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Generalizing the one-component case, we demonstrate that the propagation of sound waves in two-
component Bose-Einstein condensates can also be described in terms of effective sonic geometries under
appropriate conditions. In comparison with the one-component case, the two-component setup offers more
flexibility and several advantages. In view of these advantages, we propose an experiment in which the
evolution of the inflaton field, and thereby the generation of density fluctuations in the very early stages of our
universe during inflation, can be simulated, realizing aquantum simulation via analogue gravity models.
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I. INTRODUCTION

Within our present standard model of cosmology, basi-
cally all inhomogeneities—including the seeds for the forma-
tion of structures such as our galaxy—originate from quan-
tum fluctuations of a single scalar field, theinflaton [1,2].
This (postulated) field drives inflation, which is a stage of
very rapid expansion in the earliest evolutionary phase of our
universe[3]. Tracing the inflaton fluctuations back in time
and thereby undoing the redshift induced by the cosmic ex-
pansion, the anisotropies of the cosmic microwave back-
ground we observe today correspond to extremely short
wavelengths during inflation. As a result, the fluctuations of
the cosmic microwave background probe ultrahigh(e.g.,
Planckian) energy scales—which are experimentally inacces-
sible with the present-day and near-future available technol-
ogy of, for example, particle accelerators. At such ultrahigh
energies, quantum effects of gravity are expected to become
important—but the underlying physical theory for the de-
scription of these effects is not known yet. Consequently,
high-precision measurements of the cosmic microwave back-
ground might give us some insight into physics beyond well-
established theories(in particular, beyond the standard model
of particle physics).

In order to detect signatures of the new physics in the
anisotropies of the cosmic microwave background, one has
to investigate which kind of higher-order corrections and
correlations could potentially be induced by deviations from
the known laws of physics occurring at ultrahigh energies.
One way to achieve this aim is to consider analogous sys-
tems, based on laboratory physics, which reproduce major
features of the inflaton field, and which can therefore be used
to simulate the generation of(quantum) fluctuations and fur-
ther interesting effects—theoretically as well as experimen-
tally. This line of approach has come to be known under the
term analogue gravity/cosmology,see, e.g., Ref.[4]. The
consideration of these analogues leads to a better understand-
ing of the system to be simulated, in particular, regarding the
possible impact of high-energy degrees of freedom. As cos-
mology is essentially a purely observational branch of sci-
ence, because obviously we cannot do experiments on the
real system, i.e., the universe, the analogues also allow an
experimental verification of so far only theoretically pre-

dicted effects. Basically the same motivations underlie the
idea of quantum black-hole analogues(“dumb holes”[5–7]),
since the Hawking radiation of “real” gravity black holes has
its origin in (trans-) Planckian modes: The quanta emitted
necessarily come from regions very close to the black-hole
horizon, and experience a large redshift when finally de-
tected far away from the black hole[5,8].

A scalar field (such as the inflaton) within the curved
space-time structure of an expanding universe can be simu-
lated by propagating sound waves in single-component
Bose-Einstein condensates(BEC’s) [9]; previous consider-
ations on such effective acoustic geometries in single-
component BEC’s can be found in Refs.[7,10–13]. The ad-
vantage of BEC’s lies in the fact that the corresponding
parameters(such as local density and speed of sound) can be
controlled with atomic precision experimentally, and that the
underlying physics is well understood on all energy scales in
particular in the dilute case, for which the Gross-Pitaevskii
equation provides a rather accurate description of the order-
parameter dynamics. There are basically two possibilities for
simulating an expanding universe within a BEC: changing
the interparticle coupling or expanding the condensate(or a
combination of both) [11–13]. However, both methods come
with problems. First, a controlled expansion of the BEC
cloud requires a specific time-dependent trap; and further-
more, the density of the cloud rapidly decreases during the
expansion, leaving only a short time to do the experiment.
Second, in order to change the interparticle coupling drasti-
cally via a Feshbach resonance, by rapidly sweeping a time-
dependent external magnetic field, one has to go very close
to the resonance; one then encounters the problem that the
coupling constant effectively acquires an imaginary part due
to molecule formation in three-body recombination pro-
cesses[14,15], which spoils the desired effect. Third, a time-
dependent interparticle coupling would also induce a varia-
tion of the density and the size of the BEC cloud—unless the
trap is changed accordingly, which again is difficult(see first
point). Finally, one has to be able to measure the generated
fluctuations in order to simulate the inflaton field experimen-
tally.

In the present paper, we investigate whether it is possible
to overcome some of these problems in two-component
Bose-Einstein condensates, which are readily experimentally

PHYSICAL REVIEW A 70, 063615(2004)

1050-2947/2004/70(6)/063615(8)/$22.50 ©2004 The American Physical Society063615-1



available; the various components can be realized by trap-
ping different hyperfine ground states of the same atom
[16–19]. We start by describing in Sec. II how the collective
equations of motion for small fluctuations(i.e., sound waves)
in the two-component gas are obtained. In Sec. III, we show
that it is possible to map these equations of motion onto two
effective sonic metrics(bimetricity) under certain conditions.
The analogue of the Planck scale, where the concept of the
effective geometry breaks down, is discussed in Sec. IV. Sec-
tion V is devoted to the simulation of the de Sitter
geometry—i.e., to constructing an analogue for the inflaton
field during inflation. We discuss possible experimental real-
izations and measurement prescriptions to realize the desired
inflation quantum simulation in Sec. VI. The advantages and
drawbacks of the described method and further aspects are
summarized in Sec. VII.

We note that the inflaton has been mentioned in the con-
text of Bose-Einstein condensates previously[20]. However,
the discussion there has been rather qualitative. In particular,
the inflaton mode has not been related there to any effective
space-time metric of cosmological character(for example,
the de Sitter metric), in which its propagation ought to take
place. The latter is necessary to appropriately describe the
freezing process of the quantum fluctuations and the related
concept of a horizon, both of which we shall investigate for
de Sitter space-time in what follows.

II. EQUATIONS OF MOTION

In terms of the Madelung representation for the order pa-
rameter componentscasr ,td,

casr ,td = Î%asr ,td exphiSasr ,tdj, s1d

with the density%asr ,td and the phase(eikonal) Sasr ,td, the
Lagrangian density of a dilute two-component Bose-Einstein
condensate reads(we put"=1) [16]

L = − o
a
S%a]tSa +

%a

2ma
s=Sad2 +

s=Î%ad2

2ma
+ Va%aD

−
1

2o
a,b

gab%a%b. s2d

Here, the two masses of the atoms arema sa=1,2d, the one-
particle trapping potentials(which are generally different)
are given byVasr ,td, and the(symmetric) two-particle inter-
action coupling matrix is denotedgab.

Linearizing around a given, stationary background solu-
tion %a

0sr d and Sa
0sr d with va

0= =Sa
0/ma and neglecting the

quantum pressure terms~s=Î%ad2—which amounts to the
local density (Thomas-Fermi) approximation in one-
component Bose-Einstein condensates—leads to the second-
order effective action

Leff
s2d = − o

a
Fd%a]tdSa +

%a
0

2ma
s=dSad2 + d%ava

0 · = dSaG
− o

a,b

1

2
gabd%ad%b. s3d

Varying the above action with respect tod%a yields two
Bernoulli-type equations for the fluctuations,

DadSa + o
b

gabd%b = 0, s4d

where the co-moving derivative is defined to be

DadSa = ]tdSa + va
0 · = dSa. s5d

Using the above equation to eliminated%a from Leff
s2d, we

obtain a phases-only effective Lagrangian of the form

Leff
S = o

ab

1

2
sDadSadgab

−1sDbdSbd − o
a

%a
0

2ma
s=dSad2. s6d

The general wave equations for the phase fluctuationsdSa
then take the form

o
b

Dasgab
−1DbdSbd −

%a
0

ma
=2dSa = 0. s7d

These wave equations, in the general case, do not yet have
the pseudo-Lorentz invariance required to obtain effective
space-time metrics of Lorentzian signature.

III. EFFECTIVE GEOMETRY

So far, we have involved no specific assumptions about
the background densities and velocities as well as the con-
stituent masses. We now come to discuss a simple case in
which an effective metric description in terms of the
Painlevé-Gullstrand-Lemaître type[21] is viable.

As demonstrated in Ref.[22], the introduction of effective
geometries for multiple interacting fields is more involved
than the single-field case—where rather general assumptions
ensure the existence of an effective metric for the propaga-
tion of perturbations. In the case of multiple interacting
fields, there are the following three main possibilities:(i)
Owing to a lack of symmetry one cannot introduce a metric
at all (“pre-geometry”); (ii ) the perturbations effectively de-
couple and can be described by multiple metrics; or(iii ) all
the metrics coincide and there is one unique metric(repro-
ducing the principle of equivalence). There is also the
(fourth) possibility that the propagation of perturbations is
not equivalent to scalar(i.e., spin-zero) fields in curved
space-times, but to fields with higher, nonzero spin instead
(e.g., Dirac[23] or vector[24] fields).

Phonons in arbitrary two-component condensates corre-
spond to case(i) in general—even though one might diago-
nalize the dispersion relation, the full equations of motion do
not allow the introduction of an effective geometry(in the
most general situation). In order to arrive at an effective
metric, certain requirements on the background solution are
necessary. Let us assume that the parameters of the back-
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ground solution satisfy the following conditions:

v1
0 = v2

0 ; v D1 = D2 ; D,

%1
0

m1
=

%2
0

m2
;

%0

m
,

eigenvectorssgabd = const. s8d

The diagonalization of the(real and symmetric) coupling
matrix gab leads to eigenvaluesg±, given by

g± =
g11 + g22

2
±ÎSg11 − g22

2
D2

+ g12
2 . s9d

Note that—in contrast to the eigenvectors of the matrix
gab—its eigenvaluesg± are not required to be constant. By
virtue of the assumptions(8), the Lagrangian in Eq.(6) can
be diagonalized,

Leff
S =

1

2
g±

−1sDf±d2 −
%0

2m
s=f±d2 ;

1

2
Î− g±g±

mn]mf±]nf±,

s10d

wheref± denote the projections of the phase fluctuationsdSa
onto the(constant) eigenvectors ofgab and a summation con-
vention over indicesm ,n and ± is implied. In this(highly
symmetric) case, we therefore obtain twoindependently
propagating, i.e., decoupled modesf±, which feel effective
space-time metrics of the conventional(covariant) Painlevé-
Gullstrand-Lemaître form[25],

gmn
± =

%0

c±
Sc±

2 − v2 v

v − 1
D , s11d

where the two sound velocities arec±=Îg±%0/m and1 rep-
resents the unit matrix. As long as these two sound velocities
do not coincidec+Þc−, the system under consideration cor-
responds to the bi-metric case(ii ) discussed at the beginning
of this section.

The assumption in Eq.(8) that the eigenvectors ofgab be
constant can be satisfied, ifgab itself is constant, or if it is
sufficiently symmetric. We shall assumeg11=g22 in the fol-
lowing, because it allows both for a bi-metric approach and
an implementation of time-dependentg±=g±std. In this situ-
ation ofg11=g22;gdiag, the eigenvalues are simply given by
g±=gdiag±goff, where g12=g21;goff, and the eigenvectors
read

f± =
dS1 ± dS2

Î2
. s12d

If, in addition,gdiag<goff, which can be fulfilled to a high
degree of accuracy(on the level of 3%) between different
hyperfine species in87Rb (Ref. [18]) as well as in23Na (Ref.
[19]), we have one “hard” density modef+, and one “soft”
spin modef−. This separation of energy scales occurs close
to the point of spatial phase separation of the two compo-
nents, due to the increased interspecies repulsiongoff [16,17].

IV. DISPERSION RELATION
AND THE PLANCK SCALE

So far we discussed the effective geometry for low-energy
excitations(sound waves). The full dispersion relation, with-
out the Thomas-Fermi approximation(i.e., not neglecting the
quantum pressure terms) can be obtained via the JWKB ap-
proximation, which amounts to the geometrical optics limit
of quasiparticle propagation.

Combining the(linearized) equation of continuity,

isv + va
0 ·kdd%a =

%a
0

ma
k2dSa, s13d

and the Bernoulli-type equation(4) augmented with the
quantum pressure term on the right-hand side,

isv + va
0 ·kddSa + o

b

gabd%b = −
k2

4ma%a
0d%a, s14d

gives us two Bogoliubov dispersion relations of the usual
type. Using the assumptions(8), we obtain

S m

%0
sv± + v ·kd2 +

k4

4m%0
D = g±k2. s15d

The deviation from the linear(rest frame) dispersionv2

~k2 occurs at the two healing lengths,

j±
2 =

1

4m%0g±
. s16d

Accordingly, the analogues of the Planck length, the two
coherence lengthsj±, scale in the same way as the inverse
spin and density mode velocities,

j±
2c±

2 =
1

4m2 . s17d

V. DE SITTER SPACE-TIME
AND ANALOGUE INFLATON

The extreme dependence of the sound velocity of the spin
mode on the coupling matrixgab can be profitably used to
simulate a rapidly expanding universe via small temporal
changesgab=gabstd. A “spin horizon” for the spin mode
should be easier to realize experimentally than the sound
horizon of a one-component BEC, in view of the possibility
to manipulate the “spin” velocity such that it closely ap-
proaches zero.

The line elements for a background at rest,v=0, read

ds±
2 = %0Sc±dt2 −

1

c±
dr 2D . s18d

From now on we focus on one particular mode, the spin
mode, drop the subscripts ± in most of the following formu-
las, and furthermore setm=1 for convenience. We suppose
the background density%0 to remain essentially constant dur-
ing rapid variations ofg− (which is possible forVa=Vb, cf.
Sec. VII).
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Assuming a time dependence of the propagation
velocities/coupling constants,

c =
c0

H2t2
⇔ g =

g0

H4t4
, s19d

with H being the condensed-matter analogue of the Hubble
parameter in cosmology, we obtain the de Sitter metric

ds2 = %0c0Sdt2 − FeHt

c0
G2

dr 2D , s20d

with a transformed de Sitter time coordinatet=H−1 lnsHtd,
representing proper time(not equal to the laboratory time),
and the prefactor%0c0=const.

The corresponding Klein-Fock-Gordon equation

hf =
1

Î− g−

]msÎ− g−g−
mn]nfd = 0, s21d

with g− denoting the determinant of the metricgmn
− andg−

mn

the inverse of the metric, assumes in this case the simple
form (in three spatial dimensions)

S ]2

] t2 + 3H
]

] t
− e−2Ht fc0 = g2Df = 0. s22d

After a spatial mode expansion into plane waves(taking into
account isotropy and homogeneity), each mode behaves as a
damped harmonic oscillator with a time-dependent potential

S ]2

] t2 + 3H
]

] t
+ e−2Ht fc0kg2Dfk = 0. s23d

The evolution induced by the above equation of motion can
roughly be split up into three regimes.

(i) Oscillation: for very early times, we have
e−2Ht fc0kg2@H2; hence the damping term can be neglected
and the modes oscillate almost freely.

(ii ) Horizon crossing: at some point in time, the monoto-
nously decreasing terme−2Ht, corresponding to the expan-
sion of the universe, becomes small enough and the damping
term starts to play a role. Since the length scalec0/H corre-
sponds to the size of the particle horizon in an expanding(de
Sitter) universe, this is the point where the modes cross the
horizon and hence do not oscillate freely anymore.

(iii ) Freezing: for late times, we havee−2Ht fc0kg2!H2,
and hence the potential term can be neglected. This corre-
sponds to a strongly over-damped oscillator and thus the
modes do effectively not evolve anymore.

The same three essential stages undergoes the inflaton field
during the epoch of inflation in the very early universe, ac-
cording to our(present) standard model of cosmology[2].
Since the Hubble parameter during inflation is expected to be
significantly smaller than the Planck scale—otherwise the
(semiclassical) notion of a (quantum) field within a curved
space-time would not apply—the modes leave the Planck
regime(are “born”) nearly freely oscillating. Later on, with
increasingt, they cross the horizon and freeze. At the end of
inflation, the frozen quantum fluctuations of the inflaton field
are transferred into(classical) density fluctuations(decoher-

ence of the quantum state due to interaction with other de-
grees of freedom), which are in turn supposed to be the seeds
for structure formation in our universe represented, e.g., by
our galaxy.

VI. MEASUREMENT OF FLUCTUATIONS

In order to discuss the quantum state of the fluctuationsf̂,
it is convenient to introduce yet another time coordinate, i.e.,
the conformal timeh=−e−Ht /H=−1/sH2td, in terms of
which the de Sitter metric(20) can be cast into the confor-
mally flat form

ds2 =
%0c0

H2h2Sdh2 −
1

c0
2dr 2D . s24d

Expanding the phase operatorf̂ into plane-wave solutions of
the Klein-Fock-Gordon equation(21) in conformal time,

S ]2

] h2 −
2

h

]

] h
+ fc0kg2Dfkshd = 0, s25d

we have, for an arbitrarily chosen quantization volumeV, the
analytical expression

f̂sr ,hd = HÎ g0

2Vc0
3o

k

i − c0kh

Îk3
eik·r−ic0khâk + H.c. s26d

We introduced creation and annihilation operatorsâk
† andâk,

where theâk annihilate the “adiabatic” vacuum stateu0lad
(see, e.g., Ref.[26]),

âku0lad= 0. s27d

For early times(in the oscillating regimeh↓−`), the adia-
batic quantum vacuum state coincides to zeroth order with
the instantaneous ground state and is therefore a natural can-
didate for the vacuum state. As indicated above, after horizon
crossing, the fluctuations are frozen at late timest↑` h↑0.
In this regime, we obtain from Eq.(26) the expectation value

kf̂k
†f̂kl =

H2g0

2Vc0
3k3 ; ufk

0u2. s28d

We display the evolution of afk component of Eq.(26) and
the approach to the above “frozen” value in Fig. 1.

FIG. 1. Freezing process for the modesfk according to expres-
sion (26), with the absolute value of the frozenfk

0 given by Eq.
(28), displayed on a logarithmic laboratory time scalet.
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In complete analogy to the cosmic inflaton field, the ex-
pression(28) generates a scale-invariant spectrum: In view
of the d3k integration, the corresponding spatial correlation
function is (within the region of validity of the above ap-
proximations) invariant under rescalingkf̂−sr df̂−sr 8dl
.kf̂−slr df̂−slr 8dl, see, e.g., Ref.[27].

A. Phase-phase correlations

Let us investigate the impact of the frozen quantum fluc-
tuations on the(spatially) Fourier-transformed two-point
phase-phase correlation function defined as

Cfsk,td =E d3r exphik · r jkf̂−s0,tdf̂−sr ,tdl. s29d

Inserting Eq.(28) we obtain(after freezing)

Cfskd =
H2g0

2c0
3k3 . s30d

It appears that one could generate an arbitrarily strong effect
by increasing the Hubble parameterH, but this is a fallacy.
The validity of the approximations made requires that the
conditions c0k@H@cfinalk on the frequency scales hold
(with cfinal denoting the final value of the time-dependent
speed of sound), as well as that the long-wavelength limit
kj−std!1 is fulfilled. In order to estimate the maximally ob-
tainable effect, we insertH,c0k as well ask,kfinal

Planck with
kfinal

Planck denoting the inverse of the final healing length, i.e.,
the final Planck scale. The maximum effect of the dimen-
sionless quantitysDkd3Cfskd, i.e., the correlation within
some wave-number intervalsDkd3, then reads

sDkd3Cf
maxskd ,Î g0

gfinal

sDkd3

%0
,Î g0

gfinal

Î%0gfinal
3 S Dk

kfinal
PlanckD3

.

s31d

Since the concept of the effective geometry only applies for
k!kfinal

Planck, the maximum impact of the frozen quantum fluc-
tuations on the two-point phase-phase correlation function is
limited by the product of the ratioÎg0/gfinal@1 and the final
diluteness parameterÎ%0gfinal

3 —which is bound to be a quite
small quantity; for the spin mode of relevance here it is of
order 10−2

¯10−4.

B. Density-density correlations

In contrast to phase-phase correlations, which can only be
measured by time-of-flight measurements[29], density-
density correlations can be obtained directly, i.e.,in situ, for
example via(state-selective) absorption(such in situ mea-
surements are generally more difficult to be carried out,
though[29]).

The spatially Fourier-transformed two-point density-
density correlation function is defined, in a manner analo-
gous to its phase-phase counterpart in Eq.(29), to be

C%sk,td =E d3r exphik · r jkd%̂−s0,tdd%̂−sr ,tdl. s32d

Note that the expectation values in Eqs.(29) and (32) are
realized via statistical averages in any measurement since the
quantum state is not an eigenstate.

To calculate the density fluctuations, we have to derive
the time dependence of the phase fluctuations beyond the
zeroth-order(frozen) part fk

0. The approximate solution of
Eq. (23) respectively Eq.(25) for frozen inflaton modes,
transforming back to laboratory time, reads

fkstd = fk
0S1 +

c0
2k2

2H4t2
D + OS 1

t3
D . s33d

Since g~1/t4, the density fluctuations increase linearly in
time, cf. Eq.(4):

d%k = −
ḟk

g
= fk

0c0
2k2

g0
t + Ost0d. s34d

The overdot denotes a partial derivative with respect to labo-
ratory time. The sub-leading-termOst0d ensures the validity
of the canonical commutation relation for hydrodynamical
density and phase operators,fd%̂st ,r d ,f̂st ,r 8dg= idsr −r 8d.

Using the above relations(28) and(34), and inserting into
Eq. (32) yields

C%sk,td =
H2c0k

2g0
t2. s35d

In addition to the assumptions already discussed in the case
of phase-phase correlations(c0k@H@cfinalk andkj−std!1),
the total time duration of the sweep is limited by the maxi-
mally possible variation of the couplingtfinal

2 =c0/ scfinalH
2d,

according to Eq.(19). Again we estimate the maximally ob-
tainable effect by settingH,c0k,k,kfinal

Planck, and tfinal
2

=c0/ scfinalH
2d. Inserting into Eq.(35), the maximally obtain-

able relative change induced in the two-point density-density
correlation function in the wave-number intervalDk reads

sDkd3C%
maxsk,tfinald
%0

2 ,
H

cfinalc0

sDkd3

%0
, Î%0gfinal

3 S Dk

kfinal
PlanckD3

,

s36d

where the last relation also uses, fromkfinal
Planck,Î2%0gfinal,

that H<cfinal
Î%0g0=cfinalc0.

The density-density correlations are increasing with time.
However, the maximal relative change is still by a factor of
Îg0/gfinal@1 smaller than in the case of the phase-phase cor-
relations, Eq.(31). For density-density as well as phase-
phase quantum correlations, the final outcome is rather small
owing to the intrinsic smallness of the final diluteness param-
eterÎ%0gfinal

3 .

C. Amplification in the unstable regime

It became evident in the preceding considerations that the
impact of the frozen vacuum fluctuations is in principle ob-
servable, but rather weak. Therefore it is desirable to find

QUANTUM SIMULATION OF COSMIC INFLATION IN … PHYSICAL REVIEW A 70, 063615(2004)

063615-5



some mechanism for the amplification of the fluctuations be-
fore measuring them. As one possibility, we propose chang-
ing the sign ofg− after the inflation phase, i.e., switching to
the unstable regime, for a short period of time. If this change
in g− occurs much faster than the(frozen) dynamics of the
field f−, we may apply the sudden approximation, assuming
a step-function-like change ofg− from a small and positive
g−

in to a small negative valueg−
out.

Within the sudden approximation, the relation of the be-
havior of the field f− just before sf−

in,ḟ−
ind and after

sf−
out,ḟ−

outd the rapid change ofg− from g−
in.0 to g−

out,0 can
be obtained from the equations of motion

f−
insr ,td = f−

outsr ,td,

1

g−
inḟ−

insr ,td =
1

g−
outḟ−

outsr ,td. s37d

The latter equality is equivalent tod%−
insr ,td= d%−

outsr ,td. As-
suming a constantg−

out,0 after the transition to the unstable
region, the subsequent time evolution is simply given by the
superposition of the two independent solutions of imaginary
spin mode frequency,

fk
outstd = Ak expH+Î%0ug−

outuk2

m
tJ

+ Bk expH−Î%0ug−
outuk2

m
tJ . s38d

Fluctuations with large wave numbers(but still small com-
pared to the Planck scale) grow faster. Note that this behav-
ior is opposite to that of the gravitational(Jeans) instability
in the early universe, where small wave numbers experience
a stronger amplification—larger structures collapse faster
due to the gravitational attraction than inhomogeneities on
smaller length scales[27,28].

If we had ḟk
out/fk

out=−Î%0ug−
outuk2/m, the factorAk and

hence the growing component of the solution would exactly
vanish. However, during the phase of freezing, the time de-
rivative ḟk decreases and is finally suppressed by a factor of
Îcfinal /c0. Hence the exponentially increasing partAk does
contribute in a roughly equal amount,Ak <Bk. As a result,
we obtain a drastic amplification of the phase(and also den-
sity) fluctuations until the nonlinear regime(that is, phase
separation[17]) is reached, where the fluctuations are not
small compared to the order parameter itself anymore. Con-
sequently, one would expect the fluctuations to be
measurable—with state-selective absorption imaging, for
example—provided that all other perturbations are small
enough(see the next section).

VII. CONCLUSIONS

In summary, it is possible to simulate the behavior of the
inflaton field—more accurately, its quantum fluctuations—
within two-component Bose-Einstein condensates. If we de-
creaseg− with time according to Eq.(19), the phase fluctua-
tions f− (i.e., the spin mode) experience an effective de

Sitter metric, and hence undergo the three stages of free os-
cillation, horizon crossing, and freezing explained in Sec. V.
The frozen initial quantum fluctuations can be measured af-
ter an amplification phase, in which the coupling matrix is
tuned tog−,0.

The difference of the spectra(in k space) of the frozen
initial quantum fluctuations(with an approximately scale in-
variant spectrum~ 1/k3) and the usual quantum fluctuations
of a condensate at rests~ 1/kd provides one possibility to
distinguish the signal from other effects. As another option
for a consistency check, one could keep the couplingg−
.0 constant for a given time duration after the de Sitter
phase (which has a decreasingg−~ t−4.0) and before
switching to the unstable regimeg−,0. This way, one would
allow the modes to freely oscillate again before amplifica-
tion, and thereby suppress those modes which are in the sec-
ond or fourth quarter of their period(i.e., have a decreasing
amplitude) at the moment of switching to the unstable re-
gime. This intermediate phase of small constantg−.0 would
be roughly analogous to the epoch after inflation, and the
suppression mechanism is similar to the suppression of
modes in the cosmic microwave background, leading to the
peaks and valleys in its power spectrum[30].

A. Advantages

In comparison with the one-component case, the realiza-
tion of an effective geometry simulating the expansion of the
universe in a two-component Bose-Einstein condensate has
several advantages: First, in order to generate large relative
variations of the spin couplingg−, it is not necessary to go
near the Feshbach resonance, and therefore the problems as-
sociated with molecule formation(inducing an imaginary
part in the coupling constant) mentioned in the introduction
are not relevant. Second, it is possible to changeg− while
sustaining a constant background density: AssumingVa=Vb

andg+=const, we obtainva
0=0 and%−

0=0, %̇+
0=0 as a valid

solution even for time-dependentg−std. Third, it is possible
to amplify the fluctuations in the unstable regimeg− without
necessarily destroying the condensate by phase separation.

B. Experimental parameters

In order to discuss the experimental feasibility of the pro-
posed quantum simulation of the inflaton, it is necessary to
provide an estimate for the experimental parameters in-
volved. If we assume that we may achieve essentially equal
initial healing lengths for the spin and the density modej−

in

<j+
in=Os100 nmd, we may simulate an expansion of the uni-

verse corresponding to more than onee-folding (i.e., HDt
.1), arriving at the final healing lengthsj−

out=Os1 mmd and
j+

out=j+
in=Os100 nmd. Although onee-folding is tiny com-

pared to the expansion during inflation(which involves
many orders of magnitude), one can still reproduce generic
features(such as freezing). Since the concept of the effective
geometry only applies for wavelengths large compared to the
healing length(the analogue of the Planck scale), the char-
acteristic size of the interesting structures(and hence the size
of the condensate cloud) should be several micrometers—
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which can be resolved with optical methods(e.g., state-
selective resonant absorption imaging).

Furthermore, the measurability of the quantum fluctua-
tions requires the absence of any other fluctuations(noise)
which may swamp the signal. Assuming an initial speed of
sound of about 1 mm/sec, a mode with a wavelength of a
few µm corresponds to an initial frequency somewhere be-
low 1 kHz. Hence one should avoid temperatures above 100
nK, for which the thermal fluctuations exceed the(to be mea-
sured) quantum fluctuations(assuming no thermalization
during the experiment). For the parameters specified above,
the Hubble parameter determining the timescale for changing
g− would also be below 1 kHz. This should represent no
problem as it is possible to change the coupling constants
(i.e., the external magnetic field) on the time scale of some
microseconds.

Although quite challenging, the proposed experiment
should thus in principle be feasible with present-day technol-
ogy.

C. Planckian problem

Apart from simulating the inflaton field experimentally
(quantum simulation via analogue), one of the long-term mo-
tivations of the present work was to be able to ultimately
investigate the impact of the behavior at the effective Planck
scale on the frozen fluctuations(as explained in the introduc-
tion). For dilute Bose-Einstein condensates, the behavior for
small wavelengths(i.e., below the healing length) is in some
sense trivial—the excitations are free particles of massm
(the constituent atoms), with v=k2/ s2md. More importantly,
though, the healing length increases with time according to
Eqs. (16) and (19)—i.e., it grows during the expansion—
which is (almost) certainly not a realistic feature of the real
Planck length. In order to circumvent this obstacle, one could
introduce another cutoff scale which is sensitive to frequen-
cies instead of wave numbers. For example, via exposing the
condensate to monochromatic radiation with a detuned radio
frequencyv=v0−Dv with v0 being the frequency of a suit-
able hyperfine transition andDv the detuning, one may
frequency-selectively couple phonons with the frequencyDv
to that transition. In that case,Dv would be a reasonable
analogue of the Planck scale, by fixing a frequency scale at
which free phonon propagation is cut off.

D. Outlook

After succeeding to measure the main effect—the fact that
quantum fluctuations of the inflaton field in de Sitter space-
time get frozen at a specific value—we can start to manipu-
late the behavior at the effective Planck scale and study its
impact on the frozen fluctuations. The exciting prospect of
undertaking such manipulations of Planck scale physics is
that one might be able to experimentally investigate ana-
logue signatures of new(trans-Planckian) physics in the
anisotropies of the cosmic microwave background; such pos-
sible signatures of trans-Planckian physics are discussed,
e.g., in Ref.[31].

We, finally, mention that a further interesting aspect of the
scale separation of independently propagating spin and den-
sity modes is the possible implementation of a variant of the
supersonical “warp drives” proposed in Ref.[32]. The refer-
ence frame, against which the “superluminal” motion of the
f− mode is measured, is not provided by the laboratory
frame, like in Ref.[32], but by thef+ mode, which has
effectively instantaneous signal transfer on the time scales of
the f− mode. In addition, the “hard”f+ mode is essentially
flat on the curvature radius scale of thef− mode, i.e., ap-
pears to be essentially Minkowski space-time as seen from
the f− mode. The Minkowski background of thef+ mode
represents a necessary prerequisite for “superluminal” travel
in warped space-times to be operational and definable, be-
cause it enables the comparison of two metrics, one of them
flat and the other curved, on the same manifold[33]. In con-
trast to the single Euler-fluid case of Ref.[32], in the pres-
ently discussed two-component Bose-Einstein-condensed
gas both of these metrics obey Lorentz invariance.
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