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Quantum simulation of cosmic inflation in two-component Bose-Einstein condensates
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Generalizing the one-component case, we demonstrate that the propagation of sound waves in two-
component Bose-Einstein condensates can also be described in terms of effective sonic geometries under
appropriate conditions. In comparison with the one-component case, the two-component setup offers more
flexibility and several advantages. In view of these advantages, we propose an experiment in which the
evolution of the inflaton field, and thereby the generation of density fluctuations in the very early stages of our
universe during inflation, can be simulated, realizinguantum simulation via analogue gravity models

DOI: 10.1103/PhysRevA.70.063615 PACS nuni®er03.75.Kk, 04.62+v, 98.80.Cq

[. INTRODUCTION dicted effects. Basically the same motivations underlie the
Within our present standard model of cosmology, basi{dea of quantum black-hole analoguésumb holes’[5-7]),
since the Hawking radiation of “real” gravity black holes has

cally all inhomogeneities—including the seeds for the forma- e : '
tion of structures such as our galaxy—originate from quanltS 0rigin in (transj Planckian modes: The quanta emitted

tum fluctuations of a single scalar field, thflaton [1,2.  necessarily come from regions very close to the black-hole
This (postulategl field drives inflation, which is a stage of horizon, and experience a large redshift when finally de-
very rapid expansion in the earliest evolutionary phase of oufected far away from the black hof8,8].

universe[3]. Tracing the inflaton fluctuations back in time A scalar field(such as the inflatonwithin the curved
and thereby undoing the redshift induced by the cosmic exSPace-time structure of an expanding universe can be simu-
lated by propagating sound waves in single-component

pansion, the anisotropies of the cosmic microwave bac'jiose-Einstein condensatéBEC’s) [9]; previous consider-

ground we obsc_arve_ today correspond to extremel_y shor, tions on such effective acoustic geometries in single-
Wavelengt_hs dyrlng inflation. As a result, the fluctu_atlons o] component BEC's can be found in Refg,10-13. The ad-
the cosmic microwave background probe ultrahi@hg., \aniage of BEC's lies in the fact that the corresponding
P.Ianck|.ar) energy scales—which are expenmen_tally inaccesyarametergsuch as local density and speed of sourah be
sible with the present-day and near-future available technoleonrolled with atomic precision experimentally, and that the
ogy of, for example, particle accelerators. At such ultrahighynderlying physics is well understood on all energy scales in
energies, quantum effects of gravity are expected to becomgarticular in the dilute case, for which the Gross-Pitaevskii
important—but the underlying physical theory for the de-equation provides a rather accurate description of the order-
scription of these effects is not known yet. Consequentlyparameter dynamics. There are basically two possibilities for
high-precision measurements of the cosmic microwave baclsimulating an expanding universe within a BEC: changing
ground might give us some insight into physics beyond well-the interparticle coupling or expanding the condensgatea
established theorig particular, beyond the standard model combination of both[11-13. However, both methods come
of particle physics with problems. First, a controlled expansion of the BEC
In order to detect signatures of the new physics in thecloud requires a specific time-dependent trap; and further-
anisotropies of the cosmic microwave background, one hasiore, the density of the cloud rapidly decreases during the
to investigate which kind of higher-order corrections andexpansion, leaving only a short time to do the experiment.
correlations could potentially be induced by deviations fromSecond, in order to change the interparticle coupling drasti-
the known laws of physics occurring at ultrahigh energiescally via a Feshbach resonance, by rapidly sweeping a time-
One way to achieve this aim is to consider analogous sysdependent external magnetic field, one has to go very close
tems, based on laboratory physics, which reproduce majdo the resonance; one then encounters the problem that the
features of the inflaton field, and which can therefore be usedoupling constant effectively acquires an imaginary part due
to simulate the generation ¢uantum fluctuations and fur- to molecule formation in three-body recombination pro-
ther interesting effects—theoretically as well as experimeneesse$14,15, which spoils the desired effect. Third, a time-
tally. This line of approach has come to be known under thelependent interparticle coupling would also induce a varia-
term analogue gravity/cosmologyee, e.g., Ref[4]. The tion of the density and the size of the BEC cloud—unless the
consideration of these analogues leads to a better understarithp is changed accordingly, which again is diffigqgee first
ing of the system to be simulated, in particular, regarding theoint). Finally, one has to be able to measure the generated
possible impact of high-energy degrees of freedom. As cosfluctuations in order to simulate the inflaton field experimen-
mology is essentially a purely observational branch of scitally.
ence, because obviously we cannot do experiments on the In the present paper, we investigate whether it is possible
real system, i.e., the universe, the analogues also allow & overcome some of these problems in two-component
experimental verification of so far only theoretically pre- Bose-Einstein condensates, which are readily experimentally
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available; the various components can be realized by trap- @ Qg 5 0

ping different hyperfine ground states of the same atom L == 2> | 80a%dS,+ om (V3S)“+ 0.V, - V 65,

[16—19. We start by describing in Sec. Il how the collective a a

equations of motion for small fluctuatioise., sound waves 1

in the two-component gas are obtained. In Sec. Ill, we show - Eb 59ab59a59b- 3)
a,

that it is possible to map these equations of motion onto two
effective sonic metricgbimetricity) under certain conditions. Varying the above action with respect @p, yields two
The analogue of the Planck scale, where the concept of thBernoulli-type equations for the fluctuations,

effective geometry breaks down, is discussed in Sec. IV. Sec-

tion V is devoted to the simulation of the de Sitter D,JS, + > 0an00, =0, (4)
geometry—i.e., to constructing an analogue for the inflaton b

field during inflation. We discuss possible experimental realx

S - . ; Vgﬁere the co-moving derivative is defined to be
izations and measurement prescriptions to realize the desire

inflation quantum simulation in Sec. VI. The advantages and D,8S,= 4,65, + V2 - V 85, (5)
drawbacks of the described method and further aspects are _ . @
summarized in Sec. VII. Using the above equation to eliminatip, from L, we

We note that the inflaton has been mentioned in the conbtain & phases-only effective Lagrangian of the form

text of Bose-Einstein condensates previoy&§]. However, 1 0°

the discussion there has been rather qualitative. In particular, £ = >, =(D.6S)0,:(DpdS) - > —=(VS)%.  (6)

the inflaton mode has not been related there to any effective ab 2 a 2My

space-time metric of cosmological charac{er example, The general wave equations for the phase fluctuatiifs

the de Sitter metrig in which its propagation ought to take then take the form

place. The latter is necessary to appropriately describe the

freezing process of the quantum fluctuations and the related i Qg )

concept of a horizon, both of which we shall investigate for > Da(055D60S) - .V 9%=0. (7

de Sitter space-time in what follows. b a
These wave equations, in the general case, do not yet have
the pseudo-Lorentz invariance required to obtain effective

II. EQUATIONS OF MOTION space-time metrics of Lorentzian signature.

In terms of the Madelung representation for the order pa- Il. EFFECTIVE GEOMETRY
rameter componentg,(r ,t),
So far, we have involved no specific assumptions about
N the background densities and velocities as well as the con-
Pa(r 1) = Veu(r,t) expliSy(r, 1)}, (1) stituent masses. We now come to discuss a simple case in
which an effective metric description in terms of the

, , ) Painlevé-Gullstrand-Lemaitre typ21l] is viable.
with the .denS'tyQ.a(r ) anq the phaséeikona) S(r,t), the . As demonstrated in Reff22], the introduction of effective
Lagrangian density of a dilute two-component Bose-Einsteinyeometries for multiple interacting fields is more involved
condensate reads/e putfi=1) [16] than the single-field case—where rather general assumptions
ensure the existence of an effective metric for the propaga-
2 tion of perturbations. In the case of multiple interacting
£=-3 (Qa(;,tsaJr La yg)24 (VVead)” | VaQa) fields, there are the following three main possibilitigs:
a 2m, 2m, Owing to a lack of symmetry one cannot introduce a metric
1 at all (“pre-geometry’y; (ii) the perturbations effectively de-
-=> Uab020b- 2) couple and can be described by multiple metrics(iioy all
2%0 the metrics coincide and there is one unique meepro-
ducing the principle of equivalengeThere is also the
(fourth) possibility that the propagation of perturbations is
Here, the two masses of the atoms arg(a=1,2), the one- ot equivalent to scalati.e., spin-zerp fields in curved
particle trapping potentialgwhich are generally different  space-times, but to fields with higher, nonzero spin instead
are given by,(r,t), and the(symmetrig two-particle inter- (e.g., Dirac[23] or vector[24] fields).
action coupling matrix is denoteghy, Phonons in arbitrary two-component condensates corre-
Linearizing around a given, stationary background soluspond to casé) in general—even though one might diago-
tion @3(r) and S)(r) with vi=VS)/m, and neglecting the nalize the dispersion relation, the full equations of motion do
quantum pressure terms(Vyg,)>—which amounts to the not allow the introduction of an effective geomein the
local density (Thomas-Fermi approximation in one- most general situationIn order to arrive at an effective
component Bose-Einstein condensates—leads to the seconwetric, certain requirements on the background solution are
order effective action necessary. Let us assume that the parameters of the back-
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ground solution satisfy the following conditions: IV. DISPERSION RELATION
AND THE PLANCK SCALE

So far we discussed the effective geometry for low-energy
excitations(sound waves The full dispersion relation, with-

0 0
@1_02_ Qo out the Thomas-Fermi approximatigire., not neglecting the
m m m’ gquantum pressure terinean be obtained via the JWKB ap-
proximation, which amounts to the geometrical optics limit
eigenvectorgy,,) = const. (8) of quasiparticle propagation.

Combining the(linearized equation of continuity,
The diagonalization of théreal and symmetrjccoupling

0
matrix g, leads to eigenvalues., given by i(w+V2-K) S0, = &kzésd, (13)
2 Ma
9. = 911% G20, \/< g”_gzz) + . (99 and the Bernoulli-type equatiopd) augmented with the
2 2 quantum pressure term on the right-hand side,
Note that—in contrast to the eigenvectors of the matrix ) 0 k2
ga—its eigenvaluesy, are not required to be constant. By i(w+V]-K)0S,+ 2 Gapd0n =~ m@a, (14)
virtue of the assumption@), the Lagrangian in Eq6) can b aQa
be diagonalized, gives us two Bogoliubov dispersion relations of the usual
1 0 1 type. Using the assumptiori8), we obtain
L3750 (DG~ 22 (Vo) = ~\=0.04"0, .0, m K
o2 2m 2 g (—(wi+v k)2 + ) = g.k2. (15)
(10) Qo 4mgo

- . . . 5
where, denote the projections of the phase fluctuatiogs The deviation from the lineafrest frame dispersion w

> .
onto the(constany eigenvectors of,, and a summation con- »k® oceurs at the two healing lengths,
vention over indicesu,v and + is implied. In this(highly ) 1
symmetrig case, we therefore obtain twmdependently &= 4moogs”
propagating i.e., decoupled modeg., which feel effective 09
space-time metrics of the conventiorgabvarianj Painlevé-  Accordingly, the analogues of the Planck length, the two

(16)

Gullstrand-Lemaitre fornpi25], coherence lengthg,, scale in the same way as the inverse
spin and density mode velocities,
gi _ QO(CE_VZ v ) (11) 1
MV — ! 2.2 _ _—
(o % 1 &cei= et (17
where the two sound velocities acg=+g,0,/m and1 rep-
resents the unit matrix. As long as these two sound velocities
do not coincidec, # c_, the system under consideration cor-
responds to the bi-metric cagé) discussed at the beginning V. DE SITTER SPACE-TIME
of this section. AND ANALOGUE INFLATON
The assumption in E¢8) that the eigenvectors af,, be The extreme dependence of the sound velocity of the spin

constant can be sat'isfied,ggb itself is constant, or ifitis mode on the coupling matrig,, can be profitably used to
sufficiently symmetric. We shall assunge, =gy, in the fol-  gimylate a rapidly expanding universe via small temporal
Iow_lng, because_ it allows both for a bi-metric app_roa_ch a”dchangesgab=gab(t). A “spin horizon” for the spin mode

an implementation of time-dependegt=g.(t). In this situ-  ghoyid be easier to realize experimentally than the sound
ation 0fg11=07>= Gaiag the eigenvalues are simply given by norizon of a one-component BEC, in view of the possibility
9: =Jdiagt Jofi» Where g1,=021=0orr, and the eigenvectors o manipulate the “spin” velocity such that it closely ap-
read proaches zero.

_ 531;_682 The line elements for a background at rest0, read

: 12
7z (12

on 1

d€ = Qo(cidtz - —dr2> : (18)
If, in addition, ggiag™ Jofr, Which can be fulfilled to a high Ce
degree of accuracyon the level of 3% between different From now on we focus on one particular mode, the spin
hyperfine species ifYRb (Ref.[18]) as well as i"*Na (Ref.  mode, drop the subscripts + in most of the following formu-
[19]), we have one “hard” density modg,, and one “soft” las, and furthermore seh=1 for convenience. We suppose
spin modeg_. This separation of energy scales occurs closehe background densitg, to remain essentially constant dur-
to the point of spatial phase separation of the two compoing rapid variations ofy_ (which is possible folV,=V,, cf.
nents, due to the increased interspecies reputkjpil6,17. Sec. VI).
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Assuming a time dependence of the propagatiorence of the quantum state due to interaction with other de-

velocities/coupling constants, grees of freedom which are in turn supposed to be the seeds
. g for structure formation in our universe represented, e.g., by
0 0
=—> o g=—, 19 our galaxy.
2z ~ 97 e (19
with H being the condensed-matter analogue of the Hubble VI. MEASUREMENT OF FLUCTUATIONS

parameter in cosmology, we obtain the de Sitter metric _ 2
In order to discuss the quantum state of the fluctuatipns

_ | €7 2 it is convenient to introduce yet another time coordinate, i.e.,
dSZ_QOCC’(dTZ [c }dr ) 20 the conformal time p=—€"7/H=-1/(H%), in terms of

0
) ] ] ] which the de Sitter metri¢20) can be cast into the confor-
with a transformed de Sitter time coordinateH™* In(Ht), mally flat form

representing proper tim@got equal to the laboratory tinpe

eHT

and the prefactop,c,=const. _ Q0o , 1.5
The corresponding Klein-Fock-Gordon equation ds*= H27? dr ngr ' (24)
O¢= L(y (V-9.g""9,¢) =0, (21)  Expanding the phase operaipiinto plane-wave solutions of
[—g_ " ! the Klein-Fock-Gordon equatiof2l) in conformal time,
with g denoting the determinant of the metd¢, and g~” # 29
the inverse of the metric, assumes in this case the simple a2 pan +[cok]? | (7)) =0, (25)
. . . - non
form (in three spatial dimensions
) we have, for an arbitrarily chosen quantization volu¢he
(‘9_ + SHi - g,V ]2> $=0. (22) analytical expression
J aT ]
. . L - _ % 1= CoK7 jyericoka
After a spatial mode expansion into plane wagteging into o(r,m)=H ZVQS)E N g+ H.c. (26)
kY

account isotropy and homogengitgach mode behaves as a
damped harmonic oscillator with a time-dependent potentiajye introduced creation and annihilation Operaﬁﬁrandah

P2 P where thed, annihilate the “adiabatic” vacuum stal@),q
(— +3H—+ e‘2HT[cok]2> & =0. (23)  (see, e.g., Ref26)),
a7 ar
The evolution induced by the above equation of motion can 80)aq=0. (27)
roughly be split up into three regimes. For early times(in the oscillating regimey | —=), the adia-

(i) Oscillation: for very early times, we have bati<_: guantum vacuum state coinci(_jes to zeroth order with
e M7 [c,k]2>HZ hence the damping term can be neglecteothe instantaneous ground state.anq is therefore a natural_ can-
and the modes oscillate almost freely. dldatg for the vacuum state. As indicated abpve, after horizon

(ii) Horizon crossing: at some point in time, the monoto-05SINY; t.he quctuaﬂons are frozen at late rries ~ 710.
nously decreasing terra"", corresponding to the expan- In this regime, we obtain from E@26) the expectation value

sion of the universe, becomes small enough and the damping ~pn H2g,
term starts to play a role. Since the length saglH corre- (i) = W
sponds to the size of the particle horizon in an expandiieg R
Sitten universe, this is the point where the modes cross th&ve display the evolution of &, component of Eq(26) and
horizon and hence do not oscillate freely anymore. the approach to the above “frozen” value in Fig. 1.

(i) Freezing: for late times, we hawe?'7[cok [><H?,
and hence the potential term can be neglected. This corre-
sponds to a strongly over-damped oscillator and thus the Imgy(t)]
modes do effectively not evolve anymore.

= |42 (29)

The same three essential stages undergoes the inflaton field

during the epoch of inflation in the very early universe, ac- 10 O O R VY A N 7]
cording to our(present standard model of cosmolod]. \/ 0.1 Nz~ 05 2
Since the Hubble parameter during inflation is expected to be ok
significantly smaller than the Planck scale—otherwise the

(semiclassicalnotion of a(quantum field within a curved
space-time would not apply—the modes leave the Planck
regime(are “born” nearly freely oscillating. Later on, with
increasingr, they cross the horizon and freeze. At the end of ~ FIG. 1. Freezing process for the modgsaccording to expres-
inflation, the frozen quantum fluctuations of the inflaton fieldSIon (26), with the absolute value of the frozeff; given by Eq.
are transferred intéclassical density fluctuationgdecoher-  (28), displayed on a logarithmic laboratory time scale
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In complete analogy to the cosmic inflaton field, the ex- ~ .
pression(28) generates a scale-invariant spectrum: In view Colk,1) =J d®r explik - r}(50-(0,)50_(r,1)). (32
of the d°k integration, the corresponding spatial correlation
function is (within the region of validity of the above ap- Note that the expectation values in Eq29) and (32) are
proximations invariant under resca”ng«%_(r):ﬁ_(r ’)> realized via statistical averages in any measurement since the
I o , guantum state is not an eigenstate.
=(¢-(Ar)¢-(\r"), see, e.g., Ref27]. To calculate the density fluctuations, we have to derive
the time dependence of the phase fluctuations beyond the
A. Phase-phase correlations zeroth-order(frozen part ¢E. The approximate solution of
Eq. (23) respectively Eq.(25) for frozen inflaton modes,

Let us investigate the impact of the frozen quantum ﬂuc'transforming back to laboratory time, reads

tuations on the(spatially Fourier-transformed two-point
phase-phase correlation function defined as

c2k? 1
a= i) eol3) @

C(,)(k,t):f dr explik -r($-(0,0-(r,1). (29  sincegx1/t4 the density fluctuations increase linearly in
time, cf. Eq.(4):

Inserting Eq.(28) we obtain(after freezing : 2.2
_ b _ 0K 0
5 00k = = ¢~ t+O(t). (34)
Cylk) = 00 (30) oW
¢ 2c3k3” The overdot denotes a partial derivative with respect to labo-

ratory time. The sub-leading-ter@(t®) ensures the validity

It appears that one could generate an arbitrarily strong effe@f the canonical commutation relation for hydrodynamical
by increasing the Hubble parametey but this is a fallacy.  gensity and phase operatofsp(t,r), ¢(t,r")]=idr -r").
The y_alldlty of the approximations made requires that the Using the above relatior@8) and(34), and inserting into
conditions cgk>H>c;,,k on the frequency scales hold ;

X i i 4 Eqg. (32) yields
(with ¢, denoting the final value of the time-dependent
speed of sound as well as that the long-wavelength limit
ké_(t) <1 is fulfilled. In order to estimate the maximally ob-
tainable effect, we inseil ~ cok as well ask~ k@' with N _ _ _
kP'ank denoting the inverse of the final healing length, i.e.,In addition to the assumptions already discussed in the case
the final Planck scale. The maximum effect of the dimen-Of phase-phase correlatiofgk>H> Cypak andké () <1),
sionless quantity(Ak)3C,4(k), i.e., the correlation within the total time duration of the sweep is limited by the maxi-
some wave-number intervéhk)3, then reads mally possible variation of the coupling,,=Co/ (CrinaH?),

according to Eq(19). Again we estimate tr|1e Lnaximally ob-
Planc|

. . 2
AK)3 Ak \3 tainable effect by settingH~ cok,k~Kg,a' s and tg .
ggo (g) ~ 4/ ggo \,Qogﬁnm( ) =co/ (CingH?). Inserting into Eq(35), the n1lrz]aaximally obtain-
final 0 final

able relative change induced in the two-point density-density
(31 correlation function in the wave-number intervsik reads

Hzcokt2

: 35
29 (39

Colk,t) =

Planck
final

(AKC(K) ~

Since the concept of the effective geometry only applies for (Ak)scglax(k’tﬁnal) __H (Ak)°® - V/Q R ( Ak )3
k<kfai® the maximum impact of the frozen quantum fluc- 02 CinalCo €0 OFfinall yPlanck)
tuations on the two-point phase-phase correlation function is (36)

limited by the product of the rati9@gy/ gsina > 1 and the final
diluteness parametefo,gs,,—which is bound to be a quite where the last relation also uses, frdfiai™“~ \20Gsinal
small quantity; for the spin mode of relevance here it is ofthat H = Cfina\€090= ChinalCo-
order 10%---10°%. The density-density correlations are increasing with time.
However, the maximal relative change is still by a factor of
V0o/ Grinas=> 1 smaller than in the case of the phase-phase cor-
relations, EqQ.(31). For density-density as well as phase-
In contrast to phase-phase correlations, which can only bphase quantum correlations, the final outcome is rather small
measured by time-of-flight measuremerfiz9], density- owing to the intrinsic smallness of the final diluteness param-
density correlations can be obtained directly, iie situ, for eter\s’Qogﬁ’nal.
example via(state-selectiveabsorption(suchin situ mea-
surements are generally more difficult to be carried out,
though[29)).
The spatially Fourier-transformed two-point density- It became evident in the preceding considerations that the
density correlation function is defined, in a manner analoimpact of the frozen vacuum fluctuations is in principle ob-
gous to its phase-phase counterpart in &§), to be servable, but rather weak. Therefore it is desirable to find

B. Density-density correlations

C. Amplification in the unstable regime
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some mechanism for the amplification of the fluctuations beSitter metric, and hence undergo the three stages of free os-
fore measuring them. As one possibility, we propose changgillation, horizon crossing, and freezing explained in Sec. V.
ing the sign ofg_ after the inflation phase, i.e., switching to The frozen initial quantum fluctuations can be measured af-
the unstable regime, for a short period of time. If this changeaer an amplification phase, in which the coupling matrix is
in g occurs much faster than tifrozen dynamics of the tuned tog_<0.
field ¢_, we may apply the sudden approximation, assuming The difference of the spectri@ k space of the frozen
a step-function-like change @f from a small and positive initial quantum fluctuationgwith an approximately scale in-
g" to a small negative valug®™" variant spectrume 1/k3) and the usual quantum fluctuations
Within the sudden approximation, the relation of the be-of a condensate at rest 1/k) provides one possibility to
havior of the field ¢_ just before (¢i_”,¢i_”) and after distinguish the signal from other effects. As another option
out ‘you ; in out for a consistency check, one could keep the coupling
E)(é_oiaf)a_ir? etg ?r;arﬁlfhghsggaeﬂ(gﬁsﬂgp mgo_tizr? tog="<0can >0 constant for a given time_ durati94n after the de Sitter
phase (which has a decreasing_>=t™>0) and before
&"(r,t) = ¢2r 1), switching to the unstable reginge <0. This way, one would
allow the modes to freely oscillate again before amplifica-
N 1 . tion, and thereby suppress those modes which are in the sec-
—l(r,t) = de)‘_’“t(r,t). (37)  ond or fourth quarter of their period.e., have a decreasing
9- 9- amplitude at the moment of switching to the unstable re-
The latter equality is equivalent #0™(r ,t)= 50°(r ,t). As-  gime. This intermediate phase of smalll consgam_o would
suming a constarg®''< 0 after the transition to the unstable P& roughly analogous to the epoch after inflation, and the
region, the subsequent time evolution is simply given by theSUppression mechanism is similar to the suppression of
superposition of the two independent solutions of imaginaryNodes in the cosmic microwave background, leading to the

spin mode frequency, peaks and valleys in its power spectrfigg)].
out, 2
HRU(t) = A exp{+ Mt} A. Advantages
m . , .
In comparison with the one-component case, the realiza-
00lg?"k? tion of an effective geometry simulating the expansion of the
+ By exp| - e (38 universe in a two-component Bose-Einstein condensate has

several advantages: First, in order to generate large relative
Fluctuations with large wave numbefisut still small com-  variations of the spin coupling., it is not necessary to go
pared to the Planck scalgrow faster. Note that this behav- near the Feshbach resonance, and therefore the problems as-
ior is opposite to that of the gravitationgleang instability  sociated with molecule formatiotinducing an imaginary
in the early universe, where small wave numbers experiencgart in the coupling constantmentioned in the introduction
a stronger amplification—larger structures collapse fastesre not relevant. Second, it is possible to chaggavhile
due to the gravitational attraction than inhomogeneities oustaining a constant background density: AssurvggV,
smaller length scale27,28. andg, =const, we obtairvd=0 andp®=0, 02=0 as a valid

. ;

If we had ¢" ¢p'=—V0olg*1k?/m, the factorA, and  solution even for time-dependegt(t). Third, it is possible
hence the growing component of the solution would exactlyto amplify the fluctuations in the unstable regimewithout
vanish. However, during the phase of freezing, the time denecessarily destroying the condensate by phase separation.
rivative ¢, decreases and is finally suppressed by a factor of
\VCinal/ Co- Hence the exponentially increasing pa&gt does
contribute in a roughly equal amourf, = By. As a result,
we obtain a drastic amplification of the phasmd also den- In order to discuss the experimental feasibility of the pro-
sity) fluctuations until the nonlinear regimghat is, phase Posed quantum simulation of the inflaton, it is necessary to
separation[17]) is reached, where the fluctuations are notprovide an estimate for the experimental parameters in-
small compared to the order parameter itself anymore. Con¢olved. If we assume that we may achieve essentially equal
sequently, one would expect the fluctuations to beinitial healing lengths for the spin and the density made
measurable—with state-selective absorption imaging, for=&'=0(100 nm), we may simulate an expansion of the uni-
example—provided that all other perturbations are smalverse corresponding to more than ogolding (i.e., HAT

B. Experimental parameters

enough(see the next sectign >1), arriving at the final healing length8"'=0(1 um) and
£U=£"=0(100 nm. Although onee-folding is tiny com-
VIl. CONCLUSIONS pared to the expansion during inflatiamvhich involves

many orders of magnitugleone can still reproduce generic
In summary, it is possible to simulate the behavior of thefeaturegsuch as freezing Since the concept of the effective
inflaton field—more accurately, its quantum fluctuations—geometry only applies for wavelengths large compared to the
within two-component Bose-Einstein condensates. If we dehealing length(the analogue of the Planck scpléhe char-
creasey- with time according to Eq(19), the phase fluctua- acteristic size of the interesting structufasd hence the size
tions ¢_ (i.e., the spin modeexperience an effective de of the condensate cloydshould be several micrometers—
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which can be resolved with optical methods.g., state- D. Outlook
selective resonant absorption imaging

Furthermore, the measurability of the quantum fluctua- After succeeding to measure the main effect—the fact that
tions requires the absence of any other fluctuatiomdse  quantum fluctuations of the inflaton field in de Sitter space-
which may swamp the signal. Assuming an initial speed oftime get frozen at a specific value—we can start to manipu-
sound of about 1 mm/sec, a mode with a wavelength of date the behavior at the effective Planck scale and study its
few pm corresponds to an initial frequency somewhere beimpact on the frozen fluctuations. The exciting prospect of
low 1 kHz. Hence one should avoid temperatures above 100ndertaking such manipulations of Planck scale physics is
nK, for which the thermal fluctuations exceed tebe mea-  that one might be able to experimentally investigate ana-
Sured quantum fluctuations(assuming no thermalization |ogue Signatures of nev?trans_P|anckia)'] physics in the
during the experiment For the parameters specified above, gpisotropies of the cosmic microwave background; such pos-
the Hubble parameter determining the timescale for changingjp|e signatures of trans-Planckian physics are discussed,
g- would also be below 1 kHz. This should represent NOq g., in Ref[31].
problem as it is possible to change the coupling constants "we finally, mention that a further interesting aspect of the
(i.e., the external magnetic figldn the time scale of some ¢.gje separation of independently propagating spin and den-

microseconds. _ _ sity modes is the possible implementation of a variant of the
Although quite challenging, the proposed experiments,personical “warp drives” proposed in RES2]. The refer-

should thus in principle be feasible with present-day technolgce frame, against which the “superluminal” motion of the
ogy. ¢_ mode is measured, is not provided by the laboratory
frame, like in Ref.[32], but by the ¢, mode, which has
C. Planckian problem effectively instantaneous signal transfer on the time scales of

Apart from simulating the inflaton field experimentally the ¢- mode. In addition, the “hardé. mode is essentially
(quantum simulation via analogy@ne of the long-term mo-  flat on the curvature radius scale of tige mode, i.e., ap-
tivations of the present work was to be able to ultimatelyP€ars to be essentially Minkowski space-time as seen from
investigate the impact of the behavior at the effective Planckhe ¢- mode. The Minkowski background of the, mode
scale on the frozen fluctuationas explained in the introduc- represents a necessary prerequisite for “superluminal” travel
tion). For dilute Bose-Einstein condensates, the behavior fof? Warped space-times to be operational and definable, be-
small wavelengthgi.e., below the healing lengtlis in some ~ cause it enables the comparison of two meFrlcs, one of them
sense trivial—the excitations are free particles of mass flat and the other curved, on the same mani{@8. In con-

(the constituent atomswith w=k?/(2m). More importantly, trast to _the single Euler-fluid case of ReﬁZ]_, in t_he pres-
though, the healing length increases with time according t&ntly discussed two-component Bose-Einstein-condensed
Egs. (16) and (19—i.e., it grows during the expansion— 9aS both of these metrics obey Lorentz invariance.

which is (almos) certainly not a realistic feature of the real

Planck length. In order to circumvent this obstacle, one could
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