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Critical behavior of weakly interacting bosons: A functional renormalization-group approach
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We present a detailed investigation of the momentum-dependent self-ebékpyat zero frequency of
weakly interacting bosons at the critical temperatligeof Bose-Einstein condensation in dimensions 3
<4. Applying the functional renormalization group, we calculate the universal scaling function for the self-
energy at zero frequency but at all wave vectors within an approximation which truncates the flow equations
of the irreducible vertices at the four-point level. The self-energy interpolates between the critical kegime
<k. and the short-wavelength reginie>k., wherek; is the crossover scale. In the critical regime, the
self-energy correctly approaches the asymptotic beha&fikyek?=7, and in the short-wavelength regime the
behavior isS (k) = k%P3 in D> 3. In D=3, we recover the logarithmic divergenté) = In(k/k.) encountered
in perturbation theory. Our approach vyields the crossover dcases well as a reasonable estimate for the
critical exponenty in D=3. From our scaling function we find for the interaction-induced shiff jrin three
dimensions AT,/ T,=1.23an"3, wherea is the swave scattering length and is the density, in excellent
agreement with other approaches. We also discuss the flow of marginal paramdder8 iand extend our
truncation scheme of the renormalization group equations by including the six- and eight-point vertex, which
yields an improved estimate for the anomalous dimensgjen0.0513. We further calculate the constant
limy_o 2(k)/k>"7 and find good agreement with recent Monte Carlo data.
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[. INTRODUCTION scaling form independent af, up to momenta which only
need to be small comparedxd’. At some crossover scale
The physics of weakly interacting bosons has seen a rehe zero frequency self-energy leaves the anomalous scaling
vival thanks to the improved experimental technique of atonregime and enters the perturbative regime, where the self-
traps which allow for a detailed study of Bose-Einstein con-energy correction to the dispersion becomes negligible com-
densation in a controlled environment. Besides the theoretipared with the bare dispersion
cal effort invested into studies of harmonically trapped _ . _
bosons(for a review, see Ref{1]), this also generated re- € = pok?,  with po=7?/2m. (1.1
newed interest into the behavior of homogeneous Bose gaseferem is the bare mass. At finite temperatures &nd 4, a
and led to some new insighfg]. Many aspects of weakly perturbative calculation of the self-energy is ultravigléV)
interacting Bose gases have been understood for quite soravergent. This divergence can be addressed by using the
time now, such as the universality cle&®&2) of the conden-  thermal de Broglie length as an UV cutoff. D= 3, however,
sation transition along with an accurate knowledge of criticathe perturbative regimde, <k<2m/\y, remains nontrivial
exponents. However, the universality of weakly interactingeven in presence of a UV cutoff, since additional logarithmic
bosons at the critical point is not limited to critical exponentsinfrared (IR) divergences appear. As discussed in detail by
since a weakly interacting Bose gas behaves universal at elaym et al. [5], the IR divergence cannot be treated in an
length scales larger than the thermal de Broglie wavelengthd hocmanner by introducing an IR cutoff, since doing so
M [3,4]. The origin of this extended universality is that at introduces an artificial additional scale which directly enters
large length scales quantum fluctuations become unimportagfuantities which should be universal, such as the interaction
so that this regime of the Bose gas is completely describethduced shift of the critical temperature. The IR divergence
by a classicalkp* model [5]. In this work we present a de- can be removed by a resummation using a variety of stan-
tailed study of the momentum-dependence of the self-energgard many-body techniques, e.g., bubble or ladder summa-
at the critical point of Bose-Einstein condensation at zeraion and/or self-consistent approach&. However, these
frequency, using the functional renormalization group for-methods are uncontrolled in the critical regime where one is
malism in the form introduced by Wetteri¢h] and by Mor-  faced with a strong-coupling problem. Renormalization
ris [7]. Some results of this manuscript were already pregroup (RG) techniques are expected to perform better and
sented in a brief forni8]. Here we give a detailed account of several authors have applied RG techniques to investigate
the calculation and further include an extensive treatment ofhe IR behavior of weakly interacting bosoj#-12], though
marginal terms. no attempt was made to calculate the momentum dependence
In the limit of weak interactions, parametrized by the of the self-energy. Note that standard field theoretical RG is
s-wave scattering length, the self-energy is universal not confined to the critical regimk<k.. In fact, even the scale
only in the limit of small wave vectork — 0, where it is k. cannot be obtained within such an approach. To interpo-
proportional tok?~” with a finite anomalous dimension It late between the critical and the short wavelength regime,
remains universal, in the sense that it can be written in d@unctional RG technique$§6,7] are a natural choice, since
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they track the flow of complete vertex functions rather thanthe flow equations and show that the inclusion of marginal
just a small number of coupling parameters. Note that theerms provide an improvement for the fixed point value of
functional RG approach includes priori also terms which the anomalous dimension.
are irrelevant according to their scaling behavior, but which In Sec. VIl we calculater(x) in D=3 including the mar-
are important for a correct description of the perturbativeginal terms of the four-point vertex but ignoring irrelevant
k.<k regime. In this work we present in detail a functional terms. We demonstrate how this truncation fails in the large
RG approach to this problem and calculate the universal selikegime, where it predicts incorrectly(x) «x which in turn
energy to leading order in the small paramedet’ for all  would predictAT./T.«an3In(an’3). On the other hand, in
wave vectorgn is the boson densijy Since the critical be-  the critical regime irrelevant terms only lead to a renormal-
havior atT, is classical, we will focus only on the self-energy ization of marginal and relevant ones aotk) is well de-
3 (k,iw,=0) at vanishing Matsubara frequency. scribed by a theory were irrelevant terms are not included.
We begin with the general form of the functional RG flow we use this approach to express the prefadtgrof the
equations for the irreducible vertices up to the four-pointanomalous scaling terna(x) = A;x2~7, as a function ofy for
vertex in Sec. Il, where we still retain all frequencies. Ourp=3. Our result is in good agreement with recent Monte

approach is based on the sharp-cutoff version of the funcearlo results[4]. Finally, in Sec. VIII we summarize and
tional RG[6,7,13,14. In Sec. lll, we turn to the effective conclude this work.

classical field theory and rewrite the problem in a notation
appropriate to the classical limit. In Sec. Il A, the relevant

and marginal parameters are classified in dimensioi93 || FUNCTIONAL RG FLOW EQUATIONS FOR BOSONS
<4 and their functional flow equations are stated ) o . . o
in Sec. Ill B. Our starting point is a standard effective action describing

Section IV contains the central part of our work, the cal-free bosons with a two-particle interaction, which is local at
culation of the self-energy. We first reexamine perturbatiorf’€ bare level. The action with an UV cutof, (to be speci-
theory and its divergence D=3 before we turn to the cal- fied latey is of the form
culation of the self-energy within the functional RG formal- =L (7 ntgo
ism. This formalism allows us to calculate the scaling func- SAo{‘ﬁ* Y= Ao{¢’ yh+ Ao{‘ﬂ’ vt (2.9
thq o(X) gharactenzmg the zero frequency self-energy at th?/vhere the noninteracting part is given by
critical point. We definar(x) by

_ - _ s"_,:f(aA—k—'wn — w+2(0,i0) i,
o(X) = (pgkd) S (kex) - S(0)], (1.2) WA ) (Ao = kD[-Twn+ € = p+2(0,i0) ]y g

such that the crossover occursxatl. Here(k)=2(K,iw, (2.2
=0) is the exact zero frequency self-energy at the critica\Nith @(x>0)=1 and ®(x<0)=0. The interaction part is
temperature. Standard field theoretical RG can only describ&iven by

the asymptotic limitx— 0, whereo(x) o« x>,

Our approach is based on a truncation of the exact hier-  _ — -
archy of functional RG flow equations at the four-point ver- SAO{‘/” s ZJ O(Ao- ““)[EAO(K) —2(0,i0)Jy i
tex, i.e., we ignore six-point and higher order vertices. While K
in this approximation the flow of marginal terms is not con- 1
sistently described, the resulting approximation for the four- + Wf . f ) f f 5K1+K§,K2+K1
point vertex does in fact include marginal and infinitely 7K K TR TG
many irrelevant terms. The resulting flow equation for the 4! K!- T .
self-energy can then be solved and we derive the complete XFAO(Kl'Kz'KZ'K1)¢K1¢K2¢K2¢K1+
momentum dependence for the self-energy {a3<4, see (2.9
Egs. (4.5) and (4.52 below, which constitute the central
result of this work. A numerical evaluation of Eq4.51) and
(4'.52 n D_3.'.S also presented. We use) to calcu]ate the complex bosonic field. We use the notatikF (k,iw,), [«
shift of the critical temperatur&,; of the condensation tran- —(BV)Is and S = Vo 8 where 8 is the in-
sition in Sec. V. InD=3 we obtainAT,/T,=1.23an"® to Ko KK’ Kk" Cnop? i
lowest order iran*3, in good agreement with recent numeri- Versé temperaturey is the volume, andw,=2mnT are

cal investigationg15,16 and other analytical resulfa7,1g  Posonic Matsubara frequencies. In E§.2) we have in-
(for a recent review on this topic s¢2]). cluded the exact self-energy at vanishing momenta and fre-

In Sec. VI, we improve upon the truncation of the flow guencies as a counterterm in the definition of the free action.
equation and account for the coupling parameters which bethroughout this work, we shall work at temperaturés
come marginal irD=3. Three additional parameters must be = Tc SUch that theJ(1) symmetry is not broken. The gener-
taken into account, two of which are associated with theating functional of the one-particle irreducibepoint verti-
linear momentum dependence of the four-point vertex an@esITV(Ky, ... K}, Ky, ... Ky) of the theory with IR cutoff
one which describes the momentum-independent part of thd can be expanded in terms of the fieldg=(yx) as fol-
six-point vertex. We discuss different truncation schemes ofows:

where the ellipsis denotes three-body and higher order inter-
actions, which we ignore at the bare level. Hefg is a
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o O energy scaling function of the self-energy, EHG.2). The
Tl =, o2 11 f f O +K! KK, flow equation for the two-point vertex is given by
n=0 \N*)%ij=1 J«/ J; .
><F<A2“)({K{,K,-})$K;--EK;%--- e, a\2(K) = fK, GA(KNTP(K, K"K K), (2.7
24 where

The functional RG flow equations of the first few irreducible SOA = Ik
vertices(up to the six-point vertexfor nonrelativistic fermi- GA(K) = (A - [k]) (2.9
onic and bosonic systems can be found in Ré&#]. We fwn— €+ u—2(0,i0) - I'P(K)

summarize below the flow equations relevant for bosons U ihe cutoff dependent sinale scale bropagator. with suoport
to the four-point vertex. The flow equations for the six-point P 9 hropagator, bp

. : only at|k|=A. As is evident from Eq(2.7), the flow of the
verte>.< anq some ter'ms of the flow of the eight-point Vertextwo—point vertex depends on the properties of the four-point
are given in Appendix A.

: . vertex at finite wave vectors. We thus need the momentum-
We would like to add a comment concerning another .
dependent flow of the four-point vertex.

implementation of the exact RG formalism, the so-called de-
rivative expansion, which was employed with great success,
e.g., to calculate critical exponenit9]. In this approxima-
tion, one classifies the terms in the generating functional The flow equation for the irreducible four-point vertex is
I'\{¢, ¢} according to the number of field derivatives ratherresponsible for the crossover from the weak coupling regime
than employing the field expansion E@.4). In the lowest ~at small scales to the critical regime at large scales. The flow
order derivative expansion, the only momentum dependendé given by

enters via a kineti¢d, ¢(x)|? term while the momentum in- AT KD Ko Ky)

dependent contributions of all vertices are included in an ™ A "7 R2R
effective local potential. Thus, there is no truncation in the | O v . : ,
power of fields at the expense of ignoring the momentum  ~ CAKIIY (K1, Ko KK Ko, Ky + | [GA(K)GA(KY)
dependence of higher order vertices. Since we will show in : :

Sec. VIl that even the irrelevant terms of the momentum XTP(K], KK KOTRK K Ko, K k=i ki
dependence of the four-point vertex are essential to obtain

the correct behavior of the self-energy for large momenta, . / : ,

this approach, at least in its simplest implementation, does fK [[CAKIGAKY) + CA(K)GA(KT)]

not seem to allow for a correct description of the large mo-

C. Four-point vertex

mentum regime. The convergence properties of the deriva- <1 (K3, K" ;K KDT (K5, KiK' Ko T = -k
tive expansion with certain smooth cutoff functions are su-

perior to those with a sharp cutdf0]. Less is known about +J [[GA(K)GA(K') + GA(K)GA(K’)]

the optimal choice of cutoff functions within the field expan- K

sion. We use here a sharp cutoff since it is the simplest

B! - (Crva v
choice from a conceptual and practical point of view. XTI (Ka KK KT (K, KK 'KZ)]K’:KrKé*K’

(2.9
A. Free energy ©) : ) .
) . wherel",” is the six-point vertex and
For completeness, we list here the flow equation for the
free energy", although below we shall not discuss it fur- _ O(A <|k| < Ap)
ther. The flow equation is given b Ga(K) = o _1ox, (210
: quation is given by iwn— &+ u—3(0,i0) - I'2(K)
ar9=v| an- k) is the cutoff regularized propagator. The notati®tA < k|
AbA T K < Ay) is shorthand fo®(|k|-A)-0O(|k|-Ap). This equation
. . is shown graphically in Fig. 1. For the most part of this work,
% In i — 6 + 1~ 2(0,i0) we shall in fact ignore the contribution from the six-point
fwn— &+ u—3(0,i0) - T'P(K) |’ vertex to this flow and work solely with the two- and four-

(2.5 point vertex. To calculate fixed-point properties, we will
' however also include the six-point vertex in Sec. VI.

WhereFf)(K) is the two-point vertex, defined by
Ff)(K) =3,(K) - 3(0,0). 2.6) Ill. EFFECTIVE CLASSICAL FIELD THEORY

To discuss the classical critical behavior, it is sufficient to
retain only the zero Matsubara frequency part of all vertices.
In principle, all fields with nonzero Matsubara frequencies

The main interest of the work is the flow equation of thecan be integrated out using the flow equations given above,
two point vertex, which we will relate in Sec. IV to the zero which leads to finite renormalizations of the parameters ap-

B. Two-point vertex
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@ = B - eO®

FIG. 1. Diagrammatic representation of the
° o flow equation for the four-point vertex; see Eq.
4+ N + N (2.9). We adapt the notation BCS, ZS, and’'ZS
0 ° for the diagrams from the usual fermionic lan-
guage[21], even though this notation does not

imply a physical correspondence.

[
(4

e

pearing in the effective classical theof®2]. The effective =2 A . Z ] ]
UV cutoff of the classical theory is determined by the ther- 117(d) = p AZFA (Aq,i0) = o Az[EA(Aqv'O) ~2(0,i0)].
mal de Broglie wavelength, 0 0

(3.6)
2
Ag= 2_77 "= h = 2mh . (3.1  The classical wave-function normalization fac#ris given
Ath v2mmT mT by

In D=3 the initial value of the four-point vertex can be pa- r91~“,(2)(q)

rametrized in terms of the two-body scattering length 4=1- ——— . (3.7
&q q2:0
2
FX‘;(0,0;0,0 = 8mh’a = 16mpya. (3.2  Similar to Eq.(3.6), we define the classical dimensionless

higher order vertices fon=2 hy

T2y, ... GG --- G0

A. Functional RG flow equations for the rescaled vertices
— (K T)n—lAD(n—l)—Zn(Z/ )nF(Zn)({k_ = Aq: — O})
- L D 1/Po) 1 A i quwni .
We assume that the finite renormalizations due to nonzero
Matsubara frequencies are implicitly taken into account via (3.9

the initial conditions at scal& = A, of the effective classical

theory. As discussed in detail in Rgb], to calculate the Kp=Qp/(2mP in the definition of the vertices, wher@,

linear shift of the critical temperaturesee Sec. Y, one can =242/ (D/2) is the surface area of tHz-dimensional unit

i!“ .faCt ignore the renormglization of the (.:IaSSiCE.iI sector bysphere The rescaled vertices satisfy functional flow equa-
finite Matsubara frequencies altogether, since this only Ieadts' ‘

to corrections inT,, of ordera?. It is convenient to write the ons of the form

For later convenience we have included the numerical factor

single-particle Green’s function at zero Matsubara frequency _ 2n _

in the following scaling form Al ({a}) = | 2n=D(n-1) -ny - X q; - Vg [T (aid)
i=1
. Z ~ .
G, (k,i0) = - p—/'\zq(k//\), (3.3 + TP, (3.9
0
where
~ O(1<lgl<€) =—4InZ 3.10
GQ=————""7, (3.4) n=-4InZ (3.10
A R()

is the flowing anomalous dimension. In particular, the
were the minus sign is introduced in E8.3) to arrive at the  rescaled two-point vertex satisfies
usual definition of the classical Green’s function. Here

I=-In(A/A,) is the logarithmic flow parameter, and the in- alP(@=[2-m-q V1P +T{?(@), (3.1
verse dimensionless propagator is where
~ Z _ . . -
R(@ =20+ (@) + “5[¥(0i0) - 4], (39 I?(a) = f G@TP@asa.0, (312
q
with the dimensionless irreducible two-point vertex with
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_ [P L da-
fq,_f O (3.13 G@="p (3.14

The functional flow equation for the dimensionless four-
point vertex follows from Eg.(3.9. It involves the
and inhomogeneity

T9(05,a5: 02,90 = J GI(a)T1¥(01,05,9:0,G2,00) = f [Gi(@Gi(a)T{* (a1, 050", DT1*(0,0"; 62, 0D]g=q,+a,-q
q q

- j [[G(@Gi(a") +Gi(@G(a)IT{*(a1,a";9,q0T{*(02,:0",62) g =q,-q;+q
q

- j [[G(@Gi(a") +Gi(@G(a)IT{*(a2a":9,q0T{*(A1,0:0",62) g =q,-qgra- (3.19
q
[
The flow equations for the six-point and eight-point vertices 2. Marginal coupling parameter
also have the form Eq3.9) where I|® and I'” involve For 3<D <4 the only marginal parameter is the wave-

various combinations of the two-, six-, four-, eight- and ten-fynction renormalizatiorz,. The exact flow equation is
point vertices. All terms entering the inhomogeneity of the

six-point vertex and the terms needed for a calculation up to 4z =-nZ, (3.20
second order in the relevant and marginal parameters of the

A; see Eqs(A2) and(A3).

B. Classification of coupling parameters _ (7r|(2)(Q) 1 4

— -_- 7 'f(4) "‘/;"/’ ool oo
Although we are ultimately interested in the flow of ver- B oq? ¢=0 R(1) ‘9q2< Ha959%9, |q °
tex functions, it is useful to first consider the flow of mar- (3.20)

ginal and relevant coupling parameters, since irrelevant pa-

rameters become local functions of the relevant and marging|ng

ones at the fixed poirfR3]. To properly organize the flow of

irrelevant terms it is thus necessary to know the flow of the d°q

relevant and marginal parameters. We first investigate here ¢4 :f 9—5(|q| -1)... (3.22
the relevant and marginal terms for<® <4, ignoring ad- D

ditional marginal terms ilD=3.

denotes the integral over the unit sphere. The surface area
1. Relevant coupling parameters ) of the unit sphere was defined below E8§.8). In D=3,

In 3<D <4 there are two relevant coupling parameters, 3dditional marginal coupling parameters appear which we
ignore in this section. We will discuss them in Sec. VI.

r=T2(0) = lim 4 S[S4(AQ,i0) - =(0,i0)],
q—0 A

Po 3. The Wilson-Fisher fixed point close to 4

(3.16 It is instructive to take a closer look at the perturbative
one-loop RG flow equations for the relevant coupling param-

i i i i + . .
with scaling dimension +2, and eters. If we retain from the two-point vertex only the relevant

u :ff4)(0,0:0,0, (3.17) and marginal part, we may approximate
with scaling dimensiorr=4-D. The exact flow equations of R(q) =r +0? (3.23
these parameters are
. 2 so that
(9|r|:(2_7]|)r|+r| (O), (318)
_ ~ B(1<|g/<€)
au =(4-D-2n)u +1{%0,0;0,0. (3.19 Gi(q) = e (3.29
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&la[-1) gl

Gl@) =" " (3.29 .

If in addition we retain only the relevant part of the four-
point vertex, we may replace it by a momentum-independent
constant,

1%(a3,05:02,0) = T{¥(0,0,0,0 =u. (3.2
Within this approximation we obtain from E¢3.12),

0 le |

FIG. 2. Typical flow of the couplingy as a function ofl for

: u Ug<u~ andD=3.
r20) =~ ——, 3.2 o
o= (327
2 o e—2|’
and Eq.(3.15 reduces to f=- S +_6f dir— . (3.35
. 5 U2 5 5 0 ef(l =0 +1
r%0,0;0,0 ~--——. (3.29 _
2(1+r) Then we may write
Because the anomalous dimension is related to the momen- * g2
tum dependence of the four-point vertex which is irrelevant N=r«+ U*f dI,W’ (3.36)
in D> 3, we may sety =0 within this approximation. Fur- : e e+l
thermore, on the critical trajectony=0(u;) can also be ig- \where
nored in EQ.(3.28 as long asy, remains small compared
with unity. Then we obtain, witke=4-D, = UE —_ g (3.37)
_ 20
dU = ety = SUr (329 1 sec. IV we show that, up to a numerical factor of the order
of unity, the momentum scale=Aqe™'c associated with the
ar =2 +u,. (3.30 logarithmic scale factol, i.e.,
-1/e 1/e
Equation(3.29) is easily solved. The solution can be written kczAO[E _ 1] - A()(@) , (3.39
in the form Ug Us
u 1 B 1 can be identified with the crossover scale where the critical
W 1- g1 41 7 gl 4 1 (33D k27 form of the energy dispersion begins to emerge.
where IV. THE SELF-ENERGY AT THE CRITICAL POINT
5 OF BOSE-EINSTEIN CONDENSATION
U = gf (3.32 A. Second order perturbation theory

. ) ) L To begin with, let us attempt to calculate the self-energy
is the value ofu, at the RG fixed point, and the logarithmic ,, means of straightforward second order perturbation

crossover scale is theory[5], which yields in a continuum model with UV cut-
1 (u 1 (u off Ag
[.=—1In u——l =~ —In U_ . (3.33 3 4 oA | +k|)
€ 0 € 0 p - p
, , S(k)=2(0)=-T_T} DXo(p){—o
Throughout this work we assume thgt< u., corresponding 2 (2m) €p+k

to weak bare interactions between the bosons. Note that the (Ao~ |p|)
right-hand side of Eq(3.31) is expressed in terms of the -, (4.2
Fermi function. If we think ofe as the inverse temperature €p
andl as the chemical potential, the qualitative behavior ofyherer,=1'"(0,0;0,0 is the bare vertex, and
u/u« is clear: within a narrowon the scald,) interval of 0
width 1/e centered al=I. the ratiou,/u. raises from the _ d®p’ O(Ag—|p')O(Ag—1|p’ +pl|)
small valuee /<) to a value close to unity, see Fig. 2. XoP) =T (2m)P e :
Given the solutiory, in Eq. (3.3)), the RG equatiori3.30 PR
for r, is easily solved, (4.2)
, 5 .
2 (! 2 With €,=pop~ we obtain forAg— <,
r|=—§+e2'{r0+§—€6j dI,W . (3.39 T
o eTTe+l XO(p):KDK(Jm 4.3
0

To obtain a fixed point at— o, the intial valuery has to be
fine tuned such that where
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1.5}
Bp

0.51

0 1 1

3 3.2 3.4 3.6 3.8 D 4

FIG. 3. Graph of the coefficierBp defined in Eqs(4.6) and
(4.7) in dimensions 3XD<4.

1 ( y © yD—l
K. :f dX{x(1 - x)]P~4 2f d
D . X[ ] o y(y2+ 1)2

~ (D
\wF(E - 1) 7ZT(D -2)

- 23—D

(4.9
D-1 T

I'' —— ] sin=(D-2)
2 2

Note thatK} is finite for 2<D <4; in particular,K;=7?/4.
Substituting Eq(4.3) into Eg. (4.2) and taking the limitA,
—oo, we can scale out the dependence and obtain far
<3<4, using the definitionsuozKDTAafpazFo and k¢
= Ag(Up/ ) e,
po [2(k) ~ 2(0)] = BpkZk? %, (4.5

where after an integration by parts the coefficiBgtcan be
cast into the following form:

B -3—ugK'I (4.6)
D_4(D_3) D'D: .
Qp4 (7 ”
lp=—2-t J dd(sin §)°2 J dxx>~
QD 0 0
d{ 1+2xcosd
X |\ =—\ 7/ 4.
[ dx<1+2xcosﬁ+x2>} 47

In Fig. 3 we show a numerical evaluation Bf for 3<D
<4. With 13=1 andKj;=7?/4 we obtain forD — 3

bs 372u?
b3 = .
16

(4.8

Perturbation theory is valid as long as the correcti®) is

PHYSICAL REVIEW A 70, 063621(2004)

B. Functional RG calculation of the self-energy

We now derive the behavior of the self-energy micro-
scopically using the functional RG equations for the effective
classical field theory.

1. The f truncation for the I'® inhomogeneity

To begin with, we need the RG flow of the four-point
vertex. In the simplest approximation, we expand
Fl(“)(qi,qé;qz,ql) in powers ofu,, which should be accurate
as long as the renormalized coupling remains small. To lead-
ing order we simply ignore the six-point vertex and replace
the four-point vertices on the right-hand side of E2}15) by
their relevant party. In this approximation,

. o 1. - ’
I(q},95:02.01) = - lﬁ[;m(lql +0a2)) + xi(|a. - ay))

+)'(|(|q1-OI£I)] (4.9
where the generalized susceptibility is given by
w@=2| (a8’ +a)
q!
2 /ea<|g +q <€)
1+ §" +ql>+r g
2 QD_lfﬂ- . D-2
=——— | do U
1+ O J, (sin)
O0<g?+2 9<e-1
w Q0=q"+2qcos ) (410

1+r,+g°+2qcosd

where in the second and third line we have used the approxi-
mations(3.24) and(3.25, taking into account only the rel-
evant and marginal part of the two-point vertex.

2. Generalized susceptibility

It is instructive to examine the behavior of the generalized
susceptibilityy;(q). Fore —1> 2 the asymptotic behavior for
small and largay can be easily obtained analytically,

1
m+0(q) forq<1<e‘,
|

2
(1+1)q?

x() ~ (4.11)

forl<q<¢.

small compared witlpk?, i.e., fork=kBj*. Due to the IR The important point is that the leading correction for sngall
divergence ofBp for D— 3, close to three dimensions per- is linear inq: expanding Eq(4.10) in powers ofq,
turbation theory breaks down even outside the critical re-

gime. In a IR regularized approach with a cutgffthe di-
vergence in Eq(4.5) is replaced by a Itk¢) behavior[5].

Below we shall see that the functional RG approach shows we find
In(k/k.) behavior, as expected for a theory where the diver-

gence due to density fluctuations is screened within a non-

perturbative treatment.

xi(0) = x(0) + x{ (0)g + O(g?), (4.12
' 0)—; (4.13
X S (1+n)? .
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L | 45
Xi(0)= (1+r|)2[(1+|’|) SO] (419
where
— AlLA —QL‘l
S=(aa" Qg = 00 (4.15
and
O VA By = D
S=(0@"-04" Wy =57 (4.16
In D=3 we obtain with§=1/2 andS,=1/4
o= —t (1 1 _
X (0) = (1+r|)2<1+r| 2), D=3. (4.17

For later reference, let us give the exact functjgfg) in
D=3, where the angular integration in E4.10) can easily
be performed analytically. The result can be written as

B ) [1 fr+ol+ 2qqz}
= , (4.18
A TR )
where
_J -1 ifg>2, (4.19
W g2 ifq<2, '
1 if €-1>q,
=1e?-1 .
%=1¢-1_4d if d-1<q. (4.20
2q 2
In particular, forq<min{2,¢' -1} we have
. (1+g)?2+ n}
= . 4.2
0= 31 n{ Tor (4.2

Thus, for small momenta our approximatioh9) yields in
D=3,

F(4)( Il )~_§ u + u ( 1 _1)
1 (01,02:92,91) = 2(1+r)2  (L+r)2\1+1, 2

1 ! !
X[§|Q1+Q2| +o—qqf + |Q1‘Q2|}

+0(q). (4.22)

PHYSICAL REVIEW A70, 063621(2004

The term linear irg generates marginal parameters, as men-
tioned in Sec. Il B 2, when we iterate the RG. The linear
term exists for alD, but the corresponding coupling param-
eters are irrelevant iD > 3. Because these coupling param-
eters are not consistently taken into account in uhérun-
cation given in Eg.(4.9, we cannot expect that this
truncation gives numerically accurate results in the critical
regime close to three dimensions. On the other hand, in the
short-wavelength regimg¢and also forD-3> ), our u?
truncation(4.9) is sufficient. In this section we shall there-
fore proceed with this approximation, which produces well-
defined results even iD=3 provided the anomalous expo-
nent » is calculated self-consistently by solving an integral
equation, see Eq4.29 below. In Sec. VI we shall improve
on this approximation by explicitly including all marginal
coupling parameters in the critical regimen=3.

3. Explicit expression for the four-point vertex

With Eq.(4.9) as an approximation fd?f‘”, we are now in
a position to calculate the flow of the four-point vertex. Let
us rewrite Eq(4.9) in the following way,

5u?

PEEAR MCHEELEA

(4.23

[(*(01,05:02,01) =

where

- B ’ ’ 1 \ i
1—w|(4ml)(q1,q2;q2'ql) = - U|2 EXl(ml)(|ql + C]2|)

+ 3™ (- ai) + ™ (.- a3 |
(4.24)
with

X™(@ = (@) - x(0) (4.25
describing the momentum-dependent part. The superscript
(mi) indicates that these terms are marginal or irrelevant. In
this approximation the four-point vertex the form

T19(5,05: 02,90 = U+ T1*™(01,05:02,01), (4.26

with the irrelevant{and inD =3 also marginalparts given by

|
o i ! | : i ’ ! ’ ’
T*™(a1,05:02,00) = f direr (2t (e g e gy e g, e gy
0

0

0

|
A | 2 1 . i (=1 . i (=1 . i (="
- _f drrest-1" zf"dmfuv[?(ffm)(e (-1 >|q1+q2|) +X|(fm)(e (-1 )|Q1‘Qi|) +X|([m)(e (-1"

[
—of! 1. i — = (Mi) ) = ’ = (Mi)f = ’
== f dte 2f"‘dm’u|2—t{§)(l(r—ntl)(e og +qgl) + Xfintl)(e Yo, —qsl) + Xfintl)(e Yog = CI2|)} .

%‘%D}

(4.27)
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C. Anomalous dimension 7 M Uy 1

. . . TR Ry 4.33
To obtain the anomalous dimension 7 re u el (4.33

— a2 (2) ;
m= ol (Q)/‘9q2|92=0 we calculatel'”(q) via Eq. (3.12.  \yith the fixed point values taken from the numerical solution
With the approximation Eqg4.26) and(4.27) for the four-  4nq wherey=lim,_...7 is the anomalous dimension at the

point vertex we find fixed point. Although the functional forng4.33 for 7, is
_ 1 - qualitatively incorrect fol <I; [where 77|o<u,2, whereas Eq.
r'2(q) = —<r|<4>(q,q';q',q)>a, (4.33 predilcts mou] we may use Eq(4.33 as a zeroth.
R(1) approximation on the right-hand side of the integral equation
u 3 [ | (4.29. The point is that foll <I, the right-hand side of Eqg.
~— - f dte‘it"zfl—tdmfuf_t (4.29 is not sensitive to the precise value gf in this re-
1+ r 2(1 + r|) 0

gime, and the first iteration of the integral equation yields an
(4.28 accurate result even for smadll Let us now calculate the
fixed point values. We obtain from E®.29

From Eq.(3.21) we then obtain an integral equation for the o
flowing anomalous dimension 7= UEJ

XM (ea’ +al)g -

dtK(eo,t)e 2, (4.39
0

[

7 :f dtK(I,t)u,z_te‘Zf:—rd”’f, (4.29  where we use the notatiop=7.. The functionK(e,t) is

0 obtained fromK(l,t) defined in Eq.4.30 by replacing the
with functions y,_«(q) on the right-hand side by
. : . 2 /06(§ +q/-1)
3¢ J . ~t A * = lim = .
K(,t)=- 21 +f|)£ On-€7g’ + Q|)>a/|q:o x-(@ |—>00X|(q) 1+r.\ [§" +q?+rs &
(4.35
—_ — e (D=3, 1 (ot
4D(1 +r,)[(D De Xi-(€7) In particular, inD=3 we have
+e P24 (eh)], (4.30 _ 1 (L+q)2+r.
| _ a | A= 50 (2—q)ln<—1+r )
wherey; (x)=dy;(x)/dx and x{'(x) =dy,(x)/dx?. Note that on =) *
the right-hand side we have replac?gﬁ:'>(q)—>j(|_t(q), be- +0(g-2)l (L+g)%+rs (4.36
cause the constant paji_(0) does not contribute to the q : (1-g)?+r./ ] '
derivative. The integral equatio.29 together with the i _(D-ar
one-loop flow equations for the relevant coupling param-Note that for large the kerneK (e, t) vanishes ag™>"", so
eters, that in D=3 it is crucial to retain thep-dependence on the
right-hand side of Eq(4.34). This is closely related to the
Uy appearance of marginal terms of the four-point vertexin
an=@2-mr+ T+r,’ (4.3) =3, The self-consistent fixed point values can be obtained by
5 U
qu=(e-2 -, 4.3 27 U
U= (e = 2y, 2(L+1)? (4.32 02
form a system of three coupled integro-differential equations o1l
for the three unknown functions, u;, and 7. A numerical ' uf
solution of these equations f@=3 is shown in Fig. 4.
To leading order ire (i.e., close to four dimensiop&gs. 0
(4.29), (4.31), and(4.32 decouple and one recovers the fixed
point valuesu.=2¢/5, r«=-¢/5 from Eq.(3.37). To this or-
der it is consistent to ignorg, andr, on the right-hand side 0.1t
of Eq. (4.32), so that it reduces to E@3.29), with the Fermi
function solution fory, given in Eq.(3.31). From the numeri- T
[

cal solution of Eqs(4.29—(4.32 for D=3 we find that even

if rj and 7 are taken into account, to a good approximation giG_ 4. Self-consistent RG flows af, r; and 7 at the critical
the qualitative behavior ofy is still well described by a point in D=3 (dashed lines obtained numerically from the coupled
Fermi function if we adjust the fixed point value to the  integro-differential Eqs(4.29), (4.31), and(4.32. For comparison,
one obtained from the numerical solution. Furthermore, Figthe Fermi-function approximation Eg4.33 for the flows is also
4 shows that alsay andr, roughly follow the same func- shown(full lines), with fixed point values matching the numerical
tional form and we therefore approximate solution.
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using the fact that, at the fixed point, we can exptesand
r- as a function ofy,

21-2
n=-—2°1 (4.373
34 -3y
10(1 - 29)(2 - p)?
10 -29)(2-n) (4.37H

9 (4-3p7?

Inserting these expressions for andr. into Eq.(4.34), we
obtain a self-consistent equation fgrwhich can be solved
numerically. The numerical solution gives

r.~-0.143, (4.383
U ~ 0.232, (4.38h
7~ 0.104. (4.389

The above value for is approximately three times as large
as the generally accepted valge=0.038 obtained by sev-
eral different technique$25,26. However, given the sim-
plicity of our truncation, it is quite satisfactory that our esti-
mate(4.389 for » has the correct order of magnitude. In any
case, our simple?-truncation certainly gives a much better
estimate fory than the self-consistent two-loop calculation
employed by Baynet al. [5], which predicts a value of 0.5
for . In Sec. VI we shall further improve on the
u?-truncation employed here by explicitly taking the RG flow
of marginal coupling parameters into account.

PHYSICAL REVIEW A70, 063621(2004

D. The scaling function

Let us now calculate the dimensionless scaling function
o1(x) which we define by

(4.42

Since the two-point verteff“,(z)(q) and the inhomogeneity
Ffz)(q) depend only om=|q|, we shall in this subsection use
scalar arguments for these functions to simplify the notation.
For | — o« the definition(4.42) for o|(x) yields the universal
scaling function defined in Eq1.2),

limay(X) = a(X) = (pokg) [ (k) — Z(0)].

| -

o1(x) = e 270772 (el o)),

(4.43

We first perform some exact manipulations. The functional

flow equation forffz)(q) given by Eq.(3.11) can be trans-
formed into an integral equation

I
T(?(q) = I eg) + f dte? /-9 (2 (e )
0

|

| -~ ’ |
=& °d7"{r.<3%><e-'q> + [ dre2sbem,

xf‘f?)(e‘("'/)q)} . (4.44)
To describe a critical system, we choose the initial value

l:ffz)(q):ro to be momentum independent such that for

For completeness, we show how to obtain the standard, « the relevant coupling

result for » to second order in ale expansion. We can re-
write EqQ.(4.349) as

3u2 1
=——————— | dA\F(D - D (V) + A
7 4D(1+r*)f0 [(D=Dx«(N) +Ax:(N)]
3U2 1
=————| 2(1- AN 275 (V) + 1 (D) |
D] 2 n>JO X0 + X (D)
(4.39
For smalle=4-D we obtain to leading order
3u? . .
n=-E[2(x(1) - x(0) +x' (1], (4.40

where the functiony(q) is obtained fromy.(q) by simply
settingr- — 0. Evaluating the integrals iD=4 (see also Ref.
[13)),

¥(0) =1, (4.413
. 4 \3
MD=5-", (4.41b
)'(’(1)=—L—1+ZLB, (4.410
3 T

and usingu.=2¢/5, we finally obtainz=€2/50+0(€%), in
agreement with the field theoretical resi2].

I ’ .
r,:ez"flodmf[ro+ f d|'e-2"+fi>dmfr,<,2>(0)} (4.45
0

has a finite limitr.=lim,__, r, just has we have done in Eq.
(3.34). This is guaranteed if the initial valug is chosen
such thatf27]

roz_f
0

FZ™(@) =I{?(@) - 11%(0), (447

where the superscriphi indicates that these function contain
only marginal andirrelevant parameters, we obtain

di’e2"+odm02(g). (4.46)

Defining

I ! . -
0'|(X) = e—2(|—|c)zl—1r| +f dlre—Z(l’—|C)+j|()dTnTF|(,2m|)(e|r_lcx).
0

(4.48

The first term on the right-hand side vanisheslferx be-
cause by construction lim.. r;=r. is finite on the critical
surface. Taking the limit— « we thus obtain(after renam-
ingl’—1)

a(x) = f dle - Todm M (d-ley)  (4.49)
0
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1. Truncation of the flow equations 3u? * y—3+2e
o o(X) = —x2-7/f dy—"——>->— 2_277/EF*(X,y; 7).
So far, no approximation has been made. We now ap- 2 o [X+yq]
proximate the functiorfl(zm')(q) on the right-hand side of Eq. (4.53
4.49 by the leading term in the expansion in powersupf
gee@Eq¥4.28) g P P P Using D-dimensional spherical coordinates, the function
' F«(X,y; ) =lim, %F(x,y; 7,l.) can be written as
. R l E(Slnl(})D 2
(2mi) ~ — 2f dry, 2 Fo(X,y: 7) = f f
"™(a) 21+ |)f dte” 2y Ocyim) = (1 +|’*)QD [X“+ (yl2)] e
X{x-(€7a" +al) - x-(€)g: X[x(2) = +(NZ + 22y cos§ + y?)].
[ 4.5
___ 3 J dlre<i-1"-21)dr 2 (4.59
2(1+r)J, ! From Egs.(4.53 and(4.59 it is now straightforward to ob-

_ - _ ) tain the asymptotic behavior @f(x) for smallx,
XOa(€1771g" + al) = xr (e

a(X) ~ Apx®7, (4.59
(4.50) °
" - - py= 3 d 73420, (0
All quantities on the right-hand side of E#.49 are now D~ 2 yy «(0,y;m)
known, so that we may calculate the crossover function by
performing the four-dimensional integratigtwo angular in- 3u? Qp_1 ar .
tegrations and two integrations over the scale paraméters “21+r) O dyy 7 dZZl 7| dd
and!’) numerically. There are no divergences everDin3 b -0 0
provided the integral equatiof.29 for 7 is solved self- X (sin ﬁ)D—Z[)'(*(Z)_j(*(w,'22+22ycosﬁ+y2)]_
consistently.
(4.56)
2. Results for the scaling function In D=3 we find numerically
To obtain an analytic approximation for the scaling func- Ag=1.17. (4.57

tion o(x), we adopt again the successful strategy used in they, the other hand, for large the flow parameter in
solution of the integral equatiof.29 for 7. we substitute Xi_+intyix) (@) @Ndry 4wz IS typically small compared with..
the Fermi function ansat@.33) for the flowing anomalous To take the effect of the flowing, approximately into ac-

dimension », on the right-hand side of Eqg4.49 and count, we replace in this regime I~ and
(4.50. After some transformations of the integration vari- unt, W P I ! 9IME | in(y/z0 o
ables we then obtain I +In(y/x)(Q)‘>X0(q) WhereXO(q) is obtained fromX*(Q) by

replacingr- —rq. Using Eq.(3.35 one can show that on the
critical surface and for smalliy, the initial value ofrg is

(x) = 3U3X2_,7 - d y 3 SO approximately given byg,=-uy/(2—¢€). With this approxi-
7 e y[x5+y‘]2‘2’7/5 RANACE mation we obtain in the regim@(D-3)]'<In x,
(4.51) a(x) ~ Bpx?P3, (4.58
with 3u? QD—1f Y3 ggf f
Bp= 2| dzZ2®| do
P 21419 Qp
1 1-€
TN z in 9)° [ xo(2) = xo(VZ2+ 2 I +y?)]
F(xy; 7, )_f dz— — X (sin9)” T xo(2) = xo(VZ* + 2zycos ¥ +y9)],
¢ o [X+(y/2) ]77/ [1+ r|c+|n(y/zx)] (4.59
XX nyi (2) _)-(|C+In(y/x)(|zq, +Y3" ) and for 1<Inx<[2(D-3)]! (which includes the limitD
(452 —3),
o(x) ~ B Inx+ B3, (4.60
where(” is an arbitrary unit vector. Note that by assumption h
x< € so that we may replacese— 0 in the lower limit of ~ WN€'®
they integral in Eq.(4.51). Consider first the regime<1. ) 3u? O 352 5
Using the fact that fol> |, we may approximate,—r. and Bs= 21+r0) dzxo(2) = Py R (4.61)
0 Jo

x(@—1limy_. xi(@) = x+(q) [see Eq.(4.35], we may re-
place in this regime iy (d) — x«(a) andr sz —r« N and on the right-hand side we have sgt-0. Numerically
Eq. (4.52. Then we obtain we find B;=0.0319. Note that the physical self-energy
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B; Inx + By

-10 4

In 6(x)

-15 4

20

1o/ 2 72

. h .
Inx=1In (kkg)
FIG. 5. Numerical evaluation of the scaling functiotx) of the

self-energy in the limita—0 and D=3. Dashed lines are the
asymptotic forms predicted by Eqgt.55 and(4.60).
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AT, &(m)m’“’) fd -7
T. @D(DI2)\u. o ¥+ (X))

(5.2

The shift inT; is dominated by classical fluctuations as long
as the UV cutoffAy/k. can be removed in E@5.2). Keeping

in mind that according to Eq4.58 o(x)~Bpx?®d for
large x, we see that the integrgb.1) is UV convergent as
long as(D-2)/(4-D)< 2, i.e.D<10/3. ForD=10/3 the
value of the integral in Eq5.1) depends on the UV cutoff,
such that the lowest order contribution to the shiftTinis
proportional tou3, with logarithmic correctiongeu3 In u)

in D=10/3. Hence foD =10/3 the shift in the critical tem-
perature cannot be obtained from an effective classical field
theory, while forD <10/3, the cutoff only leads to higher
order correctiongin D=3 one findsuj and u3 In(uy) correc-
tions [5]]. Writing

3(k) = 2(0) = pokgor(Kiky) (4.62

. 2 ; B ATe = JpuP-2/(4-D) (5.3
is independent ofis in the regimek>k.: keeping in mind T D~o '
that k.= Ao(Up/us-)Y¢, it is obvious that the factor ofi? in ¢
Egs.(4.59 and(4.61) combines with a suitable power &  we obtain forD <10/3,
so that the self-energy is proportional u§ A numerical .
evaluation ofo(x) is shown in Fig. 5. 3= 20p (1)“’_2)/(4"[’)[ o3 a(X)

To summarize, using the functional RG, we have derived D 7D¢(D/2) \ u. 0 X2+ o(x)
in this section the momentum-dependent self-energy of (5.4)

weakly interacting bosons, covering the entire range from the

critical regime up to momenta of the order of the inverseygte thatdp
thermal de Broglie wavelength. While in the critical regime
k<k. it is simpler to obtain the asymptotic long-wavelength
behavior of the self-energy within the field theoretical RG,
the functional RG approach adopted in this work can de-
scribe the entire crossover from the critical regikiek. to

implicitly depends onug via o(x). However, for
Up— 0 the coefficient)y approaches a finite limit indepen-
dent ofug as long aD <10/3.

In D=3 one usually writes

; AT _ 1/3
the short-wavelength regimie.<k=<2#/\y. Note that the T =can’”. (5.9
behavior of the self-energy in the short-wavelength regime is ¢
determined by irrelevant terms which are simply discarded "keeping in mind that
the field theoretical RG.
Up= 167 £(3/2)] Y3an'® for D=3, (5.6)

V. INTERACTION INDUCED T, SHIFT we have in this case, = 167" £(3/2)]7*/3J,. Within our ap-

Baym et al. [5] have shown that to lowest order in the proximation we findc; =1.23, in rather good agreement with
scattering lengtta, the interaction induced shift for the criti- e most accurate numerical investigations which giye
cal temperatureT, in D=3 can be calculated from the =1-30+0.0215] andc,=1.29+0.05[16]. Variational pertur-
k-dependence of the zero frequency self-en&gy,0). In a bation techniques give similar results,=1.23+0.12[17],
straightforward generalization of their result to arbitrary di-2nd¢1=1.27£0.11[18]. More results from other approaches

mensions, we can write the contribution from classical®® Summarized in a recent revig@j. There is also experi-
modes to the shift ifT, as mental data from &He-Vycor system confirming the linear

scaling of T, with an’® [28]. The reported value, ~4.66
S R
Ao

T. @D(DI2) 0

(pokd) 2 (k) - 2(0)]
X2+ (pokd) S (kx) - 3(0)]°

(5.1)

Using ke/Ag=€"c=(up/u.)¥¢, and substituting our scaling
function o(x) as defined in Eq(1.2), this can also be written
as

seems however rather large which may be attributed to un-
certainties regarding the precise valueadif the experiment,
see the discussion in Ref. 16.

VI. IMPROVED DESCRIPTION OF THE CRITICAL
REGIME IN D=3: INCLUDING MARGINAL TERMS

Within the u?-truncation employed so far, we have ne-
glected the six-point vertex and approximated the inhomoge-
neity in the flow equation of the four-point vertex by
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v, =119(0,0,0;0,0,0, (6.7)

| rot 1. : ’

I{¥(a4,05; 02,90 =~ - tﬁ{gm(lql +d2l) + xi(la, - az))
see Eq(3.9). It satisfies the exact flow equation

+>'(|(|q1-%|)] (6.9 dv1=(6-2D - 3n)v, +1'9(0,0,0;0,0,0. (6.9

see Eq(4.9). This approximation amounts to a truncation of Again, the RG flow generates a finitg even if initially vo
the exact hierarchy of flow equations where on the right-=0- At the Wilson-Fisher fixed point iD=3 the renormal-

hand side of Eq(3.15 we simply replace izedv.=lim,_.. v is of order unity. ,
~ To arrive at the RG equations, we adopt the following
Fl(A)(QLQE;QZ.%) — U (6.2 approximation scheme: We expaﬁﬂ‘) to some fixed power

A formal justification for this procedure can only be given " the marginal parametees, by, v, and the relevant param-

for D>3: for weak interactions, irrelevant coupling param- eteru, while ke_epi_ng higher orders in the relevant parameter
eters can be expanded in powers of relevant and marginé!' The truncation is baseq on the hope that, althaajgh, v, .

ones[13,23. For 3<D <4 the only part of the four-point and W are not_ parametrically sr_nall, th‘?se parameters still
vertex which is not irrelevant is its constant pattHowever, remain numerically small. The fixed point values for these

in D=3 there are two additional marginal parameters relate arameters which we obtain within this scheme in Sec.

to the momentum dependence of the four-point vertex. |D1 are m_de_t_ad T"_“C*_‘ smaller than unity, Wh'Ch gives
Hence, in this case Eq6.1) is not consistent. For small somea posteriorijustification to our approach. To implement

momenta the flowing four-point vertex has the form the scheme, it is useful to transform K8§.9) into an integral

equation,
T@(Q!.a5:0..07) =u + —q/|l+]|q,-ai) +bq, + ~ ~ o~ _
1 (01,02;02,91) |~ équl a1l +19:—qa)) +byfa, + gy Fl(n)({qi}):e[(z D)n+D]I nfodmrl(%({e b
+T1(q1,05:02,00), 6.3 | o
fi *f dtl > ORI T e g ).
where the irrelevant paﬂfm)(%.qg;qz,ql) vanishes at least 0

quadratically if all momenta become small. Below, we will (6.9)
denote the diagrams entering the renormalization of the four-

point vertex using the usual fermionic langua@e., BCS, We use these retarded expressions in the calculations of the
ZS, and Z3; see Fig. 1. We emphasize that this terminology inhomogeneitied’(™. Since the right-hand side in E¢6.9)
simply describes the topology of the diagrams, not the physidepends on vertices which also have the fq®), one

cal phenomena arising from the diagrams. Note that the fourguickly arrives at rather complex expressions which we need
point vertex must be symmetric under the exchagge>q,  to truncate. We will only include terms up to second order in
andq; < Q,, so that both “zero sound channels” are characsg,, b;, v;, andu,. However, even with this approximation the
terized by the same parametgr The parameteb, charac-  calculation becomes rather involved. To keep the calcula-

terizes the BCS channel. tions tractable, we truncate further: To evaluate the flow of
The exact flow equations for the coupling parametgrs parameters associated with theoint vertex, we ignore ir-
andb, are relevant contributions arising from vertices of oraewith
. m>n+2. Thus, when we calculate the flow of parameters
day=(3-D=2m)a +IT, (6.4 associated with the-point vertex and encounter a vertex
. Fl(m) in the calculation withm>n+2, we only keep its rel-
dby=(3-D~2m)b +1I7, (6.5  evant and marginal part instead of employing E&9). Ef-

N " ) ) fectively, we neglect in this way infinitely many irrelevant
where the coeff!me;r::)h? i andT}" are defined via the expan-  harameters related to higher order vertices. The expectation
sion of the functior’;(qy,05;d2,01) in Eq.(3.15 for small s, that these irrelevant contributions are numerically small
momenta, compared to the contributions originating from irrelevant
P -~ _ o , ) terms of lower order vertices. In concrete terms, our trunca-
[7%(01,92;92,01) =T7(0,0;0,0 + T'7(|g, — q1| + |a: - q3l) tion is as follows: When we calculate the flow of we will
. . . . . T2(8) . .
+TPq, + gy +O(D). (6.6) con_S|der wrelgxgntl conFnbquns frol?f bu_t ignore contri

=) butions fromI’,™ (in this case, there are in fact no second
. _— - . :
Even if the initial vertexI',_(d;,d;02,04) Is momentum- o 4o tarms arising from inhomogeneitiES’ with n=10 so

independentcorresponding to the initial conditior®=Dy  hat we really have all second order terms included in our

=0), finite values of these parameters are generated as gy of ). Similarly, to calculate the flow of the four-point

iterate the RG. Because D=3 these are marginal, they \ertex parameters;, by, andu,, we ignore contributions aris-

cannot be ignored and are possibly the source of logarithmic ~(8) - .
corrections. ing fromI',™. This leads to the absenceuffterms in the RG

. ~(8 .y

Besidesa, andb;, there is a third marginal parameter in equations fora, b, andu, the I¥ terms only enter indi-
D=3, the momentum-independent part of the six-point vertectly via the flow ofy,. To czilculate the flow off; we ignore
tex, irrelevant contributions frorﬂl“f") for n=6 which again only
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enter via their contributions to the flow af, b;, andu,.

Bo=x(0) = PPERVE (6.19
A. Truncating the flow equation (1+r)
for the six-point vertex
We begin with the renormalization of, the momentum B. Improved truncation of the flow equation
independent part of , using the flow equations for the for the four-point vertex
six-point vertex from Appendix A, Eq(A2). Note that, Including the terms which become marginal =3 we

working consistently to second order, the last two terms imeed to calculate

Eqg.(A2), which are at least of third order in the marginal and

relevant parameters, should not be included. However, therle(4)( . )~ <F(6( - M

is a contribution proportional to? arising from the eight- 91.92:92.91 1+ A1.92,0:8.92,9)

point vertex vyhich must be included. To see this, let us ex- (45CS 1 429

plicitly write T'® up to second order in the marginal and +T{**9(q},a5:02,90) + 1"

relevant parameter@nd zeroth order im), X (0}, 0h: 0z ) + 1;|(4,zs')(qi,qé;q2,ql),

T{9(a4, 05, 05: 03,62, A1) (6.15
-3y, . . where, instead of Eqg4.23 and (4.24), we now have to
= 1+r|{35<1,2>,3<G|(Q1+Q2—Q)[U| +a(la, -4 calculate the zeroth and first order terms in a momentum
A expansion of Eq(6.15 in powers of both the relevant and
+[d2—-G)) +by|as + A2l Dg + 385w 2138123 marginal parameters. We discuss the terms in(Ed.5) be-
)L , low, beginning with the contribution from the six-point ver-
X(G(gqz—qz+&)[u +a(lgz—q3)) +bjqs tex. g g P
’ 1 ! - -
+(gi < g} + 1+ f dter 4079 1. Contributions fromT'®
NJo '
To calculate(T'®(q!,05.0;§,02,91))g, We write, assum-
X(M&(eay, ... 'qseq:e7G,e7a5, ... €, T g o170, 2. 439,92, 2)s
ing I''2,=0,
610
|
~ ! drm (6
FI(S)(qi, iqéll;q4’ ,q;|_) = fo dte 3/ |77, +(6-2D)t
[
- ~4f)_drry +(8-3D)t ) octa. —ta _
- fo dee XT{%(e"a5,e7'a5,e78;67'd, 6 'az €71y (6.16
(3) C e . Using EQgs.(6.16), (6.1(_)), and(6.12, we can calculate the
(€70, - €704 €70, - €70, 6.1D  contribution of T'® to T*. Including from the eight-point
and from Eq.(A3) we have vertex only theq;=0 contribution and expanding the other
" contributions up to linear order in the external momenta we
r¥(aj, ... A4 da - G0 have
— 2 : ' ’ ’ .
=~ 2185023450 2.3 4X(G1 * Go+ A3~ Q) (1N}, A5 MG ATz Ad)g
+185(1,,3,951,2),3 anXi(d1 + G2~ 01~ 02)} o, ™ . B 0L
~— + + + +
+ (terms at least cubic in,, &, b, andu)). (6.12 2{ ILBo+ XMW1+ &l 1280 + B (M )
The definition of the symmetrization operatdts , 3 used in +8D,(\) + 2i,(\)] +b[8By + 4xi(N) (L +\) + 4D, (\)
Eq. (6.10 and similar ones used in E¢6.12) can be found .
in Egs. (Alb), (Ada), and (Adb) of Appendix A. Keeping +2@(N]+ Naz+ al[2814 + (481 + 2B2)a + 2B4b)]
only the zeroth order in a momentum expansion, we have +N(|g1—-qil+]g1 - qé|)[4ﬁ1u| +(48y+ 481+ 2B,)a
®)(fq. = .
Fi™a, = op +(aB+ 2B)D ]} - —— f dte 097 [16§,(0)
=-1 u - 15 - 9B - ——
2Bov1U — 156qv13y — 9Bou by 141, + 18], 6.17
|
Xf dte N2 [16i.(0) + 187 (eh], (613 O
0 -, S 45
B1=x (0) = (6.18

where 1+1)2 (1+r)®

063621-14



CRITICAL BEHAVIOR OF WEAKLY INTERACTING...

25
BZ_ (1+r|)21

and § and S; are defined in Eqs(4.15 and (4.16. We
further introduced the functions

(6.19

) 2 -
<I>|(7\)=1TH<G|(G+6|’>\)IQ+Q'>\I>Q (6.20

and

. 1
<P|()\):(1+—rl)2<|q+q Mg (6.21)

Since to zeroth order in Eq. (6.17) determines the flow
of v, via Eq.(6.8), the integral on the right-hand side of Eq.
(6.16) gives simplyv, to order\°. We therefore split the
angular average of the six-point vertex into two contribu-

tions,

<1:|(6)(Qi,%:q;qvqg%)>q =yt <ffﬁi)(q1,q§,d;d,qz,qma,
(6.22

PHYSICAL REVIEW A 70, 063621(2004)

+ 2<i>|()\) = 4B+ [@(N) = ¢(0)]) + N|ay + ql[ By
+(2B1+ Boay + Boby] + N(|g. — q5| + 91— q3))
X[2B1u + (2Bo+ 2B, + Bo)ay + (2B, + Bo)b]}. (6.23

We now turn to the calculation of the BCS, ZS and’ZS
diagrams in Eq(6.15. Keeping only the relevant and mar-
ginal terms in the expansion of the four-point vertex, see Eq.
(6.3), yields all contributions to second order in the marginal
and relevant parameters arising from these diagrams and the
irrelevant part of the four-point vertex does not contribute at
this order.

2. Contribution of the BCS, ZS, an&S’ diagrams

The contribution from the BCS channel to E§.15) is

T{*8°S(q1,q5;02,9y)

1 .
~ - §[U| +by|ay + a2l 1Pxi(|ag + azl) — alu + bylay + ]

whereT“,(Gi) contains the irrelevant parts of the six-point ver- .
tex. To calculate the angular average of the irrelevant part, 1 <®(1 <lgs+g.-g/<é€)

we can neglect they dependence of the integral and also
approximate the retarded dependence of the parameters on
-t by anl dependence, since the retardation is exponentially
damped. For largewe therefore can write the contributions

of the irrelevant part to Eq6.16) as follows:
(T1*(a1,05,8:6,02,01)

Lan . .
m~ — v|f0 7{6u|[x|(>\) = Bol +a(dxi(M)(L+N)

+40,(\) - 8By + [&(\) — £(0)]) + by (2 (N (L +))

{*79(q1,05;02,91) = - [ + &/a; - a1| (g - 1) - (& + b)[u, + &gy - ay]

+|El+qg|+|Q‘Q2|+|Q+Q1|]>A‘(a12+

q

1+r las+a2- G2+

X[|-qyl +|a-as +|6-a, +]6 - Q1|]>

q

a|2 <@(1< g+ g, -G <e'))

1+r, las+a2= G2+

X(18" - a1 +16" - azD (G- gzl +[d - ai))g.  (6.29

and the contribution from the zero-sound channel is

1 /ed<|g-gi+dl<e) .
[|q_Q1|

1+n a1 -a;+a+r,
1 /0@<|o-g+dl<e) . R
bf -g/llg-a,| + g+
|)1+r|< PR [16 - aallG - aaf + 16+l

-2
§ a*b'1+r|

x|q +Qél]>

1 <®(1<Iq1—qi+ﬁ|<e')
|Q1‘Qi+a|2+r|

. (629

(16— aillé+azl + 6 +a4ll6 - Q2|]>
g

The contribution from the other zero-sound chan@@' in Fig. 1) is obtained by replacing; < q; on the right-hand side
of Eg. (6.25. Expanding to linear order in the momenta, we arrive at

T+8%9(q1,05;02,0y) = - Bo[g' +2aZ+ 2uay | — [0y + gl

B
2

U2+ 2(By + Bo)ad + (2B, + Byuia + Bouby + 2ﬁoab|] . (6.26
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Similarly, we obtain for the contribution from the zero-sound

channel,

TimES (a1, 03: 02.00)
~ = Bolu +a + b2 = [y — q1|[ B1uf + (280 + By + Bo)a}
+(Bu+ BIBY + (2Bo + 2B+ BUiay + (2B1 + Bo)uiby
+2(Bo + Br+ Baby]. (6.27)

The contribution from ZSis again obtained by replacing

q; < s

C. Truncated flow equation for the two-point vertex

To calculate the flow of,, we need to calculathz)(O);
see EQq(3.18. We write it as

(1+r)r2(0)
=(T'*(0,§,§,0))
|
~ &2ty + f dite 2/ 1-471-(14(0,7,676,0)q
0
(6.28

with the second order expressionfdf) given by Eq.(6.15.
Thus, we have

I{*(0,\G,1,0)

1.
~ - EXl()\)[(UI + by + )2+ (U + by + a))?

+(u+ a1 +\D?] - H(V)[a(u + b +a)
+ay(u +b +a\) +b(u+a[l+\])]

1-
- 5w|(>x)[2af + 071 = (U + by + &) [ Bou

1
1+r

(T(0.18,6':8' 16,0))q,

+ (o +a)e(N)]+
(6.29

with
) 2 ~ A AN/’ A AN/’
h) = T GE+ANIA+END,. (630

Keeping only terms up to linear order Ny which define the
flow of u;, & andby, one finds

u+a +b

rl(Z)(O) - 1+r,

, (6.30)

which is just the contribution of the relevant and marginal

parts of<1~“,<4)(0,61,q,0)>a. Higher orders in\ correspond to

the contribution of the irrelevant part of the four-point ver-

tex. With

PHYSICAL REVIEW A70, 063621(2004

<f‘|(4)(01q1q10)>ﬁ = l'Il + al + b| + <i;|(4i)(0,ﬁ,q,0)>q
(6.32

we can write the contributions of the irrelevant pafee
here ignore the contributions of the irrelevant part of the
six-point vertex beyond those which are implicitly contained
in the renormalization ofy) as

(T1*(0,,8,0));

d\ /. .
~ f F<Ff“‘BC3(O,>\q;>\q,O)

+T1*79(0,\G;18,0) + T1**9)(0,0G;14,0) - [P

lin,l
X(0,\8;1§,0) - T{ntS(0,08;1§,0) - T{n s

X (OG;AG,0))q, (6.33

which is identical to the second and higher ordeiicon-
tributions contained in Eq6.29.

D. Flow equations of marginal and relevant parameters

It is now straightforward to write down the flow equations
for the marginal and relevant coupling parameters. The flow
of v, is determined by Eq6.8). With Eg. (6.13 one finds

g = (6~ 2D = 3m)v; — 3Bvi(4y; + 5a + 30y)

2 1
U j AP 85,(0) + Giy(N)],

6.34)
1+nJg ( )

where we approximated the retarded dependenag_pand
Xi— in EQ.(6.13 by v; and y; (since the retardation is expo-
nentially dampegand further took for the lower bound of
the integral the limitl— . Eq. (6.34) obviously has av-
=0 fixed point solution, which is stable if B(4u.+5a«
+3bs)>6-2D-37.

Collecting all contributions to Eq6.15 from Eqs.(6.23),
(6.26), and(6.27), and decomposin@f‘”(qi,qé;qz,ql) into
a momentum independent contribution and linear contribu-
tions according to Eq6.6), we find, using Eq9.3.19), (6.4),
and(6.5), the flow equations for the parameters characteriz-
ing the four-point vertex,

5
AU = (4=D = 2;)u = Bl = Bt (62 + 4) = 260(2

+ b7+ 2ab) +

1
d )
i f%{&h[}ﬂ()\)‘ﬁo]

1+r| 1+r| 0

+ 2, (4% () (L +)) + 4D (\) - 8By + [&(\) — &(0)])

+ b (2x(N) (L +)) + 2d,(N) = 480 + [ (N) = @ (0},
(6.35
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gy = (3-D = 2n)a = ol = (2Bo + 21+ B)udy
= (281 + Bub = (289 + B + ﬂz)a|2 - (Bt ﬁz)b|2

—2(Bo+ B+ Bab — {2,31U| + (2B + 21

+Bra + (2B, + ﬂz)bl}y (6.36)

ﬁlz

db=(3-D-2nb - = (2B, + Bu — Boub, — 2(B;

+ By)al - 2Boab; - {/31U| +(2B1+ Boay + Boby}-

(6.37
The flow equation for, is obtained from Eq(3.18 and Egs.
(6.28—6.33,
+ a‘| + b| 1 ~(4i) ~n~ A
2- r ; G
&Irl ( 7]|)r| 1+r| + 1+r|< | (01q1q10)>q
(6.38

Finally, we need to determine the flowing anomalous dimen-
sion 7 before we can analyse the fixed point of the RG

PHYSICAL REVIEW A 70, 063621(2004)

1
3(1+r)’

Bs= (6.440
Setting the left-hand sides of the five flow equations
(6.34—(6.39 for the two relevant coupling parametersand

u, and the three marginal coupling parametarsh, and v,
equal to zero and employing E¢6.39 for the anomalous
dimension, we obtain numerically the fixed point values

~-0.0996,u. = 0.122,a. = 0.0371,

~ 0.0339,v. =0, = 0.0268. (6.45

The value ofz is now much closer to the correct valug
~0.038 and the inclusion of the marginal terms certainly
improves upon the analysis including only However, the
fact thatv.=0 is an artifact of the approximation which ig-
nores all terms of third or higher order in the relevant and
marginal parameters. A simple improvement can be obtained
by including from the third order terms in the renormaliza-
tion of v, the marginal contributions. In that case, only the
flow of v, is modified and Eq(6.34 becomes

dv=(6-2D - 37)|)v| 3Bov)(4u, + 5a, + 3Dy)

equations. For now, we keep only the marginal and relevant 4v, AD-r - )
part of the four-point vertex in Eq3.21) and arrive at 1 +rt, dM [8X1(0) + 9xi(A)]
n = PBa(a+b), (6.39 (u +a+b
|t th) 2 2
_— +a + + +
where 1+n)° [12(u; + & + b)) + 9(u, + 2a)7].
@ +al) ——. (6.40 1049
Bs= q’+4))s =———. (6.40
5T L4rag? =0 2D(1+1)) The resulting fixed point values with the 3rd order terms are
1. Fixed point values in =3 [y = — 0.134,U* = 0127,a* = 00693,
In D=3, we have
. b. = 0.0639,v. = 0.0917,7~= 0.0513.  (6.47)
N+ \Tfl arctanr{ﬁ The value for# is now slightly too large and a quick con-
& (\) = 1+r+A ] (6.41) vergence is not obtained. However, one may expect from this
! N +r1) ' ' result that a consistent treatment to third order, a very com-
plex calculation, would indeed improve upon the second or-
1+t 1 der result. For completeness, let us also mention the results
. A2 +N) +1In m of another possible approximation, where one keeps only the
INE N+ ‘= (6.42  marginal and relevant terms of the vertices entermgl’tﬁé
fi expressions. Within such an approximation, the flow equa-
5 tions fora andb, remain identical to Eq96.36) and(6.37)
() = 3(3 +A - (6.43 whereas the flow equations fay, v, andr; would simplify to
1+r
g | v = (6 = 2D = 3m)v; - 3Bgv,(4u, + 5a + 3by)
an
(u+a+by)
1 P e (12Ut ac byt o+ 2a)%,
Bo= T3 (6.443
(1 +r) (6.48
T2+ ' au=(4-D-2n)u - 50U|2 ~ Bou(6ay + 4by) — 230(2a]
_ L (6.440 +b?+2ab) + v (6.49
,32—2(1”')2, : P+ 2ahy) :
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u+a +b Ignoring in Eq.(6.3) the irrelevant contributions, one obtains

141, (6.50 from Eq. (3.12 the following expression for the subtracted
function T1?™(q)=T"?(q)-T?(0) (the superscripm indi-
cates that only marginal terms rempin

an=@-mnr+

The corresponding fixed point values are

[« = — 0227,U* = 0178, o = 00838,

: +
@ = 22 ((a gy - )
b. = 0.0767,v. = 0.255, 7~ 0.0692.  (6.51) ! ,
The value fory is worse in this approximation compared to a4 forg<1,
those which also include irrelevant parts of the vertices. _3 by 3
Problems with a similar implementation of the sharp cutoff 1+r, 30°-3q+1
formulation were previously reported in R¢29]. Ignoring 3q forg>1.

the third order terms in the flow af;,, Eq. (6.48), leads to (7.2)
fixed point values almost identical to those listed in Egs. '
(6.495. Via Eq. (4.49 we obtain the scaling functiom(x) (we here

restrict the discussion tb=3),
2. Including irrelevant terms in the equation fory

lc—In x
Equation(6.39 for the flowing anomalous dimension in- o(X) = XZIC d|e—2(l—lc>+f'odfr/TLbI
cludes only the marginal parts of the four-point vertex. To 0 3(1+n)
include also irrelevant contributions we need to evaluate the o
. () . I Tl U R ~2(-19)
irrelevant parts of’|”, i.e., we must calculate both the irrel- + die/o m e Tdx—g e
evant contribution from the six-point vertex and the BCS, lemInx !
ZS, and Z$ contributions to 1
+ —g |, (7.2
1 d - L 3x
7= A2 2 —(T (N, NG NQ))g _ I _
1+rJo aq G2=0 This equation is valid for Ix<I, for Inx=I. the integral

(6.52) boundl.—In x is replaced by zero, i.e., the first integral van-

ishes. Since ilD=3 we havea +by)/(3[1+r/]) = 7 [see Eq.
using Eqs(6.10 and(6.16 and Eqs(6.23—<6.25. Thisisa  (6.39], o(x) is determined by the flow of; alone in this
somewhat lengthy calculation, and we refer to Appendix Bapproximation. Let us examine first the case 1. The first
for a table of the required integrals. The resulting valueg of integral then extends only over smé|.. In that case, all
are generally very small, in the approximation with all termsmarginal parameters are small and we may ignore the con-
up to second order in the relevant and marginal parametetgibution of the integral ofy, in the exponent and approxi-
we obtainn~0.0127. Including the third order terms in the mate the flow of the marginal parameters ag b,
flow of v; we get the even smaller valug=0.00797. It is o« 2!-ldy2 since ala_lzZﬁlblzulzocez(l_lc)ug for 1<l.. The
not completely clear why the results fgrbecome worse on  contribution of the first integral in Eq7.2) therefore van-
including irrelevant terms in the calculation foj. A pos-  ishes like x?(I,—Inx)u? as x approaches the UV cutoff

sible problem is that in the calculation af Eq.(6.52, i~ . é&c and makes no contribution for>€e. To investigate
relevant terms contribute which however do not also entethe contribution of the second integral, we split it into two

the renormalization oty, g and b,. Terms similar to the parts,

irrelevant ones contained in E@.52 would only enter the

renormalization of other parameters at third order in the mar- T lo -
ginal and relevant parameters. This might suggest that one X B i x * L
should use the same level of approximation for the vertex ¢ ¢ ¢
T in calculatingy andT'* for the flow equations fou, a, ~ Where, to estimate the contribution of the regifrel., we
and by In that case, the first order expression fgr Eq. ~ USe the same approximation as for the first integral in Eq.
(6.39, should be used together with the second order expred?-2). This yields a contributior[x—1-Inx-(1-x)/3x]. To
sions for the flows ofy, a andb,. As shown in the previous estimate the contribution of the integral for-I. we may

subsection, this indeed leads to better approximations. of replace the parametees, by, r; and » by their fixed point
values and obtain a contributior 7x/(1-7)—75/(2-7)

+7/[3x(3-7)]. We have employed Eq6.39 to arrive at
this result. Hence, the dominant behavioragk) for largex
is linear inx. This largex behavior prohibits the removal of
We demonstrate here the importance of the irrelevanthe UV cutoff in the integral determining the temperature
parts of the four-point vertex for a correct description of theshift, Eq.(5.1), and one thus would incorrectly predict from
large wave vector regime and show that a treatment thaEqg. (5.1) a term for theT, shift behaving likeug In up in D
ignores irrelevant terms leads to an incorrect description of3. Thus, inclusion of the irrelevant terms is essential for
o(x) in the regimex>1 and the wrong resulkT.ecupInu,.  determining correctly the shift of the critical temperature.

(7.3

VIl. CALCULATION OF o(x) INCLUDING ONLY
MARGINAL PARAMETERS
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The absence of irrelevant terms in the Wilson RG analysigccurate results. Unfortunately, such a calculation is rather
carried out by Bijlsma and Sto¢®] seems to be responsible lengthy and seems not to be an efficient way of calculating
for the ug In Uy behavior they find for th& shift. accurate values of critical exponents.

On the other hand, an approach which explicitly includes Finally, we have analyzed the two-point scaling function
marginal terms but ignores irrelevant ones is well suited towithin an approach which includes marginal and ignores ir-
describe the scaling regime— 0. In this case, the dominant relevant terms of the four-point function. It was shown that if
contributions to Eq(7.2) come froml > 1, where we replace one ignores the irrelevant terms contained in the higher-order
the coupling constants by their fixed point values and obtaimomentum dependence of the four-point vertex, one obtains
a(X) = Agx?™" with an incorrect UV behavior of the scaling function and hence

the wrong functional dependenddl ./ T.=an'3In(an'’®) of
8n__ 87 /S 1+l_l,7_ (7.4)  the critical temperature shift iD=3. However, the approach
1-» 2-n 3-9 6 worked well in the critical regime where we used it to cal-

This expression is in relatively good agreement with our re—CUIate the prefactor of the anomalous scaling term, which

sult from Sec. IV D 2, Eq(4.57), where we obtained\; \['Z?SVSVT]?I\(’BWVJS Egvlg r?gto gt?egr:]eeigje?é vg/glrl&l;?;etr;]cealszeas"unlts
=1.17 for »=0.104, whereas Eq.7.4) would predictA fur{ction including both mar igal and irrelevant terms itg
~1.22 for the samey. Furthermore, for the generally ac- 9 g '

cepted valuen~0.038 Eq.(7.4) predicts Ay~ 1.07, which seems certainly feasible to do so within an approximation

compares relatively well with a recent Monte Carlo re$dijt V.Vh'Ch ignores the six-point verte()smcev*_:o in a calcula-
Ag~1.04. tion to second order im,, &, b, andv,, this would be con-

sisten}. The fixed point value oy and hence the description

of the small wave vector regime improves within such an
approach. However, we do not expect that the inclusion of
marginal terms would have much effect on the crossover

In this work we have shown how the functional RG canregimex=1, since this regime seems to be well described
be employed to calculate the complete scaling function of th@lready in the simpler truncation used in Sec. IV, as is evi-
zero frequency self-energy of weakly interacting bosons irflent from the rather accurate value for theshift.
3=<D<4. The scaling function describes the cross-over from
the small wave vector regime with anomalous scaling to the
large wave vector regime where logarithmic divergences ap- APPENDIX A® FLOW EQUATIONS FOR THE SIX- AND
pear inD=3. A simple truncation of the flow equations at the EIGHT-POINT VERTEX

four-point vertex which ignores the six-point vertex and does  gajow we discuss the flow equations of the six- and

not treat the marginal parts of the four-point vertex consisjgnt noint vertex for the unrescaled vertex functions. The

tently leads nonetheless to a very accurate description Gfpomogeneous part of the flow equations for the classical
both the crossover regime and the large wave vector regimg.scaled flow equations follow via the replacement rule

while giving satisfying results for the anomalous scaling re- ~ on =2n
gime even inD=3. We have used this scaling function to GA(K)=-Gy(@), G,(K)—-G(a), F(A. T, Jk=Ja
calculate the interaction induced shift of the critical tempera-2nd multiplying the resulting expression by an overall minus
ture and obtained\T./T,=1.23an"3, a result which com- S'9"
pares very well with those obtained within the variational
perturbation theory{17,18 and Monte Carlo simulations
[15,16. The technique and truncation scheme employed here
might also prove useful to obtain energy and/or momentum- For the calculation of the critical exponents =3 we
dependent scaling functions in other critical systems. A simineed the six-point vertex; see Sec. VI. We first define the
lar truncation has already been applied to calculate the selfymmetrization operatorS; , ;andSy ; 3 as follows:
energy in the vicinity of the Luttinger liquid fixed point of 1
fermions in one dimensiofB0]; for a different approach to s, , £(1,2,3 = =[f(1,2,3 +(2,3,) + f(3,1,2 + (3,2,
this problem, which respects all Ward identities and therefore 6
reproduces the exact self-energy, $§88. +£(2,1,3 +(1,3,2], (Ala)

We have further investigated the fixed point structure us-
ing several approximation schemes which include the mar- 1
gmal _terms associated with the four-point and S|x-pomt Ver- S ,3f(1,2,3=834f(1,2,3=2[f(1,2,3 +f(2,1,3
tices inD=3. These schemes generally lead to an improved 3
anomalous dimension, however, we did not get a quick con- +1(3,2,2]. (Alb)
vergence ofy to the accepted value. Nonetheless, the best
value for 7 which we obtainy~0.0513 is rather close to the Given a functionf(1,2,3 that is already symmetric with
one obtained from the first order average action approximarespect to the pai(2,3), the functionS; ; 3f(1,2,3 is a
tion, »=0.049[19], and it is feasible that an improved treat- totally symmetric function. The flow equation of the six-
ment, e.g., a consistent treatment to third order in the marpoint vertex is given by14] (the equation is shown graphi-
ginal and relevant parameters, would indeed produce quiteally in Fig. 6

A3:1+

VIIl. CONCLUSION

1. Six-point vertex
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@ - ok

F 3[ + }
2 g s g FIG. 6. Diagrammatic representation of the
(4 {4 ) flow equation for the six-point vertex; see Eq.

(A2).

e+ 0B+ 0
+36 0‘*0

AT (K}, Kp, K5 Ka, Kp,Ky) = f CalKITRKL K K3 KK K Kz K + 3 f (S3,2a[CA(K)GA(K)
XTP(K, K5, K Ka, K KTP(K, K 1Ky, Ko) Jcr=k ok, 3(1/,2'),3’[GA(K)GA(K,)
0K KK KT (K KKK KoKl o)+ f S aSaallGKIGA(K)
+ G (K)G(KNTT (K5, K 1K Ko TP (K] K KK Ko K)o + 9 f Sa2nadaey
X[[GA(KIGA(K)GA(K") + G (K)GA(K )G (K”) + Gy (K)G (K)) Gy (KM ITP(K], K5 KK
XTI (KL K K" Ko TOK” K Ky, Kl)]iiiiiiz::i - 36.L S 2 3812 {GA(K)G,(K)G,(K")

I It It K"=K5-Kg+K
XTOKL KK KT (K, K" K K)T (KL K K ,Kg)]K,:K'i‘_szK. (A2)

2. Eight-point vertex

In Eg. (6.10 we also need the following terms from the inhomogeneity of the eight-point véseexFig. 7,

aNTB(K, K, K K, K, K Ko, Ky) = 16 f S1.2.3451 2.3 #[GA(K)IGA (KT (K], K, K Ky K K)
K

XK, K Ky K, KZyKl)]K':Ki+Ké+Ké—K4—K + 9] Sar.29.3.4751.2,3.4[[CA(K)GA(K”)
K

+ GA(K)GA (KT (K3, K, K 1K K Ko TP (KE, K, KK Ko, K Tk i

+oee (A3)

= 16 A X +9{ + } +

FIG. 7. Diagrammatic representation of the terms of the flow equation for the eight-point vertex which are ®fpséerEq(A3). The
omitted terms are at least cubic in the parametgrb, v;, andu,.
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CRITICAL BEHAVIOR OF WEAKLY INTERACTING...
with

S.23.4f(1,2,3,4= %[f(1,2,3,4 +1(4,2,3,9 +(1,4,3,2

+1(1,2,4,3], (Ada)
1
8(1,2)’(3‘4)“1,2,3,4 = 5[f(1,2,3,4 + f(1,3,2,4
+1(1,4,2,3]. (Adb)

APPENDIX B: SOME INTEGRALS ENTERING THE
CONTRIBUTION FROM IRRELEVANT TERMS TO 7

We here calculate the irrelevant contributions to the flow

of 7, using Eq.(6.52 of Sec. VI D 2. Let us define
1 <®(1< s+ a.-d[ <€) .

f(01,05) = -
(@) =0\ T s g, (16 - ayl
+la-qoll) . (B1)
g
ganay = —( QA=lara-dl=e), .
e 1+r lgy+ a2 - 4%+ !
+|G-a,4) , (B2)
q
y(G2.00) = — ®(1<|Q1+qz_m<el)ld—qlld
e 1+r |CI1+Q2‘61|2+V| !
—dzl ) - (B3)

q
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To calculate the contributions of the six-point vertex to
Eqg. (6.52, we need to evaluat@ve restrict the results tb
:3)

aJ - ~ ~ PR
F<F|6()\q!)\q,i)\,q”;)\,q,lqu,1)\q)>ﬁ’,ﬁ"
q q2:0

== o {3l (NN + X (W) T+ 2(by + 2a)[f/(\,\)
+FOGN) + ag(WN)] + (b + a) g (V) (B4)
with

. o - .
fi(MN) = E(ﬁ()\q,)\’q’»a/

q?=0
=N L HN)ZENE B+ ) (85)
SOOIV @[NP
(9 2
o'\ = 3(0—(§ +\da| ==, (B6
(PI() Xl( )aq2<|q q|>q =0 3(1+r|)2 ( )
'Il()\ A,)_ 2 i(é ()\ +)\/"Il+ "/)>
Xi (A, = 1+r|(9q2 1(AQ qa +a ) .g =0
_ N = (1+)\)%] (B7)
6(1+r)\'[(L+N)2+1 ]
. ()\ )\/)_ i(é()\ +)\/"//+"/)|)\
@\ = A (G N AT+ )
+N§" e a
q%=0
_MANPRAN+ R+ oo

1201 +r)N[(L+N)2+1)]

To calculate the contributions of the BCS, ZS, and £8an-
nel to Eq.(6.52), further averages are required:

1+r,
'A{Ml FNA2H )+ (- 4+ (20NN + 2L +N7+ r')z'”(mﬂ

(9 M A
ﬁ@l(kq,?\q Nar

?=0 12(L+r[(L+N)?+1 2 (B9
OGN+ G e
72 INAAE)NG + 28 g oo
B +r) +A[(B+N)AB+N(2+)N)) +2(10 +A(B +N)r; + 1]
- 241 +r)[(L+N)?+1,]
A /- — 1
201 -N2+1r)[(L+N)%+ r|]2arctan><1 +\)\ :'rl) +(LHN2+r)[(L+N)2+ 121 In<(1 +)\+)£|+ r|) 510

+

241 +1)[(L+N)2+12\-1,
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[N = 1)(L+N)2+ N2+ 2r) + ArZN=1,+ (L= \2=r)[(L +)\)% + r|:|2arctan’< e )

SNy | == LA
L P 6(L+r)[(L+N 2+, |
(B11)

Y ﬁ A A~ A~ - x2(3 + AZ)

X(0)Z 548"+ alld” + A0y g oo OLAT)? (B12)
1+)\)?

; )\2(1+)\)2(4+37\)+)\2(4+5)\)r|+)\[(1+)\)2+r|]zln<—( +1+)r”'>

_ /x a7 A7 2 -, - |

&qzw(l)\q +Na)ING +Aq[Dg o TR RSNETNC . (B13)

Using these expressions to calculﬁ‘ﬁé? from Egs.(6.10), (6.16), and(6.23—(6.25 one can determing via Eg.(6.52. One
can check that to linear order kone has

Jd . P
S TIOANEN Mg | = NG+ a3+ 1@+ by i3, (B14
62=0

which, after performing tha integration, reproduces at the fixed point the result Bd39.
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