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Aspects of hyperspherical adiabaticity in an atomic-gas Bose-Einstein condensate
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Excitation of an atomic-gas Bose-Einstein condengBteC) in the zeroth-order ground-state channel is
studied with the hyperspherical adiabatic method of Behal. [Bohn et al, Phys. Rev. A58, 584 (1998)]
suitably generalized to accommodate the anisotropic trapping potential. The method exploits the system’s size
as an adiabatic parameter so that the explicit size dependence is immediately conducive to the virial theorem.
The oscillation frequencies associated with the monopbteathing and quadrupole modes thus emerge
naturally and converge to the well-known Thomas-Fermi limits. Analysis of the single-particle density and the
projected excitation wave function shows that the excitation in the single hyperspherical ground-state channel
merely represents a progressive increase in occupancy of the first excited single-particle state. The work paves
the way for applying the adiabatic picture to other BEC phenomena.
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I. INTRODUCTION [11] is along the line of our adiabatic approach for they re-

The successful generation of trapped atomic Boseformulate the problem by integrating out rapidly varying dy-
Einstein condensates in laboratorig§ has opened a new namical variables. On the other hand, in the hyperspherical
domain of atomic and optical physics, and challenging newnethod the adiabatic variables play a more distinct role in
phenomena continue to be vigorously explored and regularlr{ge spirit of the Born-Oppenheimer treatment of molecules.
reported. Theoretical studies of the phenomena are traditior=xCcitations with respect to the adiabatic degrees of freedom

ally based on the mean-field theory due to Bogoliufjpy &€ thus within the natural scope of the hyperspherical
which was later cast by Gross and PitaevgRj into the method while quantization with respect to the parameters of
celebrated GP equation. The basic premise of this approacHi€ Other treatment such as RET1] would require further
if stated in simplistic terms, is that the system behaves like Qu@lification. .
blob of matter representable by a field. This picture has Many of the recent works concern not only the collective
proved so remarkably effective that most observed phenonfodes[12] of BEC's but phenomena such as interference
ena are indeed explicable by the GP equation, and converseRtween different types of BECEL3], collapse of a BEC
no theory tangential to this view has thus far provided as full¥ith attractive interparticle interactigri4], vortices both to-
a description. One of our purposes here is to examine aRe!egical[15] and nontopological16], spin degrees of free-
alternative picture based on the hyperspherical adiabatifo™M [17], and solitonq18]. We wish, however, to focus on
method which was applied earlier by Bokh al. [4] to the the f_oIIo_wmg issues in the s_ubsequent sections, leaving other
study of ground-state properties of the Bose-Einstein con@PPlications to separate articles.
densate(BEC) and by Blume and Greeng,6] to unravel (i) We generalize the hyperspherical method of Réfto
manifolds of adiabatic channels. According to the latter, the®" anisotropic tragSec. ). _ . .
BEC channels stand out as the lowest-lying unbound atomic (1) We discuss the collective oscillations studied previ-
mode whose cohesion is provided singly by the trapping po®USly Py Stringari[19] and other workerg20], recasting
tential. In the wake of such development, it appears naturd1€m into the context of the hyperspherical representation
to ask in what aspects the GP and the hyperspherical pictuf&ec: ). . _
coincide or differ apart from the obvious differences in the (i) We analyze the nature of the hyperspherical excita-
ground state. This inquiry serves as a purpose of this papetions in the ground-state channel, comparing them to the in-
Incidentally, the hyperspherical adiabatic method wagdependent particle pictu&ec. IV). This requires us to gen-
originally proposed by MaceK7] in 1968 for analyzing the eralize the formula in Ref4] for the particle density.
dynamical features of doubly excited states of He, and since Furthermore, an analytical procedure for the evaluation of
then, it has been promoted by Fano and otfi@grén order to  matrix elements with respect to hyperspherical harmonics is
visualize the dynamics of three- and four-body syst¢@}s reconsidered in the Appendix for the purpose of a pedagogi-
The point of departure from the traditional adiabatic view-cal illustration. Using a generating function method for cal-
point of molecular physics is the choice of adiabatic vari-culating several lowest-order hyperspherical harmonics, we
ables. Macek recognized the special role played by the roodemonstrate an energy shift, if miniscule, of the ground state
mean-square size of the system, the hyperradius, as thieie to the coupled hyperspherical channels in Sec. Ill. A
system’s distinctive adiabatic variable. This approach hasubsection also in Sec. lll complements the hyperspherical
seen a great deal of success in various facets of few-bodsgstimate of the ground state’s total energy on the basis of the
systems in the past three decafi&q]. Thomas-Fermi approximation to the GP equation. Note we
We should state at the outset that parametrization of themploy the §-function-type effective potential throughout
solution by the Gaussian wave-packet ansatz such as in Refnlike the Blume-Greene papgs]. No recombination chan-
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nels thus appear explicitly in this work. Oscillator uritsu.) 1 N 1
[21] will be used unless stated otherwise. Virap= Emi% (wlpf + 02Z) = Eml\l(wil?f,+ wiR),
Il. GENERALIZED HYPERSPHERICAL FRAMEWORK wherep?=x?+y? and the hyperradii are defined by
FOR BEC'S N
. . . . 1 2
The full Hamiltonian ofN identical bosons of mass R‘Z’ZNE Pis
i=1

confined in a harmonic oscillator potential of a magneto-
optical trap reads

N
1
2 _
H=To+ T+ Viggp* Ving Ri= 22
i=

whereTg is the kinetic energy operator of the center of mass

T is that of the BEC in the center-of-mass frame given by (For the most general situatioR,, Ry, andR, may be simi-

larly defined) The kinetic energy operator reads

2 2 2
4 P P P
and the trapping potentiad,, is, owing to its harmonicity, 1 9 9 A§
FRERTE R, E)'
4 Z Z 4

N
1
Viap= =M (¢ + 0ly? + w22)
2 o ! ‘ whereA , and A, are the grand angular momentum operators
1 associated with the rotational degrees of freedom orRhe
+ =M(w2XE + ngé +wZ%). and R, hyperspheres, respectively. The specific expression
2 for A in d dimensions is

Here, w,, oy, andw, are the trap frequencies in they, and d 9 9 \2
z directions, respectively. The center-of-mass motion sepa- A2==-> (gi— - gj—) ,
rates out to perform a three-dimensioiaD) harmonic mo- i\ 9] 9&i

tion with frequenciesw, wy, w,}. From hereafter, we limit \ypare the set of variables} represent the Cartesian coor-
ourselves to where the center of mass coincides with thﬁinates in ad-dimensional spacé22,2§. We consider the
potential minimum—that is, where hyperspherical harmonics—namely, the eigenvectors of the
grand angular momentum operator—as a basis set for expan-
sion. Let us write, symbolically,

The interaction of pairs of atoms is represented by the 2+p _ o
short-ranges-function potential parametrized by tisavave ALY {Xp}(QP) = Nph, + 2N = Z)y{)\p}(ﬂp),
scattering lengtfa:

XG=YG=ZG=O-

AV () = N0+ N =25, 1(Q,),

4A7h? L
Vint = Taz or = 1j). where ), and Q, represent the angular degrees of freedom
=l on the two hyperspheres. These equations are largely indica-
tive of the dimensionality of the Hilbert spaces; the order of
harmonics for each degree of freedom is given by

2
_ AT \,(\)=0,1,2,... .
m

We use the parameter

g
Likewise the sets of quantum numbers are conveniently sym-
hereafter to represent the strength of interaction. We shalolized here by a curly-bracketed index pertaining to the
now outline the procedure for the hyperspherical adiabati¢otality of nodes in the wave function—namelf)} and
expansion and deduce an effective potential in the lowesttAjJ—while quantum numbers that distinguish degenerate
order hyperspherical harmonics approximation. We shall resubcomponents are to be thus understood implicitly.
fer to this approximation as thi€-harmonic approximation The solutionW(R,,R;;(2,,L,) of the Schrodinger equa-
(KHA) [4] and distinguish it from the hyperspherical adia- tion may be expressed in terms of the sum of direct products,
batic method designed for few-body systefirs-9]. In so
doing, let us modify the standard hyperspherical method to  W(R,,R;;Q,,Q),) = N¥VARENDZRINDIZ ) Fouhog
accommodate the nonisotropic trapping potential. Otherwise, Dphingt
the treatment is closgly in I|_ne with Re[féi]. B x(Rp,RZ)yf)\p}(Qp)y{z}\z}(Qz), (1)
The elliptically anisotropic case ab,=w,=w,# w, has
all the essential elements for further generalization. Here thevhere the coefficientsFy, ) 1(R,,R)} hold the key to the
trapping potential reads BEC's bulk dynamics WhﬁeRp andR, are treated as constant
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parameters when defining the adiabatic potential surfaces,
and the factonREfN'MR(ZN‘D’2 is introduced here to simplify
the kinetic energy operator. There are alternative ways to
define expansion basis functions which would allow for the

63780

-~
=
&
=

distortion of the system under the interaction potential. De- & 63740

tails of such alternatives are skipped to avoid sidetracking %

the main purpose; the reader is invited to the review by Fano & 3700 . .

[23]. The hyperradial equation is then expressed as f_,>) Generating function method

{ 72 { £ (2N-1)(2N-3)/4+\,(\,+2N-2) g 63660 /

2mN aRi R/3 a 63620
(92 (N _ l)(N _ 3)/4 + )\z()\z +N- 2) 2.72 2.74 ) 2.76 2.78 2.8
= 2 +Virap Hyperradius R (0.u.)
Z Z

XFo o (Ro R

+ > (Y hY A VindY fx’, Y E\;}»
LN r
XFoo(RoR) ZEFp 3 0(Ry Ry,

where double angular bracketsé...)) indicate integration
with respect to the hyperangl€3, and (),. Note that the

orthonormality of the hyperspherical harmonics is used. A V(R R),R) =

simple dimensional consideration on tlegunction readily

reveals that the interaction term is inversely proportional to

the volume—namely,

1
p z . P z N
<<3){)\p}y{)\z}|V.m|y{)\;}y{)\é}» * R,iRz .

Though techniques for evaluating various matrix elements
are besides the point in the current paper, we spare an appen-

dix for outlining a simple procedure. It yields, in the KHA
[i.e., the terms with\ ,=\,=0 only in Eq.(1)],

GY
(VYo Vid Vi Vi) = -
RR,

o

N1/2I"<

The interaction constant simplifies to
N

1

N-1
2

g N(N-1)
2

T'(N)
NI'(N - 1)

- (2,”_)3/2

ng ) 1
which behaves as

iz 9
(U 4773/2

N(N - 1)

G
2

when N> 1. The effective hyperspherical potential energy

Vei(R,,R) is the sum of the pseudocentrifugal potential,
Virap and Vj,—namely,

#? { (2N-1)(2N-3) .
(2

2
8mN RS
+EmN( °R% + 2R2)+

2 wp 14 Wz

(N-D(N-3)
R

Z

Veff( Rp! RZ) =

pz
GO

R°R

p' 2

FIG. 1. Ground-state channel potential curves Kzr1000 by
the KHA and by the generating function method. Eleven hyper-
spherical harmonics are used for the latter. 0.u. denotes oscillator
units.

straightforward for the general case Bf, R, andR,. We
have

ﬁ_Z(N—1><N-3><i+i+i)
2m 4N R R R
+}mN(w2R2+w2R§+w2R2)+$,
2 XY 27 RRR,

where
N

)

N-1

2

i
g N(N-1)
(2m*? 2 N3’2I‘<

Y= )3.

IIl. GROUND-STATE CHANNEL
AND COLLECTIVE MODES

In this section, we consider collective modes in an isotro-
pic trap. The generalization of the KHA to the anisotropic
trap as presented in the previous section serves to identify
modes that do not emerge in the strictly isotropic formula-
tion. However, before going into the discussion of the col-
lective modes, we digress on the total energy of the system,
first by coupling several channels and second by a Thomas-
Fermi-type approximation.

A. Several hyperpherical channels and total energy
of an isotropic BEC

Knowledge of the matrix elements of the grand angular
momentum operator leads to the desired hyperspherical har-
monics for anN-particle system by way of diagonalization.
An estimate of the ground-state energy provides an illustra-
tion of this sequence of calculations though we only achieve
a marginal improvement. Indeed, using 11 low-lying hyper-
spherical harmonics generated with the t@eenerating
function in the Appendix, naturally we observe the lowering

Incidentally, deduction of the effective potential is as of the adiabatic potential curves as depicted in Fig. 1. Figure
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49 >

3 .. [ 1ooar=n.

=] X

%‘ 48 Once the solutiorb obtains, the total energy follows from
EFP #2 g

E 47 E=NJ ¢* (F){_E,]Vz'*'vtrap('?)"'i(l\l_1)|¢(F)|2}

< ez

E,; - X p(r)dF.

) 3

2 4.65 7' Generating function method Applying the Thomas-Fermi approximation to the modified

9000 9200 9400 9600 9800 10000
Number of Condensate Atoms

GP equation, we obtain the solution
1 1
pre(l) = \/—<u = 5 Ma’r? - Mz) :
FIG. 2. Ground-state energy per particle mirﬁfﬂu(%hv) as a 9 2
function ofN. The solid line is for the case of a single hyperspheri-

- 3)3/2¢1 /B3 =1_ 03
cal harmonics and the dashed line for 11 hyperspherical harmonicg\!here'u“_(15N9/87T)(7) (1/R°) and\= 2 3u /TR in o.u.
The total energ\Eg reads

2 shows some ground-state energy per partiéléw—; inclu- g ) .
sion of other hyperspherical harmonics does not lead to a ETF:NI ¢* (M) Virag") + E(N— D)) [ p(N)dF
substantial lowering of the total energy. The shift remains

about one order of magnitude smaller than the difference 1 Nw2R2 +
between the Hartree-Fock-type approximation and KHA at, B 2m 2 9 7
say,N=5000. This result is not unexpected, of course, since

the direct product anzatz for the wave function as tacitlyThe numerical coefficient in the last term is given by
assumed for the GP equation is equivalent to a factorially

large number of terms in the direct sum representaion as i@(§)3/2:00957

pertains to the perturbative expansion based on the harmon- A7 7 \7 ' '

ics. Thus, by the present method we expect resonable im- = ) )
provement only for a system with a small number of atomsWhich is to be compared to the corresponding hyperspherical
A slight improvement on the estimate of the total energy iscoefficient
afforded by the Hartree-Fock estimate of the hyperspherical

N(N - 1) @(3)3’21 1
7

Zrﬁs'

interaction energy using the constrained Thomas-Fermi solu- 5_3 =0.117.
tion. Ve
B. Hartree-Fock-type estimate of the hyperspherical The Thomas-Fermi estimate is thus about 20% smaller than
interaction potential that of the KHA approximation.

Incidentally, direct use of the Gaussian approximation

In a field-theoretic picture, the hyperspherical radius may27] to ¢, namely

be viewed as a dynamical constraint on the system, and i

operatorial representation in terms of the field operaa 0 _( 3 )3’4 1 3r2
may be given by K0=127) 2N e )

R = f &' (F)F2p(F)dF. leads to

2 _ 32

We demand that its expectation value be fixed wramber E[R] = ﬁ_ﬂ + }mefRz + N(N-1) <§) 9_;
R2. The Hartree-Fock-type equation of motion, a slightly — ° 2myr2 2 2 2] 8r*R3
modified version of the GP equation, can be deduced with
the aid of the Lagrange multiplier—namely, which coincides, not surprisingly, with the hyperspherical

52 1 potential energy in th&\>1 limit.
= o Veb+ Mt + gl ¢ 4 AP = e
2m C. Collective modes in the KHA
where¢(Q is the megn—field ground-state funpti_on qmds Let us now recall that we consider the case where the
the chemical potential. The Lagrange multiplier is deter-center of mass is located at the center of the trap. The hyper-
mined by the condition radius R=\R2+RZ then represents the effective size of the

~ system so that its departure from the local minimum of the
f r?(F)|dF = R?, potential corresponds to the expansion and contraction of the
system—i.e., the breathing motigmonopolg. A mode or-
while w is fixed by the normalization thogonal to the breathing also exists under the constraint of
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R=const.—namely, the quadrupole mode as we shall see de-
spite the crudeness of the KHA.

The KHA leads to the two-dimensional partial differential
equation

w2 P P
o\t
2m\iR,  IR;
=EFj (R, R)- (3

Before going into a discussion of the limiting casesMNof
~1 andN>1, we diagonalize Eq3) above numerically.
This then results in energy levels and, hence, excitation en-
ergies. With®’Rb as a specific example of atomic species for
BEC's for which the scattering length= 100 bohrs, Fig. 3
shows several lowest excitation energies dfab BEC in

the isotropic limit wherew, and w,— w=2mX 200 Hz. This
result should be compared with Fig. 3 of Rgf].

A couple of features that we read off from Fig. 3 are first
in the N=1 regime the excitation energies are multiples of
2w as should be for a three-dimensional harmonic oscillator.
In theN> 1 regime the KHA yields intercombination lines of
the form(y5n; +2n,) w [Fig. 3(b)] where\50w and 2w per-
tain to the asymptotic limits of the breathing and quadrupole
oscillations, respectively24]. Let us now compare this re-
sult to the excitation energies evaluated numerically by solv- 22 -
ing the Bogoliubov equatiof25] in Fig. 3@). In the Bogo-
liubov approximation, the calculated states are of even parity
and restricted to those which coincide with the KHA states at 1.8
N=1. They are continued smoothly across anticrossings to
maintain their nodal structures. We observe that besides 16 e
those that converge rather quickly to the asymptotic limits 14 =l
some continue to fall, crossing those which have already ©
attalned their !m_nts. A point of the discussion to follow is to 1.20 D00 S0 =000
identify the origin of this departure.

Incidentally, Fig. 3c) expands the region betwedi1 Number of condensate atoms
and N=3000(both the ordinate and abscissa are expapded o ) )
displaying the KHA resultgsolid lineg and the Bogoliubov FIG_. 3. Exm_tatlon frequencies 8fRb as a function of number
results(dashed lines This is the region where the difference ©f particlesN with a=100 bohrs andy,=w,=2m7x 200 Hz.(d) In
in estimate of the effective coupling strengB§* becomes the Bogoliubov approximation an@) in the KHA approxmat_lon.
slightly visible. The KHA overestimate§f’ so that the ex- For Fhe former(a), the_ calcu_latz_ed states are of even parity and

P . . . restricted to those which coincide with the KHA statesNat1.
citation energies become slightly more widely separatéd.

. - . Index j labels them from low to high aN=1. This labeling is
pZ - -
alternative estimate oBf” based on the Thomas-Fermi ap_ continued across the anticrossings to maintain the correspondence

proximation t9 the GP eq_uatlon IS previously discussed bt eigenmodes all grows. In the largeN limit, excitation energies
Sec. [l B, which estimate is also slightly smallethe scal- ¢ breathing and quadrupole modes are approximat&ly, and

ing property [26] is an important aspect of the trapped \2n, in the KHA, respectively, so that combinations of the form
atomic BEC, the excitation frequencieSw andy2w of the  \5n, +\2n, occur wheren; andn, are integers. In the Bogoliubov
monopole and quadrupole modes being a direct consequenggse, there occur modes whose excitation frequencies continue to
of this. To see their manifestation, let us note that the kineti¢ower after the KHA results have converged to their asymptotic
energy scales aB 2, the trapping potential aB?, and the limits. (c) Comparison of@) and (b) on an expanded scaleoth

bulk interaction asR™3. The virial theorem[24] is thus ex-  abscissa and ordinatéor the lowest two excitation frequencies.
plicit in the hyperspherical representation—that is,

2Ekin - 2Etrap"’ 3Eint =0.

) +Ver(R,, Rz):| Fion0(RxRy)

(@)

0 10000 20000 30000

=
R— =

e -—j=3

-—j=

<—j=1

(b)

10000 20000 30000

Excitation Frequency (o0.u.)
N WO~ OO ~

—j=

retained on account of the hyperspherical kinetic energy op-
Note the kinetic energy has two parts: one is the hyperraerator. Though this regimél>1 is obviously beyond the
dial kinetic energy operator and the other is the effectivescope of the KHA, the scale-dependent features turn out in-
potential varying aR>. The N>1 approximation about to sensitive to the details of the description. The excitation fre-
be applied neglects the latter only, keeping the virial theorenguencies start off with the multiples otw2nearN=1; then, a
intact in spite of the absence of the kinetic energy term in th& homas-Fermj24] type behavior sets in towafd>1 where
effective potential. In other words, the proper quantization isEq. (2) is approximated by
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1 ng IV. EXCITATION IN THE GROUND-STATE CHANNEL
Veir( R, Ry = “M(w’RS + wZRE) + =
2 R,% z Though inclusion of excited adiabatic channels is for-
This effective potential coincides in form with EqL3) of mally possible using the generating function techniques of

Ref. [11] derived from the viewpoint shared by R4R7]. the Appendix, we focus here only on aspects of the single-

The specific value of the interaction const&@f depends on channel excitation in the KHA. To this end, we evaluate the

the employed method and approximations. The procedure foindle-particle density;(p, z) as well as the effective single-

determining the collective excitation frequenayis first to  Particle excited state wave function(p,2) and take the iso-

locate the minimum of the potential well by setting the first- tropic limit. These functions are defined by the matrix ele-
order derivatives to zero. Then the eigenvalues of the HedNent
sian matrix/C are sought where

N
PVett  PVer ni(p.2) = FVR,RIVFQIVN Q)| X a7 -r) |[FN
_1f R RAR, k=1
2| #v PV :
— et el X(R,, ROV (Q,) V() (4)

2
R, IR, | v R (RRg N
and R, and Rzo are the qoordinates of the potential minij and by the projection
mum. The eigenvalues yield the curvatures of the potential
near the minimum, and the collective coordinates are identi-

. - (N-1) p(N-1) (N-1) N-1) N-1) _(N)
fied by the eigenvectors. The result is ag19]: xi(p.2) =(Fo (Rp R ))/EO} (Qp)y%O} (QZ)“:I

X (RN, RM) V() V)1, ©

R =204 SR T V0w~ 160+ 160
respectively, and here we have the relationship

The corresponding eigenvectoss. are v_:\%(\@,l) and

v+:\/§(—1,\s"§) so that the first pertains to the breathing and RINZ N—_1R<N'1)2+ lr(N)z

the other to the quadrupole mode. In going through this ex- N N '

ercise, one realizes that the interaction cons@ffitcancels

out, thus bringing out the features only dependent on then Egs. (4) and (5), the suffixes in the brackets--)y and

dimensionality of the problem, hence allowing even a crud...y . denote integrations with respect to the coordinates of

est approximation to reproduce the experimentally observego . and (N-1)-particle systems, respectively. The func-

frequencies correctly. The reliability of a theory must then betion Xi(p,2) is thus nothing but the projection of an excited

s:qught an_d _quesuoned in the context of othe( physical uargiate eigenfunction onto the ground-state wave function of
tities explicitly dependent on all the terms in the Hamil-

tonian the (N-1)-particle system. Incidentally, the projected excita-

i i = (p(N=D g (N) (N-1)
Let us recapitulate the result on hand. We have employeHon function x=(¥, |lPJ In-1, where W, IS the

only the lowest hyperspherical harmonics which is constang@found-state function of theN-1)-particle system, satisfies
over each hypersphere and represents the totally symmetri@e equation
states of the aggregates of bosons. phand z degrees of

freedom initially treated as though decoupled are brough . %2 1 Nt R

into correlation via the particle density term. The breathing ‘I’E)N V|- %VZJ’ Emw2r2+gz &(ri = 1) \PJ(N)

and quadrupole modes emerged, and their lowest excitatio = N-1
frequencies agreed with the Bogoliubov results. The so- =(E}N)—Eg\"1))x,

called “ballistic” treatmenf11] based on the Gaussian wave

paCket is similar in Splrlt in that the curvature of the local wherer pertains to the\th partic|e_ In the frozen core ap-
effective potential plays a key role. In the present adiabatigroximation, we have

picture, the effective potential emerges more naturally since

the boundary condition on the wave functi¢or a certain 52 1

phase factorneed not be explicitly specified. From the view- - —V2x+ =mw?r2y + (N - 1)gp™ V(M) x = ux,

point that the hyperradii represent the mean-square size of 2m 2

the system in each dimension, the present result is not unan- N —(N-1) NP . .
ticipated. However, the excitation in each adiabatic modeVith u=E;" ~E;" ~ wherep™(f) is the particle density of
represents on one hand a collective oscillation frequency anide (N—1)-particle system in its ground state while the GP
on the other hand a quantum mechanical and rather diminuirect product ansatz fow ™"V reduces it to the GP equa-
tive excitation energy. These somewnhat disparate ideas ne&@n. What we do below is an explicit extraction and inter-
to be reconciled. We examine excitations more closely in théoretation ofy in the KHA approximation.

next section and, in particular, characterize the modes with It is worth noting that botm;(p,2) and x;(p,2z) can be
slowly converging excitation frequencies. evaluated by two-dimensional integrals—that is,
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N=100 N=30000

Bogoliubov, y Hyperspherical, x; Hyperspherical, o Bogoliubov, u; Hyperspherical, ;; Hyperspherical, n

FIG. 4. Comparison of the projected single-particle excitation functioand the Bogoliubov functiom; for N=100 and 30 000. The
abscissa ig and the ordinate ip. Hyperspherical density; is also shown. For the rather small BEC ¥ 100, x; andu; resemble one
another in terms of their major features except for sextupel8, Observe the radigmonopolg excitation fromj=1 to j=4 and also from
j=21t0j=5. ForN=30 000, the Thomas-Fermi-type behavior fgrand the Gaussian behavior fg; become more discernible. Angular
features continue to show resemblance excepj+@. As for the hyperspherical density, the pattern of resemblance seen begnasiy;
is now absent fromn; except forj=2. The pattern of correspondence is ném to ons and én, to dng instead ofén, to dny. The nodal
structures of these pairs remain identicalNashanges, thus no increment in number of nodes.

N>(RP,RZ)|2 p? \N2 in pairs, corresponding to creation or to destruction of a qua-
ni(p,2) = 3,2 "NE siparticle state, we show what corresponds to the creation on
o\N Y |2l R, NR

the p-z plane with the color coding designed to reflect the
32 relative amplitude inclusive of the sign. The laljeis as
(1_I\H§) dR.dR, (6) defined in Fig. 3. We observe an obvious correspondence
betweeny; andy; for j=1,2 and forj=4,5. Thenodal struc-
and tures indicate thaj=1 and 3 pertain to the quadrupole and
34 j=2 and 5 to the monopole excitations. The clear-cut wedge-
Xi(p2) = (1> /Lf like nodal lines for the quadrupole excitation stem from
-1 FEN)(R;N) , R(ZN)) whose characteristic feature is represented for
f f N 1)(R(N ) N—l))FJ(N)(R(N)’R(ZN)) the lowest excitation by the factor of

R - 2R == (- 22),

2\ -(2N-1)/4
x| 1+ p
< N- lR(N"l)Z)
[)

which is relevant for the representation of a single-particle
1 2 (N-1)/4 excitation function with the quadrupole symmetry. Mean-
(1 *No1 1RV12 ) dR;N_l)dFéN_l), (7)  while, the topology ofy; is markedly distorted fronu;. The
Bogoliubov functionu; shows, by virtue of the number of
wherer=r™ and nodes, that it pertains to the sextupole. In the current setting
of calculations, no mechanism is built into the KHA method
F(N)F(N> for representing this type of surface rotation. To remedy this
flaw requires us to incorporate additional degrees of freedom
N=1\" into the current representation.
5 ) Let us note that the tendency persistshNat30 000, but
the hypersphericay; does not contract as dramatically as the
Note Eq.(6) is a generalization of Eq3.4) of Ref. [4]. Bogoliubov function whose radial extent shows a sharp cut-
Let us compare in Fig. 4 two sets of “single-particle” off of the Thomas-Fermi behavior. Insteadpbehaves as the
functions forN=100 andN=30 000, one calculated by the Gaussian function because of the sharunction-like con-
above hyperspherical procedure and the other by the Boggentration of F around the equilibrium hyperradiu®
liubov approximation. Since the Bogoliubov functions come= \R2+ R2 Ro. Indeed, the ansatz

g:

N32(N - 1)1“(
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N=100 N=30000 single-particle states. As seen in Fig. 4, the plotspindi-
cate the presence of higher-excited single-particle states in
0 . the hyperspherical solution. Their magnitudes, though not
S K readily noticeable on the color-coded relative scale, grow
3 - ) 0 smaller ag increase, which fact corroborates the above ob-
S = V =3— servation. The higher excited single-particle states are thus
5] =l— | 0002 =1 — buried in the larger background ¢fi-N;,N;,0,0, ...
g 02 The current situation may be explained by way of a
'_3:'% simple analogy drawn on the role Bf, the generator of the
3 0'04\ 0 A~ monopole excitation. Let us liken excitation within the
§: 0 A~ ground-state hyperspherical channel to raising the power of
T i =3 —
o v IF— J=3 RP=(ri+r3+ - +r2)IN,
-0.08 =2— =l— . I . , . ,
20,001 interpreting R* as representing alN particles in the first-
9 2p (o‘u‘)" ¢ ¢ 5p (O.u.)“’ 5 excited single-particle staté while (R?)° may be considered

as the ground state. Now associate the second-excited state to

N N
R4:<2rf‘+2ri2rjz> N2,

i=1 i#]

FIG. 5. Slice of the residual densitynh at z=0 plotted as a
function of p for N=100 andN=30 000. Residual densitié®, and
on, differ by the factor of 2 and similarly foon, and éns. The
excitation in the ground state is overwhelmed by the increase in
occupancy of the lowest-lying excited state, burying the higher exwhich consists oN(N-1)/2 pairs in the first-excited single-
cited states and making their proportion insignificant. particle state andN particles in the second-excited single-
particle state. One can proceed to intergRét similarly. In
this manner, raising the power Bf is seen to be dominated
by multiples of particles in the first-excited single-particle
state, the relative magnitudes of the other components de-
clining by the integer powers ofl.

IF(R,,R)I? < (R~ Ro)
substituted into Eq(6) reduces readily to
No & e 3r%2RG

when r?=p?+z22<NR2. Note that since the departure Bf
from Gaussian behavior can be readily incorporated into the . . . .
time-dependent Schradinger equation, the hyperspheric%l This paper dealt with the excited states in the ground-state

V. CONCLUSION

method despite the KHA has flexibility beyond the Gaussia yperspherical chgnne_l using .the Iowest-ordgr hyperspherical
approximation. An example of this flexibility may be found armonics approximation as in Re#], but with an exten-

in the treatment of the decay of an attractive BEC to besion that enabled us to accommodate anisotropy. The disper-
reported elsewhere. sion relations of Stringarf19] for the Thomas-Fermi limit

Let us return to the excitation in the ground-state c:h‘,;mneiollowed from the consideration of the Hessian matrix of the
for 87Rb. In addition tou; and y;, Fig. 4 showsn (p,2), and hyperspherical effective potential surface. The hyperspheri-
we observe almost no. corresj,'pond.ence betvxjmqéar{d . cal excitation within the ground-state channel was seen to

j.

Consider the residual sinale-particle den '2) which correspond largely to the increase in occupation number in
ge-p sy (p,2) %e lowest single-particle excited state. We also noted that

represents the excitation content shorn of the ground-staﬁ d . o
I e hyperspherical method based on a single harmonics is a
contribution—namely, . . ; L
properly quantized version of the Gaussian variational
ni(p,2) =nj(p,2) = No(p,2). method, however with t_he added' erxibiIity of representing a
L wave packet with a single-particle profile noticeably dis-
The dependence afnj(p,2) onj in Fig. 5 suggests that the (5rteq from Gaussian. The projected single-particle wave
excitation within the ground-state channel corresponds to ag,nction Y shows its correspondence with the Bogoliubov
increase in the number of particles in the first excited stateq;nction u for monopoles and quadrupoles, but fails for
[A more quantitative check based on the integrabefp,2)  higher multipoles with rotational excitation. A remedy is sug-
shows that this contention holds to the pursued accuraoy. gested and is currently pursued.
make the point clearer, let us presume to represent a state in An immediate extension of the present method is to the
the number representation such that study of collapse via two- and three-body recombination pro-
INg, Ny, N ) cesses. Another facet to be readily explored by the present
0s N1 INDy e . .
scheme is the normal-mode analysis of a two-component or
indicates Ny (quasjparticles in the ground stateN;  multicomponent BEG28].
(quas)particles in the first excited state of the breathing
mode, N, (quas)particles in the second excited state, etc.
The hyperradial excitation in a single channel then amounts
to generating statddl-N;,N;,0,0, ..) with increment only We thank Dr. T. Kimura of Kanagawa University for use-
in N;—i.e., with negligible component in higher-excited ful discussions and encouragement. We also thank H. Ish-
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APPENDIX: GENERATING FUNCTION METHOD _
AND MATRIX ELEMENTS N(N 1) 2y2
<<y{0}|2 5(Z| Z] |y{0}>> - 1/2N1/2
The principal emphasis here is on the method of evaluat- i>]
ing integrals on the hypersphere. A demonstrative example N
evaluates a marginal reduction in the total energy of the r 5

BEC. This appendix thus demonstrates inclusion of the inter- —i
channel couplings in the hyperspherical method incorporat- F(N—_l) R,
ing several lowest totally symmetric hyperspherical harmon- 2

ics. Various applications are conceivable. The basic idea is t
carry out the integrals in two alternative ways, one with re-
spect to the hyperspherical coordinates and the other to the P Z
independent particle coordinates, of which the latter gives (Voo 2 o -1Vl
closed expressions while the former leaves the desired matrix
elements undetermined until the term-by-term comparison F(N)F(N)
fixes them. N(N 1) 1 1

2 / N-1\RR,
IS NI(N - 1)N1’2I‘< . )

Pn much the same way, we get

i>j

Basic idea

Consider the matrix element

y 2
WS sa- i = [ 3432

i>] R, i>]

Generating function method

) Given this demonstration, it is straightforward to see for
R, the isotropic trap that the following generating functions fa-
cilitate to evaluate integrals over the hypersphere involving
homogeneous and totally symmetric polynomials of higher
degrees, a technique that should be useful in describing low-
il Yo = |y§o}|2f do=1. lying excitations in the hyperspherical approach. We use the
Q following two types of generating function. One is of the
Gaussian form and allows for angular correlatigtype A);
the other is designed specifically for the particles in the

Vi being constant. Meanwhile,

In consequence,

= Z; s-state(type B).
f 5<Z|RZ ) 40 (type B)
1Ja Type A
(Yol 8z - 2)|V o) = — | PR
2 J d0 Consider the generating function in the form
[0}
To obtain the necessary integrals, consider G=exp _5 Sg (F; - 1)
i#]
_p2
. g 3z - z)eedV =2 RN exp{— —RZ} B(Q)S". (A1)

1= n=0

- Jm ,\Ir\quN—ze-RgdRZ D 477 )dQ We have

V4
“~°\ "R
0 Qi>j 4 N
- (GIG) = X lonsamsan-10nnS"t" = 7241 = (s+ 1) SN/
. — 7. n,m
- IN‘ZJ 2 _l)dQ -3/2
Qi>j R, X{(N=1)(s+1t)+1}7%<
and also where
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Onm= J S, (A2) A= f g GO B = F) g HAOM
QN i>]
" 3N
(G ViG) = -7 NA1 = (s+ O} PN - D(s+ ) Type B
i=1 A particular example here employs a sixth-degree polyno-
. 1}_3,2(N —1)(L+t) - (N-2)(s+t)-1 mial in the exponent:

N N N N

(1-s-t{(N-1)(s+t) + 1} N
G=exp| s, i+t r2+u ri+o > rt+w>, r?
i=1 i=1 i=1 i=1 i=1

= [{l2nsomeanes = (4M+ 3N) oniomean-1

n,m
N

+2m(2m+ 3N - 2) L nszmean-atOnm xS 6o %Rz

2 i=1
+ | neomean-3Anmls

N
1
o N(N=1) 1 .. =11 ex sri+tri2+uri3+vrf‘+wr?+xr?—Eriz}
(G aF -Fle) = ——— =" VH1-(s =1
i>] 2 V8 R L
— - p2
+ t)}-S(N—Z)/Z{(N _ 1)(S+ t) + 1}—3/2 = % 1—[6 Y ¢B(Q)8X[<— 2R )y, (A3)
j=1 1
=2 Loneomsan-aB S t™,
nm where
where Aﬁm and A,,,, are the grand angular momentum and y = sht"2yNay N sxe,

interaction matrix elements, respectively:

5 AN« 2 N BN M =n; + 2n, + 3ng + 4n, + 5n5 + 6ng,
Arm= f D QN A2 QNN _
o8N-1 and g collectively represents;,n,,ng,ny,Ns,Ng. We have

N

IMemr+2
(GlG) =% 47> > 6+—+6,77/ = Ivsmr+an-10p,6 7Y
B g Hi=1ni!Hi=1ni! BB

N
47
<G|E Vi2|G> = E G—G,{M’(M' + Dlpemr = M + )y sz + lvsmreal | vY
i=1 BB’ Hi:1 ni!HiZl ni!
Im+mr+2 N
x| 4wy, ——————— 1y

6 6 YY
8.6 Hi:l ! Hi:l !

= 2 [{M"(M" + 3N = Dl yprsan-3 = (M + 3N) s anes + Imemr+anettOppr = Imemrsan-3Ag g 7Y

BA
6 N-2
I Aq2%i= () , Im+mr+2
<G|2 5(ri - rj)|G> = 2 5 6 Im+mr+2YY 4772 6 | 6 " 77,
i>] B 2(M+M’+3)/2H ni'H n'i BB Hi:l n;: Hizl n;:
! 4

i=1 i=1

= Z [|M+M'+3N—4Aﬁ,5'77']-
BB
However, no proof or verification is presently given to the plausible completeness of the homogeneous multivariable polyno-
mials produced by this method.

The single-particle integrals in the above expressions can be symbolically expanded on the computer by iteration, and with
8-byte real numbers the matrix elements can be readily extracted for the lowest tens of elements fd=1 GO0 or so.
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