N N N It is also worth noting that the presented model does not
AT = 0)) = ﬂ ST Y account for possible effects associated with the reduced di-
KN mensionality of atoms confined in the optical lattice, for ex-

n1=0 ny=0 ni=0 .. . . . .
ample it is not applicable to systems in strongly-interacting

1 Tonks-Girardeau regim@ee[5] for discussion of correlation

lni,no, ..ok, : . . .
Vny tny ! . (1) functions in this particular case

where the under-brace denotes total number of atoms conser- 1. CORRELATION FUNCTIONS

vation law, i.e.ny+ny+- - +nc=N and we have already as- | et us now calculate explicit analytic formulas for corre-
sumed that each atom can occupy any of the wells with equaktion functions for the multinomial and coherent state intro-

probability. _ . duced above. Theth order correlation function is defined as
Once prepared, the system is left to evolve for tifne

Since atoms are now imprisoned in a strong optical lattice i3 (X1, Xz, ... X T
which tunneling is highly suppressed, in each well they ~ 4 o - -

evolve independently of others. Assuming contact interac- =M, - W)W (X ) -+ WXy, D]AT)).
tions between atoms, the Hamiltonian in each well is effec- (7)
tively of the form:

X

In the above formula two distinct times appeared: the inter-
~ ho. . action timeT, denoting how long atoms were left to evolve
H= ?n(n— 1), (2)  in the strong optical lattice potential, and the measurement

time, t, which is the time between switching off all binding
whereh is the operator of the number of atoms in this well potentials and shooting the actual photograph. During the

andg denotes the rescaled coupling constant: latter time there are no external potentials and we also as-
sume that the interaction does not play any major role—

g= Amha f dx|e(x)|* 3) consequently the only effect this process has on the system is
m the free expansion of wells’ wave functions. Although this

way the interaction phases that atoms might have acquired
are neglected, the assumption is not only justifdce dur-

ing expansion the system becomes extremely diluiet it

also clarifies the overall picture. Each of the times is now

[¢(x) is the wave function of the ground state of a well and
ais thes-wave scattering lengithThen, after timel the state
of the system is

NN N responsible for different physical effects: the interaction
| (1)) = K—NE E E time, T, governs thg phases of different Fo_ck stateg; and
n=0my=0  nx=0 therefore is responsible for collapses and revivals, while the

measurement time, determines the behavior of wells’ wave
Xen (1) cu(Dlnyinz, ... onc), (4 functions and as such does not influence the relation between
different Fock states. Note also that the titrie treated here

where the coefficients,(T) are rather as a convenient control parameter than a true argument
of the correlation function.
cy(T) = i_ exp{— ign(n - 1)}. (5) The field operato®¥(x,t) can be decomposed in any com-
vn! plete basis of annihilation operators. In the system we are

To investigate the role of total number of atoms conser-
vation law, however, we are going to analyze a coherent At least from the point of view of the correlation functions we
counterpart of this state as well: are investigating.
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considering it is convenient to introduce annihilation opera-averagep atoms at each lattice site, and interference terms.

tors of atoms at individual sites’ ground stateir(x,t)

The presence and relative amplitude of the latter is governed

=K odX,Ha. Then after some lengthy though straightfor- Y the coefficient.

ward calculations one obtains
G(Xq, ... X;T,0)
=02 2 ok
Lo dp Ky

X (Prl(xllt) e ‘Prr(xr:t) QDkr(Xr!t) T (Pkl(xlft)r (8)

r

where

wcoh({l ’ k}!T) = R({I ,k},T)emeQ({l ,k},T)} (9)
for coherent states and

N-r
oL = 1R ,k},n(l + w)

(N=T1) K
(10)
for multinomial states. The functior® and Q are
gT K r 2 r 2
RA1LKLT) = exp) i, [(2 aj,i) —(E 5kj.i) ] ,

i=1 =1 =1

(119
K

Q{1 T) = >, (€9™j=14,i7%) - 1), (11b)

i=1

To observe interference pattern two conditions must be
simultaneously fulfilled:(i) the interaction timegT is such
that the coefficient is not vanishing andii) the measure-
ment time,t, is such that the wave functiorg(x) substan-
tially overlap. The latter condition controls the exact shape of
interference pattern observed while the first one influences its
visibility. To compare predictions of multinomial versus co-
herent states it is therefore enough to investigate the coeffi-
cientx only. It is astonishing how quickly—when increasing
the number of wells—predictions of the two states coincide:
practically from 3 wells upwards there is no way to distin-
guish multinomial from coherent states through density pro-
files. Only for two wells C=2, is there a substantial discrep-
ancy: binomial distribution predicts an additional revival at
gT=. Interesting enough, the interference pattern observed
at this additional revival is in-phase with the patterngat
=0 for odd number of atoms and out-of-phase for even num-
ber of atoms. One might think that investigating the situation
with only two wells is pushing the analysis beyond the limits
set by experimental reality. This is not true, however. Only
slight modification of the experiment is required to go into
this interesting regimé.lmagine that before the first optical
lattice (the one, in which the atomic system is in a superfluid
statg is turned on, another optical lattice is raised: a lattice
deep enough to force the system into the Mott insulator state,
with a well defined number of atoms per site. Let us now
turn on a lattice with half the spatial period of the one al-

First of all the expression for the correlation does not depengieady existing: this will produce a binomial distribution of

on the interaction timd nor the coupling strength alone,
but on the product of the two. It means that B0 the

atoms in each deep potential well between two shallow
wells.
The vanishing of the coefficient for almost all interac-

interacting system effectively mimics the behavior of an
ideal gas, for which, as can be easily checked, all correlatiotion times apart from the ones close to revival times is the
functions factorize(for multinomial states there appears an origin of the collapse phenomenon. To estimate the time of
additional proportionality constantAnd because the func- collapseT* one can require the coefficiertto reach a preset
tionsR andQ are periodic functions afT, this also happens small value,e. Then

for any time such thayT=2k, wherek is an integer. This

K
reappearance of the interference pattern is nothing else but codgTr ) <1-—(1-&/W™), (149
the revival phenomenon. 2
st | - In
A. The first-order correlation function COS(gTZoh) <1 +2_:' (14b)

Density—the first-order correlation function—is obtained
from above formulas via setting=1 and can be written as

GY(x) = pg X2+ K@ kEI o (Nex), (12
+*

Note that the collapse iG@part from/=2,3 casey never
exact, i.e., when demanding the interference fringes to van-
ish completely, which corresponds to settiergO, the above
inequalities cannot be satisfied. At least not without simulta-
neously increasing the density However, for any practical
purposes it is enough to have the visibility of fringes smaller
than the sensitivity of detectors to speak about complete col-
lapse of interference pattern. For multinomial distributions of
atoms among small number of wells, on the other hand, there
exist interaction times for which fringes vanish identically:

these ar@Ty,,m=3 X 27 and gTy,m=5 X 27 for K=2 case,

where

} for coherent states,

a 4 [gT)|V? .
l—Esm2 o for multinomial states.

(13

First of all, the density is a sum of two kinds of terms: the 2This idea originates from private communication with Immanuel
background, which is a simple consequence of having omloch.
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andgT,, =X 2 andgT, =2 X 27 for K=3 case. (a)

mnm~ 3 mnm~ 3

B. The second-order correlation function

Let us concentrate on the normalized second order corre-
lation function, defined as

G@(x,x")
G(l)(X)G(l)(X')
because this way information about the density is set aside i
and only correlations are being investigated. For interaction J ) !
time such thagT=2k, wherek=0,1,2,...,.e., exactly the

revival time, the normalized second-order correlation func-
tion is constant, because then the ideal gas case is recovered

and consequently (b) P

1 for coherent state,

g?(x,x") = (15)

S = N W e O & N

gT2n

(16)

(2) N —
k(X X") = 1 . .
Jgr=26r 6 X") 1- % for multinomial state.

Already, there is a difference between the two states exam- e
ined: multinomial states predict a small antibunching effect,
g@(x,x")<1, which is due to the total number of atoms
conservation law: the chance of detecting an atom at position

x is smaller if another atom was already detected somewhere
else(than if it was nof because there are fewer atoms alto-

gether. Note that this result will hold also for other interac-

tion times, providedk andx’ are distant enough.

However, if one moves away from the exact revival time,  FiG. 1. First- and second-order correlation functions for one-
so thatgT is no longer an integer multiple of2 it is prac-  dimensional system composed 610 wells and\'=30 atoms.
tically impossible to get any insight into the behavior of the The wells’ wave functions were Gaussians of initial wid,
physical system analytically—by investigating the formulas=0.12, and the measurement time was3o. Arrows denote the
alone, especially with arbitrary wave functiopgx). There-  positions of wells’ centerga) Density profiles versus the interac-
fore, we have chosen to investigate the system via numericéibn time, gT. Both the collapse and the revival of interference
simulations of one-dimensional lattices, varying the numbepattern is clearly visible(b) Close-up for a certain value of inter-
of lattice sites, the atom density and the width of the initialaction time,gT=0.3x 2. The curve at the top is the density profile
wave packetwhich, in our simple model, corresponds to the (this is a cut along the dotted line from the figure abovene
height of the optical lattice In the simulations we put the two-dim_ensional_ density plot denotes the normalized second-order
wells’ centers on the net with spacing equal to 1, so the uniorrelation functiong®(x,x").
of length is simply half the wavelength of light used to createrjme js measured in unitsn2/(4%), wherem is the mass of
an 'optlcal lattice potential. Prlor'to the switching off the 5 5iom whileh denotes the wavelength of light used to
lattice, wave packets were Gaussians located at the center gfete the optical lattice potential. In these units the density
the ~corresponding lattice site: ¢i(x,t=0)<exp(~(X  of a single wave packet after expansion is just a Gaussian of
-%;)?/20%), wherex; is the location of the center of theéh  idth given by\m. For large measurement times it
well, o denotes the Gaussian’s width and the proportionalityis therefore convenient to expresas multiples of the initial
constant includes normalization factor, but the phases of alvidth, o, because then it is clear over how many sites the
wave functions are set identical. The expansion of the fieldvave packet has spread. For example, a measurement time
operator,¥, as a sum of annihilation operators of atoms att=4c means that each wave packet “probes” roughly a
ground states of different lattice sites implicitly assumes thasphere of radius 4, i.e., 4 lattice sites in each direction.
these wave functions form an orthogonal set. Although this For interaction timesT different from revival times the
condition cannot be perfectly fulfilled for any set of Gaussianresults of simulations are the following: First of all,
wave packets, the overlap of wave functions of adjacent siteg'?(x,x’) correlation function exhibits a structure. Typically,
is exp—o?) and consequently it can be made arbitrarily these are diagonal stripes in tkex’ plane, such that the
small by decreasing. In the actual simulations was varied normalized second order correlation function depends only
between 0.03 and 0.12, which yields nonorthogonalities beon the difference of its spatial argumengs?(x,x") =~ g (x
tween 10*8% and 10°% (The experimental value af in [2]  —X'), as seen at Fig.(h) (at least far from the boundaries of
translated to the system of units adopted here was arourtie system It means that in every realization interference
0.15) As explained before, wave packets were allowed tdfringes are going to be observed, but the whole pattern will
expand freely for timet before taking the measurement. move from shot to shot and will vanish after averaging, pro-

-
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ducing a smooth density profile. Secondly, the rangg'®fs
closely related to the size of expanding wave packetsch
depends on the measurement tirtye,Speaking roughly, to
have a nontrivial correlation, wave packets must spread over
the distance equal to the separation between the points at
which g is calculated or measured. The separation between
the fringes, on the other hand, is determined by the initial
size of expanding wave packets, or, in other words, by the
momenta involved: the steeper the optical lattice potential,
the more localized the wave function and the more fringes in
the second-order correlation function structure.

The formulas for correlation functions are quite distinct
for both kinds of states, it is thus somewhat surprising that
the predictions obtained in humerical simulations are practi-
cally indistinguishable. To spot possible discrepancies we
have investigated coefficients({l ,k}) defined by Eq(8) in
more detail, and found that even though these coefficients
depend on four indices, they can take only one of six values
(this happens—technically speaking—because functigns
and Q depend not on the values of the indices themselves,
but on their mutual relation, i.e., on the way they split into
equivalence classes with respect to the number of identical
values. In the limit £ —o and N'— o such thatp=A/K
=const, the coefficients corresponding to multinomial states
become identical with the ones stemming from coherent
states, which is yet another manifestation of the equivalence
of the two states in the thermodynamic limit. This limit is
achieved so quickly that fronfC=5 upwards there is practi-
cally no way of distinguishing between the two sta?t@rnly
for £=2,3,4 wells case is there a room for discrepancies
and indeed such situations in one-dimensional case are found coberent . miulfinomigl
and depicted in Fig. 2. Apart from optical lattices there exists
a number of experimental techniques used in atom interfer-
ometry that can create potentials comprised of a few wells,
for example atom chip devicd$,7] or optical tweezer sys-
tems|[8,9].

The conclusions presented above—stemming from one-
dimensional simulations—are not altered when extending the gT=050x2mw
analysis to higher dimensions. With one important note,
however. The structure in the second-order correlation func- FIG. 2. Situations, at which coherent and multinomial states
tion implies that interference pattern should be seen in evergive distinctively different predictions. Density plots denote the
single realization and smooth out when averaged over manjormalized second-order correlation functi@®'(x,x’), wherex
experiments, producing a relevant density profile. This is tru@ndx’ are on the horizontal and vertical axis, respectively. Arrows
for a measurement which detects atoms in the fu",denote the position of the wells’ centers. One-dimensional graph on
3-dimensional physical space and is in general false for t&P of the density plot is the densit@"(x). The parameters of
2-dimensional projectiotthink about holograms versus pho- phys[cal systems, a_Lpart from the number of wglls and the interac-
tographs. The latter is governed by a column-averaged cor-'o" fime, are identical for all plots: atom densify=5, measure-
relation function, in which information about correlations in qutzt'me't_z‘f’ and initial width of expanding wave packets,
the direction of the illuminating light pulse is lost, and such™ ™"
a situation corresponds to performing many 2-dimensional
experiments and averaging over them. This explains why the

collapse was seen at all in a single experimental run. Nu- The system examined herein before was implicitly as-
merical simulations of a lattice composed ok5 sites show  gymed to be perfectly coherent, in a sense that in numerical

that the visibility of the interference pattern drops from 44%gjmulations wave functions of all optical lattice sites had
when averaged over one layer to 19% when averaged OVgentical phases. This was because in the experimental situ-
all 5 layers, and the effect is expected to be even more progtion the system prior to the turning on the strong optical
found for larger systems. lattice potential was in a superfluid phase, which exhibits
long-range coherence. However, in principle, the same for-

3provided that the density is not extremely low, i.e., the number ofmalism is also applicable to the situation in which there is no
atoms,, is at least of order 10 rather than of order 1. long-range coherence in the initial state, i.e., the wave func-

IV. INCOHERENT SYSTEMS
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tions’ phases are completely random. Even though the physcould say that in the collapsed phase the system with long-
cal relevance of such a state might be questionable, it isange coherence mimics the behavior of the system with no
worth to examine this limit as well, because then one couldcoherence at all.
separate effects originating from having a mixture of Fock The difference between multinomial and coherent states
states at each site from the ones necessarily requiring thmanifests itself only in the coefficient, (1 versusl—1/N),
coherence between sites. The state with completely randomhich leads to a small antibunching effect, as also seen in the
phases is also interesting because—at least when large meazse of systems with perfect coherence. Similarly, the struc-
surement times are concerned—it can be to a large extemtre in the second-order correlation function vanishes when
investigated analytically independently of its size and dimen<€olumn averaged. This is a consequence of the fact that the
sion. free evolution propagator acts independently in each direc-
Let us therefore assume théy the wave functions of tion. Initially the wave functions were very well localized at
individual wells have random phasegi(x)— € %g(x), different points in space and therefore their product vanished
wheregy are random numbers between 0 ang and(ii) the identically: cpf(x,t:O)cpk(x,tZO) ~0. Therefore, column av-
measurement time is so large that at each point in space eraging at the initial instant—which is nothing else but inte-
wave functions of many sites overlap. Then, in the expresgrating this product over one coordinate—yields zero. This is
sions for the first- and second-order correlation functions alklso true for any measurement timéecause such an aver-
terms that explicitly depend on phaseg will average out, aged expression is nothing else but a scalar product and as

producing such cannot be changed during a unitary evolutidvote
that this reasoning requires that the projection of the whole
GD(x) = 2 17 evolution operator onto one dimensional subspace deter-
) p% LU (179 mined by the direction of propagation of the illuminating

light needs still to be unitary, which is true for free evolution
but not in genera).
GD(x,x") = 0GP (x)GD(x")

+w0op” 2 2 ¢ (@)X ) gi(x"), V- MOTT INSULATOR
I k#l

For comparison let us also investigate an ideal Mott insu-
(17b) lator, i.e., a state with the same number of atoms in each
well:
wherewy=1 for coherent and -1 /A for multinomial states. _
Note that these expressions do not depend upon the inter- lvow) = [Py -+ ), (18)

action time at all. Therefore the fact that the experimentall{yherey is now an integetand naturally it is still the density
observed pattern changed with interaction time is a clear siggf an atomic sample The achievement of the Mott phase is

interference pattern and is exactly the same as the one @koms in optical latticefl1]. Correlation functions in such a
system with coherence in the collapsed phase, i.e., whien  system are straightforward to calculate

Eq. (12) is close to zero. Note however that here the mecha-

nism is intrinsically different: The interference pattern is ab- G () = p [oX)[2, (199
sent not because of the collapse of the matter wave field at k

each individual well, but because of the washing-out effect

when overlappmg subsystems with different phases. If one Gﬁzm(x,x’) =p(p= D o)A @x)?

looked at a single well subsystem, one would have seen col- K

lapses and revivals there, just as it was pointed out in the first

article concerning this phenomenon in Bose-Einstein con- +PZE o) [Pl (x")[?
densate$10]. Kl
The second-order correlation function, on the other hand 2 * YA
o . ' ' + X) @(X) gy (x x').
shows additional structure, which depends on the overlap of P ; g’l #1 )X ) erlx')

wells wave functionSgof(x)gok(x). If the measurement time is
. TR . (19b

large enough this function is just a smooth profile modulated

by a spatially-dependent phase of the form (&xp), where  These formulas bear a close resemblance to BEdd.and

p is related to initial widths of expanding wave packets, andtherefore the predictions are quite similar as well. In particu-

then the pattern observed in the second-order correlatiolar, even in a Mott insulating phase one is going to observe

function comprises of diagonal stripes in tkex’ hyper- interference pattern in a single measurement, because its

plane, just as the ones seen at Figh)1The fact that in the second-order correlation function exhibits the striped struc-

collapsed phase of the evolution systems with perfect coheture. The only difference between the Mott insulator and a

ence have practically the same first- and second-order corrstate with mixture of Fock states with random phagas

lation functions as systems with completely random phasewith coherence but in a collapsed phase of the evolutiea

implies that it is impossible to distinguish between them.,in the first term in the Eq19b). Consequently, to distinguish

neither in a single nor many experiments. In that sense onketween these states one should perform a measurement with
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very short measurement times, so that the overlap of wavpansion time was relatively short yielding=3 and the re-
functions of adjacent sites is vanishing, and look at the diagsulting ratio in the second-order correlation function is
onal part of the second-order correlation function only,around 4.5. For the experimefit4], on the other hand, ex-
which will be G?(x,x) = wep?S | @k(X)|* for states with mix-  pansion time was very long, such thgt 11.7 and the maxi-

tures of Fock states at each site amﬁ) (x,X)=p(p mum of the second-order correlation function was 70 times
~1)3, ] X)|* for Mott insulator. Note that thoettdifference is smaller than its coherent counterpart and could have easily

the most significant for systems with low densities, in par_droppeiih_belowl the dresolutl?n 0,: tréet wgagm% systemf. thOf
ticular Gﬁi()m(x,x) vanishes identically ip=1. course this analysis does not pretend to describe any of these

The second-order correlation function for a Mott insulat—eXpe”mentS guantitatively, but it shows where the reason for

. . . ) observed discrepancies most likely lies.
ing phase was already theoretically investigated[12]. P y
Moreover, recently a high-contrast matter wave interference VI. CONCLUSIONS
between 30 independent Bose-Einstein condensates releaset\Ne have investigated the recent experiment of collapses
from a one-dimensional optical lattice was indeed observednd revivals of th gm tter wave field inpt ms of correl 5 n
experimentally{13]. The visibility of the interference pattern a n tien aV?/O h ?N tr?ate X atle ter viv ?tin? 0 Cr?in(?[ar Ot_
in a single experiment was similar both for phase—correlategiu ctio tz'm ni'r?"n'((:) the bghgc'g %f aen 'daeal ZS 2nd ae” igr
condensates and for phase-uncorrelated condensates. In Irgeﬁa%?] f nct'lonlssfactor' o \?n rthe coIIIa se?j Shase of the:
earlier experiment of this kinftL4], the interference pattern lon Tunctl 12€. P P

was only observed when atoms were released from a shalloﬁlvqlu“on’ on the other hand, the system eﬁgctlvely beha\{es
optical lattice and it was almost completely lost when the2S if there was no cohergnce between the sites of the optical
lattice depth was increased. These two results seem to coR.pte.nt'al' T.h's d_oes not imply, _hovyever, that a sm_ooth glen-
tradict each other, but a closer analysis shows this is not th lty is obtained in a single realization of the experiment: on
case. The reason for different observations lies mostly in th e contrary, we show that the second—order correlation func-
particular choice of the measurement time, i.e., how long i ion exhibits structure and therefore interference pattern
took between switching off the potentials aﬁd teiking the im-ShOUId be seen n a single measurement. C'ounte'rmtwtlvely,
age of the expanded cloud of atoms. To see this let us coﬂbe same conclusions hold also for the Mott insulating phase,
pare correlation functions of two extremes: a Mott state anE{Vh'Ch has already been proven experimentally.

a coherent state. After the expansion the density of a Mott The fact. that the collapse of the matter wave f'el.d was
en experimentally at all is due to the column averaging. We

state is just a Gaussian, while for coherent states the densi%?ress the difference between a result of a single measure-
comprises of interference spikes modulated by a Gaussia . g
ent and a column averaged single measurergtbatlatter

envelope. Let us denote the ratio of the latter Gaussian en- o nds in fact to a measurement averaged over an en-
velope to the density of a Mott state by In the simplest corrésponas in 1 o easureme erage
1) f semble of two-dimensional experimenté/e also show how
«(X)}. As far as

; ; — (1) (
case this will ben—ma>{chh(x)}/ma_x{GMo to differentiate between the different states via a single mea-
the second-order correlation function is concerned, for urement

Mott state an interference pattern cannot become arbitrarily We investigate the role of the total number of atoms con-

large. In the best possible case all “interfering” terms in the, ; ; : ; P : :
- : o . servation. In particular we identify rare situations in which
Eq. (19b contribute in-phase, which in turn yields the P fy

. | £ th d-ord lation functi predictions of multinomial and coherent states differ. Unsur-
m:?mmum value ol the second-order correlauon tunc Ionprisingly, they all correspond to situations with small number
twice the uncorrelated background: n{ﬁ@tt(x X'}

(1) ! . of lattice sites.
=2(maX{Gy,,,(x)})?. Correlation functions for coherent
states, on the other hand, factorize and therefore the second- ACKNOWLEDGMENTS
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