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We study the quantum dynamics of a two-mode Bose-Einstein condensate in a time-dependent symmetric
double-well potential using analytical and numerical methods. The effects of internal degrees of freedom on the
visibility of interference fringes during a stage of ballistic expansion are investigated varying particle number,
nonlinear interaction sign and strength, as well as tunneling coupling. Expressions for the phase resolution are
derived and the possible enhancement due to squeezing is discussed. In particular, the role of the superfluid–
Mott insulator crossover and its analog for attractive interactions is recognized.
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I. INTRODUCTION

Coherent atom optics offers considerable promise for ap-
plications in a number of areas from precision measurements
to rotation sensors, accelerometers, and gravity gradiometers
[1,2]. One key element in any practical device is a coherent
beam splitter, and much effort has been devoted to the real-
ization and the understanding of these devices, both experi-
mentally [3–5] and theoretically[6–13].

In contrast to light fields, which do not interact in a
vacuum, matter waves are subject to collisions, mostly two-
body interactions in the low density beams normally consid-
ered when using quantum-degenerate atomic systems. At ex-
tremely low temperatures, collisions produce a nonlinear
phase shift of the matter waves that is proportional to the
atomic density, and hence leads under normal conditions to
undesirable phase noise[14]. This is a serious difficulty that
needs to be addressed in detail. On the other hand, two-body
collisions are also known to act as the matter-wave analog of
a cubic nonlinearity in optics. As such, they can be used to
generate nonclassical states of the Schrödinger field. These
states can in turn be exploited to achieve phase resolution
below the standard shot-noise limit.

The use of squeezing to reduce quantum noise was sug-
gested in Ref.[15] for Ramsey-type interferometry. For op-
tical Mach-Zender interferometry a Heisenberg limited
scheme was outlined in Ref.[16], and related schemes using
dual Fock-states were suggested for Bose-condensed atoms
later [17–19]. A scheme dependent on parity measurement
was suggested in Ref.[20].

A matter-wave beam splitter can be thought of as a
double-well potential with time-dependent well separation.
At zero temperature, the dominant mechanism by which at-
oms move from one well to the other is quantum tunneling.
It is known that in quantum-degenerate Bosonic systems, the
interplay between tunneling and collisions and the associated
mean-field energy can result in highly nontrivial effects[21].
For instance, in the case of repulsive interactions a conden-
sate trapped on a lattice potential can undergo a quantum
phase transition from a superfluid state, characteristic of situ-
ations where tunneling is dominant, to a Mott insulator state,
characteristic of situations where the mean-field energy
dominates the dynamics[22–24]. The situation is more com-

plicated in the case of attractive interactions, since the con-
densate is then unstable unless it is small enough to be sta-
bilized by its kinetic energy[25]. Such small, stable
condensates also undergo a transition reminiscent of the
superfluid-Mott insulator transition in the sense that the
ground state[26,27] changes its statistical properties at a
critical value of the interaction strength.

With these processes in mind, the goal of this paper is to
assess in detail the limits in phase resolution of an atomic
beam splitter under the combined effects of collision-driven
cubic nonlinearities and quantum tunneling. The combina-
tion of these effects renders a full quantum-mechanical de-
scription of an atomic beam splitter highly nontrivial. Con-
sequently, we restrict our discussion to a two-mode analysis,
using a combination of numerical and analytical tools.

This paper is organized as follows: Section II discusses
our model and establishes the notation. Section III A pre-
sents results of a numerical analysis of the static problem
where the condensates are released from a beam splitter with
fixed well separation. Depending upon the ratio of mean-
field energy to interwell tunneling energy, the beam splitter
operates either in the superfluid or Mott-insulator-like re-
gime, with qualitative and quantitative differences in their
noise properties. For attractive interactions, the phase noise
of the beam splitter is found to be significantly reduced at the
transition between the two regimes. These results are ex-
tended to the dynamical regime in Sec. III B, which dis-
cusses in particular the departure of the system from adiaba-
ticity. Finally, Sec. IV is a summary and outlook.

II. MODEL

We consider in 1+1 dimensions the quantum dynamics of
an ultracold Bosonic atomic beam trapped in a double-well
potentialVsy,dd with time-dependent well separation 2dstd.
A beam splitter using such a time-dependent configuration of
optical waveguides has been realized by the MIT group[28],
the resulting atomic field being detected after turning off the
trap and ballistic free expansion of the atomic condensate.
Assuming that the atomic density is low enough that we can
neglect three-body collisions, the Hamiltonian of this system
is
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H =E
−`

`

dyĈ†sydS−
"2

2M
¹2 + Vsy,ddDĈsyd

+ g2E
−`

`

dyĈ†sydĈ†sydĈsydĈsyd, s1d

where g2 is the two-body coupling constant, taken to be
negative for attractive two-body interactions. In the absence

of excitations to higher spatial modes, the field operatorĈsyd
can be expanded into two modes corresponding to particles
located around the two minima of the double-well potential
as

Ĉsyd = wLsy,ddâL + wRsy,ddâR. s2d

Here âLsRd are Bosonic annihilation operators for the “left”
and “right” mode of the matter-wave field, andwLsRd are the
corresponding spatial mode functions. For sufficiently har-
monic potentials they can be approximated by

wsy,ddLsRd =
1

spDy2d1/4 expS−
sy ± dd2

4Dy2 D , s3d

the minus sign corresponding towRsy,dd and the plus sign to
wLsy,dd. Within this two-mode approximation, the Hamil-
tonian (1) becomes

Hstd = "vsâL
†âL + âR

†âRd +
DEstd

2
fâL

†âR + âR
†âLg

+ gfâL
†2âL

2 + âR
†2âR

2g, s4d

where we have introduced the time-dependent tunneling en-
ergy

DEstd =E
−`

`

dywL„y,dstd…S−
"2

2M
¹2 + V„y,dstd…DwR„y,dstd…

= "v expf− d2std/Dy2g, s5d

andg=g2d4 with

d4 =E
−`

`

dywL
4
„y,dstd… =

1

2ÎpDy
. s6d

Note that we have neglected cross-phase modulation, consis-
tently with the validity of the Gaussian approximation in the
description of the mode functions of the waveguide. We re-
mark that this approximation only holds ford.Dy, other-
wise the modes must be taken as time-dependent linear com-
binations of the energy eigenstates, a procedure requiring
numerical diagonalization[6].

This two-mode problem is conveniently reexpressed in
the Schwinger angular momentum representation of Bosonic
operators[29]. We proceed by introducing the angular mo-
mentum operators

Ĵz =
1

2
sâL

†âL − âR
†âRd, s7d

Ĵy =
1

2i
sâL

†âR − âR
†âLd, s8d

Ĵx =
1

2
sâL

†âR + âR
†âLd, s9d

which can be thought of as the orthogonal components of a
Bloch vector of lengthN/2. This corresponds to mapping the
quantum state onto a distribution on the Bloch sphere.

As usual, we then express the state of the matter-wave

field in terms of eigenstatesuJ,ml of the operatorsĴ2 and Ĵz,
where

Ĵ2 = Ĵx
2 + Ĵy

2 + Ĵz
2, s10d

with

Ĵ2uJ,ml = "2JsJ + 1duJ,ml,

ĴzuJ,ml = "muJ,ml =
"

2
snL − nRduJ,ml, s11d

andJ=N/2, m=−J,−J+1, . . . ,J.
In the angular momentum representation the Hamiltonian

(4) reads

Ĥ = fsJd + 2gĴz
2 + DEstdĴx, s12d

where the energyfsJd is a function of the total angular mo-
mentum eigenvalueJ. For a fixed particle number, it yields a
constant phase shift irrelevant for the problem at hand. The
ground state of the Hamiltonian(12) is expressed in terms of
the azimuthal quantum number

ucl = o
m=−J

J

cmuJ,ml. s13d

Each of the operators(7)–(9) generates rotations of this
distribution around the corresponding axis. As seen from the
Hamiltonian(12), and already proposed in Ref.[30] a rota-
tion about thex̂ axis of the Bloch sphere can be achieved by
turning on the quantum tunneling between the two wells for
a precisely determined time. As a result, it is possible to
transform a number-squeezed state, characterized by reduced

fluctuations inĴz into a phase-squeezed state, characterized

by reduced fluctuations inĴy. We exploit this feature of quan-
tum tunneling later on in order to achieve subshot noise de-
tection in the presence of repulsive interactions.

We mentioned that the detection of the atomic field is
carried out after the optical waveguide is rapidly switched
off and the atoms undergo a stage of ballistic expansion. The
mode functions(3) no longer describe the spatial density of
the condensate during that stage. Rather, they must be re-
placed by free gaussians that are centered around the minima
of the potential at the time of release,

wL/Rsy,td = f2pDy2s1 + ivtdg−1/4 3 expS−
sy ± dd2

4Dy2s1 + ivtdD .

s14d

Taking the two halves of the condensate to have a relative
phaseQ, for instance imprinted by applying a weak potential
gradient, the field operator for the ballistically expanding at-
oms becomes then
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Ĉsy,t,Qd = âLwLsy,tdexpsiQ/2d + âRwRsy,tdexps− iQ/2d,

s15d

resulting in the spatial density

kG1sy,t,Qdl = kĈ†sy,t,QdĈsy,t,Qdl

=
1

Î2pDy2s1 + v2t2d
expS−

y2 + dstd2

2Dy2s1 + v2t2dD
3FN coshS yd

Dy2s1 + v2t2dD
+ 2kĴxlcosS yd

Dy2s1 + v2t2d
vt + QD

− 2kĴylsinS yd

Dy2s1 + v2t2d
vt + QDG . s16d

The atomic density at any point in space and time is given by
an incoherent contribution that is independent of both the
relative phase and the internal dynamics of the two-mode
condensate, as well as a coherent contribution. The relative
phaseQ corresponds to a phase imprinted to the condensate
after the halves have been separated. Given that the tunnel-
ing is negligible, this can be done without changing the sta-
tistics of relative number/phase between the wells. This as-
sumption also has to hold for the system to be useful in

interferometric applications. Since the HamiltonianĤ is in-
variant with respect to the exchangeL↔R, it is easily seen
that for states symmetric with respect to the interchange of

the two modes,kĴyl=kĴzl=0 for all times, althoughkĴy
2lÞ0

as we discuss shortly. The coherent contribution to
kG1sy,t ,Qdl is therefore proportional to the expectation

value of kĴxl. In terms of the angular momentum picture, it
can be interpreted as the polarization of the distribution. The
visibility of the interference fringes of the ballistically ex-
panding two-mode condensate,

V =
kG1s0,t,0dl − kG1s0,t,pdl
kG1s0,t,0dl + kG1s0,t,pdl

=
ukĴxlu
N/2

, s17d

depends only on that expectation value, the associated fluc-
tuations being given by

DG1 ; ÎkDG1
2sy,t,Qdl = ÎkG1

2sy,t,Qdl − kG1sy,t,Qdl2.

s18d

The phase resolution of atom-interferometric experiments is
limited by the requirement that the change in local density
resulting from an imprinted global phase change must be
larger than the intrinsic fluctuations of the first-order corre-
lation function

DG1 ù U ]kG1l
]Q

UDQ. s19d

This gives as an estimate for the phase resolution resulting
from number fluctuations

DQ =
ÎkDG1

2l
u]kG1l/]Qu

. s20d

Applying this criterion to the problem at hand, one finds
that the phase resolution for the two-mode condensate is
given by

DQ2 =
kĴy

2l

kĴxl2
+

kN̂2l − kN̂l2

4kĴxl2
. s21d

The second term in Eq.(21) is equal to zero in an indi-
vidual experimental event, but gives rise to a contribution of
order unity if averaged over a classical(Poissonian) distribu-
tion of particle numbers in repeated experiments. The num-
ber of particles must therefore be determined with a high
precision if one wishes to benefit from any enhancement of
interferometric resolution due to phase squeezing. Setting
this second term to zero for now, we recover the result de-
rived by Kitagawa and Ueda in their seminal work on spin
squeezing[31]. Squeezing along theŷ direction corresponds
to increased correlations of the phases between the two
wells, thus producing a better defined relative phase, a desir-
able feature in interferometric applications. The squeezing
parameter, which we calculate relative to the standard quan-
tum limit

jy =
DQ

DQSQL
=

ÎNkĴy
2l

kĴxl
, s22d

although not necessarily representing the maximal achiev-
able squeezing of the variances of the angular momentum
distribution, was shown by these authors to represent the
parameter of interest from the point of view of possible in-
terferometric applications. Hence it is the major focus of the
present study.

III. RESULTS

This section discusses the main results of our numerical
study of the two-mode beam splitter. The analysis is based
on the dimensionless parameter

G =
2gN

DE
, s23d

the ratio of mean-field energy to tunneling energy, which
completely determines the spectrum of the Hamiltonian.

Note, however, that the two-mode approximation implic-
itly assumes a stable condensate, a property that holds only
for low enough densities in the case of attractive interactions
[25].

We consider first the simple case of a static double-well
system where the confining potential is suddenly turned off,
resulting into the formation of an interference pattern after a
period of ballistic expansion. The next subsection discusses
the results of a full dynamical study.

A. Static double-well potential

The matter-wave interference pattern is shown in Fig. 1 in
the superfluid regime, further illustrating the excellent con-
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trast in that case. In addition to the fringe contrast, it is nec-
essary to consider the quantum fluctuations of the interfer-
ence pattern, since they lead to the fundamental limit in
phase resolution of interferometric measurements. Figure 1
illustrates these fluctuations by attaching to the intensitykG1l
a width given by twice its varianceDG1=skG1

2l−kG1l2d1/2.
The density and noise is calculated using the time-dependent
modes, Eq.(14), and the numerically obtained ground state
of the Hamiltonian, Eq.(12), for the energy ratioG=10−3,
which corresponds to a repulsively interacting superfluid. We
have seen in Eq.(21) that the fluctuationsDG1 result in a
phase resolution

DQ2 =
kĴy

2l

kĴxl2
, s24d

where we have neglected the shot-to-shot number fluctua-
tions for simplicity. The density noise is here proportional to
ÎkG1l, allowing at best for interferometry at the standard
quantum limit.

Figures 2 and 3 shows the ground-state distributions in
terms of both the probability amplitudesucmu, and of the am-
plitudes ucum

u of the ground state expressed on a basis of
so-called relative phase states,

ucl = o
m

cum
uuml, s25d

where[32]

uuml =
1

Î2J + 1
o

m8=−J

J

expsim8umduJ,m8l s26d

and the discrete relative phases are given by

FIG. 1. Particle density bounded by density noisekG1l±DG1

after ballistic expansion of a two-mode condensate withN=100 in
the ground state in the “superfluid” regime,G=10−3, where the
visibility is high. The dashed lines show the density of the mode
functions. Transverse distance is measured in units of the oscillator
width Dy and the initial condensates were centered aroundd
= ±8Dy. The modes were allowed to expand ballistically untilvt
=20.

FIG. 2. Ground-state distributions as function of the dimension-
less parameterG for attractive interaction. In(a) magnitudes of
ground-state componentsucmsGdu are shown for attractive interac-
tion, and in (b) the distribution of relative phase components
ucum

sGdu in Eq. (26).

FIG. 3. Ground-state distributions as a function of the dimen-
sionless parameterG for repulsive interaction. In(a) magnitudes of
ground-state componentsucmsGdu are shown for attractive interac-
tion, and in (b) the distribution of relative phase components
ucum

sGdu in Eq. (26).
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um = u0 +
2pm

2J + 1
, s27d

for an arbitrary reference phaseu0 chosen here to be zero.
For weak interactions, i.e., smalluGu, the system is in a

state reminiscent of a coherent state, with a relatively well
defined phase with fluctuations consistent with the standard
quantum limit. For large attractive interactions the ground
state approaches a double peaked distribution, corresponding
to a macroscopic superposition state as described in Refs.
[26,27]. For G!−1, the ground state can thus be approxi-
mated by

ucl =
1
Î2

fuJ,Jl + uJ,− Jlg. s28d

This gives for the phase distribution

ucl =
1

ÎJ + 1/2
o

m=−J

J

cossJumduuml. s29d

The transition between the superfluid and superposition re-
gimes takes place just belowG=−1, where the relative phase
becomes well defined due to squeezing.

For large repulsive interactions the ground state goes
through the Mott-insulator transition in a continuous manner.
Here the number distribution narrows and the phase distribu-
tion widens until it becomes essentially flat, indicating a
completely random phase when averaged over an ensemble.

Figure 4 shows the uncertainties in the relative number

DĴz
2, and the relative phaseDĴy

2, together with their product

DĴyDĴz for N=100 atoms. The uncertainty product is essen-
tially constant in the region

− 1 ! G !
1

2
N2, s30d

where the upper limit was found from the simulations. In this
interval the ground state resembles a coherent state, making
this the superfluid regime. For large attractive interactions
the uncertainty product increases at the superfluid-
superposition transition and saturates for strong interactions.
As the uncertainty in relative phase does not increase when
compared to its value in the superfluid regime, the increase
in the uncertainty product can be attributed solely to the

increase inDĴz. The fact that the ground state in the super-
position regime is double peaked, as can be seen in Fig. 2,
and thus no longer a minimum uncertainty state, gives using
Eq. (28) for the uncertainty in number difference

kĴz
2l = J2 =

N2

4
, s31d

in agreement with the numerical results; see for instance Fig.
4. On the Bloch sphere the distribution is concentrated
around the two regionsm= ±J, this bimodal character giving

rise to a large spread inDĴz.
Figure 5 shows the visibilityV of the fringes, Eq.(17),

after the free expansion of the matter waves following the
switching off of a static double-well potential. In case tun-
neling dominates the dynamics of the system, we observe
high-contrast interference fringes, but there is an abrupt tran-
sition, with contrast decreasing asuGu−1 as soon asG,−1.
The underlying physics governing the decrease of contrast is
essentially the same as in the superfluid-Mott insulator tran-
sition predicted[23,24] and observed in optical lattices[22].
If tunneling dominates, the state of the two-mode system is

FIG. 4. The uncertaintiesDĴy
2, DĴz

2 and the productDĴyDĴz as

functions ofG for N=100. The phase uncertaintyDĴy
2 goes through

a global minimum atG=−1, the border between attractive super-
fluid and superposition states, and increases in the repulsive regime
until it saturates to a constant value as the system passes through the
Mott-insulator transition.

FIG. 5. Visibility of interference fringes for a ballistically ex-
panding two-mode Bose-Einstein condensate as a function ofG, the
ratio between the mean-field and tunneling energies, for particle
numbers ranging from 10 to 200. For attractive interaction the vis-
ibility decreases abruptly forG,−1. In the case of repulsive inter-
action the behavior is qualitatively and quantitatively different for
even (solid) and odd(dashed) atom numbers, as explained in the
text.
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essentially a superfluid with a well-established phase rela-
tionship between the two modes of the beam splitter, result-
ing in high-contrast interferences. In the superposition and
Mott regimes, by contrast, the two wells are isolated from
each other, with no phase relationship between them.

This behavior of the fringe visibility can be further under-
stood from the Heisenberg uncertainty relation

DĴyDĴz =
1

2
ukfĴy,Ĵzglu =

1

2
ukĴxlu, s32d

which shows that the uncertainty productDĴyDĴz is propor-

tional to the polarizationkĴxl and thus the visibility(17).
This shows that the regime of high visibility coincides with
the one where uncertainty product is constant. This is, as
expected, the superfluid regime. The polarization measures
the coherence, here the degree to which adjacent wave func-
tion componentscm are populated. In the Mott-insulator and
superposition regimes, the wave function becomes highly
peaked around the center(minimal umu) and boundary(maxi-
mal umu) which thus limits the coherence.

In addition to illustrating that the visibility decreases out-
side the superfluid regime given by Eq.(30), Fig. 5 also
shows that for G.0 and even particle number, the
asymptotic value for the visibility isV= 1

2 rather than zero for
N odd. This difference in asymptotic behaviors can be ex-
plained as follows. For repulsive interactions and far into the
Mott insulator regime, the ground state is approximately
given by a Fock state with equal populations in both wells.
In the case of odd atom number, the additional atom can be
in either of the wells, so that

ucl =
1
Î2
FUJ,

1

2
L + UJ,−

1

2
LG . s33d

This gives for the polarization

kĴxl =
1

2
FJ +

1

2
G <

J

2
, s34d

and henceV=1/2 asasymptotic value.
For the case of even particle number, in contrast, the

asymptotic ground state forG→` is the Fock stateum=0l
with N/2 atoms in each well. For large but finite values ofG
the state can be approximated by

ucl = Î1 − 2«uJ,0l − Î«fuJ,1l + uJ,− 1lg, s35d

where« is a small number. This gives for the polarization

kĴxl = 2Î«ÎJsJ + 1d < 2Î«J, s36d

and an asymptotic value of the visibilityV→0.
Let us now turn to the phase resolutionDQ2 of the beam

splitter. The left-hand side of Fig. 6 shows the variance
DQ2/DQSQL

2 after free ballistic expansion from the two-
mode ground state of the beam splitter, plotted as a function
of the ratioG between the mean-field energy and tunneling
energy. The phase resolution exhibits a sharp minimum just
below G=−1. At this point, we find numerically that the
energy gap between the ground state and the first excited
state of the double well goes to zero within our numerical

accuracy. This indicates the presence of a “quantum phase
transition”—or more precisely crossover—a property also
inferred from Fig. 2 where the quantum statistical properties
of the ground state obviously change at the pointG=−1.
This transition is associated with the onset of increased num-
ber fluctuations between the populations of the two modes,
and correspondingly to suppressed phase fluctuations. Hence
the phase resolution of the beam splitter is maximized at that
point. As expected, the crossover from Poissonian fluctua-
tions in the superfluid regime forG.−1 to a superposition
state for G,−1 becomes sharper with increased particle
number. For attractive interaction there is thus a squeezed
state at the boundary between the superfluid and superposi-
tion regimes. For small atom numbers and attractive interac-
tion, the minimum of DQ2 occurs to the right of the
superfluid-superposition transition. From this discussion, it
might appear favorable to operate the beam splitter in that
regime. This is, however, misleading, as we must also take
into account the fact that the fringe visibility rapidly de-
creases in that regime, as shown in Fig. 5. The situation
improves rapidly for largeN, though. The sharpness of the
minimum, however, makes this state challenging to create
experimentally in a controlled manner. In addition, the maxi-
mum achievable squeezing is limited due to the size limits
imposed by the metastability of attractive condensates.

The situation is slightly more subtle in the case of repul-
sive interactions. From Fig. 2, it is quite clear that as the
system moves into the Mott regime, the phase uncertainty
increases and the number fluctuations of the ground state
become more strongly squeezed. This is also evidenced in

Fig. 3, which shows the monotonic increase inDĴy
2 for in-

FIG. 6. Squeezing of the phase variance relative to the standard
quantum limit for the two-mode ground state. For attractive inter-
action the phase squeezing is minimal just belowG=−1. The cross-
over from Poissonian fluctuations in the superfluid regimeG,−1
to the superposition stateG.−1 becomes sharper with increased
number of particles. For repulsive interaction there is a smooth
transition between the superfluid regime of lowG values to the
Mott-insulator state. In the asymptotic limitG→`, the squeezing
approaches a plateau, which is different for odd and even atom
numbers.
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creasingG. Hence it would appear that the phase resolution
becomes increasingly worse in this regime. This difficulty
can, however, be eliminated by using quantum tunneling to
turn number squeezing into phase squeezing, as discussed in
Sec. II. As a result, the minimal obtainable phase fluctuations
for G.0 are given by

DQ2 =
DĴz

2

kĴxl2
s37d

sinceDĴz=kĴz
2l is the minimal uncertainty ofĴz in deep the

Mott regime. The right-hand side of Fig. 6 shows that the
phase resolution achieved by this technique in the case of
repulsive interactions. Just as for the visibility, we find here
different asymptotic behavior for odd and even particle num-
bers with a factor of 2 in difference for large interactions.
Using Eq.(33) we find for the uncertainty in number differ-
ence

kĴz
2l =

1

4
, s38d

which together with Eq.(34) for the polarization gives

kJz
2l

kĴxl2
<

1

J2 =
4

N2 , s39d

in agreement with the asymptotic values for odd particle
numbers, shown dashed in Fig. 6. For even numbers, Eq.
(35) yields

kJz
2l < 2«, s40d

which together with Eq.(36) gives

kJz
2l

kĴxl2
<

1

2J2 =
2

N2 , s41d

in agreement with Fig. 6. The behavior of both phase reso-
lution and visibility for odd versus even particle numbers can
thus be understood from the form of the ground state in the
limit of large repulsive interactions.

Strictly speaking,DĴy is the phase uncertainty only when
the distribution spans an area narrower than the diameter of

the Bloch sphere. For larger values the spreadDĴy behaves
differently, as it is the projection onto the plane spanned by

Ĵy and Ĵz, and not the distance along the equator. For the
interferometric setup considered here the phase uncertainty is
in general not equal to the phase resolution given by Eq.
(21), as the latter will grow when the visibility goes down.

We have seen in Sec. II that the phase sensitivity of the
system is closely related to spin squeezing. The squeezing of
both optical and matter waves is of considerable interest in
interferometry, as it offers the potential to beat the standard
quantum limit of detection, and possibly replace it by the
so-called Heisenberg limit scaling as 1/N. Figure 7 shows
the phase variation of the ground state at both the “critical
point” G=−1 for attractive interaction, and atG= 1

2N2 for
repulsive interaction as functions of particle numberN, the
dashed lines giving the standard quantum limit(SQL) scal-

ing as 1/ÎN and Heisenberg limit(HL) for comparison. The
G value in the repulsive regime was chosen to produce maxi-
mal squeezing for odd particle numbers, slightly worse than
for even numbers. Since the particle number cannot be con-
trolled down to single units, this produces a conservative
limit for the achievable squeezing.

The combination of the mean-field interaction and tunnel-
ing clearly leads to the squeezing of the matter-wave field
and a sensitivity significantly improved from the standard
quantum limit under the conditions mentioned above. We
find numerically that for attractive interactionDQ2 scales as
N−1.38, slightly above the asymptotic limit ofN−4/3 derived by
Kitagawa and Ueda[31]. The difference is expected to de-
crease with increased particle number. For repulsive interac-
tion we find DQ2~N−2, thus corresponding to Heisenberg
limited phase resolution. This comes at the price of larger
interactions and also necessitates an additional rotation of the
Bloch sphere.

B. Dynamics

The previous section investigated the ground-state prop-
erties of the static double-well system. Here we discuss ways
to create states with the desired properties starting from a
condensate in the ground state with a small interwell separa-
tion. The adiabatic theorem of quantum mechanics states that
a system governed by a time-dependent Hamiltonian and ini-
tially prepared in an eigenstate will remain in the instanta-
neous eigenstate given that the Hamiltonian changes suffi-
ciently slowly. The aim here is evolve the system adi-
abatically [33] into states of maximal squeezing and then
freeze the dynamics.

Controlling the magnitude and sign of two-body interac-
tion is readily achievable using Feshbach resonances. The
rate at which the magnetic field can be swept across a reso-

FIG. 7. Phase variance in the ground state of the double-well
system at the “critical point”G=−1 for attractive condensates, and
at G=N2/2 for repulsive condensates, as functions of particle num-
ber. The dashed lines show the standard quantum limit(SQL) and
Heisenberg limit(HL) for comparison.
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nance has been shown in experiments to be much higher than
typical trap frequencies and tunneling rates, allowing for a
practically instantaneous switching of the nonlinear interac-
tion since the many-body dynamics occurs over longer time
scales. Decreasing the tunneling rate can be achieved by rap-
idly separating the two wells as the point of minimal phase
fluctuations is reached.

We model the splitting of the symmetric double-well po-
tential using a tunneling potentialDEstd that decreases expo-
nentially in time,

DEstd = "v expS−
dmin

2

Dy2 − GtD , s42d

wheredmin is the minimal separation between the wells, and
the constantG is a measure of how fast the wells are sepa-
rated. The separation is assumed to occur over a finite timet
and to reaching a valuedstd such thatG=−1 for attractive
interaction, andG= 1

2N2 for repulsive interaction. The con-
stantG is adjusted accordingly. As the timet=t is reached,
the two-body interaction is rapidly taken to zero to freeze the
dynamics.

The evolution aftert=t is linear and solely governed by
tunneling. Note that for attractive interactions, the residual
rotation of the distribution resulting from quantum tunneling
has to be kept small in order to avoid transforming the phase
squeezing into number squeezing,

E
t

`

DEstddt ! "p. s43d

This can be achieved by either takingDEstd!1 at the point
where G=−1, or separating the wells rapidly aftert=t to
make the left-hand side of Eq.(43) negligible.

The squeezing in the phase variation for attractive inter-
action is shown versus time in Fig. 8 for several values of the
parametert. The instantaneous squeezing of the true ground
state is shown dashed for comparison. The evolution of the

system is initially adiabatic, but becomes diabatic for larger
separations making the system freeze out in a state less
squeezed than the desired ground state. Longer evolution
times make the system more adiabatic thus achieving
squeezing closer to, but still far from the optimal values. For
all cases shown in Fig. 8 it is, however, apparent that the
dynamics is only partially adiabatic and that the minimal
phase variation is severely limited by violation of the re-
quirement that the dynamics be adiabatic.

Figure 9 shows the squeezing dynamics of a condensate
with repulsive interaction when the tunneling energy is de-
creased exponentially in time according to Eq.(42). As the
valueG= 1

2N2 is reached, the two-body interaction is rapidly
tuned to zero. After that a pulse of tunneling interaction,
which corresponds to bringing the two wells closer again, is
applied in such a way that

E
t

`

DEstddt =
"p

2
, s44d

thereby rotating the Bloch-sphere distribution by an angle

p /2 around theĴx axis and thus transforming the number
squeezing into phase squeezing without otherwise changing
the distributions.

Initially the phase variance is seen to increase as the state
becomes number squeezed for increasing values ofGstd until
the timet=t is reached wheng→0, effectively freezing the
evolution until the tunneling pulse(44) is applied. For all
values oft, which are indicated in Fig. 9, the same tunneling
pulse was used. The dynamics is seen in Fig. 9 to become
more and more adiabatic as the value oft is increased, just
as in the case of attractive interaction. Here, however, the
maximal squeezing achieved is larger than for the attractive
case. This is not obvious at first, even though the repulsive
ground state is more squeezed, as the system has to be
evolved to values of stronger interaction than in the attractive
case.

FIG. 8. Phase squeezing forg,0 whenDEstd is taken to vary
according to Eq.(42), for several values of thet. The dashed lines
show squeezing of the instantaneous ground state for comparison.

FIG. 9. Squeezing of the relative phaseDQ for a double well
split in time according to Eq.(42).

JÄÄSKELÄINEN, ZHANG, AND MEYSTRE PHYSICAL REVIEW A70, 063612(2004)

063612-8



IV. CONCLUSION AND OUTLOOK

In this paper we have investigated the full quantum dy-
namics of a condensate in a symmetrically split double well.
Expressions for the visibility and phase resolution during a
ballistic expansion stage were given and investigated nu-
merically. The possibility of creating phase squeezed ground
states by adiabatic splitting was demonstrated, but is limited
by the time scales involved. The increased phase sensitivity
for ground states of attractive condensates, which are known
to be stable only for particle numbers[25] up to aroundN
<103, was found to require long splitting times to achieve
adiabatic evolution. For repulsive condensates where the
densities are limited only by the requirement that the two-
mode model be applicable, a scheme with scaling at the
Heisenberg limit was outlined and tested in dynamics simu-
lations. The original Heisenberg-limited scheme suggested in
Ref. [16] for optical Mach-Zender interferometers and later
applied in various forms to the case of atomic condensates
[17–19], used dual Fock-states, i.e., the state was of the form

given by Eq. (35). In the present context such states are
unsuitable due to their low visibility. The problems can be
avoided by not taking the system deep into the Mott-
insulator regime where the ground state is the dual Fock
state, but rather to the threshold whereG=N2/2, and the
visibility still is high.

It is well known that the introduction of a linear potential,
for instance due to gravity, changes the localization proper-
ties of the double-well eigenfunctions. The corresponding
effects in the many-body regime are presently explored ex-
perimentally[34] and will also be the subject of future the-
oretical investigations.
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