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Motivated by the experimental observation of collapses and revivals of Bose matter wave field, we inves-
tigate correlation functions of cold bosons in an optical lattice. Within a simple model we examine two kinds
of states: one that employs the commonly used notion of coherent states, and one that obeys the total number
of atoms conservation. We identify rare situations at which these states behave differently. Typically, however,
their predictions coincide and so: As a function of “interaction time” the interference pattern in the density
undergoes collapse and revival. Exactly at revival times the system mimics the ideal gas case, in which all
correlation functions factorize, while in the collapsed phase of the evolution the system effectively behaves as
if initially there was no long-range coherence. Even in the latter case though, an interference pattern should be
seen in a single experiment. We stress the role of column averaging, which in fact corresponds to an averaged
observation of an ensemble of two-dimensional realizations. We also note that, contrary to the common belief,
an interference pattern should also be seen in a single observation of a Mott state.
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I. INTRODUCTION

Cold bosons in optical lattices have gained a lot of atten-
tion recently because of the ease and precision with which
they can be manipulated[1]. For example, it was an optical
lattice that enabled the observation of collapses and revivals
of a matter wave field[2]. Even though the theoretical analy-
sis of this experiment provided by authors is based on the
notion of coherent states and as such is—in principle, at
least—inadequate to describe systems with total number of
atoms fixed, it seems to work quite well. It is our purpose to
describe this experiment more accurately, in particular to ex-
amine the role of total number of atoms conservation and
identify situations in which it will clearly manifest itself.

This will be achieved with the aid of correlation func-
tions. Contrary to the common belief, there is no need to
build a separate experimental setup to measure higher-order
correlation functions in atomic systems—it is enough to ana-
lyze photographs of a cloud of atoms. Such photographs,
which are typically obtained in the final stage of experiments
with cold gases, are nothing else but a simultaneous detec-
tion of many atoms and therefore probe the correlation func-
tion of the order of the number of atoms[3]. And since the
observed system comprises of a fixed number of atoms, it is
described by a Fock state; consequently it is possible to re-
construct low-order correlation functions out of these mea-
surements[4]. Having the possibility of measuring correla-
tion functions, it is justified to investigate them theoretically
as well.

The article is organized as follows. In Sec. II we start with
a brief description of the experiment in which collapses and
revivals of a matter wave field were observed. On this basis
two states of the system are introduced: one that obeys the
total number of atom conservation and one that violates it
(the latter for comparison). Correlation functions correspond-
ing to both states are calculated and investigated in Sec. III.
Inter alia, we identify situations in which predictions of the
two examined states differ. We also note that in the collapsed

phase the system effectively behaves as if there was no site-
to-site coherence, as pointed out in Sec. IV. Even then,
though, the second-order correlation function shows non-
trivial structure and interference pattern should be seen in a
single photograph. Counterintuitively, this is also the case for
Mott insulator, as shown in Sec. V, and it is extremely diffi-
cult to tell these states apart on the basis of a single or many
measurements. We conclude in Sec. VI.

II. THE EXPERIMENT

The experiment in which collapses and revivals of the
matter wave field were observed[2] was composed of a few
steps. After preparing a Bose-Einstein condensate in a har-
monic oscillator potential, an optical lattice potential was
slowly raised. The height of this lattice has been chosen such
that the system was still completely in the superfluid regime.
Then, the intensity of light creating the lattice was rapidly
increased and the resulting optical lattice was so high that the
tunneling between the sites was strongly suppressed. Was
this raising done adiabatically, the system would move to the
Mott insulating phase; but because it was done rapidly, the
atom number distribution at each well from a superfluid state
was preserved at the high lattice potential, thus producing a
mixture of Fock states with different number of atoms at
each well. The system was then left to evolve for some time,
which was varied from experiment to experiment(we will
call it interaction time and denoteT). Finally, after switching
off all potentials the atomic cloud was allowed to expand
freely for timet before shooting a photograph. As a function
of the interaction timeT a collapse and a revival of the
interference pattern were seen.

We are going to describe this experiment via a simple
model which nonetheless includes the most relevant features
of the system. For example, we will neglect the nonunifor-
mity of the optical lattice stemming from additional har-
monic oscillator potentials(one used to create the Bose-
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Einstein condensate and another one associated with widths
of laser beams), but consider a system composed ofN atoms
distributed amongK equivalent lattice sites instead. The no-
tion of atom density,r=N /K, will be used interchangeably.
The wells’ exact shape is also not important since we are
going to assume that atoms are so cold that they do not have
enough energy to occupy states other than the ground state,
which is justified by the fact that the most important part of
the evolution—the one from which collapses and revivals
stem—takes place when lattice potential is very high and
when the energy of an atom is far less than the energy gap to
the first excited state.

Prior to turning on the strong optical lattice the system
was in a superfluid state and so right after raising the poten-
tial the distribution of atoms between wells is multinomial.
Hence the state of the system is

s1d

where the under-brace denotes total number of atoms conser-
vation law, i.e.,n1+n2+¯ +nK=N and we have already as-
sumed that each atom can occupy any of the wells with equal
probability.

Once prepared, the system is left to evolve for timeT.
Since atoms are now imprisoned in a strong optical lattice in
which tunneling is highly suppressed, in each well they
evolve independently of others. Assuming contact interac-
tions between atoms, the Hamiltonian in each well is effec-
tively of the form:

Ĥ =
"g

2
n̂sn̂ − 1d, s2d

wheren̂ is the operator of the number of atoms in this well
andg denotes the rescaled coupling constant:

g =
4p"a

m
E dxuwsxdu4 s3d

[wsxd is the wave function of the ground state of a well and
a is thes-wave scattering length]. Then, after timeT the state
of the system is

s4d

where the coefficientscnsTd are

cnsTd =
1

În!
expH− i

gT

2
nsn − 1dJ . s5d

To investigate the role of total number of atoms conser-
vation law, however, we are going to analyze a coherent
counterpart of this state as well:

uccohsTdl = e−rK/2 o
n1=0

`

o
n2=0

`

¯ o
nK=0

`

an1+n2+¯+nK

3cn1
sTd ¯ cnKsTdun1,n2, . . . ,nKl, s6d

where the coefficientscnsTd are defined as before anduau2
=r for consistency.

As far as a subsystem composed of a fixed number of
wells is concerned, the multinomial state approaches the co-
herent one when the number of atoms and the number of
wells are increased in such a way that the density is kept
constant.1 In this limit—let us call it thermodynamic limit in
analogy with statistical mechanics—the remaining part of the
system serves as a particle reservoir and not surprisingly the
distribution of atoms factorizes and becomes poissonian in
each well independently, as it is for coherent states.

It is also worth noting that the presented model does not
account for possible effects associated with the reduced di-
mensionality of atoms confined in the optical lattice, for ex-
ample it is not applicable to systems in strongly-interacting
Tonks-Girardeau regime(see[5] for discussion of correlation
functions in this particular case).

III. CORRELATION FUNCTIONS

Let us now calculate explicit analytic formulas for corre-
lation functions for the multinomial and coherent state intro-
duced above. Therth order correlation function is defined as

Gsrdsx1,x2, . . . ,xr ;T,td

= kcsTduĈ†sx1,td ¯ Ĉ†sxr,tdĈsxr,td ¯ Ĉsx1,tducsTdl.

s7d

In the above formula two distinct times appeared: the inter-
action timeT, denoting how long atoms were left to evolve
in the strong optical lattice potential, and the measurement
time, t, which is the time between switching off all binding
potentials and shooting the actual photograph. During the
latter time there are no external potentials and we also as-
sume that the interaction does not play any major role—
consequently the only effect this process has on the system is
the free expansion of wells’ wave functions. Although this
way the interaction phases that atoms might have acquired
are neglected, the assumption is not only justified(since dur-
ing expansion the system becomes extremely dilute), but it
also clarifies the overall picture. Each of the times is now
responsible for different physical effects: the interaction
time, T, governs the phases of different Fock states and
therefore is responsible for collapses and revivals, while the
measurement time,t, determines the behavior of wells’ wave
functions and as such does not influence the relation between
different Fock states. Note also that the timet is treated here
rather as a convenient control parameter than a true argument
of the correlation function.

The field operatorĈsx ,td can be decomposed in any com-
plete basis of annihilation operators. In the system we are

1At least from the point of view of the correlation functions we
are investigating.
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considering it is convenient to introduce annihilation opera-

tors of atoms at individual sites’ ground states:Ĉsx ,td
=ok=1

K wksx ,tdâk. Then after some lengthy though straightfor-
ward calculations one obtains

Gsrdsx1, . . . ,xr ;T,td

= rr o
l1,. . .,lr

o
k1,. . .,kr

vshl,kj,Td

3 wl1
* sx1,td ¯ wlr

* sxr,tdwkr
sxr,td ¯ wk1

sx1,td, s8d

where

vcohshl,kj,Td = Rshl,kj,Tdexp̂ rQshl,kj,Td‰ s9d

for coherent states and

vmnmshl,kj,Td =
N!

NrsN − rd!
Rshl,kj,TdS1 +

Qshl,kj,Td
K DN−r

s10d

for multinomial states. The functionsR andQ are

Rshl,kj,Td = expHi
gT

2 o
i=1

K FSo
j=1

r

dl j,iD2

− So
j=1

r

dkj,iD2GJ ,

s11ad

Qshl,kj,Td = o
i=1

K
seigTo j=1

r sdl j,i
−dkj,i

d − 1d. s11bd

First of all the expression for the correlation does not depend
on the interaction timeT nor the coupling strengthg alone,
but on the product of the two. It means that atT=0 the
interacting system effectively mimics the behavior of an
ideal gas, for which, as can be easily checked, all correlation
functions factorize(for multinomial states there appears an
additional proportionality constant). And because the func-
tionsR andQ are periodic functions ofgT, this also happens
for any time such thatgT=2kp, wherek is an integer. This
reappearance of the interference pattern is nothing else but
the revival phenomenon.

A. The first-order correlation function

Density—the first-order correlation function—is obtained
from above formulas via settingr =1 and can be written as

Gs1dsxd = ro
k

uwksxdu2 + kro
l

o
kÞl

wl
*sxdwksxd, s12d

where

k =5 expH− 4r sin2SgT

2
DJ for coherent states,

F1 −
4

Ksin2SgT

2
DGN−1

for multinomial states.6
s13d

First of all, the density is a sum of two kinds of terms: the
background, which is a simple consequence of having on

averager atoms at each lattice site, and interference terms.
The presence and relative amplitude of the latter is governed
by the coefficientk.

To observe interference pattern two conditions must be
simultaneously fulfilled:(i) the interaction timegT is such
that the coefficientk is not vanishing and(ii ) the measure-
ment time,t, is such that the wave functionswisxd substan-
tially overlap. The latter condition controls the exact shape of
interference pattern observed while the first one influences its
visibility. To compare predictions of multinomial versus co-
herent states it is therefore enough to investigate the coeffi-
cientk only. It is astonishing how quickly—when increasing
the number of wells—predictions of the two states coincide:
practically from 3 wells upwards there is no way to distin-
guish multinomial from coherent states through density pro-
files. Only for two wells,K=2, is there a substantial discrep-
ancy: binomial distribution predicts an additional revival at
gT=p. Interesting enough, the interference pattern observed
at this additional revival is in-phase with the pattern atgT
=0 for odd number of atoms and out-of-phase for even num-
ber of atoms. One might think that investigating the situation
with only two wells is pushing the analysis beyond the limits
set by experimental reality. This is not true, however. Only
slight modification of the experiment is required to go into
this interesting regime.2 Imagine that before the first optical
lattice (the one, in which the atomic system is in a superfluid
state) is turned on, another optical lattice is raised: a lattice
deep enough to force the system into the Mott insulator state,
with a well defined number of atoms per site. Let us now
turn on a lattice with half the spatial period of the one al-
ready existing: this will produce a binomial distribution of
atoms in each deep potential well between two shallow
wells.

The vanishing of the coefficientk for almost all interac-
tion times apart from the ones close to revival times is the
origin of the collapse phenomenon. To estimate the time of
collapseT* one can require the coefficientk to reach a preset
small value,e. Then

cossgTmnm
* d ø 1 −

K
2

s1 − e1/sN−1dd, s14ad

cossgTcoh
* d ø 1 +

ln e

2r
. s14bd

Note that the collapse is(apart fromK=2,3 cases) never
exact, i.e., when demanding the interference fringes to van-
ish completely, which corresponds to settinge=0, the above
inequalities cannot be satisfied. At least not without simulta-
neously increasing the densityr. However, for any practical
purposes it is enough to have the visibility of fringes smaller
than the sensitivity of detectors to speak about complete col-
lapse of interference pattern. For multinomial distributions of
atoms among small number of wells, on the other hand, there
exist interaction times for which fringes vanish identically:
these aregTmnm

* = 1
4 32p andgTmnm

* = 3
4 32p for K=2 case,

2This idea originates from private communication with Immanuel
Bloch.
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andgTmnm
* = 1

3 32p andgTmnm
* = 2

3 32p for K=3 case.

B. The second-order correlation function

Let us concentrate on the normalized second order corre-
lation function, defined as

gs2dsx,x8d =
Gs2dsx,x8d

Gs1dsxdGs1dsx8d
s15d

because this way information about the density is set aside
and only correlations are being investigated. For interaction
time such thatgT=2kp, wherek=0,1,2, . . .,i.e., exactly the
revival time, the normalized second-order correlation func-
tion is constant, because then the ideal gas case is recovered
and consequently

ggT=2kp
s2d sx,x8d = 5 1 for coherent state,

1 −
1

N for multinomial state.6 s16d

Already, there is a difference between the two states exam-
ined: multinomial states predict a small antibunching effect,
gs2dsx ,x8d,1, which is due to the total number of atoms
conservation law: the chance of detecting an atom at position
x is smaller if another atom was already detected somewhere
else(than if it was not) because there are fewer atoms alto-
gether. Note that this result will hold also for other interac-
tion times, providedx andx8 are distant enough.

However, if one moves away from the exact revival time,
so thatgT is no longer an integer multiple of 2p, it is prac-
tically impossible to get any insight into the behavior of the
physical system analytically—by investigating the formulas
alone, especially with arbitrary wave functionswisxd. There-
fore, we have chosen to investigate the system via numerical
simulations of one-dimensional lattices, varying the number
of lattice sites, the atom density and the width of the initial
wave packet(which, in our simple model, corresponds to the
height of the optical lattice). In the simulations we put the
wells’ centers on the net with spacing equal to 1, so the unit
of length is simply half the wavelength of light used to create
an optical lattice potential. Prior to the switching off the
lattice, wave packets were Gaussians located at the center of
the corresponding lattice site: wisx,t=0d~exp(−sx
−xid2/2s2), wherexi is the location of the center of theith
well, s denotes the Gaussian’s width and the proportionality
constant includes normalization factor, but the phases of all
wave functions are set identical. The expansion of the field

operator,Ĉ, as a sum of annihilation operators of atoms at
ground states of different lattice sites implicitly assumes that
these wave functions form an orthogonal set. Although this
condition cannot be perfectly fulfilled for any set of Gaussian
wave packets, the overlap of wave functions of adjacent sites
is exps−s−2d and consequently it can be made arbitrarily
small by decreasings. In the actual simulationss was varied
between 0.03 and 0.12, which yields nonorthogonalities be-
tween 10−480 and 10−31. (The experimental value ofs in [2]
translated to the system of units adopted here was around
0.15.) As explained before, wave packets were allowed to
expand freely for timet before taking the measurement.

Time is measured in unitsml2/ s4"d, wherem is the mass of
an atom whilel denotes the wavelength of light used to
create the optical lattice potential. In these units the density
of a single wave packet after expansion is just a Gaussian of
width given byÎs2+st /sd2. For large measurement times it
is therefore convenient to expresst as multiples of the initial
width, s, because then it is clear over how many sites the
wave packet has spread. For example, a measurement time
t=4s means that each wave packet “probes” roughly a
sphere of radius 4, i.e., 4 lattice sites in each direction.

For interaction timesT different from revival times the
results of simulations are the following: First of all,
gs2dsx,x8d correlation function exhibits a structure. Typically,
these are diagonal stripes in thex−x8 plane, such that the
normalized second order correlation function depends only
on the difference of its spatial arguments:gs2dsx,x8d<gs2dsx
−x8d, as seen at Fig. 1(b) (at least far from the boundaries of
the system). It means that in every realization interference
fringes are going to be observed, but the whole pattern will
move from shot to shot and will vanish after averaging, pro-

FIG. 1. First- and second-order correlation functions for one-
dimensional system composed ofK=10 wells andN=30 atoms.
The wells’ wave functions were Gaussians of initial width,s
=0.12, and the measurement time wast=3s. Arrows denote the
positions of wells’ centers.(a) Density profiles versus the interac-
tion time, gT. Both the collapse and the revival of interference
pattern is clearly visible.(b) Close-up for a certain value of inter-
action time,gT=0.332p. The curve at the top is the density profile
(this is a cut along the dotted line from the figure above). The
two-dimensional density plot denotes the normalized second-order
correlation function,gs2dsx,x8d.
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ducing a smooth density profile. Secondly, the range ofgs2d is
closely related to the size of expanding wave packets(which
depends on the measurement time,t). Speaking roughly, to
have a nontrivial correlation, wave packets must spread over
the distance equal to the separation between the points at
which gs2d is calculated or measured. The separation between
the fringes, on the other hand, is determined by the initial
size of expanding wave packets, or, in other words, by the
momenta involved: the steeper the optical lattice potential,
the more localized the wave function and the more fringes in
the second-order correlation function structure.

The formulas for correlation functions are quite distinct
for both kinds of states, it is thus somewhat surprising that
the predictions obtained in numerical simulations are practi-
cally indistinguishable. To spot possible discrepancies we
have investigated coefficientsvshl ,kjd defined by Eq.(8) in
more detail, and found that even though these coefficients
depend on four indices, they can take only one of six values
(this happens—technically speaking—because functionsR
and Q depend not on the values of the indices themselves,
but on their mutual relation, i.e., on the way they split into
equivalence classes with respect to the number of identical
values). In the limit K→` and N→` such thatr=N /K
=const, the coefficients corresponding to multinomial states
become identical with the ones stemming from coherent
states, which is yet another manifestation of the equivalence
of the two states in the thermodynamic limit. This limit is
achieved so quickly that fromK=5 upwards there is practi-
cally no way of distinguishing between the two states.3 Only
for K=2,3,4 wells case is there a room for discrepancies
and indeed such situations in one-dimensional case are found
and depicted in Fig. 2. Apart from optical lattices there exists
a number of experimental techniques used in atom interfer-
ometry that can create potentials comprised of a few wells,
for example atom chip devices[6,7] or optical tweezer sys-
tems[8,9].

The conclusions presented above—stemming from one-
dimensional simulations—are not altered when extending the
analysis to higher dimensions. With one important note,
however. The structure in the second-order correlation func-
tion implies that interference pattern should be seen in every
single realization and smooth out when averaged over many
experiments, producing a relevant density profile. This is true
for a measurement which detects atoms in the full,
3-dimensional physical space and is in general false for its
2-dimensional projection(think about holograms versus pho-
tographs). The latter is governed by a column-averaged cor-
relation function, in which information about correlations in
the direction of the illuminating light pulse is lost, and such
a situation corresponds to performing many 2-dimensional
experiments and averaging over them. This explains why the
collapse was seen at all in a single experimental run. Nu-
merical simulations of a lattice composed of 535 sites show
that the visibility of the interference pattern drops from 44%
when averaged over one layer to 19% when averaged over
all 5 layers, and the effect is expected to be even more pro-
found for larger systems.

IV. INCOHERENT SYSTEMS

The system examined herein before was implicitly as-
sumed to be perfectly coherent, in a sense that in numerical
simulations wave functions of all optical lattice sites had
identical phases. This was because in the experimental situ-
ation the system prior to the turning on the strong optical
lattice potential was in a superfluid phase, which exhibits
long-range coherence. However, in principle, the same for-
malism is also applicable to the situation in which there is no
long-range coherence in the initial state, i.e., the wave func-

3Provided that the density is not extremely low, i.e., the number of
atoms,N, is at least of order 10 rather than of order 1.

FIG. 2. Situations, at which coherent and multinomial states
give distinctively different predictions. Density plots denote the
normalized second-order correlation function,gs2dsx,x8d, wherex
andx8 are on the horizontal and vertical axis, respectively. Arrows
denote the position of the wells’ centers. One-dimensional graph on
top of the density plot is the density,Gs1dsxd. The parameters of
physical systems, apart from the number of wells and the interac-
tion time, are identical for all plots: atom density,r=5, measure-
ment time,t=2s, and initial width of expanding wave packets,s
=0.12.
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tions’ phases are completely random. Even though the physi-
cal relevance of such a state might be questionable, it is
worth to examine this limit as well, because then one could
separate effects originating from having a mixture of Fock
states at each site from the ones necessarily requiring the
coherence between sites. The state with completely random
phases is also interesting because—at least when large mea-
surement times are concerned—it can be to a large extent
investigated analytically independently of its size and dimen-
sion.

Let us therefore assume that(i) the wave functions of
individual wells have random phases:wksxd→eifkwksxd,
wherefk are random numbers between 0 and 2p, and(ii ) the
measurement timet is so large that at each point in space
wave functions of many sites overlap. Then, in the expres-
sions for the first- and second-order correlation functions all
terms that explicitly depend on phasesfk will average out,
producing

Gs1dsxd = ro
k

uwksxdu2, s17ad

Gs2dsx,x8d = v0G
s1dsxdGs1dsx8d

+ v0r2o
l

o
kÞl

wl
*sxdwksxdwlsx8dwk

*sx8d,

s17bd

wherev0=1 for coherent and1−1/N for multinomial states.
Note that these expressions do not depend upon the inter-

action time at all. Therefore the fact that the experimentally
observed pattern changed with interaction time is a clear sign
of the coherence in the initial state. The density shows no
interference pattern and is exactly the same as the one of
system with coherence in the collapsed phase, i.e., whenk in
Eq. (12) is close to zero. Note however that here the mecha-
nism is intrinsically different: The interference pattern is ab-
sent not because of the collapse of the matter wave field at
each individual well, but because of the washing-out effect
when overlapping subsystems with different phases. If one
looked at a single well subsystem, one would have seen col-
lapses and revivals there, just as it was pointed out in the first
article concerning this phenomenon in Bose-Einstein con-
densates[10].

The second-order correlation function, on the other hand,
shows additional structure, which depends on the overlap of
wells wave functions,wl

*sxdwksxd. If the measurement time is
large enough this function is just a smooth profile modulated
by a spatially-dependent phase of the form expsipxd, where
p is related to initial widths of expanding wave packets, and
then the pattern observed in the second-order correlation
function comprises of diagonal stripes in thex−x8 hyper-
plane, just as the ones seen at Fig. 1(b). The fact that in the
collapsed phase of the evolution systems with perfect coher-
ence have practically the same first- and second-order corre-
lation functions as systems with completely random phases
implies that it is impossible to distinguish between them,
neither in a single nor many experiments. In that sense one

could say that in the collapsed phase the system with long-
range coherence mimics the behavior of the system with no
coherence at all.

The difference between multinomial and coherent states
manifests itself only in the coefficientv0 (1 versus1−1/N),
which leads to a small antibunching effect, as also seen in the
case of systems with perfect coherence. Similarly, the struc-
ture in the second-order correlation function vanishes when
column averaged. This is a consequence of the fact that the
free evolution propagator acts independently in each direc-
tion. Initially the wave functions were very well localized at
different points in space and therefore their product vanished
identically: wl

*sx ,t=0dwksx ,t=0d<0. Therefore, column av-
eraging at the initial instant—which is nothing else but inte-
grating this product over one coordinate—yields zero. This is
also true for any measurement timet because such an aver-
aged expression is nothing else but a scalar product and as
such cannot be changed during a unitary evolution.(Note
that this reasoning requires that the projection of the whole
evolution operator onto one dimensional subspace deter-
mined by the direction of propagation of the illuminating
light needs still to be unitary, which is true for free evolution
but not in general.)

V. MOTT INSULATOR

For comparison let us also investigate an ideal Mott insu-
lator, i.e., a state with the same number of atoms in each
well:

ucMottl = ur,r, . . . ,rl, s18d

wherer is now an integer(and naturally it is still the density
of an atomic sample). The achievement of the Mott phase is
probably the most important experimental result with cold
atoms in optical lattices[11]. Correlation functions in such a
system are straightforward to calculate

GMott
s1d sxd = ro

k

uwksxdu2, s19ad

GMott
s2d sx,x8d = rsr − 1do

k

uwksxdu2uwksx8du2

+ r2o
kÞl

uwksxdu2uwlsx8du2

+ r2o
l

o
kÞl

wl
*sxdwksxdwlsx8dwk

*sx8d.

s19bd

These formulas bear a close resemblance to Eqs.(17) and
therefore the predictions are quite similar as well. In particu-
lar, even in a Mott insulating phase one is going to observe
interference pattern in a single measurement, because its
second-order correlation function exhibits the striped struc-
ture. The only difference between the Mott insulator and a
state with mixture of Fock states with random phases(or
with coherence but in a collapsed phase of the evolution) lies
in the first term in the Eq.(19b). Consequently, to distinguish
between these states one should perform a measurement with
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very short measurement times, so that the overlap of wave
functions of adjacent sites is vanishing, and look at the diag-
onal part of the second-order correlation function only,
which will be Gs2dsx ,xd=v0r2okuwksxdu4 for states with mix-
tures of Fock states at each site andGMott

s2d sx ,xd=rsr
−1dokuwksxdu4 for Mott insulator. Note that the difference is
the most significant for systems with low densities, in par-
ticular GMott

s2d sx ,xd vanishes identically ifr=1.
The second-order correlation function for a Mott insulat-

ing phase was already theoretically investigated in[12].
Moreover, recently a high-contrast matter wave interference
between 30 independent Bose-Einstein condensates released
from a one-dimensional optical lattice was indeed observed
experimentally[13]. The visibility of the interference pattern
in a single experiment was similar both for phase-correlated
condensates and for phase-uncorrelated condensates. In an
earlier experiment of this kind[14], the interference pattern
was only observed when atoms were released from a shallow
optical lattice and it was almost completely lost when the
lattice depth was increased. These two results seem to con-
tradict each other, but a closer analysis shows this is not the
case. The reason for different observations lies mostly in the
particular choice of the measurement time, i.e., how long it
took between switching off the potentials and taking the im-
age of the expanded cloud of atoms. To see this let us com-
pare correlation functions of two extremes: a Mott state and
a coherent state. After the expansion the density of a Mott
state is just a Gaussian, while for coherent states the density
comprises of interference spikes modulated by a Gaussian
envelope. Let us denote the ratio of the latter Gaussian en-
velope to the density of a Mott state byh. In the simplest
case this will beh=maxhGcoh

s1d sxdj /maxhGMott
s1d sxdj. As far as

the second-order correlation function is concerned, for a
Mott state an interference pattern cannot become arbitrarily
large. In the best possible case all “interfering” terms in the
Eq. (19b) contribute in-phase, which in turn yields the
maximum value of the second-order correlation function
twice the uncorrelated background: maxhGMott

s2d sx ,x8dj
=2smaxhGMott

s1d sxdjd2. Correlation functions for coherent
states, on the other hand, factorize and therefore the second-
order correlation function is just a product of the densities,
hence: maxhGcoh

s2d sx ,x8dj=smaxhGcoh
s1d sxdjd2. Therefore, the ra-

tio of maximum values of the second-order correlation func-
tions for coherent states and for a Mott state,
maxhGcoh

s2d j /maxhGMott
s2d j=h2/2. In the experiment[13] the ex-

pansion time was relatively short yieldingh<3 and the re-
sulting ratio in the second-order correlation function is
around 4.5. For the experiment[14], on the other hand, ex-
pansion time was very long, such thath=11.7 and the maxi-
mum of the second-order correlation function was 70 times
smaller than its coherent counterpart and could have easily
dropped below the resolution of the imaging system. Of
course this analysis does not pretend to describe any of these
experiments quantitatively, but it shows where the reason for
observed discrepancies most likely lies.

VI. CONCLUSIONS

We have investigated the recent experiment of collapses
and revivals of the matter wave field in terms of correlation
functions. We show that exactly at revival times an interact-
ing system mimics the behavior of an ideal gas and all cor-
relation functions factorize. In the collapsed phase of the
evolution, on the other hand, the system effectively behaves
as if there was no coherence between the sites of the optical
potential. This does not imply, however, that a smooth den-
sity is obtained in a single realization of the experiment: on
the contrary, we show that the second-order correlation func-
tion exhibits structure and therefore interference pattern
should be seen in a single measurement. Counterintuitively,
the same conclusions hold also for the Mott insulating phase,
which has already been proven experimentally.

The fact that the collapse of the matter wave field was
seen experimentally at all is due to the column averaging. We
stress the difference between a result of a single measure-
ment and a column averaged single measurement(the latter
corresponds in fact to a measurement averaged over an en-
semble of two-dimensional experiments). We also show how
to differentiate between the different states via a single mea-
surement.

We investigate the role of the total number of atoms con-
servation. In particular we identify rare situations in which
predictions of multinomial and coherent states differ. Unsur-
prisingly, they all correspond to situations with small number
of lattice sites.
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