PHYSICAL REVIEW A 70, 063612(2004)

Limits to phase resolution in matter-wave interferometry
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We study the quantum dynamics of a two-mode Bose-Einstein condensate in a time-dependent symmetric
double-well potential using analytical and numerical methods. The effects of internal degrees of freedom on the
visibility of interference fringes during a stage of ballistic expansion are investigated varying particle number,
nonlinear interaction sign and strength, as well as tunneling coupling. Expressions for the phase resolution are
derived and the possible enhancement due to squeezing is discussed. In particular, the role of the superfluid—
Mott insulator crossover and its analog for attractive interactions is recognized.
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I. INTRODUCTION plicated in the case of attractive interactions, since the con-

Coherent atom optics offers considerable promise for apdénsate is then unstable unless it is small enough to be sta-
plications in a number of areas from precision measurementdlizéd by its kinetic energy[25]. Such small, stable
to rotation sensors, accelerometers, and gravity gradiometeg®ndensates also undergo a transition reminiscent of the
[1,2]. One key element in any practical device is a coherensuperfluid-Mott insulator transition in the sense that the
beam splitter, and much effort has been devoted to the reaground state[26,27 changes its statistical properties at a
ization and the understanding of these devices, both experéritical value of the interaction strength.
mentally [3-5] and theoreticall\jj6—-13. With these processes in mind, the goal of this paper is to

In contrast to light fields, which do not interact in a assess in detail the limits in phase resolution of an atomic
vacuum, matter waves are subject to collisions, mostly twobeam splitter under the combined effects of collision-driven
body interactions in the low density beams normally consid-cubic nonlinearities and quantum tunneling. The combina-
ered when using quantum-degenerate atomic systems. At ekon of these effects renders a full quantum-mechanical de-
tremely low temperatures, collisions produce a nonlineascription of an atomic beam splitter highly nontrivial. Con-
phase shift of the matter waves that is proportional to thesequently, we restrict our discussion to a two-mode analysis,
atomic density, and hence leads under normal conditions tosing a combination of numerical and analytical tools.
undesirable phase noig&4]. This is a serious difficulty that This paper is organized as follows: Section Il discusses
needs to be addressed in detail. On the other hand, two-bodyur model and establishes the notation. Section Il A pre-
collisions are also known to act as the matter-wave analog gfents results of a numerical analysis of the static problem
a cubic nonlinearity in optics. As such, they can be used tovhere the condensates are released from a beam splitter with
generate nonclassical states of the Schrodinger field. Thedixed well separation. Depending upon the ratio of mean-
states can in turn be exploited to achieve phase resolutiofield energy to interwell tunneling energy, the beam splitter
below the standard shot-noise limit. operates either in the superfluid or Mott-insulator-like re-

The use of squeezing to reduce quantum noise was sugime, with qualitative and quantitative differences in their
gested in Ref[15] for Ramsey-type interferometry. For op- noise properties. For attractive interactions, the phase noise
tical Mach-Zender interferometry a Heisenberg limited of the beam splitter is found to be significantly reduced at the
scheme was outlined in RqfL6], and related schemes using transition between the two regimes. These results are ex-
dual Fock-states were suggested for Bose-condensed atoitefided to the dynamical regime in Sec. Il B, which dis-
later [17—19. A scheme dependent on parity measuremencusses in particular the departure of the system from adiaba-

was suggested in Ref20]. ticity. Finally, Sec. 1V is a summary and outlook.
A matter-wave beam splitter can be thought of as a
double-well potential with time-dependent well separation. Il. MODEL

At zero temperature, the dominant mechanism by which at-

oms move from one well to the other is quantum tunneling. We consider in 1+1 dimensions the quantum dynamics of
It is known that in quantum-degenerate Bosonic systems, than ultracold Bosonic atomic beam trapped in a double-well
interplay between tunneling and collisions and the associategotential V(y,d) with time-dependent well separatiomi(®).
mean-field energy can result in highly nontrivial effef24]. A beam splitter using such a time-dependent configuration of
For instance, in the case of repulsive interactions a condereptical waveguides has been realized by the MIT gri28),
sate trapped on a lattice potential can undergo a quantuthe resulting atomic field being detected after turning off the
phase transition from a superfluid state, characteristic of situtrap and ballistic free expansion of the atomic condensate.
ations where tunneling is dominant, to a Mott insulator stateAssuming that the atomic density is low enough that we can
characteristic of situations where the mean-field energyeglect three-body collisions, the Hamiltonian of this system
dominates the dynamig¢&2-24. The situation is more com- is
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R h? ~ S
H= f dW*(y)(— VAR V(y,d>)qf<y) 3= 5 Blan+ acdy), (9)
© - . which can be thought of as the orthogonal components of a
+ ng dy¥ ()W (y)W(y)¥(y), (1) Bloch vector of lengtiN/2. This corresponds to mapping the

quantum state onto a distribution on the Bloch sphere.

where g, is the two-body coupling constant, taken to be AS usual, we then express the state of the matter-wave
negative for attractive two-body interactions. In the absencéield in terms of eigenstatdd, m) of the operators? andJ,,

of excitations to higher spatial modes, the field operdty) ~ Where

can be expanded into two modes corresponding to particles P=P+P+ 7P (10)
located around the two minima of the double-well potential Ty e
as with
V(y) = oy, d)a, + @r(y,d)ag. 2 3\3,mp = £23(3 + 1|3, m),
Here & g, are Bosonic annihilation operators for the “left” R A
and “right” mode of the matter-wave field, arg g, are the J,J3,m) = Am|J,m) = E(n" - nR)[J,m), (11
corresponding spatial mode functions. For sufficiently har-
monic potentials they can be approximated by andJ=N/2, m=-J,-J+1,... J.

1 (y+d)?
= 212 EXR 2
(7mAYy?) 4Ay
the minus sign corresponding ig(y,d) and the plus sign to . _
@.(y,d). Within this two-mode approximation, the Hamil- Where the energy(J) is a function of the total angular mo-

tonian(1) becomes mentum eigenvalué. For a fixed particle number, it yields a
constant phase shift irrelevant for the problem at hand. The

(3) (4) reads

In the angular momentum representation the Hamiltonian
o(y,d) R )

H=f(J)+ Zg:ﬁ +AE(1)J,, (12

ata L oata oy, AE® s ata f the Hamiltonign2) i di f
Ht) = 2w(a'a +alay) + ala.+ala, ground state of the Hamiltonigii2) is expressed in terms o
(1) = A8 8, + 8edd) 2 [88e+ aca] the azimuthal quantum number
+gla%al + ak’ag), @ ’
. . . =2 crdm). (13)
where we have introduced the time-dependent tunneling en- m=—J

er . :
9y Each of the operator&7)—9) generates rotations of this

- h? distribution around the corresponding axis. As seen from the
AE(t) = f_w dygo,_(y,d(t))(- mvuv(y,d(t)))%(y’d(t)) Hamiltonian(12), and already proposed in R¢B0] a rota-
tion about thex axis of the Bloch sphere can be achieved by
= how exd~ d*(t)/Ay?], (5  turning on the quantum tunneling between the two wells for
a precisely determined time. As a result, it is possible to
transform a number-squeezed state, characterized by reduced

®© 1 . L. _ .
d4:J dygof(y,d(t)) - (6) fluctuations inJ, into a phase-squeezed state, characterized

—o 2\5'7TAy' by reduced fluctuations Lﬁl/ We exploit this feature of quan-

. tum tunneling later on in order to achieve subshot noise de-
Note that we have neglected cross-phase modulation, cons 9

i - . S 'Bection in the presence of repulsive interactions.
tently_W|_th the validity of the Gaussian approximation in the We mentioned that the detection of the atomic field is
description of the mode functions of the waveguide. We re

. L ‘carried out after the optical waveguide is rapidly switched
m.ark that this approximation only.holds fo> Ay, qther- off and the atoms undergo a stage of ballistic expansion. The
wise the modes must be taken as time-dependent linear co

o . COMode functiong3) no longer describe the spatial density of
binations of the energy eigenstates, a procedure requiNnge condensate during that stage. Rather, they must be re-
numerical diagonalizatiof6]. '

; . . . placed by free gaussians that are centered around the minima
This two-mode problem is conveniently reexpressed |rP y g

) ) of th ntial at the time of rel
the Schwinger angular momentum representation of BOSOI’]I% the potential at the time of release,

operators[29]. We proceed by introducing the angular mo- . _
mpentumsc[)pe]ratorsp g g g eUR(Y,D) = [2mAYA(1 +iwt)] 4 X exp(—

andg=g,d, with

(y£d)? )
4AY (1 +iwt))

(14)
Taking the two halves of the condensate to have a relative
phase®, for instance imprinted by applying a weak potential

afa _afa gradient, the field operator for the ballistically expanding at-
(88~ ara). ®  oms becomes then

~ 1 ot o
J,= E(aIaL - akaR), 7)

|~

Jy=

N
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W(y,1,0) =8 ¢ (y,0exi®/2) + dagr(y,exp- i0/2), Ao VAGE 20
(15) |G /50|
resulting in the spatial density Applying this criterion to the problem at hand, one finds
that the phase resolution for the two-mode condensate is
(Galy,1,0)) = (¥'(y,,0) ¥ (y,t,0)) given by
1 2+ d(1)2 By (N — (N2
=7 2 2.2 ex4_2Ay2 1_5)2t2> A®?= <Ay>+< >A< ) : (21)
V27AYA(1 + w?t?) Y1+ o) (307 47
X[N cos)’(y—d> The second term in Eq21) is equal to zero in an indi-
AY*(1 + 0?t?) vidual experimental event, but gives rise to a contribution of

A yd order unity if averaged over a classi¢Rloissoniandistribu-
+ 2<Jx>cog<ﬁwt+ ) tion of particle numbers in repeated experiments. The num-
Ay*(1+ o) ber of particles must therefore be determined with a high
A yd precision if one wishes to benefit from any enhancement of
—2<Jy>Sln<mwt+®) . (16) interferometric resolution due to phase squeezing. Setting
y @ this second term to zero for now, we recover the result de-
The atomic density at any point in space and time is given byived by Kitagawa and Ueda in their seminal work on spin
an incoherent contribution that is independent of both thequeezind31]. Squeezing along thg direction corresponds
relative phase and the internal dynamics of the two-modé0 increased correlations of the phases between the two
condensate, as well as a coherent contribution. The relativells, thus producing a better defined relative phase, a desir-
phase® corresponds to a phase imprinted to the condensat@ble feature in interferometric applications. The squeezing
after the halves have been separated. Given that the tunndlarameter, which we calculate relative to the standard quan-
ing is negligible, this can be done without changing the statum limit
tistics of relative number/phase between the wells. This as- =
sumption also has to hold for the system to be useful in A® N(J?!)

interferometric applications. Since the Hamiltonidnis in-

T ABsqL (3
variant with respect to the exchangje~ R, it is easily seen

that for states symmetric with respect to the interchange o?'éIhOUQh not nec?s;iarily r_epresent]jr1t% the m?ximal achitev-

A A . o able squeezing of the variances of the angular momentum
the two mgdes(Jy>-<JZ>-O for all times, aIthough(tJyh_&O distribution, was shown by these authors to represent the
as we discuss shortly. The coherent contribution t

: . . Oparameter of interest from the point of view of possible in-
(Ga(y,1,0)) s therefore proportional to the expectation i ferometric applications. Hence it is the major focus of the
value of(J,). In terms of the angular momentum picture, it present study.

can be interpreted as the polarization of the distribution. The

: (22)

visibility of the interference fringes of the ballistically ex- IIl. RESULTS
panding two-mode condensate, This section discusses the main results of our numerical
- study of the two-mode beam splitter. The analysis is based
_(G1(0.1,0) =(Gs(0.t, m)) _ (I (17)  ©n the dimensionless parameter
<Gl(01tvo)> + <G]_(O,t, 7T)> N/2 , ZgN
depends only on that expectation value, the associated fluc- G= AE’ (23)

tuations being given b
99 Y the ratio of mean-field energy to tunneling energy, which

AG, = \"/<AGi(y,t,®)> = \/<G§(y,t,®)> —(Gy(y,t,0))2. completely determines the spectrum of the Hamiltonian.
18 Note, however, that the two-mode approximation implic-
(18) itly assumes a stable condensate, a property that holds only
{or low enough densities in the case of attractive interactions

The phase resolution of atom-interferometric experiments i
limited by the requirement that the change in local density[zﬂ' ) i ) )

resulting from an imprinted global phase change must be e consider first the simple case of a static double-well
larger than the intrinsic fluctuations of the first-order corre-SyStém where the confining potential is suddenly turned off,
lation function resulting into the formation of an interference pattern after a

period of ballistic expansion. The next subsection discusses

HGy) the results of a full dynamical study.

ZC)

AG, = A®. (19)

A. Static double-well potential

This gives as an estimate for the phase resolution resulting The matter-wave interference pattern is shown in Fig. 1 in
from number fluctuations the superfluid regime, further illustrating the excellent con-
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FIG. 1. Particle density bounded by density noi&)+AG;
after ballistic expansion of a two-mode condensate \With100 in
the ground state in the “superfluid” regim&=10"73, where the
visibility is high. The dashed lines show the density of the mode
functions. Transverse distance is measured in units of the oscillator
width Ay and the initial condensates were centered arodnd
=+8Ay. The modes were allowed to expand ballistically uil
=20.

FIG. 2. Ground-state distributions as function of the dimension-
less paramete6s for attractive interaction. Ina@ magnitudes of
ground-state componenis,(G)| are shown for attractive interac-
tion, and in (b) the distribution of relative phase components
[c4,(G)| in Eq. (26).

trast in that case. In addition to the fringe contrast, it is nec-

essary to consider the quantum fluctuations of the interfer- 1 J
ence pattern, since they lead to the fundamental limit in = im’ !

p : y 6y = ———= >, explim’6,)d,m’) (26)
phase resolution of interferometric measurements. Figure 1 N2I+1,,_,

illustrates these fluctuations by attaching to the inter(€y
a width given by twice its variancAG,=((G3)—(G,)?)2
The density and noise is calculated using the time-dependent
modes, Eq(14), and the numerically obtained ground state
of the Hamiltonian, Eq(12), for the energy raticG=1073,
which corresponds to a repulsively interacting superfluid. We
have seen in Eq21) that the fluctuationd G, result in a
phase resolution

and the discrete relative phases are given by

22 9
AB = %, (24)
(307
where we have neglected the shot-to-shot number fluctua- b)

tions for simplicity. The density noise is here proportional to
\«‘"<G1>, allowing at best for interferometry at the standard
quantum limit.

Figures 2 and 3 shows the ground-state distributions in
terms of both the probability amplitudés,|, and of the am-
pIitudes|c0m| of the ground state expressed on a basis of
so-called relative phase states,

) = > Co |0, (25) FIG. 3. Ground-state distributions as a function of the dimen-
mom sionless parametés for repulsive interaction. liia) magnitudes of
ground-state components,(G)| are shown for attractive interac-
tion, and in (b) the distribution of relative phase components
where[32] |cg, (G)] in Eq. (26).
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FIG. 4. The uncertalntleQJy, AJ; and the productJ,AJ, as - - - G

functions ofG for N=100. The phase uncertainM§ goes through

a global minimum aiG=-1, the border between attractive super-  FIG. 5. Visibility of interference fringes for a ballistically ex-
fluid and superposition states, and increases in the repulsive reginp@nding two-mode Bose-Einstein condensate as a functi@, thfe

until it saturates to a constant value as the system passes through ti&io between the mean-field and tunneling energies, for particle
Mott-insulator transition. numbers ranging from 10 to 200. For attractive interaction the vis-
ibility decreases abruptly faB<-1. In the case of repulsive inter-
action the behavior is qualitatively and quantitatively different for

27T_m' (27) even(solid) and odd(dashedl atom numbers, as explained in the
2J+1 text.

em = 00 +
for an arbitrary reference phagg chosen here to be zero. 1
For weak interactions, i.e., smaiB|, the system is in a -1<G< ENZ, (30

state reminiscent of a coherent state, with a relatively well

defined phase with fluctuations consistent with the standardihere the upper limit was found from the simulations. In this

quantum limit. For large attractive interactions the groundinterval the ground state resembles a coherent state, making

state approaches a double peaked distribution, corresponditigis the superfluid regime. For large attractive interactions

to a macroscopic superposition state as described in Refthe uncertainty product increases at the superfluid-

[26,27. For G<-1, the ground state can thus be approxi-superposition transition and saturates for strong interactions.

mated by As the uncertainty in relative phase does not increase when
compared to its value in the superfluid regime, the increase
in the uncertainty product can be attributed solely to the

1 N
) = EHJ’JH [9,= 9] (28) increase inAJ,. The fact that the ground state in the super-
position regime is double peaked, as can be seen in Fig. 2,
and thus no longer a minimum uncertainty state, gives using
Eq. (28) for the uncertainty in number difference

1L (By=2= N (31

|¢>:,J+——1/22 oS J0)| 6 (29 ’ 4

! I in agreement with the numerical results; see for instance Fig.

- ) » 4. On the Bloch sphere the distribution is concentrated
The transition between the superfluid and superposition resround the two regionsi= +J, this bimodal character giving
gimes takes place just beld@=-1, where the relative phase . Ln
becomes well defined due to squeezing. nsiitou?el%rgsig\?vrse?ﬁele/?gibiIi of the fringes, Eq(1
For large repulsive interactions the ground state goes ) W ges, Eq(lD),

through the Mott-insulator transition in a continuous manner.after the free expansion of the matter waves following the

Here the number distribution narrows and the phase distribus-WItChIng off of a static double-well potential. In case tun-

tion widens until it becomes essentially flat, indicating anielIk?—?:oi(t)rrglsq?:ﬁgrft:reendcyengmlcessOLJ?tehSry:ti(sargﬁ \;Vl()an?tﬁ?;\ﬁ
completely random phase when averaged over an ensembpag ges, P

: . . 1 ~
Figure 4 shows the uncertainties in the relative numbe ition, with contrast _decreasmg #8|™ as soon aG<-1. .
he underlying physics governing the decrease of contrast is

w2 : w2 - -
AJ;, and the relative phas&Jj, together with their product  ggsentially the same as in the superfluid-Mott insulator tran-

A:]yA:]Z for N=100 atoms. The uncertainty product is essensition predicted 23,24 and observed in optical latticg22].
tially constant in the region If tunneling dominates, the state of the two-mode system is

This gives for the phase distribution
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essentially a superfluid with a well-established phase rela10'
tionship between the two modes of the beam splitter, result-
ing in high-contrast interferences. In the superposition and
Mott regimes, by contrast, the two wells are isolated from
each other, with no phase relationship between them. N
This behavior of the fringe visibility can be further under-
stood from the Heisenberg uncertainty relation N=10

A Pl 52 A JP<d 2
y X zZ Ux

a1 .. 1 -
A‘]yA‘]z: §|<[JyaJJ>| = §|<Jx>|a (32 10k

which shows that the uncertainty prodm‘:ﬂijz is propor-

tional to the polarizationJ,) and thus the visibility(17).
This shows that the regime of high visibility coincides with 42|
the one where uncertainty product is constant. This is, as
expected, the superfluid regime. The polarization measure: x o - = = —
the coherence, here the degree to which adjacent wave func =
tion components,, are populated. In the Mott-insulator and
superposition regimes, the wave function becomes highly FIG. 6. Squeezing of the phase variance relative to the standard
peaked around the cenigninimal|m[) and boundarymaxi- ~ quantum limit for the two-mode ground state. For attractive inter-
mal |m|) which thus limits the coherence. action the phgse squeezing is_minir_nal just be(Bw—_l. Thg Cross-
In addition to illustrating that the visibility decreases out- V€' from Poissonian fluctuations in the superfluid regie -1
side the superfluid regime given by E€O), Fig. 5 also to the superpogltlon stat@>-1 pecqmes sharper Wlth increased
shows that for G>0 and even particle number, the number of particles. For repulsive interaction there is a smooth
. T ' transition between the superfluid regime of I@vvalues to the
asymptotic value for the visibility i¥=3 rather than zero for

SR . . . Mott-insulator state. In the asymptotic lin@— «, the squeezin
N odd. This difference in asymptotic behaviors can be ex- ymp — ; g

- A . . approaches a plateau, which is different for odd and even atom
plained as follows. For repulsive interactions and far into thg, ;mpers.

Mott insulator regime, the ground state is approximately

given by a Fock state with equal populations in both wells.accuracy. This indicates the presence of a “quantum phase

In the case of odd atom number, the additional atom can bgansition"—or more precisely crossover—a property also

in either of the wells, so that inferred from Fig. 2 where the quantum statistical properties
1 1> 1> of the ground state obviously change at the pdpit-1.

) = —_{ J= )+ 1|J-= } (33)  This transition is associated with the onset of increased num-

= 2 2 ber fluctuations between the populations of the two modes,

and correspondingly to suppressed phase fluctuations. Hence
; the phase resolution of the beam splitter is maximized at that
Gy= }[J+} _J (34) point. As expected, the crossover from Poissonian fluctua-
) 2| 2 tions in the superfluid regime fd&>-1 to a superposition
i state for G<-1 becomes sharper with increased particle
and hence/=1/2 asasymptotic value. _ number. For attractive interaction there is thus a squeezed
For the case of even particle number, in contrast, th&ate at the boundary between the superfluid and superposi-

as_ymptotic grou_nd state fde— oo is the Foqk_stat¢m20> tion regimes. For small atom numbers and attractive interac-
with N/2 atoms in each well. For large but finite values®f 5, the minimum of A®2 occurs to the right of the

This gives for the polarization

the state can be approximated by superfluid-superposition transition. From this discussion, it
|y =11 - 2¢/3,0) - \*";[|J,1> +13,- 1], (35) might appear favorable to operate the beam splitter in that

regime. This is, however, misleading, as we must also take
wheree is a small number. This gives for the polarization into account the fact that the fringe visibility rapidly de-
N - I creases in that regime, as shown in Fig. 5. The situation
(30 = 2Ve NI+ 1) = 2ved, (36) improves rapidly for largeN, though. The sharpness of the
and an asymptotic value of the visibility— 0. minimum, however, makes this state challenging to create
Let us now turn to the phase resolutia®? of the beam  experimentally in a controlled manner. In addition, the maxi-
splitter. The left-hand side of Fig. 6 shows the variancemum achievable squeezing is limited due to the size limits
A®2/AGZ,, after free ballistic expansion from the two- imposed by the metastability of attractive condensates.
mode ground state of the beam splitter, plotted as a function The situation is slightly more subtle in the case of repul-
of the ratioG between the mean-field energy and tunnelingSiVe interactions. From Fig. 2, it is quite clear that as the
energy. The phase resolution exhibits a sharp minimum justystem moves into the Mott regime, the phase uncertainty
below G=-1. At this point, we find numerically that the increases and the number fluctuations of the ground state
energy gap between the ground state and the first excitd@fcome more strongly squeezed. This is also evidenced in
state of the double well goes to zero within our numericalFig. 3, which shows the monotonic increaseAiﬂ§ for in-
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creasingG. Hence it would appear that the phase resolution 10°
becomes increasingly worse in this regime. This difficulty N -

can, however, be eliminated by using quantum tunneling 10,2 AN -

turn number squeezing into phase squeezing, as discussed .. ~
Sec. Il. As a result, the minimal obtainable phase fluctuations S Teel

for G>0 are given by hES ~~.
101 N S E

Z (37) ™ g<0 "~

since AJ,=(J2) is the minimal uncertainty od, in deep the .
Mott regime. The right-hand side of Fig. 6 shows that the 4| S _
phase resolution achieved by this technique in the case o AR
repulsive interactions. Just as for the visibility, we find here ~
different asymptotic behavior for odd and even particle num- .
bers with a factor of 2 in difference for large interactions. 10° o e

Using Eq.(33) we find for the uncertainty in number differ- N

ence

FIG. 7. Phase variance in the ground state of the double-well

<32> — 1 (39) system at the “critical pointG=-1 for attractive condensates, and
zZy at G=N?/2 for repulsive condensates, as functions of particle num-
ber. The dashed lines show the standard quantum (@) and
which together with Eq(34) for the polarization gives Heisenberg limitHL) for comparison.
~o 7 = N2’ (39 ing as 1AN and Heisenberg limi(HL) for comparison. The
(3o G value in the repulsive regime was chosen to produce maxi-

in agreement with the asymptotic values for odd particle™@l squeezing for odd particle numbers, slightly worse than
numbers, shown dashed in Fig. 6. For even numbers E(ﬁ(_)r even numbers. Since the particle number cannot be con-

(35) yields t_roI_Ied down to.single units, this produces a conservative
limit for the achievable squeezing.

<J22) =~ 2g, (40) The combination of the mean-field interaction and tunnel-
ing clearly leads to the squeezing of the matter-wave field
and a sensitivity significantly improved from the standard
<J22> 1 2 quantum limit under the conditions mentioned above. We
EIVIRPL i (41)  find numerically that for attractive interactiak®? scales as
(3o N~1-38 slightly above the asymptotic limit &% derived by

in agreement with Fig. 6. The behavior of both phase resoKitagawa and Ued431]. The difference is expected to de-
lution and visibility for odd versus even particle numbers cancréase with increased particle number. For repulsive interac-

thus be understood from the form of the ground state in théilon we find AZO‘N_.Z' thus corresponding to Heisenberg
limit of large repulsive interactions. limited phase resolution. This comes at the price of larger

interactions and also necessitates an additional rotation of the
cI)_?floch sphere.

which together with Eq(36) gives

Strictly speakingA:Jy is the phase uncertainty only when
the distribution spans an area narrower than the diameter

the Bloch sphere. For larger values the spraégi behaves .
differently, as it is the projection onto the plane spanned by B. Dynamics

Jy and J,, and not the distance along the equator. For the The previous section investigated the ground-state prop-
interferometric setup considered here the phase uncertainty ésties of the static double-well system. Here we discuss ways
in general not equal to the phase resolution given by Eqto create states with the desired properties starting from a
(21), as the latter will grow when the visibility goes down. condensate in the ground state with a small interwell separa-
We have seen in Sec. Il that the phase sensitivity of theion. The adiabatic theorem of quantum mechanics states that
system is closely related to spin squeezing. The squeezing afsystem governed by a time-dependent Hamiltonian and ini-
both optical and matter waves is of considerable interest imially prepared in an eigenstate will remain in the instanta-
interferometry, as it offers the potential to beat the standareheous eigenstate given that the Hamiltonian changes suffi-
quantum limit of detection, and possibly replace it by theciently slowly. The aim here is evolve the system adi-
so-called Heisenberg limit scaling asNL./Figure 7 shows abatically [33] into states of maximal squeezing and then
the phase variation of the ground state at both the “criticafreeze the dynamics.
point” G=-1 for attractive interaction, and Q:%NZ for Controlling the magnitude and sign of two-body interac-
repulsive interaction as functions of particle numbgrthe  tion is readily achievable using Feshbach resonances. The
dashed lines giving the standard quantum lig8QL) scal- rate at which the magnetic field can be swept across a reso-
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FIG. 9. Squeezing of the relative phaa® for a double well
FIG. 8. Phase squeezing fgr< 0 whenAE(t) is taken to vary  split in time according to Eqg42).
according to Eq(42), for several values of the. The dashed lines

show squeezing of the instantaneous ground state for comparisorgystem is initially adiabatic, but becomes diabatic for larger
separations making the system freeze out in a state less
nance has been shown in experiments to be much higher thagueezed than the desired ground state. Longer evolution
typical trap frequencies and tunneling rates, allowing for atimes make the system more adiabatic thus achieving
practically instantaneous switching of the nonlinear interacsqueezing closer to, but still far from the optimal values. For
tion since the many-body dynamics occurs over longer timeill cases shown in Fig. 8 it is, however, apparent that the
scales. Decreasing the tunneling rate can be achieved by ragiynamics is only partially adiabatic and that the minimal
idly separating the two wells as the point of minimal phasephase variation is severely limited by violation of the re-
fluctuations is reached.

quirement that the dynamics be adiabatic.
We model the splitting of the symmetric double-well po-

\ . _ ; Figure 9 shows the squeezing dynamics of a condensate
tential using a tunneling potentialE(t) that decreases expo- with repulsive interaction when the tunneling energy is de-
nentially in time,

creased exponentially in time according to E4R). As the
& valueG:%N2 is reached, the two-body interaction is rapidly
AE(t) =how exp(— L‘g —I‘t) (42)  tuned to zero. After that a pulse of tunneling interaction,
Ay ’

which corresponds to bringing the two wells closer again, is
whered,,, is the minimal separation between the wells, andapphed in such a way that

the constant” is a measure of how fast the wells are sepa-
rated. The separation is assumed to occur over a finite time o har
and to reaching a valué(r) such thatG=-1 for attractive f AE(t)dt=—,
interaction, ancG:%N2 for repulsive interaction. The con- 2
stantl’ is adjusted accordingly. As the time 7 is reached,

the two-body interaction is rapidly taken to zero to freeze the
dynamics.

(44)

T

thereby rotating the Bloch-sphere distribution by an angle
The evolution aftet=r is linear and solely governed by 7/2 around thel, axis and thus transforming the number

tunneling. Note that for attractive interactions, the residuaqueezing into phase squeezing without otherwise changing
rotation of the distribution resulting from quantum tunneling the distributions.
has to be kept small in order to avoid transforming the phase Initially the phase variance is seen to increase as the state
squeezing into number squeezing, becomes number squeezed for increasing valu€mfuntil
. the timet=ris reached wheg— 0, effectively freezing the
evolution until the tunneling pulsét4) is applied. For all
ff AB(Hdt <A (43 values ofr, which are indicated in Fig. 9, the same tunneling
pulse was used. The dynamics is seen in Fig. 9 to become
This can be achieved by either takidd(7) <1 at the point more and more adiabatic as the valuerd$ increased, just
where G=-1, or separating the wells rapidly afterrto  as in the case of attractive interaction. Here, however, the
make the left-hand side of E¢3) negligible.

maximal squeezing achieved is larger than for the attractive
The squeezing in the phase variation for attractive intercase. This is not obvious at first, even though the repulsive

action is shown versus time in Fig. 8 for several values of theground state is more squeezed, as the system has to be

parameterr. The instantaneous squeezing of the true grounctvolved to values of stronger interaction than in the attractive
state is shown dashed for comparison. The evolution of thease.
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V. CONCLUSION AND OUTLOOK given by Eg.(35). In the present context such states are
unsuitable due to their low visibility. The problems can be
In this paper we have investigated the full quantum dy-ayoided by not taking the system deep into the Mott-
namics of a condensate in a symmetrically split double wellinsylator regime where the ground state is the dual Fock
Expressions for the visibility and phase resolution during astate, but rather to the threshold wheeN?/2, and the
ballistic expansion stage were given and investigated nugisipility still is high.
merically. The possibility of creating phase squeezed ground |t js well known that the introduction of a linear potential,
states by adiabatic splitting was demonstrated, but is limiteqor instance due to gravity, changes the localization proper-
by the time scales involved. The increased phase sensitivitjes of the double-well eigenfunctions. The corresponding
for ground states of attractive Condensates, which are knoW@ﬁects in the many_body regime are presenﬂy exp|ored ex-

to be stable only for particle numbef85] up to aroundN  perimentally[34] and will also be the subject of future the-
~10? was found to require long splitting times to achieve gretical investigations.

adiabatic evolution. For repulsive condensates where the

densities are limited qnly by the requirement that_ the two- ACKNOWLEDGMENTS
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