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We apply controlled perturbation theory to calculate the spectrum of the Gross-Pitaevskii equation for a
system composed of attractive bosons confined in an anisotropic harmonic trap. The energy spectrum is
calculated as a function of the coupling parameters for traps going from cigar to pancake shapes. The critical
number of particles that ensures real values for the energy spectrum is obtained as a function of the potential
anisotropic parameter, showing strong dependence of the critical number on the anisotropy of the trap. For a
number of particles above the critical value the metastability of the system is characterized through the
calculation of the condensate lifetime, using the imaginary part of the energy values. The obtained results are
relevant for experiments where highly anisotropic traps are considered.
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I. INTRODUCTION

The vast interest in Bose-Einstein condensation(BEC)
arises partly from the fact that this phenomenon touches sev-
eral physical disciplines thus creating a link between them.
In the quantum mechanics view BEC appears as a coherent
matter wave arising from overlapping de Broglie waves and
is analogous to conventional and “atom lasers,” superfluidity,
interferometry, holography, and lithography among others. In
general, BEC is a new window to the quantum world.

A few years ago, BEC in weakly interacting confined
atomic gases was achieved in laboratories[1–4]. These ob-
servations have now been confirmed by an impressive num-
ber of groups worldwide and have triggered an enormous
amount of theoretical and experimental investigation on the
subject. While the early works focused on the equilibrium
thermodynamics of condensates close to the phase transition,
recently the dynamical response of the condensate wave
function to external perturbations was the subject of thor-
ough investigation. Subsequently, general attention turned to
the study of the superfluid characteristics of BECs, phenom-
ena of quantum transport, and the interaction of BECs with
light. Meanwhile, exotic states like multiple species conden-
sates[5,6] and vortices[7,8] have been created. Feshbach
resonances have been found[9–11] and various kinds of
atom lasers have been constructed[12–16]. BEC interferom-
eters have been realized[17], experiments on diffraction of
BECs have been carried out[18], and nonlinear matter-wave
amplification[19–21] has been observed. There is still room
for many different studies involving a great variety of as-
pects. Since the first realization of BEC with attractive inter-
action [3] the metastable behavior of the system has sug-
gested ways to study the condensate decay. Nowadays
theoretical and experimental groups have investigated the
macroscopic quantum tunneling of the Bose condensate and
also have studied the methods to stabilize Bose condensate
with attractive interactions[22–27]. The system with attrac-
tive interaction has still many features to be understood.

The aim of this paper is to consider an attractive Bose gas
and to derive an approximate solution to the Gross-Pitaevskii
equation with a negative effective interaction strength in a
cylindrical symmetry, such that it would be accurate for ar-
bitrary values of the coupling parameter. We also analyze the
stable critical number of particlesNc and the lifetime as
functions of the anisotropy of the confining potential. In
terms of the use of controlled perturbation theory to solve the
Gross-Pitaevskii equation, this is a similar approach to that
of our previous work[28]. Here, however, we consider an
arbitrary anisotropic harmonic trap that is a configuration
widely used nowadays.

II. CONTROLLED PERTURBATION THEORY

Because controlled perturbation theory has been widely
used, we used this opportunity to review this technique in
some detail.

Atomic interactions for dilute trapped gases are well de-
scribed by the Fermi contact potential because the ultralow
energies make the interaction shape independent. The inter-
atomic potential is therefore given by

Fsrd = Adsrd, A ; 4p"2 as

m0
, s1d

whereas is the s-wave scattering length andm0 the atomic
mass. For the external confining potential, we will consider a
harmonic trap, of general shape,

Usrd =
m0

2
svx

2x2 + vy
2y2 + vz

2z2d. s2d

The quantum description of the trapped atoms is well
within the Gross-Pitaevskii(GP) equation, which for a sys-
tem of N particles can be written as
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Ĥswd = −
"2¹2

2m0
+ Usrd + NAuwu2, s3d

whereA is the interaction parameter andUsrd the confining
potential.

We shall consider a harmonic potential of cylindrical
symmetry, with radial frequency

vr ; vx = vy

and axial frequencyvz such that the anisotropy parameter
and oscillator lengthl r, are defined as

l ;
vz

vr
, l r ;Î "

m0vr
. s4d

The coupling parameter is defined as

g ; 4p
as

lr
N. s5d

The nonlinear eigenproblem for the Hamiltonian(3) cannot
be solved exactly. The standard perturbation theory starting
with the harmonic-oscillator approximation cannot be em-
ployed if an arbitrary amplitude of the coupling parameter
defined in Eq.(5) is considered. It is possible to find accurate
approximate expressions for the whole spectrum for arbitrary
values of the coupling parameter by means of controlled per-
turbation theory[29–34], which will be outlined here.

Assume that we are looking for a functionEsgd of a cou-
pling parameterg. For simplicity, we consider that the func-
tion and coupling parameter are real throughout the whole
procedure. This, however, can be straightforwardly extended
to the case of complex functions.

If one invokes standard perturbation theory, valid for
small coupling parameters, one gets for the eigenvalues a
sequence hpksgdj of perturbative approximationssk
=0,1,2, . . .d, such that

Esgd < pksgd s6d

However, the perturbative sequencehpksgdj is usually diver-
gent if an arbitrary value ofg is considered. Moreover, the
coupling parameterg is often not small, in which case the
perturbative sequencehpksgdj cannot, in principle, provide
reasonable approximations.

The main idea of controlled perturbation theory consists
in the introduction of control functions that optimize the con-
vergence of the above calculational procedure. Instead of a
divergent sequencehpksgdj, one would get a convergent se-
quencehEksg,ukdj, whose convergence is governed by con-
trol functionsuk=uksgd. The control functions for making a
perturbative sequence convergent were first published by
Yukalov in 1976[35]. The inclusion of control functions can
be done in different ways. A straightforward way is to start
the perturbation theory with an initial approximation contain-
ing a set of trial parametersu. Later they are then trans-
formed into functionsuksgd such that the sequenceheksgdj of
the terms

eksgd ; Ek„g,uksgd… s7d

becomes convergent. Perturbation theory, reorganized by in-
troducing control functions[35], has been successfully ap-
plied to a variety of problems in quantum mechanics, statis-
tical physics, and field theory[35–45]. Perturbation theory
thus reorganized has different names, such as optimized per-
turbation theory, controlled perturbation theory, modified
perturbation theory, renormalized perturbation theory, the
oscillator-representation method, thed expansion, and many
others. The method of potential envelopes[46–48] is also
closely related to this approach. More details about the
method can be found in reviews and papers included among
the references[49–52].

Only in a few simple cases such as zero- and one-
dimensional anharmonic oscillators[53–55] can control
functions be chosen from the direct observation of conver-
gence. In contrast to this, the standard situation is when per-
turbative terms, of arbitrarily large orders, are not available.
For realistic problems one is usually able to find just a couple
of perturbative terms. Because of this, one usually defines
control functions by invoking some heuristic reasons.

The foundation for the choice of control functions can be
built in the frame of the self-similar approximation theory
[56–61]. These functions are to be chosen so that they pro-
vide the optimal convergence, i.e., the convergence is as fast
as possible. To derive the concrete equations defining the
control functions, it is necessary to construct a dynamical
system, called the approximated cascade[60,61], whose tra-
jectory is bijective to the approximation sequenceheksgdj.
The limit of the latter is one-to-one correspondence with an
attractive point of the approximation cascade. Approaching
the fixed point, the cascade velocity for thek order, Vksgd,
defined as

Vksgd = Ek+1sg,ukd − Eksg,ukd + suk+1 − ukd
]

] uk
Eksg,ukd,

s8d

tends to zero. Hence, the closer we are to the fixed point, the
smaller is the modulus of the cascade velocity(8). In others
words, to provide the fastest convergence for the control
functions, one has to minimize the cascade velocity modulus

uVksgdu ø uEk+1sg,ukd − Eksg,ukdu + Usuk+1 − ukd
]

] uk
Eksg,ukdU .

s9d

Two variants of the fixed-point conditions can be considered
to minimize either the minimal-difference condition

Ek+1sg,ukd − Eksg,ukd = 0 s10d

or the minimal-sensitivity condition

suk+1 − ukd
]

] uk
Eksg,ukd = 0. s11d

The latter, since in generaluk+1Þuk, reduces to the varia-
tional condition
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]

] uk
Eksg,ukd = 0. s12d

Both conditions(10) and (12) are widely used within the
various applications. When it happens that Eq.(10) or (12)
has no solutions, these equations can be generalized to the
condition

min
u

uEk+1sg,ud − Eksg,udu, s13d

or to the condition

min
n
U ]

] u
Eksg,udU . s14d

The accuracy of the controlled approximants(7), as com-
pared to the known valueEsgd, is characterized by the per-
centage errors

«ksgd ;
eksgd − Esgd

uEsgdu
3 100% . s15d

Let us emphasize the difference between controlled per-
turbation theory and a variational procedure based on the
minimization of the internal-energy functional. First, the lat-
ter has sense solely for the ground state while the former is
valid for the whole spectrum of the eigenproblem. Second,
the latter implies the case of a zero-temperature condensate,
while the former is independent of temperature. Third, the
minimization of the internal energy yields a control value for
the energy itself, but the described method provides control
approximants for the spectrum.

III. CYLINDRICAL SYMMETRY MODEL

We csonsider here a cylindrical trap, which serves as an
illustration of the applicability of the method and also be-
cause such geometries are often employed in experiments.

To solve the eigenproblemĤCn=EnCn, with H given by
Eq. (3), we invoke the controlled perturbation theory de-
scribed in Sec. II, starting with the initial Hamiltonian

Ĥ0 = −
1

2
¹2 +

1

2
su2r2 + v2z2d s16d

containing two control parametersu and v [60,61]. The ei-
genvalues for the operator in Eq.(16) are easily determined
as

Enmk
s0d = s2n + umu + 1du + Sk +

1

2
Dv, s17d

with the quantum numbers

n = 0,1,2 . . . , m= 0, ± 1, ± 2, . . . , k = 0,1,2 . . . .

The related eigenfunctions are

Cnmk
s0d sr,w,zd = F 2n!uumu+1

sn + umud!G1/2

r umuexpS−
1

2
ur2DLn

umu

3sur2d
eimw

Î2p

sv/pd1/4

Î2kk!
expS−

1

2
vz2DHksÎvzd

whereLn
ms·d are the Laguerre polynomials andHks·d are Her-

mite polynomials.
In first order, we have

Enmk
s1d sg,u,vd = sCnmk

s0d ,ĤCnmk
s0d d. s18d

To write down this integral explicitly, it is convenient to use
the notation

Inmk;
1

uÎv
E uCnmk

s0d srWdu4drW,

in which rW=sr ,w ,zd is the dimensionless space variable in
cylindrical coordinates. We get

Inmk=
2

p2F n!

sn + umud ! 2kk!
G2E

0

`

x2umue−2xfLn
umusxdg4dx

3E
0

`

e−2t2Hk
4stddt.

It is also convenient to introduce the notation

p ; 2n + umu + 1, q ; 2k + 1, s19d

in which the effective interaction strength is represented by

s; 2pÎqInmklg. s20d

In this way, the energy levels(18) can be written as

Es1dsg,u,vd =
p

2
Su +

1

u
D +

q

4
Sv +

l2

v
D −

1

2

suÎl

vpÎq
, s21d

where, for simplicity, the quantum indicesn, m, andk in the
left-hand side are dropped.

The fixed-point conditions are therefore obtained from the
conditions

]

] u
Es1dsg,u,vd = 0,

]

] v
Es1dsg,u,vd = 0. s22d

These yield to the control-function equations

pS1 −
1

u2D −
s

pl
Îv

q
= 0, qS1 −

l2

v2D −
s

plÎlq
= 0.

s23d

Substituting the control functionsu=ussd and v=vssd, de-
fined by Eqs.(23), into Eq. (21), we obtain the controlled
approximant
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Essd ; Es1dfgssd,ussd,vssdg. s24d

It is instructive to analyze the weak-coupling and strong-
coupling limits in detail. In the weak-coupling limit,s very
small, and Eq.(23) gives the radial control function

ussd < − 1 −
s

2Îqlp2
+

s2

8q2l2p3 −
3s2

8qlp4 +
s3

4q2l2Îqlp5

−
5s3

16qlÎqlp6
−

3s3

64q3l3Îqlp4
s25d

and the corresponding axial control function

vssd < l −
s

2pqÎql
+

s2

4q3l2p2 −
s2

4q2lp3 −
3s3

16q2lp5Îql

+
5s3

16q3l2p4Îql
−

7s3

64q4l3p3Îql
. s26d

In the strong-coupling limit, withs very large, the radial
control function is

ussd < ps−2/5 −
psl2q2 + 3p2d

5
s−6/5

+
ps− l4q4 − l2q2p2 + 3p4d

5
s−2, s27d

and for the axial control function we get

vssd < l2qs−2/5 + S4ql2s− l2q2 + 3p2d
5

− 2p2ql2Ds−6/5 + Fp4ql42fs− 6l4q4 + l2q2p2 + 6p4d/25p2 + s− l2q2 + 3p2d2/25p2g
p2

+
4s− l2q2 + 3p2d2

25p4 + ql2Sp4 +
4p2s− l2q2 + 3p2d

5
D −

8p2ql2s− l2q2 + 3p2d
5

Gs−2. s28d

Finally, for the weak-coupling limit, the energy(24) becomes

Essd < Spsl + 1/ld
2

+
qs− 1 −l2d

4
D

+ Spf1/2pqÎql − 1/2l2pqÎqlg
2

−
1

4

eh1
2

lns4d−1
2

Ic sgnfs−4+2s/Îqlp2dIgpj
pÎq

+
qs1/2Îqlp2 − l2/2Îqlp2d

4
Ds. s29d

For the strong-coupling limit, we find

Essd < S3

4
−

Îqv2

2vÎq
Ds2/5 + Sp2

2
+

q2v2

4
Ds−2/5. s30d

The derived expressions(29) and(30) are valid for any com-
bination of quantum numbers.

For atoms with negative scattering length, as in the case
of 7Li or a few states of85Rb, the coupling parameter Eq.(5)
becomes negative. Ifs,0, the control function equations
(23) have real solutions only in the intervalsc,s,0, where
sc=−4 obtained from Eqs.(22), (23), and(30).

Associated with this critical value fors=sc, whereEssd
becomes complex, we have a critical value for the coupling
parametergc, such that

gc ; −
sc

2pÎqlInmk

. s31d

Since the complex part of the eigenvalueEssd is related to
an unstable system, for numbers of particles producingg
.gc the system will collapse as observed in[3].

For the ground-state level, withn=m=k=0,p=q=1, and
I000=0.063 494, one finds

gc = −
31.50

l
. s32d

Varying the anisotropy parameterl, the critical coupling
parametergc varies following(32).

The fact that there is a critical value for the coupling
parameter Eq.(5) can be reformulated as the existence of a
critical number of particles for stability of the condensate:

Nc =
l rgc

4pas
. s33d

Thus, for the parameters of the experiments[3,62] with 7Li,
for gc=−31.5, we getNc,103.

Substituting Eq.(31) in Eq. (32), we have the critical
number of particles as a function of the anisotropy param-
eter:

Nc = U l r − 31.5

4pasl
U . s34d

Varying the anisotropy parameterl, we can analyze the
behavior of the critical number of particlesNc numerically.
The result is presented in Fig. 1.

For g.gc, the energy becomes complex, which implies
the instability of the system. The lifetime of such a meta-
stable system can be estimated[63,64] as
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tsgd ;
1

w0uIm esgdu
, s35d

whereesgd=E(ssgd). In the limit g→−`, we have[28] for
the real and imaginary parts of the energy

Re esgd < h0.251 592 384 9s0.154 508 497 2d

+ fs0.077 254 248 603 10−1dl2gl2/5js− gd2/5

+ 0.307 061 150 3l−2/5g−2/5,

Im esgd < f0.251 592 384 9s0.475 528 258 2d

+ s0.237 764 129 1l2dl2/5gs− gd2/5

− 0.945 037 06l−2/5g−2/5.

Varying the anisotropy parameterl, we can analyze the be-
havior of the lifetimet numerically (see Fig. 2). The geo-
metric mean frequency isv0=2p3145 Hz and we are in the
intermediate regimeg<4.

As we observe, the critical number of particlesNc is also
very sensitive to the trap shape, depending on the aspect ratio
l;vz/vr. For the cigar-shapesl!1d and spherical-shape
sl=1d traps,Nc is larger than for a disk shapesl@1d.

To estimate the critical number of particles, consider a
spherical-shaped trap, as was previously used[3,62] for con-
densed7Li. With the radial frequencyvr =2p3150.6 Hz
and axial frequencyvz=2p3131.5 Hz,l<0.9. The scatter-
ing length of7Li is as=−1.5310−7 cm. Since the oscillator
length in this case isl r =3.2310−4 cm, the critical number of
particlesNc,53103. However, if one takes a disk-shaped
trap with aspect ratiol=10, the critical number of particles
can be as small asNc,530, and in the cigar shape with
aspect ratiol=0.1, the critical particle number isNc,53
3103. The critical number of particles is larger than studied
in Ref. [28], because compared to that work we exchange the
sign of the effective interaction strength, which is negative,
and thus the critical coupling parameter undergoes change in
its numeric value. So we verify a favorable influence to con-
dense a large number of atoms, when the anisotropy is to-
ward the cigar shape. We conclude thatvr.vz results in
larger particle numbers inside the trap in the critical limit.

If the number of particles with a negative scattering
length exceeds the critical particle number given by Eq.(31),
such trapped atoms form a metastable state, and then onlyNc
particles can form a stable Bose condensate, excess particles
being expelled out of the condensate during a time on the
order of the time provided in Eq.(34). This lifetime is also
sensitive to the trap shape. For the cigar-shapesl!1d and
spherical-shapesl=1d traps, the lifetime is larger than for a
disk shapesl@1d. When the number of particlesN exceeds
a critical one Nc, the Gross-Pitaevskii equation(1) with
negative scattering length, which governs the condensate
wave function, develops a singularity, a phenomenon known
as “self-focusing” in plasma physics[65], which indicates
that the system will rapidly collapse.

Recently Bose-Einstein condensation has been achieved
with 85Rb [66] by means of Feshbach resonance, which al-
lowed wide tuning of the scattering length from negative to
positive values. The ability to control the scattering length is
used to control and measure the stability condition with the
corresponding critical number of atoms.

There was a proposal[67] for stabilizing the Bose con-
densate with attractive interactions by driving a quadrupole
collective excitation. Our consideration related in[28] sug-
gests that it could, probably, be also possible to stabilize such
condensates by transferring the atoms with the help of a reso-
nance pumping field to excited states.

IV. CONCLUSION

Using the method of controlled perturbation theory[68] it
was possible to find accurate approximate expressions for the
whole spectrum of the trapped Bose gas for arbitrary values

FIG. 1. The values of the critical number of particlesNc as
functions of the different trap shapes for controlled perturbation
theory.

FIG. 2. The values of the lifetimet as functions of the different
trap shapes for controlled perturbation theory.
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of the coupling parameter. Also, we studied the properties of
Bose condensed gases in magnetic traps of high anisotropy.
The behavior of the critical atom number and critical cou-
pling parameter as a function of the anisotropy parameter
shows interesting dynamics which varies with potential
shape[66]. When the ground-state energy becomes complex,
which implies instability in the system, we determined the
lifetime at different trap anisotropic conditions.

Hence, through controlled perturbation theory we can
study the spectral properties of the trapped Bose gases and

finally investigate the behavior of Bose condensed gases in
magnetic traps when the system becomes unstable.
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