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We present a detailed investigation of the momentum-dependent self-energySskd at zero frequency of
weakly interacting bosons at the critical temperatureTc of Bose-Einstein condensation in dimensions 3øD
,4. Applying the functional renormalization group, we calculate the universal scaling function for the self-
energy at zero frequency but at all wave vectors within an approximation which truncates the flow equations
of the irreducible vertices at the four-point level. The self-energy interpolates between the critical regimek
!kc and the short-wavelength regimek@kc, where kc is the crossover scale. In the critical regime, the
self-energy correctly approaches the asymptotic behaviorSskd~k2−h, and in the short-wavelength regime the
behavior isSskd~k2sD−3d in D.3. In D=3, we recover the logarithmic divergenceSskd~ lnsk/kcd encountered
in perturbation theory. Our approach yields the crossover scalekc as well as a reasonable estimate for the
critical exponenth in D=3. From our scaling function we find for the interaction-induced shift inTc in three
dimensions,DTc/Tc=1.23an1/3, wherea is the s-wave scattering length andn is the density, in excellent
agreement with other approaches. We also discuss the flow of marginal parameters inD=3 and extend our
truncation scheme of the renormalization group equations by including the six- and eight-point vertex, which
yields an improved estimate for the anomalous dimensionh<0.0513. We further calculate the constant
limk→0 Sskd /k2−h and find good agreement with recent Monte Carlo data.
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I. INTRODUCTION

The physics of weakly interacting bosons has seen a re-
vival thanks to the improved experimental technique of atom
traps which allow for a detailed study of Bose-Einstein con-
densation in a controlled environment. Besides the theoreti-
cal effort invested into studies of harmonically trapped
bosons(for a review, see Ref.[1]), this also generated re-
newed interest into the behavior of homogeneous Bose gases
and led to some new insights[2]. Many aspects of weakly
interacting Bose gases have been understood for quite some
time now, such as the universality classOs2d of the conden-
sation transition along with an accurate knowledge of critical
exponents. However, the universality of weakly interacting
bosons at the critical point is not limited to critical exponents
since a weakly interacting Bose gas behaves universal at all
length scales larger than the thermal de Broglie wavelength
lth [3,4]. The origin of this extended universality is that at
large length scales quantum fluctuations become unimportant
so that this regime of the Bose gas is completely described
by a classicalf4 model [5]. In this work we present a de-
tailed study of the momentum-dependence of the self-energy
at the critical point of Bose-Einstein condensation at zero
frequency, using the functional renormalization group for-
malism in the form introduced by Wetterich[6] and by Mor-
ris [7]. Some results of this manuscript were already pre-
sented in a brief form[8]. Here we give a detailed account of
the calculation and further include an extensive treatment of
marginal terms.

In the limit of weak interactions, parametrized by the
s-wave scattering lengtha, the self-energy is universal not
only in the limit of small wave vectors,k →0, where it is
proportional tok2−h with a finite anomalous dimensionh. It
remains universal, in the sense that it can be written in a

scaling form independent ofa, up to momenta which only
need to be small compared tolth

−1. At some crossover scalekc
the zero frequency self-energy leaves the anomalous scaling
regime and enters the perturbative regime, where the self-
energy correction to the dispersion becomes negligible com-
pared with the bare dispersion

ek = r0k
2, with r0 = "2/2m. s1.1d

Herem is the bare mass. At finite temperatures andD,4, a
perturbative calculation of the self-energy is ultraviolet(UV)
divergent. This divergence can be addressed by using the
thermal de Broglie length as an UV cutoff. InD=3, however,
the perturbative regimekc,k,2p /lth remains nontrivial
even in presence of a UV cutoff, since additional logarithmic
infrared (IR) divergences appear. As discussed in detail by
Baym et al. [5], the IR divergence cannot be treated in an
ad hocmanner by introducing an IR cutoff, since doing so
introduces an artificial additional scale which directly enters
quantities which should be universal, such as the interaction
induced shift of the critical temperature. The IR divergence
can be removed by a resummation using a variety of stan-
dard many-body techniques, e.g., bubble or ladder summa-
tion and/or self-consistent approaches[5]. However, these
methods are uncontrolled in the critical regime where one is
faced with a strong-coupling problem. Renormalization
group (RG) techniques are expected to perform better and
several authors have applied RG techniques to investigate
the IR behavior of weakly interacting bosons[9–12], though
no attempt was made to calculate the momentum dependence
of the self-energy. Note that standard field theoretical RG is
confined to the critical regimek!kc. In fact, even the scale
kc cannot be obtained within such an approach. To interpo-
late between the critical and the short wavelength regime,
functional RG techniques[6,7] are a natural choice, since
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they track the flow of complete vertex functions rather than
just a small number of coupling parameters. Note that the
functional RG approach includesa priori also terms which
are irrelevant according to their scaling behavior, but which
are important for a correct description of the perturbative
kc!k regime. In this work we present in detail a functional
RG approach to this problem and calculate the universal self-
energy to leading order in the small parameteran1/3 for all
wave vectors(n is the boson density). Since the critical be-
havior atTc is classical, we will focus only on the self-energy
Ssk , ivn=0d at vanishing Matsubara frequency.

We begin with the general form of the functional RG flow
equations for the irreducible vertices up to the four-point
vertex in Sec. II, where we still retain all frequencies. Our
approach is based on the sharp-cutoff version of the func-
tional RG [6,7,13,14]. In Sec. III, we turn to the effective
classical field theory and rewrite the problem in a notation
appropriate to the classical limit. In Sec. III A, the relevant
and marginal parameters are classified in dimensions 3,D
,4 and their functional flow equations are stated
in Sec. III B.

Section IV contains the central part of our work, the cal-
culation of the self-energy. We first reexamine perturbation
theory and its divergence inD=3 before we turn to the cal-
culation of the self-energy within the functional RG formal-
ism. This formalism allows us to calculate the scaling func-
tion ssxd characterizing the zero frequency self-energy at the
critical point. We definessxd by

ssxd = sr0kc
2d−1fSskcxd − Ss0dg, s1.2d

such that the crossover occurs atx=1. HereSskd=Ssk, ivn

=0d is the exact zero frequency self-energy at the critical
temperature. Standard field theoretical RG can only describe
the asymptotic limitx→0, wheressxd~x2−h.

Our approach is based on a truncation of the exact hier-
archy of functional RG flow equations at the four-point ver-
tex, i.e., we ignore six-point and higher order vertices. While
in this approximation the flow of marginal terms is not con-
sistently described, the resulting approximation for the four-
point vertex does in fact include marginal and infinitely
many irrelevant terms. The resulting flow equation for the
self-energy can then be solved and we derive the complete
momentum dependence for the self-energy in 3øD,4, see
Eqs. (4.51) and (4.52) below, which constitute the central
result of this work. A numerical evaluation of Eqs.(4.51) and
(4.52) in D=3 is also presented. We usessxd to calculate the
shift of the critical temperatureTc of the condensation tran-
sition in Sec. V. InD=3 we obtainDTc/Tc=1.23an1/3 to
lowest order inan1/3, in good agreement with recent numeri-
cal investigations[15,16] and other analytical results[17,18]
(for a recent review on this topic see[2]).

In Sec. VI, we improve upon the truncation of the flow
equation and account for the coupling parameters which be-
come marginal inD=3. Three additional parameters must be
taken into account, two of which are associated with the
linear momentum dependence of the four-point vertex and
one which describes the momentum-independent part of the
six-point vertex. We discuss different truncation schemes of

the flow equations and show that the inclusion of marginal
terms provide an improvement for the fixed point value of
the anomalous dimension.

In Sec. VII we calculatessxd in D=3 including the mar-
ginal terms of the four-point vertex but ignoring irrelevant
terms. We demonstrate how this truncation fails in the largex
regime, where it predicts incorrectlyssxd~x which in turn
would predictDTc/Tc~an1/3 lnsan1/3d. On the other hand, in
the critical regime irrelevant terms only lead to a renormal-
ization of marginal and relevant ones andssxd is well de-
scribed by a theory were irrelevant terms are not included.
We use this approach to express the prefactorA3 of the
anomalous scaling term,ssxd<A3x

2−h, as a function ofh for
D=3. Our result is in good agreement with recent Monte
Carlo results[4]. Finally, in Sec. VIII we summarize and
conclude this work.

II. FUNCTIONAL RG FLOW EQUATIONS FOR BOSONS

Our starting point is a standard effective action describing
free bosons with a two-particle interaction, which is local at
the bare level. The action with an UV cutoffL0 (to be speci-
fied later) is of the form

SL0
hc̄,cj = SL0

0 hc̄,cj + SL0

inthc̄,cj, s2.1d

where the noninteracting part is given by

SL0

0 hc̄,cj =E
K

QsL0 − uk udf− ivn + ek − m + Ss0,i0dgc̄KcK,

s2.2d

with Qsx.0d=1 and Qsx,0d=0. The interaction part is
given by

SL0

inthc̄,cj =E
K

QsL0 − uk udfSL0
sKd − Ss0,i0dgc̄KcK

+
1

s2!d2E
K18
E

K28
E

K2

E
K1

dK18+K28,K2+K1

3GL0

s4dsK18,K28;K2,K1dc̄K18
c̄K28

cK2
cK1

+ ¯ ,

s2.3d

where the ellipsis denotes three-body and higher order inter-
actions, which we ignore at the bare level. HerecK is a
complex bosonic field. We use the notationK=sk , ivnd, eK

=sbVd−1ok,vn
, and dKK8=bVdkk8dvnvn8

, where b is the in-

verse temperature,V is the volume, andvn=2pnT are
bosonic Matsubara frequencies. In Eq.(2.2) we have in-
cluded the exact self-energy at vanishing momenta and fre-
quencies as a counterterm in the definition of the free action.
Throughout this work, we shall work at temperaturesT
ùTc such that theUs1d symmetry is not broken. The gener-
ating functional of the one-particle irreduciblen-point verti-
cesGL

s2ndsK18 , . . . ,Kn8 ,Kn, . . . ,K1d of the theory with IR cutoff
L can be expanded in terms of the fieldsfK=kcKl as fol-
lows:
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GLhf̄,fj = o
n=0

`
1

sn!d2 p
i,j=1

n E
Ki8
E

Kj

dK18+¯+Kn8,Kn+¯+K1

3GL
s2ndshKi8,Kjjdf̄K18

¯ f̄Kn8
fKn

¯ fK1
.

s2.4d

The functional RG flow equations of the first few irreducible
vertices(up to the six-point vertex) for nonrelativistic fermi-
onic and bosonic systems can be found in Ref.[14]. We
summarize below the flow equations relevant for bosons up
to the four-point vertex. The flow equations for the six-point
vertex and some terms of the flow of the eight-point vertex
are given in Appendix A.

We would like to add a comment concerning another
implementation of the exact RG formalism, the so-called de-
rivative expansion, which was employed with great success,
e.g., to calculate critical exponents[19]. In this approxima-
tion, one classifies the terms in the generating functional
GLhf̄ ,fj according to the number of field derivatives rather
than employing the field expansion Eq.(2.4). In the lowest
order derivative expansion, the only momentum dependence
enters via a kineticu]xfsxdu2 term while the momentum in-
dependent contributions of all vertices are included in an
effective local potential. Thus, there is no truncation in the
power of fields at the expense of ignoring the momentum
dependence of higher order vertices. Since we will show in
Sec. VII that even the irrelevant terms of the momentum
dependence of the four-point vertex are essential to obtain
the correct behavior of the self-energy for large momenta,
this approach, at least in its simplest implementation, does
not seem to allow for a correct description of the large mo-
mentum regime. The convergence properties of the deriva-
tive expansion with certain smooth cutoff functions are su-
perior to those with a sharp cutoff[20]. Less is known about
the optimal choice of cutoff functions within the field expan-
sion. We use here a sharp cutoff since it is the simplest
choice from a conceptual and practical point of view.

A. Free energy

For completeness, we list here the flow equation for the
free energyGL

s0d, although below we shall not discuss it fur-
ther. The flow equation is given by

]LGL
s0d = VE

K

dsL − uk ud

3 lnF ivn − ek + m − Ss0,i0d
ivn − ek + m − Ss0,i0d − GL

s2dsKdG ,

s2.5d

whereGL
s2dsKd is the two-point vertex, defined by

GL
s2dsKd = SLsKd − Ss0,i0d. s2.6d

B. Two-point vertex

The main interest of the work is the flow equation of the
two point vertex, which we will relate in Sec. IV to the zero

energy scaling function of the self-energy, Eq.(1.2). The
flow equation for the two-point vertex is given by

]LGL
s2dsKd =E

K8
ĠLsK8dGL

s4dsK,K8;K8,Kd, s2.7d

where

ĠLsKd =
dsL − uk ud

ivn − ek + m − Ss0,i0d − GL
s2dsKd

s2.8d

is the cutoff dependent single scale propagator, with support
only at uk u=L. As is evident from Eq.(2.7), the flow of the
two-point vertex depends on the properties of the four-point
vertex at finite wave vectors. We thus need the momentum-
dependent flow of the four-point vertex.

C. Four-point vertex

The flow equation for the irreducible four-point vertex is
responsible for the crossover from the weak coupling regime
at small scales to the critical regime at large scales. The flow
is given by

]LGL
s4dsK18,K28;K2,K1d

=E
K

ĠLsKdGL
s6dsK18,K28,K;K,K2,K1d +E

K

fĠLsKdGLsK8d

3GL
s4dsK18,K28;K8,KdGL

s4dsK,K8,K2,K1dgK8=K1+K2−K

+E
K

†fĠLsKdGLsK8d + GLsKdĠLsK8dg

3GL
s4dsK18,K8;K,K1dGL

s4dsK28,K;K8,K2d‡K8=K1−K18+K

+E
K

†fĠLsKdGLsK8d + GLsKdĠLsK8dg

3GL
s4dsK28,K8;K,K1dGL

s4dsK18,K;K8,K2d‡K8=K1−K28+K,

s2.9d

whereGL
s6d is the six-point vertex and

GLsKd =
QsL , uk u , L0d

ivn − ek + m − Ss0,i0d − GL
s2dsKd

. s2.10d

is the cutoff regularized propagator. The notationQsL, uk u
,L0d is shorthand forQsuk u−Ld−Qsuk u−L0d. This equation
is shown graphically in Fig. 1. For the most part of this work,
we shall in fact ignore the contribution from the six-point
vertex to this flow and work solely with the two- and four-
point vertex. To calculate fixed-point properties, we will
however also include the six-point vertex in Sec. VI.

III. EFFECTIVE CLASSICAL FIELD THEORY

To discuss the classical critical behavior, it is sufficient to
retain only the zero Matsubara frequency part of all vertices.
In principle, all fields with nonzero Matsubara frequencies
can be integrated out using the flow equations given above,
which leads to finite renormalizations of the parameters ap-
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pearing in the effective classical theory[22]. The effective
UV cutoff of the classical theory is determined by the ther-
mal de Broglie wavelength,

L0 =
2p

lth
, lth =

h
Î2pmT

=Î2p"2

mT
. s3.1d

In D=3 the initial value of the four-point vertex can be pa-
rametrized in terms of the two-body scattering lengtha,

GL0

s4ds0,0;0,0d =
8p"2a

m
= 16pr0a. s3.2d

A. Functional RG flow equations for the rescaled vertices

We assume that the finite renormalizations due to nonzero
Matsubara frequencies are implicitly taken into account via
the initial conditions at scaleL=L0 of the effective classical
theory. As discussed in detail in Ref.[5], to calculate the
linear shift of the critical temperature(see Sec. V), one can
in fact ignore the renormalization of the classical sector by
finite Matsubara frequencies altogether, since this only leads
to corrections inTc of ordera2. It is convenient to write the
single-particle Green’s function at zero Matsubara frequency
in the following scaling form

GLsk,i0d = −
Zl

r0L2G̃lsk/Ld, s3.3d

G̃lsqd =
Qs1 , uqu , eld

Rlsqd
, s3.4d

were the minus sign is introduced in Eq.(3.3) to arrive at the
usual definition of the classical Green’s function. Here
l =−lnsL /L0d is the logarithmic flow parameter, and the in-
verse dimensionless propagator is

Rlsqd = Zlq
2 + G̃l

s2dsqd +
Zl

r0L2fSs0,i0d − mg, s3.5d

with the dimensionless irreducible two-point vertex

G̃l
s2dsqd =

Zl

r0L2GL
s2dsLq,i0d =

Zl

r0L2fSLsLq,i0d − Ss0,i0dg.

s3.6d

The classical wave-function normalization factorZl is given
by

Zl = 1 −U ]G̃l
s2dsqd
]q2 U

q2=0
. s3.7d

Similar to Eq. (3.6), we define the classical dimensionless
higher order vertices fornù2 by

G̃l
s2ndsq18, . . . ,qn8;qn, . . . ,q1d

= sKDTdn−1LDsn−1d−2nsZl/r0dnGL
s2ndshk i = Lqi,vni

= 0jd.

s3.8d

For later convenience we have included the numerical factor
KD=VD / s2pdD in the definition of the vertices, whereVD

=2pD/2/GsD /2d is the surface area of theD-dimensional unit
sphere. The rescaled vertices satisfy functional flow equa-
tions of the form

]lG̃l
s2ndshqijd = F2n − Dsn − 1d − nhl − o

i=1

2n

qi ·¹qiGG̃l
s2ndshqijd

+ Ġl
s2ndshqijd, s3.9d

where

hl = − ]l ln Zl s3.10d

is the flowing anomalous dimension. In particular, the
rescaled two-point vertex satisfies

]lG̃l
s2dsqd = f2 − hl − q ·¹qgG̃l

s2dsqd + Ġl
s2dsqd, s3.11d

where

Ġl
s2dsqd =E

q8
Ġlsq8dG̃l

s4dsq,q8;q8,qd, s3.12d

with

FIG. 1. Diagrammatic representation of the
flow equation for the four-point vertex; see Eq.
(2.9). We adapt the notation BCS, ZS, and ZS8
for the diagrams from the usual fermionic lan-
guage[21], even though this notation does not
imply a physical correspondence.
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E
q8

=E dDq8

VD
s3.13d

and

Ġlsqd =
dsuqu − 1d

Rlsqd
. s3.14d

The functional flow equation for the dimensionless four-
point vertex follows from Eq. (3.9). It involves the
inhomogeneity

Ġl
s4dsq18,q28;q2,q1d =E

q
ĠlsqdG̃l

s6dsq18,q28,q;q,q2,q1d −E
q

fĠlsqdG̃lsq8dG̃l
s4dsq18,q28;q8,qdG̃l

s4dsq,q8;q2,q1dgq8=q1+q2−q

−E
q
†fĠlsqdG̃lsq8d + G̃lsqdĠlsq8dgG̃l

s4dsq18,q8;q,q1dG̃l
s4dsq28,q;q8,q2d‡q8=q1−q18+q

−E
q
†fĠlsqdG̃lsq8d + G̃lsqdĠlsq8dgG̃l

s4dsq28,q8;q,q1dG̃l
s4dsq18,q;q8,q2d‡q8=q1−q28+q. s3.15d

The flow equations for the six-point and eight-point vertices

also have the form Eq.(3.9) where Ġl
s6d and Ġl

s8d involve
various combinations of the two-, six-, four-, eight- and ten-
point vertices. All terms entering the inhomogeneity of the
six-point vertex and the terms needed for a calculation up to
second order in the relevant and marginal parameters of the
inhomogeneity of the eight-point can be found in Appendix
A; see Eqs.(A2) and (A3).

B. Classification of coupling parameters

Although we are ultimately interested in the flow of ver-
tex functions, it is useful to first consider the flow of mar-
ginal and relevant coupling parameters, since irrelevant pa-
rameters become local functions of the relevant and marginal
ones at the fixed point[23]. To properly organize the flow of
irrelevant terms it is thus necessary to know the flow of the
relevant and marginal parameters. We first investigate here
the relevant and marginal terms for 3,D,4, ignoring ad-
ditional marginal terms inD=3.

1. Relevant coupling parameters

In 3øD,4 there are two relevant coupling parameters,

r l = G̃l
s2ds0d = lim

q→0

Zl

r0L2fSLsLq,i0d − Ss0,i0dg,

s3.16d

with scaling dimension +2, and

ul = G̃l
s4ds0,0;0,0d, s3.17d

with scaling dimensione=4−D. The exact flow equations of
these parameters are

]lr l = s2 − hldr l + Ġl
s2ds0d, s3.18d

]lul = s4 − D − 2hldul + Ġl
s4ds0,0;0,0d. s3.19d

2. Marginal coupling parameter

For 3,D,4 the only marginal parameter is the wave-
function renormalizationZl. The exact flow equation is

]lZl = − hlZl , s3.20d

where the flowing anomalous dimension is

hl = U ]Ġl
s2dsqd
]q2 U

q2=0
=

1

Rls1d
]

]q2ukG̃l
s4dsq,q̂8;q̂8,qdlq̂8uq2=0

s3.21d

and

k¯lq̂ =E dDq

VD
dsuqu − 1d. . . s3.22d

denotes the integral over the unit sphere. The surface area
VD of the unit sphere was defined below Eq.(3.8). In D=3,
additional marginal coupling parameters appear which we
ignore in this section. We will discuss them in Sec. VI.

3. The Wilson-Fisher fixed point close to D=4

It is instructive to take a closer look at the perturbative
one-loop RG flow equations for the relevant coupling param-
eters. If we retain from the two-point vertex only the relevant
and marginal part, we may approximate

Rlsqd < r l + q2, s3.23d

so that

G̃lsqd <
Qs1 , uqu , eld

r l + q2 , s3.24d
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Ġlsqd <
dsuqu − 1d

r l + q2 . s3.25d

If in addition we retain only the relevant part of the four-
point vertex, we may replace it by a momentum-independent
constant,

G̃l
s4dsq18,q28;q2,q1d < G̃l

s4ds0,0;0,0d ; ul . s3.26d

Within this approximation we obtain from Eq.(3.12),

Ġl
s2ds0d <

ul

1 + r l
, s3.27d

and Eq.(3.15) reduces to

Ġl
s4ds0,0;0,0d < −

5

2

ul
2

s1 + r ld2 . s3.28d

Because the anomalous dimension is related to the momen-
tum dependence of the four-point vertex which is irrelevant
in D.3, we may sethl <0 within this approximation. Fur-
thermore, on the critical trajectoryr l =Osuld can also be ig-
nored in Eq.(3.28) as long asul remains small compared
with unity. Then we obtain, withe=4−D,

]lul = eul −
5

2
ul

2, s3.29d

]lr l = 2r l + ul . s3.30d

Equation(3.29) is easily solved. The solution can be written
in the form

ul

u*
= 1 −

1

eesl−lcd + 1
=

1

eeslc−ld + 1
, s3.31d

where

u* =
2

5
e s3.32d

is the value oful at the RG fixed point, and the logarithmic
crossover scale is

lc =
1

e
lnSu*

u0
− 1D <

1

e
lnSu*

u0
D . s3.33d

Throughout this work we assume thatu0!u* , corresponding
to weak bare interactions between the bosons. Note that the
right-hand side of Eq.(3.31) is expressed in terms of the
Fermi function. If we think ofe as the inverse temperature
and lc as the chemical potential, the qualitative behavior of
ul /u* is clear: within a narrow(on the scalelc) interval of
width 1/e centered atl = lc the ratio ul /u* raises from the
small valuee−eslc−ld to a value close to unity, see Fig. 2.
Given the solutionul in Eq. (3.31), the RG equation(3.30)
for r l is easily solved,

r l = −
e

5
+ e2lFr0 +

e

5
−

2e

5
E

0

l

dl8
e−2l8

eesl8−lcd + 1
G . s3.34d

To obtain a fixed point atl →`, the intial valuer0 has to be
fine tuned such that

r0 = −
e

5
+

2e

5
E

0

`

dl8
e−2l8

eesl8−lcd + 1
. s3.35d

Then we may write

r l = r* + u*E
l

`

dl8
e−2sl8−ld

eesl8−lcd + 1
, s3.36d

where

r* = −
u*

2
= −

e

5
. s3.37d

In Sec. IV we show that, up to a numerical factor of the order
of unity, the momentum scalekc=L0e

−lc associated with the
logarithmic scale factorlc, i.e.,

kc = L0Fu*

u0
− 1G−1/e

< L0Su0

u*
D1/e

, s3.38d

can be identified with the crossover scale where the critical
k2−h form of the energy dispersion begins to emerge.

IV. THE SELF-ENERGY AT THE CRITICAL POINT
OF BOSE-EINSTEIN CONDENSATION

A. Second order perturbation theory

To begin with, let us attempt to calculate the self-energy
by means of straightforward second order perturbation
theory[5], which yields in a continuum model with UV cut-
off L0

Sskd − Ss0d = − T
3

2
G0

2E dDp

s2pdDx0spdFQsL0 − up + k ud
ep+k

−
QsL0 − upud

ep
G , s4.1d

whereG0=GL0

s4ds0,0;0,0d is the bare vertex, and

x0spd = TE dDp8

s2pdD

QsL0 − up8udQsL0 − up8 + pud
ep8ep8+p

.

s4.2d

With ep=r0p
2 we obtain forL0→`,

x0spd = KDKD8
T

r0
2p4−D s4.3d

where

FIG. 2. Typical flow of the couplingul as a function ofl for
u0!u* andD=3.
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KD8 =E
0

1

dxfxs1 − xdgsD−4d/2E
0

`

dy
yD−1

sy2 + 1d2

= 23−D

ÎpGSD

2
− 1D

GSD − 1

2
D

p

4
sD − 2d

sin
p

2
sD − 2d

. s4.4d

Note thatKD8 is finite for 2,D,4; in particular,K38=p2/4.
Substituting Eq.(4.3) into Eq. (4.2) and taking the limitL0
→`, we can scale out thek dependence and obtain forD
,3,4, using the definitionsu0=KDTL0

−er0
−2G0 and kc

=L0su0/u*d1/e,

r0
−1fSskd − Ss0dg = BDkc

2ek2−2e, s4.5d

where after an integration by parts the coefficientBD can be
cast into the following form:

BD =
3u*

2

4sD − 3d
KD8 ID, s4.6d

ID =
VD−1

VD
E

0

p

dqssinqdD−2E
0

`

dxx2D−6

3F−
d

dx
S 1 + 2x cosq

1 + 2x cosq + x2DG . s4.7d

In Fig. 3 we show a numerical evaluation ofBD for 3,D
,4. With I3=1 andK38=p2/4 we obtain forD→3

BD ,
b3

D − 3
, b3 =

3p2u*
2

16
. s4.8d

Perturbation theory is valid as long as the correction(4.5) is
small compared withr0k

2, i.e., fork&kcBD
1/2e. Due to the IR

divergence ofBD for D→3, close to three dimensions per-
turbation theory breaks down even outside the critical re-
gime. In a IR regularized approach with a cutoffj, the di-
vergence in Eq.(4.5) is replaced by a lnskjd behavior[5].
Below we shall see that the functional RG approach shows a
lnsk/kcd behavior, as expected for a theory where the diver-
gence due to density fluctuations is screened within a non-
perturbative treatment.

B. Functional RG calculation of the self-energy

We now derive the behavior of the self-energy micro-
scopically using the functional RG equations for the effective
classical field theory.

1. The ul
2 truncation for the Ġl

„4… inhomogeneity

To begin with, we need the RG flow of the four-point
vertex. In the simplest approximation, we expand

Ġl
s4dsq18 ,q28 ;q2,q1d in powers oful, which should be accurate

as long as the renormalized coupling remains small. To lead-
ing order we simply ignore the six-point vertex and replace
the four-point vertices on the right-hand side of Eq.(3.15) by
their relevant partul. In this approximation,

Ġl
s4dsq18,q28;q2,q1d < − ul

2F1

2
ẋlsuq1 + q2ud + ẋlsuq1 − q18ud

+ ẋlsuq1 − q28udG , s4.9d

where the generalized susceptibility is given by

ẋlsqd = 2E
q8

Ġsuq8udG̃lsuq8 + qud

<
2

1 + r l
KQs1 , uq̂8 + qu , eld

uq̂8 + qu2 + r l
L

q̂8

=
2

1 + r l

VD−1

VD
E

0

p

dqssinqdD−2

3
Qs0 , q2 + 2q cosq , e2l − 1d

1 + r l + q2 + 2q cosq
, s4.10d

where in the second and third line we have used the approxi-
mations(3.24) and (3.25), taking into account only the rel-
evant and marginal part of the two-point vertex.

2. Generalized susceptibility

It is instructive to examine the behavior of the generalized
susceptibilityẋlsqd. Forel −1@2 the asymptotic behavior for
small and largeq can be easily obtained analytically,

ẋlsqd , 5
1

s1 + r ld2 + Osqd for q ! 1 ! el ,

2

s1 + r ldq2 for 1 ! q ! el .6 s4.11d

The important point is that the leading correction for smallq
is linear inq: expanding Eq.(4.10) in powers ofq,

ẋlsqd = ẋls0d + ẋl8s0dq + Osq2d, s4.12d

we find

ẋls0d =
1

s1 + r ld2 , s4.13d

FIG. 3. Graph of the coefficientBD defined in Eqs.(4.6) and
(4.7) in dimensions 3,Dø4.
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ẋl8s0d = −
1

s1 + r ld2F 4S1

s1 + r ld
− S0G , s4.14d

where

S0 = kdsq̂8 · q̂dlq̂8 =
VD−1

VD
s4.15d

and

S1 = kQsq̂8 · q̂dq̂8 · q̂lq̂8 =
S0

D − 1
. s4.16d

In D=3 we obtain withS0=1/2 andS1=1/4

ẋl8s0d = −
1

s1 + r ld2S 1

1 + r l
−

1

2
D, D = 3. s4.17d

For later reference, let us give the exact functionẋlsqd in
D=3, where the angular integration in Eq.(4.10) can easily
be performed analytically. The result can be written as

ẋlsqd =
Qsq2 − q1d
2s1 + r ldq

lnF1 + r l + q2 + 2qq2

1 + r l + q2 + 2qq1
G , s4.18d

where

q1 = H − 1 if q . 2,

− q/2 if q , 2,
J s4.19d

q2 = 5 1 if el − 1 . q,

e2l − 1

2q
−

q

2
if el − 1 , q.6 s4.20d

In particular, forqøminh2,el −1j we have

ẋlsqd =
1

2s1 + r ldq
lnF s1 + qd2 + r l

1 + r l
G . s4.21d

Thus, for small momenta our approximation(4.9) yields in
D=3,

Ġl
s4dsq18,q28;q2,q1d < −

5

2

ul
2

s1 + r ld2 +
ul

2

s1 + r ld2S 1

1 + r l
−

1

2
D

3F1

2
uq1 + q2u + uq1 − q18u + uq1 − q28uG

+ Osqi
2d. s4.22d

The term linear inq generates marginal parameters, as men-
tioned in Sec. III B 2, when we iterate the RG. The linear
term exists for allD, but the corresponding coupling param-
eters are irrelevant inD.3. Because these coupling param-
eters are not consistently taken into account in theu2 trun-
cation given in Eq. (4.9), we cannot expect that this
truncation gives numerically accurate results in the critical
regime close to three dimensions. On the other hand, in the
short-wavelength regime(and also forD−3@h), our u2

truncation(4.9) is sufficient. In this section we shall there-
fore proceed with this approximation, which produces well-
defined results even inD=3 provided the anomalous expo-
nent h is calculated self-consistently by solving an integral
equation, see Eq.(4.29) below. In Sec. VI we shall improve
on this approximation by explicitly including all marginal
coupling parameters in the critical regime inD=3.

3. Explicit expression for the four-point vertex

With Eq. (4.9) as an approximation forĠl
s4d, we are now in

a position to calculate the flow of the four-point vertex. Let
us rewrite Eq.(4.9) in the following way,

Ġl
s4dsq18,q28;q2,q1d <

− 5ul
2

2s1 + r ld2 + Ġl
s4midsq18,q28;q2,q1d,

s4.23d

where

Ġl
s4midsq18,q28;q2,q1d = − ul

2F1

2
ẋl

smidsuq1 + q2ud

+ ẋl
smidsuq1 − q18ud + ẋl

smidsuq1 − q28udG ,

s4.24d

with

ẋl
smidsqd = ẋlsqd − ẋls0d s4.25d

describing the momentum-dependent part. The superscript
(mi) indicates that these terms are marginal or irrelevant. In
this approximation the four-point vertex the form

Ġl
s4dsq18,q28;q2,q1d < ul + G̃l

s4midsq18,q28;q2,q1d, s4.26d

with the irrelevant(and inD=3 also marginal) parts given by

G̃l
s4midsq18,q28;q2,q1d =E

0

l

dl8e«sl−l8d−2e
l8
l

dthtĠl8
s4midse−sl−l8dq18,e

−sl−l8dq28;e−sl−l8dq2,e
−sl−l8dq1d

= −E
0

l

dl8e«sl−l8d−2e
l8
l

dthtul8
2F1

2
ẋl8

smidse−sl−l8duq1 + q2ud + ẋl8
smidse−sl−l8duq1 − q18ud + ẋl8

smidse−sl−l8duq1 − q28udG
= −E

0

l

dte«t−2el−t
l dthtul−t

2 F1

2
ẋl−t

smidse−tuq1 + q2ud + ẋl−t
smidse−tuq1 − q18ud + ẋl−t

smidse−tuq1 − q28udG . s4.27d
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C. Anomalous dimension

To obtain the anomalous dimension

hl = u]Ġl
s2dsqd /]q2uq2=0 we calculateĠl

s2dsqd via Eq. (3.12).
With the approximation Eqs.(4.26) and (4.27) for the four-
point vertex we find

Ġl
s2dsqd =

1

Rls1d
kG̃l

s4dsq,q̂8;q̂8,qdlq̂8

<
ul

1 + r l
−

3

2s1 + r ld
E

0

l

dte«t−2el−t
l dthtul−t

2

3kẋl−t
smidse−tuq̂8 + qudlq̂8. s4.28d

From Eq.(3.21) we then obtain an integral equation for the
flowing anomalous dimension

hl =E
0

l

dtKsl,tdul−t
2 e−2el−t

l dtht, s4.29d

with

Ksl,td = −
3e«t

2s1 + r ld
]

]q2ukẋl−tse−tuq̂8 + qudlq̂8uq=0

= −
3

4Ds1 + r ld
fsD − 1de−sD−3dtẋl−t8 se−td

+ e−sD−2dtẋl−t9 se−tdg, s4.30d

whereẋl8sxd=dẋlsxd /dx andẋl9sxd=d2ẋlsxd /dx2. Note that on
the right-hand side we have replacedẋl−t

smidsqd→ ẋl−tsqd, be-
cause the constant partẋl−ts0d does not contribute to the
derivative. The integral equation(4.29) together with the
one-loop flow equations for the relevant coupling param-
eters,

]lr l = s2 − hldr l +
ul

1 + r l
, s4.31d

]lul = s« − 2hldul −
5

2

ul
2

s1 + r ld2 , s4.32d

form a system of three coupled integro-differential equations
for the three unknown functionsr l, ul, andhl. A numerical
solution of these equations forD=3 is shown in Fig. 4.

To leading order ine (i.e., close to four dimensions) Eqs.
(4.29), (4.31), and(4.32) decouple and one recovers the fixed
point valuesu* =2e /5, r* =−e /5 from Eq.(3.37). To this or-
der it is consistent to ignorehl andr l on the right-hand side
of Eq. (4.32), so that it reduces to Eq.(3.29), with the Fermi
function solution forul given in Eq.(3.31). From the numeri-
cal solution of Eqs.(4.29)–(4.32) for D=3 we find that even
if r l andhl are taken into account, to a good approximation
the qualitative behavior oful is still well described by a
Fermi function if we adjust the fixed point valueu* to the
one obtained from the numerical solution. Furthermore, Fig.
4 shows that alsohl and r l roughly follow the same func-
tional form and we therefore approximate

hl

h
<

r l

r*
<

ul

u*
<

1

e«slc−ld + 1
, s4.33d

with the fixed point values taken from the numerical solution
and whereh=liml→`hl is the anomalous dimension at the
fixed point. Although the functional form(4.33) for hl is
qualitatively incorrect forl ! lc [wherehl ~ul

2, whereas Eq.
(4.33) predictshl ~ul] we may use Eq.(4.33) as a zeroth
approximation on the right-hand side of the integral equation
(4.29). The point is that forl ! lc the right-hand side of Eq.
(4.29) is not sensitive to the precise value ofhl in this re-
gime, and the first iteration of the integral equation yields an
accurate result even for smalll. Let us now calculate the
fixed point values. We obtain from Eq.(4.29)

h = u*
2E

0

`

dtKs`,tde−2ht, s4.34d

where we use the notationh=h* . The functionKs` ,td is
obtained fromKsl ,td defined in Eq.(4.30) by replacing the
functionsẋl−tsqd on the right-hand side by

ẋ*sqd ; lim
l→`

ẋlsqd <
2

1 + r*
KQsuq̂8 + qu − 1d

uq̂8 + qu2 + r*
L

q̂8

.

s4.35d

In particular, inD=3 we have

ẋ*sqd =
1

2s1 + r*dqFQs2 − qdlnS s1 + qd2 + r*

1 + r*
D

+ Qsq − 2dlnS s1 + qd2 + r*

s1 − qd2 + r*
DG . s4.36d

Note that for larget the kernelKs` ,td vanishes ase−sD−3dt, so
that in D=3 it is crucial to retain theh-dependence on the
right-hand side of Eq.(4.34). This is closely related to the
appearance of marginal terms of the four-point vertex inD
=3. The self-consistent fixed point values can be obtained by

FIG. 4. Self-consistent RG flows oful, r l and hl at the critical
point in D=3 (dashed lines), obtained numerically from the coupled
integro-differential Eqs.(4.29), (4.31), and(4.32). For comparison,
the Fermi-function approximation Eq.(4.33) for the flows is also
shown(full lines), with fixed point values matching the numerical
solution.
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using the fact that, at the fixed point, we can expressu* and
r* as a function ofh,

r* = −
2

3

1 − 2h

4 − 3h
, s4.37ad

u* =
10

9

s1 − 2hds2 − hd2

s4 − 3hd2 . s4.37bd

Inserting these expressions foru* and r* into Eq. (4.34), we
obtain a self-consistent equation forh which can be solved
numerically. The numerical solution gives

r* < − 0.143, s4.38ad

u* < 0.232, s4.38bd

h < 0.104. s4.38cd

The above value forh is approximately three times as large
as the generally accepted valueh<0.038 obtained by sev-
eral different techniques[25,26]. However, given the sim-
plicity of our truncation, it is quite satisfactory that our esti-
mate(4.38c) for h has the correct order of magnitude. In any
case, our simpleu2-truncation certainly gives a much better
estimate forh than the self-consistent two-loop calculation
employed by Baymet al. [5], which predicts a value of 0.5
for h. In Sec. VI we shall further improve on the
u2-truncation employed here by explicitly taking the RG flow
of marginal coupling parameters into account.

For completeness, we show how to obtain the standard
result for h to second order in ane expansion. We can re-
write Eq. (4.34) as

h = −
3u*

2

4Ds1 + r*dE0

1

dll−«+2hfsD − 1dẋ*8sld + lẋ*9sldg

= −
3u*

2

4Ds1 + r*dF2s1 − hdE
0

1

dll−«+2hẋ*8sld + ẋ*8s1dG .

s4.39d

For smalle=4−D we obtain to leading order

h = −
3u*

2

16
f2„ẋs1d − ẋs0d… + ẋ8s1dg, s4.40d

where the functionẋsqd is obtained fromẋ*sqd by simply
settingr* →0. Evaluating the integrals inD=4 (see also Ref.
[13]),

ẋs0d = 1, s4.41ad

ẋs1d =
4

3
−

Î3

p
, s4.41bd

ẋ8s1d = −
4

3
+

2Î3

p
, s4.41cd

and usingu* =2e /5, we finally obtainh=e2/50+Ose3d, in
agreement with the field theoretical result[24].

D. The scaling function

Let us now calculate the dimensionless scaling function
slsxd which we define by

slsxd = e−2sl−lcdZl
−1G̃l

s2dsesl−lcdxd. s4.42d

Since the two-point vertexG̃l
s2dsqd and the inhomogeneity

Ġl
s2dsqd depend only onq= uqu, we shall in this subsection use

scalar arguments for these functions to simplify the notation.
For l →` the definition(4.42) for slsxd yields the universal
scaling function defined in Eq.(1.2),

lim
l→`

slsxd ; ssxd = sr0kc
2d−1fSskcxd − Ss0dg. s4.43d

We first perform some exact manipulations. The functional

flow equation forG̃l
s2dsqd given by Eq.(3.11) can be trans-

formed into an integral equation

G̃l
s2dsqd = e2l−e0

l dthtG̃l=0
s2d se−lqd +E

0

l

dte2t−el−t
l dthtĠl−t

s2dse−tqd

= e2l−e0
l dthtFG̃l=0

s2d se−lqd +E
0

l

dl8e−2l8+e0
l8dtht

3Ġl8
s2dse−sl−l8dqdG . s4.44d

To describe a critical system, we choose the initial value

G̃l=0
s2d sqd=r0 to be momentum independent such that forl

→` the relevant coupling

r l = e2l−e0
l dthtFr0 +E

0

l

dl8e−2l8+e0
l8dthtĠl8

s2ds0dG s4.45d

has a finite limitr* = liml→` r l, just has we have done in Eq.
(3.34). This is guaranteed if the initial valuer0 is chosen
such that[27]

r0 = −E
0

`

dl8e−2l8+e0
l8dthtĠl8

s2ds0d. s4.46d

Defining

Ġl
s2midsqd = Ġl

s2dsqd − Ġl
s2ds0d, s4.47d

where the superscriptmi indicates that these function contain
only marginal and irrelevant parameters, we obtain

slsxd = e−2sl−lcdZl
−1r l +E

0

l

dl8e−2sl8−lcd+e0
l8dthtĠl8

s2midsel8−lcxd.

s4.48d

The first term on the right-hand side vanishes forl →` be-
cause by construction liml→` r l =r* is finite on the critical
surface. Taking the limitl →` we thus obtain(after renam-
ing l8→ l)

ssxd =E
0

`

dle−2sl−lcd+e0
l dthtĠl

s2midsel−lcxd. s4.49d
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1. Truncation of the flow equations

So far, no approximation has been made. We now ap-

proximate the functionĠl
s2midsqd on the right-hand side of Eq.

(4.49) by the leading term in the expansion in powers oful,
see Eq.(4.28),

Ġl
s2midsqd < −

3

2s1 + r ld
E

0

l

dteet−2el−t
l dthtul−t

2

3kẋl−tse−tuq̂8 + qud − ẋl−tse−tdlq̂8

= −
3

2s1 + r ld
E

0

l

dl8eesl−l8d−2e
l8
l

dthtul8
2

3kẋl8se
−sl−l8duq̂8 + qud − ẋl8se

−sl−l8ddlq̂8.

s4.50d

All quantities on the right-hand side of Eq.(4.49) are now
known, so that we may calculate the crossover function by
performing the four-dimensional integration(two angular in-
tegrations and two integrations over the scale parametersl
and l8) numerically. There are no divergences even inD=3
provided the integral equation(4.29) for hl is solved self-
consistently.

2. Results for the scaling function

To obtain an analytic approximation for the scaling func-
tion ssxd, we adopt again the successful strategy used in the
solution of the integral equation(4.29) for h: we substitute
the Fermi function ansatz(4.33) for the flowing anomalous
dimension ht on the right-hand side of Eqs.(4.49) and
(4.50). After some transformations of the integration vari-
ables we then obtain

ssxd =
3u*

2

2
x2−hE

xe−lc

`

dy
y−3+2e

fxe + yeg2−2h/eFsx,y;h,lcd,

s4.51d

with

Fsx,y;h,lcd =E
0

1

dz
z1−e

fxe + sy/zdegh/ef1 + r lc+lnsy/zxdg

3kẋlc+lnsy/xdszd − ẋlc+lnsy/xdsuzq̂8 + yq̂9udlq̂8,

s4.52d

whereq̂9 is an arbitrary unit vector. Note that by assumption
x!elc so that we may replacexe−lc→0 in the lower limit of
the y integral in Eq.(4.51). Consider first the regimex!1.
Using the fact that forl @ lc we may approximater l → r* and
ẋlsqd→ lim l→` ẋlsqd; ẋ*sqd [see Eq.(4.35)], we may re-
place in this regimeẋlc+lnsy/xdsqd→ ẋ*sqd andr lc+lnsy/zxd→ r* in
Eq. (4.52). Then we obtain

ssxd <
3u*

2

2
x2−hE

0

`

dy
y−3+2e

fxe + yeg2−2h/eF*sx,y;hd.

s4.53d

Using D-dimensional spherical coordinates, the function
F*sx,y;hd; lim lc→`Fsx,y;h , lcd can be written as

F*sx,y;hd =
VD−1

s1 + r*dVD
E

0

1

dzE
0

p

dq
z1−essinqdD−2

fxe + sy/zdegh/e

3fẋ*szd − ẋ*sÎz2 + 2zycosq + y2dg.

s4.54d

From Eqs.(4.53) and(4.54) it is now straightforward to ob-
tain the asymptotic behavior ofssxd for small x,

ssxd , ADx2−h, s4.55d

AD =
3u*

2

2
E

0

`

dyy−3+2hF*s0,y;hd

=
3u*

2

2s1 + r*d
VD−1

VD
E

0

`

dyy−3+hE
0

1

dzz1−«+hE
0

p

dq

3 ssinqdD−2fẋ*szd − ẋ*sÎz2 + 2zycosq + y2dg.

s4.56d

In D=3 we find numerically

A3 < 1.17. s4.57d

On the other hand, for largex the flow parameter in
ẋlc+lnsy/xdsqd andr lc+lnsy/zxd is typically small compared withlc.
To take the effect of the flowingr l approximately into ac-
count, we replace in this regimer lc+lnsy/zxd→ r0 and
ẋlc+lnsy/xdsqd→ ẋ0sqd, whereẋ0sqd is obtained fromẋ*sqd by
replacingr* → r0. Using Eq.(3.35) one can show that on the
critical surface and for smallu0, the initial value ofr0 is
approximately given byr0<−u0/ s2−ed. With this approxi-
mation we obtain in the regimef2sD−3dg−1! ln x,

ssxd , BDx2sD−3d, s4.58d

BD =
3u*

2

2s1 + r0d
VD−1

VD
E

0

`

dyy−3+2«E
0

1

dzz1−«E
0

p

dq

3 ssinqdD−2fẋ0szd − ẋ0sÎz2 + 2zycosq + y2dg,

s4.59d

and for 1! ln x! f2sD−3dg−1 (which includes the limitD
→3),

ssxd , B38 ln x + B39, s4.60d

where

B38 =
3u*

2

2s1 + r0dE0

1

dzẋ0szd <
3p2

24
u*

2, s4.61d

and on the right-hand side we have setr0→0. Numerically
we find B39<0.0319. Note that the physical self-energy
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Sskd − Ss0d = r0kc
2ssk/kcd s4.62d

is independent ofu*
2 in the regimek@kc: keeping in mind

that kc=L0su0/u*d1/e, it is obvious that the factor ofu*
2 in

Eqs.(4.59) and (4.61) combines with a suitable power ofkc
so that the self-energy is proportional tou0

2. A numerical
evaluation ofssxd is shown in Fig. 5.

To summarize, using the functional RG, we have derived
in this section the momentum-dependent self-energy of
weakly interacting bosons, covering the entire range from the
critical regime up to momenta of the order of the inverse
thermal de Broglie wavelength. While in the critical regime
k!kc it is simpler to obtain the asymptotic long-wavelength
behavior of the self-energy within the field theoretical RG,
the functional RG approach adopted in this work can de-
scribe the entire crossover from the critical regimek!kc to
the short-wavelength regimekc!k&2p /lth. Note that the
behavior of the self-energy in the short-wavelength regime is
determined by irrelevant terms which are simply discarded in
the field theoretical RG.

V. INTERACTION INDUCED Tc SHIFT

Baym et al. [5] have shown that to lowest order in the
scattering lengtha, the interaction induced shift for the criti-
cal temperatureTc in D=3 can be calculated from the
k-dependence of the zero frequency self-energyosk ,0d. In a
straightforward generalization of their result to arbitrary di-
mensions, we can write the contribution from classical
modes to the shift inTc as

DTc

Tc
=

2VD

pDzsD/2d
S kc

L0
DD−2E

0

L0/kc

dxxD−3

3
sr0kc

2d−1fSskcxd − Ss0dg
x2 + sr0kc

2d−1fSskcxd − Ss0dg
. s5.1d

Using kc/L0=e−lc=su0/u*d1/e, and substituting our scaling
functionssxd as defined in Eq.(1.2), this can also be written
as

DTc

Tc
=

2VD

pDzsD/2d
Su0

u*
DsD−2d/s4−DdE

0

L0/kc

dxxD−3 ssxd
x2 + ssxd

.

s5.2d

The shift inTc is dominated by classical fluctuations as long
as the UV cutoffL0/kc can be removed in Eq.(5.2). Keeping
in mind that according to Eq.(4.58) ssxd,BDx2sD−3d for
large x, we see that the integral(5.1) is UV convergent as
long assD−2d / s4−Dd,2, i. e.D,10/3. ForDù10/3 the
value of the integral in Eq.(5.1) depends on the UV cutoff,
such that the lowest order contribution to the shift inTc is
proportional tou0

2, with logarithmic correctionss~u0
2 ln u0d

in D=10/3. Hence forDù10/3 the shift in the critical tem-
perature cannot be obtained from an effective classical field
theory, while forD,10/3, the cutoff only leads to higher
order corrections[in D=3 one findsu0

2 andu0
2 lnsu0d correc-

tions [5]]. Writing

DTc

Tc
= JDu0

sD−2d/s4−Dd, s5.3d

we obtain forD,10/3,

JD =
2VD

pDzsD/2d
S 1

u*
DsD−2d/s4−DdE

0

`

dxxD−3 ssxd
x2 + ssxd

.

s5.4d

Note thatJD implicitly depends onu0 via ssxd. However, for
u0→0 the coefficientJD approaches a finite limit indepen-
dent ofu0 as long asD,10/3.

In D=3 one usually writes

DTc

Tc
= c1an1/3. s5.5d

Keeping in mind that

u0 = 16p−1fzs3/2dg−1/3an1/3 for D = 3, s5.6d

we have in this casec1=16p−1fzs3/2dg−1/3J3. Within our ap-
proximation we findc1=1.23, in rather good agreement with
the most accurate numerical investigations which givec1
=1.30±0.02[15] andc1=1.29±0.05[16]. Variational pertur-
bation techniques give similar results,c1=1.23±0.12[17],
andc1=1.27±0.11[18]. More results from other approaches
are summarized in a recent review[2]. There is also experi-
mental data from a4He-Vycor system confirming the linear
scaling ofTc with an1/3 [28]. The reported valuec1<4.66
seems however rather large which may be attributed to un-
certainties regarding the precise value ofa in the experiment,
see the discussion in Ref. 16.

VI. IMPROVED DESCRIPTION OF THE CRITICAL
REGIME IN D=3: INCLUDING MARGINAL TERMS

Within the u2-truncation employed so far, we have ne-
glected the six-point vertex and approximated the inhomoge-
neity in the flow equation of the four-point vertex by

FIG. 5. Numerical evaluation of the scaling functionssxd of the
self-energy in the limita→0 and D=3. Dashed lines are the
asymptotic forms predicted by Eqs.(4.55) and (4.60).
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Ġl
s4dsq18,q28;q2,q1d < − ul

2F1

2
ẋlsuq1 + q2ud + ẋlsuq1 − q18ud

+ ẋlsuq1 − q28udG , s6.1d

see Eq.(4.9). This approximation amounts to a truncation of
the exact hierarchy of flow equations where on the right-
hand side of Eq.(3.15) we simply replace

G̃l
s4dsq18,q28;q2,q1d → ul . s6.2d

A formal justification for this procedure can only be given
for D.3: for weak interactions, irrelevant coupling param-
eters can be expanded in powers of relevant and marginal
ones[13,23]. For 3,D,4 the only part of the four-point
vertex which is not irrelevant is its constant partul. However,
in D=3 there are two additional marginal parameters related
to the momentum dependence of the four-point vertex.
Hence, in this case Eq.(6.1) is not consistent. For small
momenta the flowing four-point vertex has the form

G̃l
s4dsq18,q28;q2,q1d = ul + alsuq1 − q18u + uq1 − q28ud + bluq1 + q2u

+ G̃l
s4idsq18,q28;q2,q1d, s6.3d

where the irrelevant partG̃l
s4idsq18 ,q28 ;q2,q1d vanishes at least

quadratically if all momenta become small. Below, we will
denote the diagrams entering the renormalization of the four-
point vertex using the usual fermionic language(i.e., BCS,
ZS, and ZS8; see Fig. 1). We emphasize that this terminology
simply describes the topology of the diagrams, not the physi-
cal phenomena arising from the diagrams. Note that the four-
point vertex must be symmetric under the exchangeq1↔q2
andq18↔q28, so that both “zero sound channels” are charac-
terized by the same parameteral. The parameterbl charac-
terizes the BCS channel.

The exact flow equations for the coupling parametersal
andbl are

]lal = s3 − D − 2hldal + Ġl
a, s6.4d

]lbl = s3 − D − 2hldbl + Ġl
b, s6.5d

where the coefficientsĠl
a and Ġl

b are defined via the expan-

sion of the functionĠl
s4dsq18 ,q28 ;q2,q1d in Eq. (3.15) for small

momenta,

Ġl
s4dsq18,q28;q2,q1d = Ġl

s4ds0,0;0,0d + Ġl
asuq1 − q18u + uq1 − q28ud

+ Ġl
buq1 + q2u + Osqi

2d. s6.6d

Even if the initial vertexG̃l=0
s4d sq18 ,q28 ;q2,q1d is momentum-

independent(corresponding to the initial conditionsa0=b0
=0), finite values of these parameters are generated as we
iterate the RG. Because inD=3 these are marginal, they
cannot be ignored and are possibly the source of logarithmic
corrections.

Besidesal and bl, there is a third marginal parameter in
D=3, the momentum-independent part of the six-point ver-
tex,

vl = G̃l
s6ds0,0,0;0,0,0d, s6.7d

see Eq.(3.9). It satisfies the exact flow equation

]lvl = s6 − 2D − 3hldvl + Ġl
s6ds0,0,0;0,0,0d. s6.8d

Again, the RG flow generates a finitevl even if initially v0
=0. At the Wilson-Fisher fixed point inD=3 the renormal-
ized v* = liml→` vl is of order unity.

To arrive at the RG equations, we adopt the following

approximation scheme: We expandĠl
snd to some fixed power

in the marginal parametersal, bl, vl, and the relevant param-
eterul while keeping higher orders in the relevant parameter
r l. The truncation is based on the hope that, althoughal, bl, vl
and ul are not parametrically small, these parameters still
remain numerically small. The fixed point values for these
parameters which we obtain within this scheme in Sec.
VI D 1 are indeed much smaller than unity, which gives
somea posteriorijustification to our approach. To implement
the scheme, it is useful to transform Eq.(3.9) into an integral
equation,

G̃l
sndshqijd = efs2−Ddn+Dgl−ne0

l dthtG̃l=0
snd she−lqijd

+E
0

l

dtefs2−Ddn+Dgt−nel−t
l dthtĠl−t

sndshe−tqijd.

s6.9d

We use these retarded expressions in the calculations of the

inhomogeneitiesĠl
smd. Since the right-hand side in Eq.(6.9)

depends on vertices which also have the form(6.9), one
quickly arrives at rather complex expressions which we need
to truncate. We will only include terms up to second order in
al, bl, vl, andul. However, even with this approximation the
calculation becomes rather involved. To keep the calcula-
tions tractable, we truncate further: To evaluate the flow of
parameters associated with then-point vertex, we ignore ir-
relevant contributions arising from vertices of orderm with
m.n+2. Thus, when we calculate the flow of parameters
associated with then-point vertex and encounter a vertex

G̃l
smd in the calculation withm.n+2, we only keep its rel-

evant and marginal part instead of employing Eq.(6.9). Ef-
fectively, we neglect in this way infinitely many irrelevant
parameters related to higher order vertices. The expectation
is, that these irrelevant contributions are numerically small
compared to the contributions originating from irrelevant
terms of lower order vertices. In concrete terms, our trunca-
tion is as follows: When we calculate the flow ofvl, we will

consider irrelevant contributions fromG̃l
s8d but ignore contri-

butions fromG̃l
s10d (in this case, there are in fact no second

order terms arising from inhomogeneitiesĠl
snd with nù10 so

that we really have all second order terms included in our
flow of vl). Similarly, to calculate the flow of the four-point
vertex parametersal, bl, andul, we ignore contributions aris-

ing from G̃l
s8d. This leads to the absence ofvl

2 terms in the RG

equations foral, bl, and ul, the G̃l
s8d terms only enter indi-

rectly via the flow ofvl. To calculate the flow ofr l we ignore

irrelevant contributions fromG̃l
snd for nù6 which again only
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enter via their contributions to the flow ofal, bl, andul.

A. Truncating the flow equation
for the six-point vertex

We begin with the renormalization ofvl, the momentum

independent part ofG̃l
s6d, using the flow equations for the

six-point vertex from Appendix A, Eq.(A2). Note that,
working consistently to second order, the last two terms in
Eq. (A2), which are at least of third order in the marginal and
relevant parameters, should not be included. However, there
is a contribution proportional tovl

2 arising from the eight-
point vertex which must be included. To see this, let us ex-

plicitly write Ġl
s6d up to second order in the marginal and

relevant parameters(and zeroth order inh),

Ġl
s6dsq18,q28,q38;q3,q2,q1d

=
− 3vl

1 + r l
h3Ss1,2d,3kGlsq1 + q2 − q̂dful + alsuq1 − q̂u

+ uq2 − q̂ud + bluq1 + q2uglq̂ + 3Ss18,28d,38Ss1,2d,3

3kGlsq3 − q38 + q̂dful + alsuq3 − q38ud + bluq3 + q̂uglq̂

+ sqi ↔ qi8dj +
1

1 + r l
E

0

l

dte−s4D−8dt

3kĠl−t
s8dse−tq18, . . . ,e−tq38,e

−tq̂;e−tq̂,e−tq3, . . . ,e−tq1dlq̂,

s6.10d

where we used

G̃l
s8dsq18, . . . ,q48;q4, . . . ,q1d

=E
0

l

dte−4el−t
l dtht+s8−3Ddt

3Ġl−t
s8dse−tq18, . . . ,e−tq48;e−tq4, . . . ,e−tq1d, s6.11d

and from Eq.(A3) we have

Ġl
s8dsq18, . . . ,q48;q4, . . . ,q1d

= − 2vl
2h16Ss1,2,3d,4Ss18,28,38d,48ẋlsq18 + q28 + q38 − q4d

+ 18Ss1,2d,s3,4dSs18,28d,s38,48dẋlsq1 + q2 − q18 − q28dj

+ sterms at least cubic invl, al, bl, anduld. s6.12d

The definition of the symmetrization operatorsSs1,2d,3 used in
Eq. (6.10) and similar ones used in Eq.(6.12) can be found
in Eqs. (A1b), (A4a), and (A4b) of Appendix A. Keeping
only the zeroth order in a momentum expansion, we have

Ġl
s6dshqi ; 0jd

= − 12b0vlul − 15b0vlal − 9b0vlbl −
2

1 + r l

3E
0

l

dte−s4D−8dtvl−t
2 f16ẋl−ts0d + 18ẋl−tse−tdg, s6.13d

where

b0 = ẋls0d =
1

s1 + r ld2 . s6.14d

B. Improved truncation of the flow equation
for the four-point vertex

Including the terms which become marginal inD=3 we
need to calculate

Ġl
s4dsq18,q28;q2,q1d <

1

1 + r l
kG̃l

s6dsq18,q28,q̂;q̂,q2,q1dlq̂

+ Ġl
s4,BCSdsq18,q28;q2,q1d + Ġl

s4,ZSd

3sq18,q28;q2,q1d + Ġl
s4,ZS8dsq18,q28;q2,q1d,

s6.15d

where, instead of Eqs.(4.23) and (4.24), we now have to
calculate the zeroth and first order terms in a momentum
expansion of Eq.(6.15) in powers of both the relevant and
marginal parameters. We discuss the terms in Eq.(6.15) be-
low, beginning with the contribution from the six-point ver-
tex.

1. Contributions fromG̃l
„6…

To calculatekG̃l
s6dsq18 ,q28 ,q̂ ; q̂ ,q2,q1dlq̂, we write, assum-

ing G̃l=0
s6d =0,

G̃l
s6dsq18,q28,q̂;q̂,q2,q1d

=E
0

l

dte−3el−t
l dtht+s6−2Ddt

3Ġl−t
s6dse−tq18,e

−tq28,e
−tq̂;e−tq̂,e−tq2,e

−tq1d. s6.16d

Using Eqs.(6.16), (6.10), and (6.12), we can calculate the

contribution of G̃l
s6d to Ġl

s4d. Including from the eight-point
vertex only theqi =0 contribution and expanding the other
contributions up to linear order in the external momenta we
have

kĠl
s6dslq18,lq28,lq̂,lq2,lq1dlq̂

< −
vl

2
h12ulfb0 + ẋlsldg + alf12b0 + 8ẋlslds1 + ld

+ 8Ḟlsld + 2ẇlsldg + blf8b0 + 4ẋlslds1 + ld + 4Ḟlsld

+ 2ẇlsldg + luq1 + q2uf2b1ul + s4b1 + 2b2dal + 2b0blg

+ lsuq1 − q18u + uq1 − q28udf4b1ul + s4b0 + 4b1 + 2b2dal

+ s4b1 + 2b2dblgj −
2

1 + r l
E

0

l

dte−s4D−8dtvl−t
2 f16ẋl−ts0d

+ 18ẋl−tse−tdg, s6.17d

where

b1 = ẋl8s0d =
S0

s1 + r ld2 −
4S1

s1 + r ld3 , s6.18d
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b2 =
2S1

s1 + r ld2 , s6.19d

and S0 and S1 are defined in Eqs.(4.15) and (4.16). We
further introduced the functions

Ḟlsld =
2

1 + r l
kG̃lsq̂ + q̂8lduq̂ + q̂8lulq̂ s6.20d

and

ẇlsld =
1

s1 + r ld2kuq̂ + q̂8lulq̂. s6.21d

Since to zeroth order inl Eq. (6.17) determines the flow
of vl via Eq. (6.8), the integral on the right-hand side of Eq.
(6.16) gives simplyvl to order l0. We therefore split the
angular average of the six-point vertex into two contribu-
tions,

kG̃l
s6dsq18,q28,q̂;q̂,q2,q1dlq̂ < vl + kG̃l

s6idsq18,q28,q̂;q̂,q2,q1dlq̂,

s6.22d

whereG̃l
s6id contains the irrelevant parts of the six-point ver-

tex. To calculate the angular average of the irrelevant part,
we can neglect thehl dependence of the integral and also
approximate the retarded dependence of the parameters on
l − t by anl dependence, since the retardation is exponentially
damped. For largel we therefore can write the contributions
of the irrelevant part to Eq.(6.16) as follows:

kG̃l
s6idsq18,q28,q̂;q̂,q2,q1dlq̂

< − vlE
0

1 dl

l
h6ulfẋlsld − b0g + al„4ẋlslds1 + ld

+ 4Ḟlsld − 8b0 + fẇlsld − ẇls0dg… + bl„2ẋlslds1 + ld

+ 2Ḟlsld − 4b0 + fẇlsld − ẇls0dg… + luq1 + q2ufb1ul

+ s2b1 + b2dal + b0blg + lsuq1 − q18u + uq1 − q28ud

3f2b1ul + s2b0 + 2b1 + b2dal + s2b1 + b2dblgj. s6.23d

We now turn to the calculation of the BCS, ZS and ZS8
diagrams in Eq.(6.15). Keeping only the relevant and mar-
ginal terms in the expansion of the four-point vertex, see Eq.
(6.3), yields all contributions to second order in the marginal
and relevant parameters arising from these diagrams and the
irrelevant part of the four-point vertex does not contribute at
this order.

2. Contribution of the BCS, ZS, andZS8 diagrams

The contribution from the BCS channel to Eq.(6.15) is

Ġl
s4,BCSdsq18,q28;q2,q1d

< −
1

2
ful + bluq1 + q2ug2ẋlsuq1 + q2ud − alful + bluq1 + q2ug

3
1

1 + r l
KQs1 , uq1 + q2 − q̂u , eld

uq1 + q2 − q̂u2 + r l

3fuq̂ − q18u + uq̂ − q28u + uq̂ − q2u + uq̂ − q1ugL
q̂

−
al

2

1 + r l
KQs1 , uq1 + q2 − q̂u , eld

uq1 + q2 − q̂u2 + r l
D

3suq̂8 − q18u + uq̂8 − q28udsuq̂ − q2u + uq̂ − q1udq̂, s6.24d

and the contribution from the zero-sound channel is

Ġl
s4,ZSdsq18,q28;q2,q1d < − ful + aluq1 − q18ug

2ẋlsuq1 − q18ud − sal + bldful + aluq1 − q18ug
1

1 + r l
KQs1 , uq1 − q18 + q̂u , eld

uq1 − q18 + q̂u2 + r l

fuq̂ − q18u

+ uq̂ + q28u + uq̂ − q2u + uq̂ + q1ugL
q̂

− sal
2 + bl

2d
1

1 + r l
KQs1 , uq1 − q18 + q̂u , eld

uq1 − q18 + q̂u2 + r l

fuq̂ − q18uuq̂ − q2u + uq̂ + q1u

3uq̂ + q28ugL
q̂

− 2albl
1

1 + r l
KQs1 , uq1 − q18 + q̂u , eld

uq1 − q18 + q̂u2 + r l

fuq̂ − q18uuq̂ + q28u + uq̂ + q1uuq̂ − q2ugL
q̂

. s6.25d

The contribution from the other zero-sound channel(ZS8 in Fig. 1) is obtained by replacingq18↔q28 on the right-hand side
of Eq. (6.25). Expanding to linear order in the momenta, we arrive at

Ġlin,l
s4,BCSdsq18,q28;q2,q1d < − b0Ful

2

2
+ 2al

2 + 2ulalG − uq1 + q2uFb1

2
ul

2 + 2sb1 + b2dal
2 + s2b1 + b2dulal + b0ulbl + 2b0alblG . s6.26d
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Similarly, we obtain for the contribution from the zero-sound
channel,

Ġlin,l
s4,ZSdsq18,q28;q2,q1d

< − b0ful + al + blg2 − uq1 − q18ufb1ul
2 + s2b0 + b1 + b2dal

2

+ sb1 + b2dbl
2 + s2b0 + 2b1 + b2dulal + s2b1 + b2dulbl

+ 2sb0 + b1 + b2dalblg. s6.27d

The contribution from ZS8 is again obtained by replacing
q18↔q28.

C. Truncated flow equation for the two-point vertex

To calculate the flow ofr l, we need to calculateĠl
s2ds0d;

see Eq.(3.18). We write it as

s1 + r ldĠl
s2ds0d

= kG̃l
s4ds0,q̂,q̂,0dlq̂

< el−2e0
l dthtu0 +E

0

l

dtet−2el−t
l dthtkĠl−t

s4ds0,e−tq̂,e−tq̂,0dlq̂

s6.28d

with the second order expression ofĠl
s4d given by Eq.(6.15).

Thus, we have

Ġl
s4ds0,lq̂,lq̂,0d

< −
1

2
ẋlsld†sul + lbl + ald2 + sul + bl + alld2

+ sul + alf1 + lgd2
‡ − ḟlsld†alsul + bll + ald

+ alsul + bl + alld + blsul + alf1 + lgd‡

−
1

2
ċlsldf2al

2 + bl
2g − sul + bl + aldfb0ul

+ sbl + aldẇlsldg +
1

1 + r l
kG̃l

s6ds0,lq̂,q̂8;q̂8,lq̂,0dlq̂8,

s6.29d

with

ċlsld =
2

1 + r l
kG̃lsq̂ + q̂8lduq̂ + q̂8lu2lq̂. s6.30d

Keeping only terms up to linear order inl, which define the
flow of ul, al andbl, one finds

Ġl
s2ds0d <

ul + al + bl

1 + r l
, s6.31d

which is just the contribution of the relevant and marginal

parts ofkG̃l
s4ds0,q̂ ,q̂ ,0dlq̂. Higher orders inl correspond to

the contribution of the irrelevant part of the four-point ver-
tex. With

kG̃l
s4ds0,q̂,q̂,0dlq̂ = ul + al + bl + kG̃l

s4ids0,q̂,q̂,0dlq̂

s6.32d

we can write the contributions of the irrelevant parts(we
here ignore the contributions of the irrelevant part of the
six-point vertex beyond those which are implicitly contained
in the renormalization oful) as

kG̃l
s4ids0,q̂,q̂,0dlq̂

<E dl

l2 kĠl
s4,BCSds0,lq̂;lq̂,0d

+ Ġl
s4,ZSds0,lq̂;lq̂,0d + Ġl

s4,ZS8ds0,lq̂;lq̂,0d − Ġlin,l
s4,BCSd

3s0,lq̂;lq̂,0d − Ġlin,l
s4,ZSds0,lq̂;lq̂,0d − Ġlin,l

s4,ZS8d

3s0,lq̂;lq̂,0dlq̂, s6.33d

which is identical to the second and higher order inl con-
tributions contained in Eq.(6.29).

D. Flow equations of marginal and relevant parameters

It is now straightforward to write down the flow equations
for the marginal and relevant coupling parameters. The flow
of vl is determined by Eq.(6.8). With Eq. (6.13) one finds

]lvl = s6 − 2D − 3hldvl − 3b0vls4ul + 5al + 3bld

−
4vl

2

1 + r l
E

0

1

dll4D−9f8ẋls0d + 9ẋlsldg, s6.34d

where we approximated the retarded dependence onvl−t and
ẋl−t in Eq. (6.13) by vl and ẋl (since the retardation is expo-
nentially damped) and further took for the lower bound of
the integral the limitl →`. Eq. (6.34) obviously has av*
=0 fixed point solution, which is stable if 3b0s4u* +5a*

+3b*d.6−2D−3h.
Collecting all contributions to Eq.(6.15) from Eqs.(6.23),

(6.26), and (6.27), and decomposingĠl
s4dsq18 ,q28 ;q2,q1d into

a momentum independent contribution and linear contribu-
tions according to Eq.(6.6), we find, using Eqs.(3.19), (6.4),
and (6.5), the flow equations for the parameters characteriz-
ing the four-point vertex,

]lul = s4 − D − 2hldul −
5

2
b0ul

2 − b0uls6al + 4bld − 2b0s2al
2

+ bl
2 + 2albld +

vl

1 + r l
−

vl

1 + r l
E

0

1 dl

l
h6ulfẋlsld − b0g

+ al„4ẋlslds1 + ld + 4Ḟlsld − 8b0 + fẇlsld − ẇls0dg…

+ bl„2ẋlslds1 + ld + 2Ḟlsld − 4b0 + fẇlsld − ẇls0dg…j,

s6.35d

HASSELMANN, LEDOWSKI, AND KOPIETZ PHYSICAL REVIEW A70, 063621(2004)

063621-16



]lal = s3 − D − 2hldal − b1ul
2 − s2b0 + 2b1 + b2dulal

− s2b1 + b2dulbl − s2b0 + b1 + b2dal
2 − sb1 + b2dbl

2

− 2sb0 + b1 + b2dalbl −
vl

1 + r l
h2b1ul + s2b0 + 2b1

+ b2dal + s2b1 + b2dblj, s6.36d

]lbl = s3 − D − 2hdbl −
b1

2
ul

2 − s2b1 + b2dulal − b0ulbl − 2sb1

+ b2dal
2 − 2b0albl −

vl

1 + r l
hb1ul + s2b1 + b2dal + b0blj.

s6.37d

The flow equation forr l is obtained from Eq.(3.18) and Eqs.
(6.28)–(6.33),

]lr l = s2 − hldr l +
ul + al + bl

1 + r l
+

1

1 + r l
kG̃l

s4ids0,q̂;q̂,0dlq̂.

s6.38d

Finally, we need to determine the flowing anomalous dimen-
sion hl before we can analyse the fixed point of the RG
equations. For now, we keep only the marginal and relevant
part of the four-point vertex in Eq.(3.21) and arrive at

hl < b3sal + bld, s6.39d

where

b3 = U 1

1 + r l

]

]q2kuq̂8 + qulq̂8U
q2=0

=
D − 1

2Ds1 + r ld
. s6.40d

1. Fixed point values in D=3

In D=3, we have

Ḟlsld =

l + Î− r l arctanhF lÎ− r l

1 + r l + l
G

ls1 + r ld
, s6.41d

ċlsld =

ls2 + ld + r l lnF 1 + r l

s1 + ld2 + r l
G

2ls1 + r ld
, s6.42d

ẇlsld =
3 + l2

3s1 + r ld2 , s6.43d

and

b0 =
1

s1 + r ld2 , s6.44ad

b1 =
r l − 1

2s1 + r ld3 , s6.44bd

b2 =
1

2s1 + r ld2 , s6.44cd

b3 =
1

3s1 + r ld
. s6.44dd

Setting the left-hand sides of the five flow equations
(6.34)–(6.38) for the two relevant coupling parametersr l and
ul and the three marginal coupling parametersal, bl and vl
equal to zero and employing Eq.(6.39) for the anomalous
dimension, we obtain numerically the fixed point values

r* < − 0.0996,u* < 0.122,a* < 0.0371,

b* < 0.0339,v* = 0, h < 0.0263. s6.45d

The value ofh is now much closer to the correct valueh
<0.038 and the inclusion of the marginal terms certainly
improves upon the analysis including onlyul. However, the
fact thatv* =0 is an artifact of the approximation which ig-
nores all terms of third or higher order in the relevant and
marginal parameters. A simple improvement can be obtained
by including from the third order terms in the renormaliza-
tion of vl the marginal contributions. In that case, only the
flow of vl is modified and Eq.(6.34) becomes

]lvl = s6 − 2D − 3hldvl − 3b0vls4ul + 5al + 3bld

−
4vl

2

1 + r l
E

0

1

dll4D−9f8ẋls0d + 9ẋlsldg

+
sul + al + bld

s1 + r ld3 f12sul + al + bld2 + 9sul + 2ald2g.

s6.46d

The resulting fixed point values with the 3rd order terms are

r* < − 0.134,u* < 0.127,a* < 0.0693,

b* < 0.0639,v* < 0.0917,h < 0.0513. s6.47d

The value forh is now slightly too large and a quick con-
vergence is not obtained. However, one may expect from this
result that a consistent treatment to third order, a very com-
plex calculation, would indeed improve upon the second or-
der result. For completeness, let us also mention the results
of another possible approximation, where one keeps only the

marginal and relevant terms of the vertices entering theĠl
snd

expressions. Within such an approximation, the flow equa-
tions for al andbl remain identical to Eqs.(6.36) and(6.37)
whereas the flow equations forul, vl andr l would simplify to

]lvl = s6 − 2D − 3hldvl − 3b0vls4ul + 5al + 3bld

+
sul + al + bld

s1 + r ld3 f12sul + al + bld2 + 9sul + 2ald2g,

s6.48d

]lul = s4 − D − 2hldul −
5

2
b0ul

2 − b0uls6al + 4bld − 2b0s2al
2

+ bl
2 + 2albld +

vl

1 + r l
, s6.49d
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]lr l = s2 − hldr l +
ul + al + bl

1 + r l
. s6.50d

The corresponding fixed point values are

r* < − 0.227,u* < 0.178,a* < 0.0838,

b* < 0.0767,v* < 0.255,h < 0.0692. s6.51d

The value forh is worse in this approximation compared to
those which also include irrelevant parts of the vertices.
Problems with a similar implementation of the sharp cutoff
formulation were previously reported in Ref.[29]. Ignoring
the third order terms in the flow ofvl, Eq. (6.48), leads to
fixed point values almost identical to those listed in Eqs.
(6.45).

2. Including irrelevant terms in the equation forh

Equation(6.39) for the flowing anomalous dimension in-
cludes only the marginal parts of the four-point vertex. To
include also irrelevant contributions we need to evaluate the

irrelevant parts ofĠl
s4d, i.e., we must calculate both the irrel-

evant contribution from the six-point vertex and the BCS,
ZS, and ZS8 contributions to

h =
1

1 + r*
E

0

1

dll−2+2hU ]

]q2kĠ`
s4dslq,lq̂8,lq̂8,lqdlq̂8U

q2=0

s6.52d

using Eqs.(6.10) and(6.16) and Eqs.(6.23)–(6.25). This is a
somewhat lengthy calculation, and we refer to Appendix B
for a table of the required integrals. The resulting values ofh
are generally very small, in the approximation with all terms
up to second order in the relevant and marginal parameters
we obtainh<0.0127. Including the third order terms in the
flow of vl we get the even smaller valueh<0.00797. It is
not completely clear why the results forh become worse on
including irrelevant terms in the calculation forhl. A pos-
sible problem is that in the calculation ofh, Eq. (6.52), ir-
relevant terms contribute which however do not also enter
the renormalization oful, al and bl. Terms similar to the
irrelevant ones contained in Eq.(6.52) would only enter the
renormalization of other parameters at third order in the mar-
ginal and relevant parameters. This might suggest that one
should use the same level of approximation for the vertex

G̃l
s4d in calculatingh andĠl

s4d for the flow equations forul, al
and bl. In that case, the first order expression forh, Eq.
(6.39), should be used together with the second order expres-
sions for the flows oful, al andbl. As shown in the previous
subsection, this indeed leads to better approximations ofh.

VII. CALCULATION OF s„x… INCLUDING ONLY
MARGINAL PARAMETERS

We demonstrate here the importance of the irrelevant
parts of the four-point vertex for a correct description of the
large wave vector regime and show that a treatment that
ignores irrelevant terms leads to an incorrect description of
ssxd in the regimex@1 and the wrong resultDTc~u0 ln u0.

Ignoring in Eq.(6.3) the irrelevant contributions, one obtains
from Eq. (3.12) the following expression for the subtracted

function Ġl
s2mdsqd=Ġl

s2dsqd−Ġl
s2ds0d (the superscriptm indi-

cates that only marginal terms remain)

Ġl
s2mdsqd <

al + bl

1 + r l
skuq̂8 + qulq̂8 − 1d

=
al + bl

1 + r l
3 5

q2

3
for q , 1,

3q2 − 3q + 1

3q
for q . 1.6

s7.1d

Via Eq. (4.49) we obtain the scaling functionssxd (we here
restrict the discussion toD=3),

ssxd < x2E
0

lc−ln x

dle−2sl−lcd+e0
l dtht

al + bl

3s1 + r ld

+E
lc−ln x

`

dlee0
l dtht

al + bl

3s1 + r ld
Fe−sl−lcdx − e−2sl−lcd

+
1

3x
e−3sl−lcdG . s7.2d

This equation is valid for lnx, lc, for ln xù lc the integral
boundlc−ln x is replaced by zero, i.e., the first integral van-
ishes. Since inD=3 we havesal +bld / s3f1+r lgd<hl [see Eq.
(6.39)], ssxd is determined by the flow ofhl alone in this
approximation. Let us examine first the casex@1. The first
integral then extends only over smalll ! lc. In that case, all
marginal parameters are small and we may ignore the con-
tribution of the integral ofht in the exponent and approxi-
mate the flow of the marginal parameters asal, bl
~e2sl−lcdu*

2 since ]lal <2]lbl <ul
2~e2sl−lcdu*

2 for l ! lc. The
contribution of the first integral in Eq.(7.2) therefore van-
ishes like x2slc−ln xdu*

2 as x approaches the UV cutoff,x
→elc and makes no contribution forx.elc. To investigate
the contribution of the second integral, we split it into two
parts,

E
lc−ln x

`

=E
lc−ln x

lc

+E
lc

`

, s7.3d

where, to estimate the contribution of the regimel , lc, we
use the same approximation as for the first integral in Eq.
(7.2). This yields a contribution~fx−1−lnx−s1−xd /3xg. To
estimate the contribution of the integral forl . lc we may
replace the parametersal, bl, r l and hl by their fixed point
values and obtain a contribution~hx/ s1−hd−h / s2−hd
+h / f3xs3−hdg. We have employed Eq.(6.39) to arrive at
this result. Hence, the dominant behavior ofssxd for largex
is linear inx. This largex behavior prohibits the removal of
the UV cutoff in the integral determining the temperature
shift, Eq. (5.1), and one thus would incorrectly predict from
Eq. (5.1) a term for theTc shift behaving likeu0 ln u0 in D
=3. Thus, inclusion of the irrelevant terms is essential for
determining correctly the shift of the critical temperature.
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The absence of irrelevant terms in the Wilson RG analysis
carried out by Bijlsma and Stoof[9] seems to be responsible
for the u0 ln u0 behavior they find for theTc shift.

On the other hand, an approach which explicitly includes
marginal terms but ignores irrelevant ones is well suited to
describe the scaling regimex→0. In this case, the dominant
contributions to Eq.(7.2) come froml . lc where we replace
the coupling constants by their fixed point values and obtain
ssxd<A3x

2−h with

A3 = 1 +
3h

1 − h
−

3h

2 − h
+

h

3 − h
< 1 +

11

6
h. s7.4d

This expression is in relatively good agreement with our re-
sult from Sec. IV D 2, Eq.(4.57), where we obtainedA3
<1.17 for h<0.104, whereas Eq.(7.4) would predictA3
<1.22 for the sameh. Furthermore, for the generally ac-
cepted valueh<0.038 Eq.(7.4) predictsA3<1.07, which
compares relatively well with a recent Monte Carlo result[4]
A3<1.04.

VIII. CONCLUSION

In this work we have shown how the functional RG can
be employed to calculate the complete scaling function of the
zero frequency self-energy of weakly interacting bosons in
3øD,4. The scaling function describes the cross-over from
the small wave vector regime with anomalous scaling to the
large wave vector regime where logarithmic divergences ap-
pear inD=3. A simple truncation of the flow equations at the
four-point vertex which ignores the six-point vertex and does
not treat the marginal parts of the four-point vertex consis-
tently leads nonetheless to a very accurate description of
both the crossover regime and the large wave vector regime
while giving satisfying results for the anomalous scaling re-
gime even inD=3. We have used this scaling function to
calculate the interaction induced shift of the critical tempera-
ture and obtainedDTc/Tc=1.23an1/3, a result which com-
pares very well with those obtained within the variational
perturbation theory[17,18] and Monte Carlo simulations
[15,16]. The technique and truncation scheme employed here
might also prove useful to obtain energy and/or momentum-
dependent scaling functions in other critical systems. A simi-
lar truncation has already been applied to calculate the self-
energy in the vicinity of the Luttinger liquid fixed point of
fermions in one dimension[30]; for a different approach to
this problem, which respects all Ward identities and therefore
reproduces the exact self-energy, see[31].

We have further investigated the fixed point structure us-
ing several approximation schemes which include the mar-
ginal terms associated with the four-point and six-point ver-
tices inD=3. These schemes generally lead to an improved
anomalous dimension, however, we did not get a quick con-
vergence ofh to the accepted value. Nonetheless, the best
value forh which we obtainh<0.0513 is rather close to the
one obtained from the first order average action approxima-
tion, h<0.049[19], and it is feasible that an improved treat-
ment, e.g., a consistent treatment to third order in the mar-
ginal and relevant parameters, would indeed produce quite

accurate results. Unfortunately, such a calculation is rather
lengthy and seems not to be an efficient way of calculating
accurate values of critical exponents.

Finally, we have analyzed the two-point scaling function
within an approach which includes marginal and ignores ir-
relevant terms of the four-point function. It was shown that if
one ignores the irrelevant terms contained in the higher-order
momentum dependence of the four-point vertex, one obtains
an incorrect UV behavior of the scaling function and hence
the wrong functional dependenceDTc/Tc~an1/3 lnsan1/3d of
the critical temperature shift inD=3. However, the approach
worked well in the critical regime where we used it to cal-
culate the prefactor of the anomalous scaling term, which
was shown to be in good agreement with numerical results
[4]. While we have not attempted to calculate the scaling
function including both marginal and irrelevant terms, it
seems certainly feasible to do so within an approximation
which ignores the six-point vertex(sincev* =0 in a calcula-
tion to second order inul, al, bl and vl, this would be con-
sistent). The fixed point value ofh and hence the description
of the small wave vector regime improves within such an
approach. However, we do not expect that the inclusion of
marginal terms would have much effect on the crossover
regimex<1, since this regime seems to be well described
already in the simpler truncation used in Sec. IV, as is evi-
dent from the rather accurate value for theTc shift.

APPENDIX A: FLOW EQUATIONS FOR THE SIX- AND
EIGHT-POINT VERTEX

Below, we discuss the flow equations of the six- and
eight-point vertex for the unrescaled vertex functions. The
inhomogeneous part of the flow equations for the classical
rescaled flow equations follow via the replacement rule

ĠLsKd→−Ġlsqd, GLsKd→−G̃lsqd, GL
s2nd→ G̃l

s2nd, eK→eq,
and multiplying the resulting expression by an overall minus
sign.

1. Six-point vertex

For the calculation of the critical exponents inD=3 we
need the six-point vertex; see Sec. VI. We first define the
symmetrization operatorsS1,2,3 andS1,s2,3d as follows:

S1,2,3fs1,2,3d =
1

6
ffs1,2,3d + fs2,3,1d + fs3,1,2d + fs3,2,1d

+ fs2,1,3d + fs1,3,2dg, sA1ad

S1,s2,3dfs1,2,3d = Ss2,3d,1fs1,2,3d =
1

3
ffs1,2,3d + fs2,1,3d

+ fs3,2,1dg. sA1bd

Given a functionfs1,2,3d that is already symmetric with
respect to the pair(2,3), the functionS1,s2,3dfs1,2,3d is a
totally symmetric function. The flow equation of the six-
point vertex is given by[14] (the equation is shown graphi-
cally in Fig. 6)
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]LGL
s6dsK18,K28,K38;K3,K2,K1d =E

K

ĠLsKdGL
s8dsK18,K28,K38,K;K,K3,K2,K1d + 3E

K

hS3,s2,1dfĠLsKdGLsK8d

3GL
s6dsK18,K28,K38;K3,K8,KdGL

s4dsK,K8;K2,K1dgK8=K1+K2−K + Ss18,28d,38fĠLsKdGLsK8d

3GL
s4dsK18,K28;K8,KdGL

s6dsK,K8,K38;K3,K2,K1dgK8=K18+K28−Kj + 9E
K

Ss18,28d,38S3,s2,1d†fĠLsKdGLsK8d

+ GLsKdĠLsK8dgGL
s4dsK38,K8;K,K3dGL

s6dsK18,K28,K;K8,K2,K1d‡K8=K3−K38+K + 9E
K

Ss18,28d,38S3,s2,1d

3†fĠLsKdGLsK8dGLsK9d + GLsKdĠLsK8dGLsK9d + GLsKdGLsK8dĠLsK9dgGL
s4dsK18,K28;K,K8d

3GL
s4dsK38,K8;K9,K3dGL

s4dsK9,K;K2,K1d‡K8=K18+K28−K
K9=K1+K2−K

+ 36E
K

S18,28,38S1,2,3fĠLsKdGLsK8dGLsK9d

3GL
s4dsK18,K8;K,K1dGL

s4dsK28,K9;K8,K2dGL
s4dsK38,K;K9,K3dg

K8=K1−K18+K

K9=K38−K3+K
. sA2d

2. Eight-point vertex

In Eq. (6.10) we also need the following terms from the inhomogeneity of the eight-point vertex(see Fig. 7),

]LGL
s8dsK18,K28,K38,K48;K4,K3,K2,K1d = 16E

K

Ss1,2,3d,4Ss18,28,38d,48fĠLsKdGLsK8dGL
s6dsK18,K28,K38;K4,K8,Kd

3GL
s6dsK,K8,K48;K3,K2,K1dgK8=K18+K28+K38−K4−K + 9E

K

Ss18,28d,s38,48dSs1,2d,s3,4d†fĠLsKdGLsK8d

+ GLsKdĠLsK8dgGL
s6dsK38,K48,K8;K,K4,K3dGL

s6dsK18,K28,K;K8,K2,K1d‡K8=K18+K28−K1−K2+K

+ ¯ , sA3d

FIG. 6. Diagrammatic representation of the
flow equation for the six-point vertex; see Eq.
(A2).

FIG. 7. Diagrammatic representation of the terms of the flow equation for the eight-point vertex which are of ordervl
2; see Eq.(A3). The

omitted terms are at least cubic in the parametersal, bl, vl, andul.

HASSELMANN, LEDOWSKI, AND KOPIETZ PHYSICAL REVIEW A70, 063621(2004)

063621-20



with

Ss1,2,3d,4fs1,2,3,4d =
1

4
ffs1,2,3,4d + fs4,2,3,1d + fs1,4,3,2d

+ fs1,2,4,3dg, sA4ad

Ss1,2d,s3,4dfs1,2,3,4d =
1

3
ffs1,2,3,4d + fs1,3,2,4d

+ fs1,4,2,3dg. sA4bd

APPENDIX B: SOME INTEGRALS ENTERING THE
CONTRIBUTION FROM IRRELEVANT TERMS TO h

We here calculate the irrelevant contributions to the flow
of h, using Eq.(6.52) of Sec. VI D 2. Let us define

ḟ lsq1,q2d =
1

1 + r l
KQs1 , uq1 + q2 − q̂u , eld

uq1 + q2 − q̂u2 + r l

fuq̂ − q1u

+ uq̂ − q2ugL
q̂

, sB1d

ġlsq1,q2d =
1

1 + r l
KQs1 , uq1 + q2 − q̂u , eld

uq1 + q2 − q̂u2 + r l

fuq̂ − q1u2

+ uq̂ − q2u2gL
q̂

, sB2d

ḣlsq1,q2d =
2

1 + r l
KQs1 , uq1 + q2 − q̂u , eld

uq1 + q2 − q̂u2 + r l

uq̂ − q1uuq̂

− q2uL
q̂

. sB3d

To calculate the contributions of the six-point vertex to
Eq. (6.52), we need to evaluate(we restrict the results toD
=3)

U ]

]q2kĠl
6slq,lq̂8,l8q̂9;l8q̂9,lq̂8,lqdlq̂8,q̂9U

q2=0

= − vlh3ulfẋl9sl,ld + ẋl9sl,l8dg + 2sbl + 2aldf ḟ l9sl,ld

+ ḟ l9sl,l8d + ȧlsl,l8dg + sbl + aldẇl9sldj, sB4d

with

ḟ l9sl,l8d = U ]

]q2k ḟ lslq,l8q̂8dlq̂8U
q2=0

=
− l2s1 + l8d2 + l2s3 + 2l8dr l

12l8s1 + r ldfs1 + l8d2 + r lg2 , sB5d

ẇl9sld = Uẋls0d
]

]q2kuq̂8 + lqulq̂8U
q2=0

=
l2

3s1 + r ld2 , sB6d

ẋl9sl,l8d = U 2

1 + r l

]

]q2kG̃lslq + l8q̂9 + q̂8dlq̂8,q̂9U
q2=0

=
l2fr l − s1 + l8d2g

6s1 + r ldl8fs1 + l8d2 + r lg2 , sB7d

ȧlsl,l8d = U 1

1 + r l

]

]q2kG̃lslq + l8q̂9 + q̂8dulq

+ l8q̂9ulq̂8,q̂9U
q2=0

=
l2fs1 + l8d2s2 + l8d + s2 + 3l8dr lg

12s1 + r ldl8fs1 + l8d2 + r lg
. sB8d

To calculate the contributions of the BCS, ZS, and ZS8 chan-
nel to Eq.(6.52), further averages are required:

U ]

]q2kġlslq,lq̂8dlq̂8U
q2=0

=

− lFls1 + ld2s2 + 3ld + „− 4 + s− 2 +ldl…r l + 2„s1 + ld2 + r l…
2lnS 1 + r l

s1 + ld2 + r l
DG

12s1 + r ldfs1 + ld2 + r lg2 , sB9d

U ]

]q2k ḟ lslq,lq̂8dulq + lq̂8ulq̂8U
q2=0

=
l†8s1 + r ld + lfs3 + ld2

„3 + ls2 + ld… + 2„10 +ls6 + ld…r l + r l
2g‡

24s1 + r ldfs1 + ld2 + r lg2

+

2s1 − l2 + r ldfs1 + ld2 + r lg2arctanhS lÎ− r l

1 + l + r l
D + s1 + l2 + r ldfs1 + ld2 + r lg2Î− r l lnS 1 + r l

s1 + ld2 + r l
D

24s1 + r ldfs1 + ld2 + r lg2Î− r l

, sB10d
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U ]

]q2kḣlslq,lq̂8dlq̂8U
q2=0

= − l

fsl − 1ds1 + ld2sl + l2 + 2r ld + lr l
2gÎ− r l + s1 − l2 − r ldfs1 + ld2 + r lg2arctanhS lÎ− r l

1 + l + r l
D

6s1 + r ldfs1 + ld2 + r lg2Î− r l

,

sB11d

Uẋls0d
]

]q2kuq̂9 + lquuq̂9 + lq̂8ulq̂8,q̂9U
q2=0

=
l2s3 + l2d
9s1 + r ld2 , sB12d

U ]

]q2kẋlsulq̂8 + lqudulq̂8 + lqu2lq̂8U
q2=0

=

l2s1 + ld2s4 + 3ld + l2s4 + 5ldr l + lfs1 + ld2 + r lg2lnS s1 + ld2 + r l

1 + r l
D

6s1 + r ldfs1 + ld2 + r lg2 . sB13d

Using these expressions to calculateĠ`
s4d from Eqs.(6.10), (6.16), and(6.23)–(6.25) one can determineh via Eq. (6.52). One

can check that to linear order inl one has

U ]

]q2kĠl
s4dslq,lq̂8,lq̂8,lqdlq̂8U

q2=0
. ls]lal + ]lbld/3 + 2lsal + bldhl/3, sB14d

which, after performing thel integration, reproduces at the fixed point the result Eq.(6.39).
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