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Excitation of an atomic-gas Bose-Einstein condensate(BEC) in the zeroth-order ground-state channel is
studied with the hyperspherical adiabatic method of Bohnet al. [Bohn et al., Phys. Rev. A58, 584 (1998)]
suitably generalized to accommodate the anisotropic trapping potential. The method exploits the system’s size
as an adiabatic parameter so that the explicit size dependence is immediately conducive to the virial theorem.
The oscillation frequencies associated with the monopole(breathing) and quadrupole modes thus emerge
naturally and converge to the well-known Thomas-Fermi limits. Analysis of the single-particle density and the
projected excitation wave function shows that the excitation in the single hyperspherical ground-state channel
merely represents a progressive increase in occupancy of the first excited single-particle state. The work paves
the way for applying the adiabatic picture to other BEC phenomena.
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I. INTRODUCTION

The successful generation of trapped atomic Bose-
Einstein condensates in laboratories[1] has opened a new
domain of atomic and optical physics, and challenging new
phenomena continue to be vigorously explored and regularly
reported. Theoretical studies of the phenomena are tradition-
ally based on the mean-field theory due to Bogoliubov[2]
which was later cast by Gross and Pitaevskii[3] into the
celebrated GP equation. The basic premise of this approach,
if stated in simplistic terms, is that the system behaves like a
blob of matter representable by a field. This picture has
proved so remarkably effective that most observed phenom-
ena are indeed explicable by the GP equation, and conversely
no theory tangential to this view has thus far provided as full
a description. One of our purposes here is to examine an
alternative picture based on the hyperspherical adiabatic
method which was applied earlier by Bohnet al. [4] to the
study of ground-state properties of the Bose-Einstein con-
densate(BEC) and by Blume and Greene[5,6] to unravel
manifolds of adiabatic channels. According to the latter, the
BEC channels stand out as the lowest-lying unbound atomic
mode whose cohesion is provided singly by the trapping po-
tential. In the wake of such development, it appears natural
to ask in what aspects the GP and the hyperspherical picture
coincide or differ apart from the obvious differences in the
ground state. This inquiry serves as a purpose of this paper.

Incidentally, the hyperspherical adiabatic method was
originally proposed by Macek[7] in 1968 for analyzing the
dynamical features of doubly excited states of He, and since
then, it has been promoted by Fano and others[8] in order to
visualize the dynamics of three- and four-body systems[9].
The point of departure from the traditional adiabatic view-
point of molecular physics is the choice of adiabatic vari-
ables. Macek recognized the special role played by the root-
mean-square size of the system, the hyperradius, as the
system’s distinctive adiabatic variable. This approach has
seen a great deal of success in various facets of few-body
systems in the past three decades[10].

We should state at the outset that parametrization of the
solution by the Gaussian wave-packet ansatz such as in Ref.

[11] is along the line of our adiabatic approach for they re-
formulate the problem by integrating out rapidly varying dy-
namical variables. On the other hand, in the hyperspherical
method the adiabatic variables play a more distinct role in
the spirit of the Born-Oppenheimer treatment of molecules.
Excitations with respect to the adiabatic degrees of freedom
are thus within the natural scope of the hyperspherical
method while quantization with respect to the parameters of
the other treatment such as Ref.[11] would require further
qualification.

Many of the recent works concern not only the collective
modes[12] of BEC’s but phenomena such as interference
between different types of BEC’s[13], collapse of a BEC
with attractive interparticle interaction[14], vortices both to-
pological[15] and nontopological[16], spin degrees of free-
dom [17], and solitons[18]. We wish, however, to focus on
the following issues in the subsequent sections, leaving other
applications to separate articles.

(i) We generalize the hyperspherical method of Ref.[4] to
an anisotropic trap(Sec. II).

(ii ) We discuss the collective oscillations studied previ-
ously by Stringari[19] and other workers[20], recasting
them into the context of the hyperspherical representation
(Sec. III).

(iii ) We analyze the nature of the hyperspherical excita-
tions in the ground-state channel, comparing them to the in-
dependent particle picture(Sec. IV). This requires us to gen-
eralize the formula in Ref.[4] for the particle density.

Furthermore, an analytical procedure for the evaluation of
matrix elements with respect to hyperspherical harmonics is
reconsidered in the Appendix for the purpose of a pedagogi-
cal illustration. Using a generating function method for cal-
culating several lowest-order hyperspherical harmonics, we
demonstrate an energy shift, if miniscule, of the ground state
due to the coupled hyperspherical channels in Sec. III. A
subsection also in Sec. III complements the hyperspherical
estimate of the ground state’s total energy on the basis of the
Thomas-Fermi approximation to the GP equation. Note we
employ the d-function-type effective potential throughout
unlike the Blume-Greene paper[5]. No recombination chan-
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nels thus appear explicitly in this work. Oscillator units(o.u.)
[21] will be used unless stated otherwise.

II. GENERALIZED HYPERSPHERICAL FRAMEWORK
FOR BEC’S

The full Hamiltonian ofN identical bosons of massm
confined in a harmonic oscillator potential of a magneto-
optical trap reads

H = TG + T + Vtrap+ Vint,

whereTG is the kinetic energy operator of the center of mass,
T is that of the BEC in the center-of-mass frame given by

T = −
"2

2m
o
i=1

N

¹i
2,

and the trapping potentialVtrap is, owing to its harmonicity,

Vtrap=
1

2
mo

i=1

N

svx
2xi

2 + vy
2yi

2 + vz
2zi

2d

+
1

2
Msvx

2XG
2 + vy

2YG
2 + vz

2ZG
2 d.

Here,vx, vy, andvz are the trap frequencies in thex, y, and
z directions, respectively. The center-of-mass motion sepa-
rates out to perform a three-dimensional(3D) harmonic mo-
tion with frequencieshvx,vy,vzj. From hereafter, we limit
ourselves to where the center of mass coincides with the
potential minimum—that is, where

XG = YG = ZG = 0.

The interaction of pairs of atoms is represented by the
short-ranged-function potential parametrized by thes-wave
scattering lengtha:

Vint =
4p"2

m
ao

i. j

dsrWi − rW jd.

We use the parameter

g =
4p"2

m
a

hereafter to represent the strength of interaction. We shall
now outline the procedure for the hyperspherical adiabatic
expansion and deduce an effective potential in the lowest-
order hyperspherical harmonics approximation. We shall re-
fer to this approximation as theK-harmonic approximation
(KHA ) [4] and distinguish it from the hyperspherical adia-
batic method designed for few-body systems[7–9]. In so
doing, let us modify the standard hyperspherical method to
accommodate the nonisotropic trapping potential. Otherwise,
the treatment is closely in line with Ref.[4].

The elliptically anisotropic case ofvx=vy=vrÞvz has
all the essential elements for further generalization. Here the
trapping potential reads

Vtrap=
1

2
mo

i=1

N

svr
2ri

2 + vz
2zi

2d =
1

2
mNsvr

2Rr
2 + vz

2Rz
2d,

whereri
2=xi

2+yi
2 and the hyperradii are defined by

Rr
2 =

1

N
o
i=1

N

ri
2,

Rz
2 =

1

N
o
i=1

N

zi
2.

(For the most general situation,Rx, Ry, andRz may be simi-
larly defined.) The kinetic energy operator reads

T = −
"2

2mNS 1

Rr
2N−1

]

]Rr

Rr
2N−1

]

]Rr

−
Lr

2

Rr
2

+
1

Rz
N−1

]

]Rz
Rz

N−1
]

]Rz
−

Lz
2

Rz
2D ,

whereLr andLz are the grand angular momentum operators
associated with the rotational degrees of freedom on theRr

and Rz hyperspheres, respectively. The specific expression
for L2 in d dimensions is

L2 = − o
i. j

d Sji
]

]j j
− j j

]

]ji
D2

,

where the set of variableshjij represent the Cartesian coor-
dinates in ad-dimensional space[22,26]. We consider the
hyperspherical harmonics—namely, the eigenvectors of the
grand angular momentum operator—as a basis set for expan-
sion. Let us write, symbolically,

Lr
2Y hlrj

r sVrd = lrslr + 2N − 2dY hlrj
r sVrd,

Lz
2Y hlzj

z sVzd = lzslz + N − 2dY hlzj
z sVzd,

whereVr and Vz represent the angular degrees of freedom
on the two hyperspheres. These equations are largely indica-
tive of the dimensionality of the Hilbert spaces; the order of
harmonics for each degree of freedom is given by

lrslzd = 0,1,2, . . . .

Likewise the sets of quantum numbers are conveniently sym-
bolized here by a curly-bracketed index pertaining to the
totality of nodes in the wave function—namely,hlrj and
hlzj—while quantum numbers that distinguish degenerate
subcomponents are to be thus understood implicitly.

The solutionCsRr ,Rz;Vr ,Vzd of the Schrödinger equa-
tion may be expressed in terms of the sum of direct products,

CsRr,Rz;Vr,Vzd = N3N/4Rr
s2N−1d/2Rz

sN−1d/2 o
hlrj,hlzj

Fhlrj,hlzj

3sRr,RzdY hlrj
r sVrdY hlzj

z sVzd, s1d

where the coefficientshFhlrj,hlzj
sRr ,Rzdj hold the key to the

BEC’s bulk dynamics whileRr andRz are treated as constant
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parameters when defining the adiabatic potential surfaces,
and the factorRr

s2N−1d/2Rz
sN−1d/2 is introduced here to simplify

the kinetic energy operator. There are alternative ways to
define expansion basis functions which would allow for the
distortion of the system under the interaction potential. De-
tails of such alternatives are skipped to avoid sidetracking
the main purpose; the reader is invited to the review by Fano
[23]. The hyperradial equation is then expressed as

F−
"2

2mNH ]2

]Rr
2 −

s2N − 1ds2N − 3d/4 + lrslr + 2N − 2d
Rr

2

+
]2

]Rz
2 −

sN − 1dsN − 3d/4 + lzslz + N − 2d
Rz

2 J + VtrapG
3Fhlrj,hlzj

sRr,Rzd

+ o
hlr8j,hlz8j

kkY hlrj
r Y hlzj

z uVintuY hlr8j
r Y hlz8j

z ll

3Fhl
r8j,hlz8jsRr,Rzd = EFhlrj,hlzj

sRr,Rzd,

where double angular bracketskk…ll indicate integration
with respect to the hyperanglesVr and Vz. Note that the
orthonormality of the hyperspherical harmonics is used. A
simple dimensional consideration on thed function readily
reveals that the interaction term is inversely proportional to
the volume—namely,

kkY hlrj
r Y hlzj

z uVintuY hlr8j
r Y hlz8j

z ll ~
1

Rr
2Rz

.

Though techniques for evaluating various matrix elements
are besides the point in the current paper, we spare an appen-
dix for outlining a simple procedure. It yields, in the KHA
[i.e., the terms withlr=lz=0 only in Eq.(1)],

kkY h0j
r Y h0j

z uVintuY h0j
r Y h0j

z ll =
G0

rz

Rr
2Rz

.

The interaction constant simplifies to

G0
rz =

g

s2pd3/2

NsN − 1d
2 1 GsNd

NGsN − 1d

GSN

2
D

N1/2GSN − 1

2
D2 ,

which behaves as

G0
rz .

g

4p3/2

NsN − 1d
2

,

when N@1. The effective hyperspherical potential energy
VeffsRr ,Rzd is the sum of the pseudocentrifugal potential,
Vtrap andVint—namely,

VeffsRr,Rzd =
"2

8mNH s2N − 1ds2N − 3d
Rr

2 +
sN − 1dsN − 3d

Rz
2 J

+
1

2
mNsvr

2Rr
2 + vz

2Rz
2d +

G0
rz

Rr
2Rz

. s2d

Incidentally, deduction of the effective potential is as

straightforward for the general case ofRx, Ry, and Rz. We
have

VeffsRx,Ry,Rzd =
"2

2m

sN − 1dsN − 3d
4N

S 1

Rx
2 +

1

Ry
2 +

1

Rz
2D

+
1

2
mNsvx

2Rx
2 + vy

2Ry
2 + vz

2Rz
2d +

G0
xyz

RxRyRz
,

where

G0
xyz=

g

s2pd3/2

NsN − 1d
2

GSN

2
D3

N3/2GSN − 1

2
D3 .

III. GROUND-STATE CHANNEL
AND COLLECTIVE MODES

In this section, we consider collective modes in an isotro-
pic trap. The generalization of the KHA to the anisotropic
trap as presented in the previous section serves to identify
modes that do not emerge in the strictly isotropic formula-
tion. However, before going into the discussion of the col-
lective modes, we digress on the total energy of the system,
first by coupling several channels and second by a Thomas-
Fermi-type approximation.

A. Several hyperpherical channels and total energy
of an isotropic BEC

Knowledge of the matrix elements of the grand angular
momentum operator leads to the desired hyperspherical har-
monics for anN-particle system by way of diagonalization.
An estimate of the ground-state energy provides an illustra-
tion of this sequence of calculations though we only achieve
a marginal improvement. Indeed, using 11 low-lying hyper-
spherical harmonics generated with the type-B generating
function in the Appendix, naturally we observe the lowering
of the adiabatic potential curves as depicted in Fig. 1. Figure

FIG. 1. Ground-state channel potential curves forN=1000 by
the KHA and by the generating function method. Eleven hyper-
spherical harmonics are used for the latter. o.u. denotes oscillator
units.
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2 shows some ground-state energy per particle −3
2"v; inclu-

sion of other hyperspherical harmonics does not lead to a
substantial lowering of the total energy. The shift remains
about one order of magnitude smaller than the difference
between the Hartree-Fock-type approximation and KHA at,
say,N=5000. This result is not unexpected, of course, since
the direct product anzatz for the wave function as tacitly
assumed for the GP equation is equivalent to a factorially
large number of terms in the direct sum representaion as
pertains to the perturbative expansion based on the harmon-
ics. Thus, by the present method we expect resonable im-
provement only for a system with a small number of atoms.
A slight improvement on the estimate of the total energy is
afforded by the Hartree-Fock estimate of the hyperspherical
interaction energy using the constrained Thomas-Fermi solu-
tion.

B. Hartree-Fock-type estimate of the hyperspherical
interaction potential

In a field-theoretic picture, the hyperspherical radius may
be viewed as a dynamical constraint on the system, and its
operatorial representation in terms of the field operatorf̂srWd
may be given by

R̂2 =E f̂†srWdr̂2f̂srWddrW.

We demand that its expectation value be fixed to ac number
R2. The Hartree-Fock-type equation of motion, a slightly
modified version of the GP equation, can be deduced with
the aid of the Lagrange multiplier—namely,

−
"2

2m
¹2f +

1

2
mv2r2f + gufu2f + lr2f = mf,

wherefsrWd is the mean-field ground-state function andm is
the chemical potential. The Lagrange multiplier is deter-
mined by the condition

E r2ufsrWdu2drW = R̃2,

while m is fixed by the normalization

E ufsrWdu2drW = N.

Once the solutionf obtains, the total energy follows from

E = NE f * srWdH−
"2

2m
¹2 + VtrapsrWd +

g

2
sN − 1dufsrWdu2J

3fsrWddrW.

Applying the Thomas-Fermi approximation to the modified
GP equation, we obtain the solution

fTFsrWd =Î1

g
Sm −

1

2
mv2r2 − lr2D ,

wherem=s15Ng/8pds 3
7

d3/2s1/R̃3d and l= 1
2 −3m /7R̃3 in o.u.

The total energyETF reads

ETF = NE f * srWdHVtrapsrWd +
g

2
sN − 1dufsrWdu2JfsrWddrW

=
1

2
mNv2R̃2 +

NsN − 1d
2

g
30

7
S3

7
D3/2 1

4p

1

R̃3
.

The numerical coefficient in the last term is given by

1

4p

30

7
S3

7
D3/2

= 0.0957,

which is to be compared to the corresponding hyperspherical
coefficient

j

Î8p3
. 0.117.

The Thomas-Fermi estimate is thus about 20% smaller than
that of the KHA approximation.

Incidentally, direct use of the Gaussian approximation
[27] to f, namely,

fsrWd = S 3

2p
D3/4 1

R̃3/2
expS−

3r2

2R̃2D ,

leads to

EgfR̃g =
"2

2m

9N

4R̃2
+

1

2
mNv2R̃2 +

NsN − 1d
2

S3

2
D3/2 g

Î8p3

1

R̃3
,

which coincides, not surprisingly, with the hyperspherical
potential energy in theN@1 limit.

C. Collective modes in the KHA

Let us now recall that we consider the case where the
center of mass is located at the center of the trap. The hyper-
radiusR=ÎRr

2+Rz
2 then represents the effective size of the

system so that its departure from the local minimum of the
potential corresponds to the expansion and contraction of the
system—i.e., the breathing motion(monopole). A mode or-
thogonal to the breathing also exists under the constraint of

FIG. 2. Ground-state energy per particle minus3
2"vs 3

2hnd as a
function ofN. The solid line is for the case of a single hyperspheri-
cal harmonics and the dashed line for 11 hyperspherical harmonics.
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R=const.—namely, the quadrupole mode as we shall see de-
spite the crudeness of the KHA.

The KHA leads to the two-dimensional partial differential
equation

F−
"2

2m
S ]2

]Rr
2 +

]2

]Rz
2D + VeffsRr,RzdGFh0j,h0jsRr,Rzd

= EFh0j,h0jsRr,Rzd. s3d

Before going into a discussion of the limiting cases ofN
,1 and N@1, we diagonalize Eq.(3) above numerically.
This then results in energy levels and, hence, excitation en-
ergies. With87Rb as a specific example of atomic species for
BEC’s for which the scattering lengtha.100 bohrs, Fig. 3
shows several lowest excitation energies of a87Rb BEC in
the isotropic limit wherevr andvz→v=2p3200 Hz. This
result should be compared with Fig. 3 of Ref.[4].

A couple of features that we read off from Fig. 3 are first
in the N.1 regime the excitation energies are multiples of
2v as should be for a three-dimensional harmonic oscillator.
In theN@1 regime the KHA yields intercombination lines of
the formsÎ5n1+Î2n2dv [Fig. 3(b)] whereÎ5v andÎ2v per-
tain to the asymptotic limits of the breathing and quadrupole
oscillations, respectively[24]. Let us now compare this re-
sult to the excitation energies evaluated numerically by solv-
ing the Bogoliubov equation[25] in Fig. 3(a). In the Bogo-
liubov approximation, the calculated states are of even parity
and restricted to those which coincide with the KHA states at
N=1. They are continued smoothly across anticrossings to
maintain their nodal structures. We observe that besides
those that converge rather quickly to the asymptotic limits
some continue to fall, crossing those which have already
attained their limits. A point of the discussion to follow is to
identify the origin of this departure.

Incidentally, Fig. 3(c) expands the region betweenN=1
andN=3000(both the ordinate and abscissa are expanded),
displaying the KHA results(solid lines) and the Bogoliubov
results(dashed lines). This is the region where the difference
in estimate of the effective coupling strengthG0

rz becomes
slightly visible. The KHA overestimatesG0

rz so that the ex-
citation energies become slightly more widely separated.(An
alternative estimate ofG0

rz based on the Thomas-Fermi ap-
proximation to the GP equation is previously discussed in
Sec. III B, which estimate is also slightly smaller.) The scal-
ing property [26] is an important aspect of the trapped
atomic BEC, the excitation frequenciesÎ5v andÎ2v of the
monopole and quadrupole modes being a direct consequence
of this. To see their manifestation, let us note that the kinetic
energy scales asR−2, the trapping potential asR2, and the
bulk interaction asR−3. The virial theorem [24] is thus ex-
plicit in the hyperspherical representation—that is,

2Ekin − 2Etrap+ 3Eint = 0.

Note the kinetic energy has two parts: one is the hyperra-
dial kinetic energy operator and the other is the effective
potential varying asR−2. The N@1 approximation about to
be applied neglects the latter only, keeping the virial theorem
intact in spite of the absence of the kinetic energy term in the
effective potential. In other words, the proper quantization is

retained on account of the hyperspherical kinetic energy op-
erator. Though this regimeN@1 is obviously beyond the
scope of the KHA, the scale-dependent features turn out in-
sensitive to the details of the description. The excitation fre-
quencies start off with the multiples of 2v nearN=1; then, a
Thomas-Fermi[24] type behavior sets in towardN@1 where
Eq. (2) is approximated by

FIG. 3. Excitation frequencies of87Rb as a function of number
of particlesN with a=100 bohrs andvr=vz=2p3200 Hz. (a) In
the Bogoliubov approximation and(b) in the KHA approximation.
For the former(a), the calculated states are of even parity and
restricted to those which coincide with the KHA states atN=1.
Index j labels them from low to high atN.1. This labeling is
continued across the anticrossings to maintain the correspondence
of eigenmodes asN grows. In the large-N limit, excitation energies
of breathing and quadrupole modes are approximatelyÎ5n1 and
Î2n2 in the KHA, respectively, so that combinations of the form
Î5n1+Î2n2 occur wheren1 andn2 are integers. In the Bogoliubov
case, there occur modes whose excitation frequencies continue to
lower after the KHA results have converged to their asymptotic
limits. (c) Comparison of(a) and (b) on an expanded scale(both
abscissa and ordinate) for the lowest two excitation frequencies.
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VeffsRr,Rzd .
1

2
msvr

2Rr
2 + vz

2Rz
2d +

G0
rz

Rr
2Rz

.

This effective potential coincides in form with Eq.(13) of
Ref. [11] derived from the viewpoint shared by Ref.[27].
The specific value of the interaction constantG0

rz depends on
the employed method and approximations. The procedure for
determining the collective excitation frequencyv is first to
locate the minimum of the potential well by setting the first-
order derivatives to zero. Then the eigenvalues of the Hes-
sian matrixK are sought where

K =
1

21
]2Veff

]Rr
2

]2Veff

]Rr]Rz

]2Veff

]Rz]Rr

]2Veff

]Rz
2
2

Rr=Rr0,Rz=Rz0

,

and Rr0 and Rz0 are the coordinates of the potential mini-
mum. The eigenvalues yield the curvatures of the potential
near the minimum, and the collective coordinates are identi-
fied by the eigenvectors. The result is as in[19]:

v7
2 = 2vr

2 +
3

2
vz

2 7
1

2
Î9vz

4 − 16vz
2vr

2 + 16vr
4.

The corresponding eigenvectorsv7 are v−=Î1
3sÎ2,1d and

v+=Î1
3s−1,Î2d so that the first pertains to the breathing and

the other to the quadrupole mode. In going through this ex-
ercise, one realizes that the interaction constantG0

rz cancels
out, thus bringing out the features only dependent on the
dimensionality of the problem, hence allowing even a crud-
est approximation to reproduce the experimentally observed
frequencies correctly. The reliability of a theory must then be
sought and questioned in the context of other physical quan-
tities explicitly dependent on all the terms in the Hamil-
tonian.

Let us recapitulate the result on hand. We have employed
only the lowest hyperspherical harmonics which is constant
over each hypersphere and represents the totally symmetric
states of the aggregates of bosons. Ther and z degrees of
freedom initially treated as though decoupled are brought
into correlation via the particle density term. The breathing
and quadrupole modes emerged, and their lowest excitation
frequencies agreed with the Bogoliubov results. The so-
called “ballistic” treatment[11] based on the Gaussian wave
packet is similar in spirit in that the curvature of the local
effective potential plays a key role. In the present adiabatic
picture, the effective potential emerges more naturally since
the boundary condition on the wave function(or a certain
phase factor) need not be explicitly specified. From the view-
point that the hyperradii represent the mean-square size of
the system in each dimension, the present result is not unan-
ticipated. However, the excitation in each adiabatic mode
represents on one hand a collective oscillation frequency and
on the other hand a quantum mechanical and rather diminu-
tive excitation energy. These somewhat disparate ideas need
to be reconciled. We examine excitations more closely in the
next section and, in particular, characterize the modes with
slowly converging excitation frequencies.

IV. EXCITATION IN THE GROUND-STATE CHANNEL

Though inclusion of excited adiabatic channels is for-
mally possible using the generating function techniques of
the Appendix, we focus here only on aspects of the single-
channel excitation in the KHA. To this end, we evaluate the
single-particle densitynjsr ,zd as well as the effective single-
particle excited state wave functionx jsr ,zd and take the iso-
tropic limit. These functions are defined by the matrix ele-
ment

njsr,zd =KFj
sNdsRr,RzdYh0j

sNdsVrdYh0j
sNdsVzdUo

k=1

N

dsrW − rk
W dUFj

sNd

3sRr,RzdYh0j
sNdsVrdYh0j

sNdsVzdL
N

s4d

and by the projection

x jsr,zd = kF0
sN−1dsRr

sN−1d,Rz
sN−1ddYh0j

sN−1dsVrdYh0j
sN−1dsVzduFj

sNd

3sRr
sNd,Rz

sNddYh0j
sNdsVrdYh0j

sNdsVzdlN−1, s5d

respectively, and here we have the relationship

RsNd2 =
N − 1

N
RsN−1d2 +

1

N
r sNd2.

In Eqs. (4) and (5), the suffixes in the bracketsk¯lN and
k¯lN−1 denote integrations with respect to the coordinates of
the N- and sN−1d-particle systems, respectively. The func-
tion x jsr ,zd is thus nothing but the projection of an excited
state eigenfunction onto the ground-state wave function of
the sN−1d-particle system. Incidentally, the projected excita-
tion function x=kC0

sN−1duC j
sNdlN−1l, where C0

sN−1d is the
ground-state function of thesN−1d-particle system, satisfies
the equation

KC0
sN−1dU−

"2

2m
¹2 +

1

2
mv2r2 + go

i=1

N−1

dsrWi − rWdUC j
sNdL

N−1

= sEj
sNd − E0

sN−1ddx,

where rW pertains to theNth particle. In the frozen core ap-
proximation, we have

−
"2

2m
¹2x +

1

2
mv2r2x + sN − 1dgrsN−1dsrWdx = mx,

with m=Ej
sNd−E0

sN−1d wherersN−1dsrWd is the particle density of
the sN−1d-particle system in its ground state while the GP
direct product ansatz forCsN−1d reduces it to the GP equa-
tion. What we do below is an explicit extraction and inter-
pretation ofx in the KHA approximation.

It is worth noting that bothnjsr ,zd and x jsr ,zd can be
evaluated by two-dimensional integrals—that is,
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njsr,zd =
jN

p3/2E
r/ÎN

` E
uzu/ÎN

` uFj
sNdsRr,Rzdu2

Rr
2Rz

S1 −
r2

NRr
2DN−2

3S1 −
z2

NRz
2DsN−3d/2

dRrdRz s6d

and

x jsr,zd = S 1

p
D3/4Î Nj

N − 1

3E
0

` E
0

` F0
sN−1dsRr

sN−1d,Rz
sN−1ddFj

sNdsRr
sNd,Rz

sNdd

Rr
sN−1dÎRz

sN−1d

3S1 +
1

N − 1

r2

Rr
sN−1d2D−s2N−1d/4

3S1 +
1

N − 1

z2

Rz
sN−1d2D−sN−1d/4

dRr
sN−1ddRz

sN−1d, s7d

wherer =r sNd and

j =

GsNdGSN

2
D

N3/2GsN − 1dGSN − 1

2
D .

Note Eq.(6) is a generalization of Eq.(3.4) of Ref. [4].
Let us compare in Fig. 4 two sets of “single-particle”

functions forN=100 andN=30 000, one calculated by the
above hyperspherical procedure and the other by the Bogo-
liubov approximation. Since the Bogoliubov functions come

in pairs, corresponding to creation or to destruction of a qua-
siparticle state, we show what corresponds to the creation on
the r-z plane with the color coding designed to reflect the
relative amplitude inclusive of the sign. The labelj is as
defined in Fig. 3. We observe an obvious correspondence
betweenx j anduj for j =1,2 and forj =4,5. Thenodal struc-
tures indicate thatj =1 and 3 pertain to the quadrupole and
j =2 and 5 to the monopole excitations. The clear-cut wedge-
like nodal lines for the quadrupole excitation stem from
Fj

sNdsRr
sNd ,Rz

sNdd whose characteristic feature is represented for
the lowest excitation by the factor of

Rr
2 − 2Rz

2 =
1

N
o

i

sri
2 − 2zi

2d,

which is relevant for the representation of a single-particle
excitation function with the quadrupole symmetry. Mean-
while, the topology ofx3 is markedly distorted fromu3. The
Bogoliubov functionu3 shows, by virtue of the number of
nodes, that it pertains to the sextupole. In the current setting
of calculations, no mechanism is built into the KHA method
for representing this type of surface rotation. To remedy this
flaw requires us to incorporate additional degrees of freedom
into the current representation.

Let us note that the tendency persists atN=30 000, but
the hypersphericalx j does not contract as dramatically as the
Bogoliubov function whose radial extent shows a sharp cut-
off of the Thomas-Fermi behavior. Instead,x behaves as the
Gaussian function because of the sharpd-function-like con-
centration of F around the equilibrium hyperradiusR
=ÎRr

2+Rz
2=R0. Indeed, the ansatz

FIG. 4. Comparison of the projected single-particle excitation functionx j and the Bogoliubov functionuj for N=100 and 30 000. The
abscissa isz and the ordinate isr. Hyperspherical densitynj is also shown. For the rather small BEC ofN=100, x j anduj resemble one
another in terms of their major features except for sextupole,j =3. Observe the radial(monopole) excitation fromj =1 to j =4 and also from
j =2 to j =5. For N=30 000, the Thomas-Fermi-type behavior foruj and the Gaussian behavior forx j become more discernible. Angular
features continue to show resemblance except forj =3. As for the hyperspherical density, the pattern of resemblance seen betweenx j anduj

is now absent fromnj except for j =2. The pattern of correspondence is nowdn2 to dn5 and dn1 to dn3 instead ofdn1 to dn4. The nodal
structures of these pairs remain identical asN changes, thus no increment in number of nodes.
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uFsRr,Rzdu2 ~ dsR− R0d

substituted into Eq.(6) reduces readily to

n0 ~ e−3r2/2R0
2
,

when r2=r2+z2!NR2. Note that since the departure ofF
from Gaussian behavior can be readily incorporated into the
time-dependent Schrödinger equation, the hyperspherical
method despite the KHA has flexibility beyond the Gaussian
approximation. An example of this flexibility may be found
in the treatment of the decay of an attractive BEC to be
reported elsewhere.

Let us return to the excitation in the ground-state channel
for 87Rb. In addition touj andx j, Fig. 4 showsnjsr ,zd, and
we observe almost no correspondence betweenuj and nj.
Consider the residual single-particle densitydnjsr ,zd which
represents the excitation content shorn of the ground-state
contribution—namely,

dnjsr,zd = njsr,zd − n0sr,zd.

The dependence ofdnjsr ,zd on j in Fig. 5 suggests that the
excitation within the ground-state channel corresponds to an
increase in the number of particles in the first excited state.
[A more quantitative check based on the integral ofdnjsr ,zd
shows that this contention holds to the pursued accuracy.] To
make the point clearer, let us presume to represent a state in
the number representation such that

uN0,N1,N2, . . . l

indicates N0 (quasi)particles in the ground state,N1
(quasi)particles in the first excited state of the breathing
mode, N2 (quasi)particles in the second excited state, etc.
The hyperradial excitation in a single channel then amounts
to generating statesuN−N1,N1,0 ,0, . . .l with increment only
in N1—i.e., with negligible component in higher-excited

single-particle states. As seen in Fig. 4, the plots ofx j indi-
cate the presence of higher-excited single-particle states in
the hyperspherical solution. Their magnitudes, though not
readily noticeable on the color-coded relative scale, grow
smaller asj increase, which fact corroborates the above ob-
servation. The higher excited single-particle states are thus
buried in the larger background ofuN−N1,N1,0 ,0, . . .l.

The current situation may be explained by way of a
simple analogy drawn on the role ofR2, the generator of the
monopole excitation. Let us liken excitation within the
ground-state hyperspherical channel to raising the power of

R2 = sr1
2 + r2

2 + ¯ + rN
2d/N,

interpretingR2 as representing allN particles in the first-
excited single-particle stater2 while sR2d0 may be considered
as the ground state. Now associate the second-excited state to

R4 = So
i=1

N

ri
4 + o

iÞ j

N

r i
2r j

2DYN2,

which consists ofNsN−1d /2 pairs in the first-excited single-
particle state andN particles in the second-excited single-
particle state. One can proceed to interpretR2j similarly. In
this manner, raising the power ofR2 is seen to be dominated
by multiples of particles in the first-excited single-particle
state, the relative magnitudes of the other components de-
clining by the integer powers ofN.

V. CONCLUSION

This paper dealt with the excited states in the ground-state
hyperspherical channel using the lowest-order hyperspherical
harmonics approximation as in Ref.[4], but with an exten-
sion that enabled us to accommodate anisotropy. The disper-
sion relations of Stringari[19] for the Thomas-Fermi limit
followed from the consideration of the Hessian matrix of the
hyperspherical effective potential surface. The hyperspheri-
cal excitation within the ground-state channel was seen to
correspond largely to the increase in occupation number in
the lowest single-particle excited state. We also noted that
the hyperspherical method based on a single harmonics is a
properly quantized version of the Gaussian variational
method, however with the added flexibility of representing a
wave packet with a single-particle profile noticeably dis-
torted from Gaussian. The projected single-particle wave
function x shows its correspondence with the Bogoliubov
function u for monopoles and quadrupoles, but fails for
higher multipoles with rotational excitation. A remedy is sug-
gested and is currently pursued.

An immediate extension of the present method is to the
study of collapse via two- and three-body recombination pro-
cesses. Another facet to be readily explored by the present
scheme is the normal-mode analysis of a two-component or
multicomponent BEC[28].
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APPENDIX: GENERATING FUNCTION METHOD
AND MATRIX ELEMENTS

The principal emphasis here is on the method of evaluat-
ing integrals on the hypersphere. A demonstrative example
evaluates a marginal reduction in the total energy of the
BEC. This appendix thus demonstrates inclusion of the inter-
channel couplings in the hyperspherical method incorporat-
ing several lowest totally symmetric hyperspherical harmon-
ics. Various applications are conceivable. The basic idea is to
carry out the integrals in two alternative ways, one with re-
spect to the hyperspherical coordinates and the other to the
independent particle coordinates, of which the latter gives
closed expressions while the former leaves the desired matrix
elements undetermined until the term-by-term comparison
fixes them.

Basic idea

Consider the matrix element

kkY h0j
z uo

i. j

dszi − zjduY h0j
z ll =

uY h0j
z u2

Rz
E

V
o
i. j

dSzi − zj

Rz
DdV,

Y h0j
z being constant. Meanwhile,

kkY h0j
z uY h0j

z ll = uY h0j
z u2E

V

dV = 1.

In consequence,

kkY h0j
z udszi − zjduY h0j

z ll =
1

Rz

E
V

dSzi − zj

Rz
DdV

E
V

dV

.

To obtain the necessary integrals, consider

E
V
o
i. j

dszi − zjde−Rz
2
dV

=E
0

`

NN/2Rz
N−2e−Rz

2
dRzE

V
o
i. j

dSzi − zj

Rz
DdV

= IN−2E
V
o
i. j

dSzi − zj

Rz
DdV

and also

E
V
o
i. j

dszi − zjde−Rz
2
dV=

NsN − 1d
2

s2I0dN−1

Î2

=
NsN − 1d

2

psN−1d/2

Î2
,

whereV stands for the unrestrictedN-dimensional space and

In ; E
0

`

jne−j2
dj =

1

2
GSn + 1

2
D .

Thus,

kkY h0j
z uo

i. j

dszi − zjduY h0j
z ll =

NsN − 1d
2

2Î2

p1/2N1/2

3

GSN

2
D

GSN − 1

2
D

1

Rz
.

In much the same way, we get

kkY h0j
r Y h0j

z uo
i. j

dsrWi − rW jduY h0j
r Y h0j

z ll

=
NsN − 1d

2

1
Î8p3

GsNdGSN

2
D

NGsN − 1dN1/2GSN − 1

2
D

1

Rr
2Rz

.

Generating function method

Given this demonstration, it is straightforward to see for
the isotropic trap that the following generating functions fa-
cilitate to evaluate integrals over the hypersphere involving
homogeneous and totally symmetric polynomials of higher
degrees, a technique that should be useful in describing low-
lying excitations in the hyperspherical approach. We use the
following two types of generating function. One is of the
Gaussian form and allows for angular correlations(type A);
the other is designed specifically for the particles in the
s-state(type B).

Type A

Consider the generating function in the form

G ; expH−
1

2
R2 − so

iÞ j

N

srWi · rW jdJ
= o

n=0
R2n expH−

1

2
R2JfnsVdsn. sA1d

We have

kGuGl = o
n,m

I2n+2m+3N−1Onmsmtm = p3/2h1 − ss+ td−3sN−1d/2j

3hsN − 1dss+ td + 1j−3/2,

where
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Onm=E fnfmdV, sA2d

kGuo
i=1

N

¹i
2uGl =

3N

2
p3N/2h1 − ss+ tdj−3sN−1d/2hsN − 1dss+ td

+ 1j−3/2sN − 1dss2 + t2d − sN − 2dss+ td − 1

s1 − s− tdhsN − 1dss+ td + 1j

= o
n,m

fhI2n+2m+3N+1 − s4m+ 3NdI2n+2m+3N−1

+ 2ms2m+ 3N − 2dI2n+2m+3N−3jOnm

+ I2n+2m+3N−3Lnm
2 g,

kGuo
i. j

dsrWi − rW jduGl =
NsN − 1d

2

1
Î8

p3sN−1d/2h1 − ss

+ tdj−3sN−2d/2hsN − 1dss+ td + 1j−3/2

= o
n,m

I2n+2m+3N−4Dnmsntm,

where Lnm
2 and Dnm are the grand angular momentum and

interaction matrix elements, respectively:

Lnm
2 =E

V3N−1
fnsV3N−1dL2fmsV3N−1ddV3N−1,

Dnm=E
V3N−1

fnsV3N−1do
i. j

dsrWi − rW jdfmsV3N−1ddV3N−1.

Type B

A particular example here employs a sixth-degree polyno-
mial in the exponent:

G ; expHso
i=1

N

ri + to
i=1

N

ri
2 + uo

i=1

N

ri
3 + vo

i=1

N

ri
4 + wo

i=1

N

ri
5

+ xo
i=1

N

ri
6 −

1

2
R2J

= p
i=1

N

expHsri + tr i
2 + uri

3 + vr i
4 + wri

5 + xri
6 −

1

2
r i

2J
= o

b

RM

pi=1

6
ni!

fbsVdexpS−
1

2
R2Dg, sA3d

where

g = sn1tn2un3vn4wn5xn6,

M = n1 + 2n2 + 3n3 + 4n4 + 5n5 + 6n6,

andb collectively representsn1,n2,n3,n4,n5,n6. We have

kGuGl =H4po
b

o
b8

IM+M8+2

pi=1

6
ni!pi=1

6
ni8!

gg8JN

= o
b,b8

IM+M8+3N−1Ob,b8gg8,

kGuo
i=1

N

¹i
2uGl = o

bb8
F 4p

pi=1

6
ni!pi=1

6
ni8!

hM8sM8 + 1dIM+M8 − s2M8 + 3dIM+M8+2 + IM+M8+4jGgg8

3F4p o
b,b8

IM+M8+2

pi=1

6
ni!pi=1

6
ni8!

gg8GN−1

= o
b,b8

fhM8sM8 + 3N − 2dIM+M8+3N−3 − s2M8 + 3NdIM+M8+3N−1 + IM+M8+3N+1jOb,b8 − IM+M8+3N−3Lb,b8ggg8,

kGuo
i. j

dsrWi − rW jduGl = o
b 3 4p2oi=1

6 sni+ni8d

2sM+M8+3d/2p
i=1

6

ni!p
i=1

6

ni8!

IM+M8+2gg84F4p o
b,b8

IM+M8+2

pi=1

6
ni!pi=1

6
ni8!

gg8GN−2

= o
b,b8

fIM+M8+3N−4Db,b8gg8g.

However, no proof or verification is presently given to the plausible completeness of the homogeneous multivariable polyno-
mials produced by this method.

The single-particle integrals in the above expressions can be symbolically expanded on the computer by iteration, and with
8-byte real numbers the matrix elements can be readily extracted for the lowest tens of elements for up toN=10 000 or so.

KUSHIBE et al. PHYSICAL REVIEW A 70, 063617(2004)

063617-10



[1] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman,
and E. A. Cornell, Science269, 198(1995); C. C. Bradley, C.
A. Sackett, J. J. Tollett, and R. G. Hulet, Phys. Rev. Lett.75,
1687(1995); K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J.
van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle,ibid.
75, 3969(1995); E. A. Cornell and C. E. Wieman, Rev. Mod.
Phys. 74, 875 (2002).

[2] N. N. Bogoliubov, J. Phys.(Moscow) 11, 23 (1947).
[3] E. P. Gross, Nuovo Cimento20, 454(1961); J. Math. Phys.4,

195 (1963); L. P. Pitaevskii, Pis’ma Zh. Eksp. Teor. Fiz.40,
646 (1961) [Sov. Phys. JETP13, 451 (1961)].

[4] J. L. Bohn, B. D. Esry, and C. H. Greene, Phys. Rev. A58,
584 (1998).

[5] D. Blume and Chris H. Greene, Phys. Rev. A66, 013601
(2002).

[6] Professor C. H. Greene kindly brought our attention to the
following two articles by Y. E. Kim and A. L.
Zubarev: namely, J. Phys. B33, 55 (2000) and 33, 3905
(2000).

[7] J. Macek, J. Phys. B1, 831 (1968).
[8] U. Fano, Rep. Prog. Phys.46, 97 (1983), and references

therein. For an interesting recent application of the hyper-
spherical method, see V. Kokoouline and C. H. Greene, Phys.
Rev. A 69, 032711(2004) as well as O. Sørensen, D. V. Fe-
dorov, and A. S. Jensen,ibid. 68, 063618(2003).

[9] S. Watanabe and C. D. Lin, Phys. Rev. A36, 511 (1987); T.
Morishita and C. D. Lin,ibid. 59, 1835 (1999); 67, 022511
(2003).

[10] J. Z. Tang, S. Watanabe, and M. Matsuzawa, Phys. Rev. A46,
2437 (1992); C. D. Lin, Phys. Rep.257, 1 (1995); S. Wa-
tanabe, T. Morishita, D. Kato, O. I. Tolstikhin, K. Hino, and
M. Matsuzawa, Nucl. Instrum. Methods Phys. Res. B124, 218
(1997); O. I. Tolstikhin, S. Watanabe, and M. Matsuzawa,
Phys. Rev. Lett.74, 3573 (1995); D. Kato and S. Watanabe,
ibid. 74, 2443(1995); T. Morishita, K. Hino, S. Watanabe, and
M. Matsuzawa, Phys. Rev. A53, 2345(1996).

[11] V. M. Pérez-García, H. Michinel, J. I. Cirac, M. Lewenstein,
and P. Zoller, Phys. Rev. A56, 1424(1997).

[12] L. Salasnich, A. Parola, and L. Reatto, Phys. Rev. A69,
045601(2004); also S. Stringari,ibid. 58, 2385(1998).

[13] D. S. Hall, M. R. Matthews, C. E. Wieman, and E. A. Cornell,

Phys. Rev. Lett.81, 1543(1998).
[14] H. Saito and M. Ueda, Phys. Rev. Lett.86, 1406 (2001); J.

Skalski, Phys. Rev. A65, 033626(2002); J. L. Roberts, N. R.
Claussen, S. L. Cornish, E. A. Donley, E. A. Cornell, and C. E.
Wieman, Phys. Rev. Lett.86, 4211(2001).

[15] D. L. Feder, C. W. Clark, and B. I. Schneider, Phys. Rev. A
61, 011601(2000).

[16] Q.-H. Park and J. H. Eberly, Phys. Rev. Lett.85, 4195(2000).
[17] T. Isoshima, M. Nakahara, T. Ohmi, and K. Machida, Phys.

Rev. A 61, 063610(2000). See also Ref.[28] below.
[18] A. V. Yulin and D. V. Skryabin, Phys. Rev. A67, 023611

(2003); A. Trombettoni and A. Smerzi, Phys. Rev. Lett.86,
2353(2001); D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner,
and P. Zoller,ibid. 81, 3108 (1998); O. Zobay, S. Pötting, P.
Meystre, and E. M. Wright, Phys. Rev. A59, 643 (1999).

[19] S. Stringari, Phys. Rev. Lett.77, 2360(1996).
[20] F. Dalfovo, S. Giorgini, M. Guilleumas, L. Pitaevskii, and S.

Stringari, Phys. Rev. A56, 3840(1997); B. D. Esry,ibid. 55,
1147 (1997); M. Edwards, P. A. Ruprecht, K. Burnett, R. J.
Dodd, and C. W. Clark, Phys. Rev. Lett.77, 1671(1996); P. A.
Ruprecht, M. Edwards, K. Burnett, and C. W. Clark, Phys.
Rev. A 54, 4178(1996).

[21] Here, the unit of length isÎ" /mv and that of energy is"v.
[22] J. Avery, Hyperspherical Harmonics: Applications in Quan-

tum Theory(Kluwer, Dordrecht, 1989) and references therein.
[23] The review article by Fano cited above[8] provides a compre-

hensive picture of the method up to 1983.
[24] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev.

Mod. Phys. 71, 463 (1999); A. J. Leggett, ibid. 73, 307
(2001).

[25] Our numerical method for the GP equation follows the work of
B. I. Schneider and D. L. Feder, Phys. Rev. A59, 2232(1999).

[26] D. K. Watson and B. A. McKinney, Phys. Rev. A59, 4091
(1999); B. A. McKinney and D. K. Watson,ibid. 65, 033604
(2002).

[27] M. Ueda and A. J. Leggett, Phys. Rev. Lett.80, 1576(1998).
[28] Z.-D. Chen, J.-Q. Liang, S.-Q. Shen, and W.-F. Xie, Phys. Rev.

A 69, 023611(2004); M. R. Andrews, C. G. Townsend, H.-J.
Miesner, D. S. Durfee, D. M. Kurn, and W. Ketterle, Science
275, 637 (1997).

ASPECTS OF HYPERSPHERICAL ADIABATICITY IN… PHYSICAL REVIEW A 70, 063617(2004)

063617-11


