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Linearly coupled Bose-Einstein condensates: From Rabi oscillations and quasiperiodic solutions
to oscillating domain walls and spiral waves

B. Deconinck! P. G. Kevrekidi< H. E. Nistazakis, and D. J. FrantzeskaRis
lDepartment of Applied Mathematics, University of Washington, Seattle, Washington 98195, USA
2Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003-4515, USA
3Department of Physics, University of Athens, Panepistimiopolis, Zografos, Athens 15784, Greece
(Received 30 April 2004; published 8 December 2004

In this paper, an exact unitary transformation is examined that allows for the construction of solutions of
coupled nonlinear Schrédinger equations with additional linear field coupling, from solutions of the problem
where this linear coupling is absent. The most general case where the transformation is applicable is identified.
We then focus on the most important special case, namely the well-known Manakov system, which is known
to be relevant for applications in Bose-Einstein condensates consisting of different hyperfine st4gés tf
essence, the transformation constitutes a distributed, nonlinear as well as multi-component generalization of the
Rabi oscillations between two-level atomic systems. It is used here to derive a host of periodic and quasi-
periodic solutions including temporally oscillating domain walls and spiral waves.
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INTRODUCTION 1

T = [‘ EA +V+ag |’ +ad il |+ ayy,  (2)
The recent progress in experimental and theoretical stud-

ies of Bose-Einstein condensati@&EC9 [1] has made soli-

tary matter waves physically relevant objects. One

i i 1D k[2 ight lit h ) . .
dimensiona(1D) dark[2] and bright[3] solitons have been ppresent the condensate wave functions. The intra- and in-

observed in recent experiments. On the other hand, optic erspecies interactions are characterized by the coefficients
solitons have a time-honored history as fundamental nonlin: P y

ear excitations in optical fibers and waveguidese, e.g., the thJr e(Jn - tlh i)f f;:ad r:(l:izib-;reespuegr?c\(lzlryélgzwii (}zieﬁjer;gtues“nthe
recent reviews4,5]). 9 q pling.

A very relevant generalization of this class of physical :?Inoégrtzih EI?nS(sl) (?:gu(rzi)ﬁ ?‘icé)rgrbgl?i%sbgtshvugﬁ'alrnat?litnggée
systems and of the solitary waves they can support concerns, pings, er op : '
@s are two coupled electric field envelopes of the same

the case of multiple coupled components. There has recent avelength but of different polarizations and the linear cou-
been a considerable volume of work relevant to the proper- 9 P

e o coupled BECs rangin o h ground-siat soionf 72 8012 e O 8 st sopiec o e foer 1 e
[6,7] to the small-amplitude excitatiorj8] of the order pa- P ! y P

rameters. Furthermore, the formation of various structure%f the fiber's core in the case of circular polarizatighs,2d

: ) . inear coupling is impossible when considering waves of
g‘%ﬁ'?fz](fogﬁlg_;\r’]?:g?tqd a?EPngy?agl:igdﬁEgﬁh ao:i’rk and different vyavelengthosAnother optical quel, with o_nly Iin—.
bright-gray soliton complexe&i3], as well as spatially peri- ear coupling between two ques, gpplles to nonlinear fiber
odic stateg14] was also predicted. On the other hand, ex_couplers[24] or dual-corg nonImgar fibersee, e.g{25)). In
perimental results have been reported for mixtures of diﬁ‘er-.the dc;)ntext of dBiCS’ this clou_pllngargas been recently exam-
ent spin states 6FRb[15] and mixed condensat§s6,17. It ine (;]r extende wa\lie S0 ut_|onsﬂ ].d . f
is relevant to mention the efforts towards the realization of In the present work, we aim o study a unitary transfor-
mation in the context of Eqql) and (2) that completely

two-component BECs from different atomic species, such a‘?a’lbsorbs the linear coupling between the components into an
41K -87Rb [18] and "Li-33Cs [19]. ping P

Typically, the relevant model for two coupled BECs in- oscillatory temporal dependence. We illustrate the value of

volves two nonlinearly coupled Gross-PitaevelGiP) equa- this transformation in a twofold way: on the one hand, we

. . : . . use it to understand the role of the linear coupling between
tions. However, in experiments with a radio-frequeiayan X . 2

S . : the components as a means of creating Rabi oscillations be-
electric field coupling two separate hyperfine stafés,2q,

the relevant model involves also a linear coupling betwee tween the matter present in the two componées., hyper-

. : : . fine statey [27] and their analog in power oscillations be-
the wave functions. The governing normalized equations arg o . .
then of the form Wween polarizations in optical systems. On the other hand, we

use it to construcexacttime-periodic solutions of such lin-

early coupled nonlinear Schrédinger equations. This way, we
1 identify time-periodic Thomas-Fermi clouds and extended
ivn=l-ZA+V+a 2424 2\ + a, (1 waves in one spatial dimension, as well as oscillating domain
Vi 2 il altal” |1+ ey (D) walls and vortices in two dimensions. Since the transforma-

‘whereV=V(r) is the relevant potential, typically consisting
of a magnetic trap and/or an optical lattide21], while ¢;'s
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tion is exact only in the so-called Manakov caseaf  these solutions will be nonstationary and, in particular, time-
=ay,=a;, [28], we investigate numerically what happens to periodic.

the constructed time-periodic solutions in cagedevant to The success of this simple variation of parameters method
8'Rb experimentswherea,; # a,,# a;,. Finally, we general- can be phrased differently in physical terms: E). is in-

ize the transformation to show that analogous constructiongariant under unitary transformations, as it is an additive
are feasible with a higher number of components. Our focusombination of the linear Schrédinger equation and a nonlin-
here is in illustrating the generality and applicability of the ear term with a matrixG that commutes with any matrix.
transformation to a very broad host of settingsultiple  Then the extra linear coupling terms can be removed by us-
component, as well as higher-dimensional cases, also in thiag a time-dependent unitary transformation, which does not
presence of external potentipl$Ve should note that special affect the other terms of the equation. Thus, the solutions of
cases of this transformation have previously been identifie@&q. (3) can be thought of as rotating in “spin space.”

in optics(in the integrable case of the two-component, one- We should note that more general nonlinear coupling ma-
dimensional Manakov solitons in the absence of a potentiaricesG commute withU. In particular,

[23]), as well as in a different format in BECgn two-
component, 1D condensates in the presence of a periodic éz(o 1> 7)
potential [29], where solutions were constructed as unitary 10

transformations of stationary solutions of E@) below;
there, the nonstationarity was introduced by the mixing o
two stationary solutions that were not in phase

1Lalso commutes withJ. The relevant dynamical equations,

however, containing the ternngz/fo) o result in nonlineari-
ties of the form|y|%, and ¢4y in the dynamical equation
for ¢4 and hence seem less physically relevant.

The density of the different components=|yl? (i

Assuming thata;;=a,,=g anda;,=h, Egs.(1) and(2) =1,2) is given by

take the following matrix form: .
g y = coS(at)|ul? + SirP(at) Yoo + | Youl oo

ANALYTICAL RESULTS

iy - aPy=- %Aw WCHY+Vx)y, (3 Xsin(6z = Oysin(2at), ®

where Ny = COS(at)| ool ® + SirP(at)[hoal* + [ioal [ 02]
g 0 0 1 Xsin(6;, — 6,)sin(2at), (9
¢= (0 h)' - (1 0)' @ where ;=01 €%, hoo= o€ %. Note that if i, and gy

are time-independent, then +n, does not depend on time.

Thus it is alocal constant of the motiofias opposed to the

global constant(n,+n,)dx which is conserved foany G|.

This is equivalent to the statement that the nonlinear term in
a"Eq. (3) is invariant under the unitary transformation given by

U(t). Notice also that the existence of stationary solutions of
codat) —i Siﬂ(at)) Eq. (3) requires the expressio®) and(9) to be independent
o 0- of t, which only happens when boilyy and i, are station-

I sin(at)  codat) ary and equal. Furthermore, clearly the above unitary trans-
(%) formation illustrates that the linear coupling does not affect

Using a variation of parameters approach, we substitute thig1e integrable nature of the 1D Manakov modfer V(x)
in the equation fory. This results in =0].

Furthermore, in the special cabeg (henceG=gl, with |
being the identity matrix we may consider Eq3) as a
homogeneous equatiqhhHS) with an inhomogeneous part
(RHYS); in this case, the solution of the homogeneous equ
tion is given by

y=UM)p= “a"‘wo:(

. 1
e == S Ao+ (G0 tho + V(X) o, (6) NUMERICAL RESULTS

We now turn to the practical usefulness of the transforma-
i.e., the same equation as E®), but without the electric tion, i.e., constructing time-periodic solutions of Eg) from
field coupling terms. As mentioned above, large classes d$tationary solutions of Eq6), as well as quasiperiodic solu-
exact stationary and nonstationary solutions to this equatiotions of the former from periodic ones of the lattee., the
were constructed ifi9—14,29. Those solutions can now be transformation always inserts an additional frequency in the
used to construct exact solutions to E8). Importantly, such time dependence of the solutioiWhile one can follow this
stablesolutions are also relevant to the more general modgbath also in the absence of the potential for the known, exact
Egs. (1) and(2), and in particular to the BEC experiments solutions of the Manakov model, we will focus herein on the
with 8’Rb[16] or 2®Na[17]: in that case, the deviations of the casewith the potential, which is more relevant to BECs
values of the nonlinear coefficiengs from 1 are typically — [15-17,2Q.
on the order of 3%. Such a small difference acts as a small Exact solutions in the presence of a potential are not often
perturbation and does not alter the stability of the solutionswvailable in explicit form for Eq(6). However, in the pres-
(see also the numerical results bejowote that, typically, ence of the physically relevant, optical lattice potenf0]
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0 ] 5 3X i . p zﬂozz\e’TAzcn(mx,k)e‘i‘”Z‘ in the elliptic function potential
= ‘ = : ‘ ‘ V=-Vsr(mx,k), which degenerates into the OL one for

—0.

However, typically such explicit solutions are not known,
e.g., in the presence of a magnetic trap potential. Then one
can use relaxational methods such as a Newton iteration or
imaginary time integration to obtain stationary solutions of

Eq. (6) and exploit the time dependence inherent in &gto
excite exact matter wave oscillations between the two com-
t ponents, producing exact, nonstationary solutions of(Bx.
A one-dimensional example of this strategy is shown in Fig.
2 for the ground-state BEC in a magnetic trap potential
[1,21] of the formV(x)=Q?x?/2. 4, is initialized at an exact
stationary solutior{in the presence of/(x), obtained via a
Newton methodl while ¢;(x,0)=0. However, an interesting
question then concerns the potential persistence of the Rabi
oscillations when the unitary transformation is no longer ex-
act (i.e., for h#g). This is examined in the bottom set of
panels in Fig. 2. Clearly, small deviations from tieg limit
0 2 4 8 8 (relevant to the BEC context whesg =~ a,,~a;,) lead to
5 110 persistence of the matter wave oscillations but with a quasi-
periodic beating character. Beyond a critical threshold, how-
ever, the oscillations disappear and give rise to chaotic be-
havior.

Naturally, the same idea for constructing nonstationary
solutions can be carried over to two spatial dimensions. We
illustrate the principle in the case of domain wallBWs)

t and vortices in two spatial dimensiog®levant results, but
for a rotating trap, were reported [82]). As concerns the
DW solutions, instead of using the more “standard” circular
DWs (between a less repulsive component in the middle of
1y the trap and a more repulsive one forming an outer shell
[6,7], we will use the recently proposed dipolare., recti-
linean and quadrupolafi.e., crosslik¢ DWs of [33]. Once
\ such a stationary state is reached for Ej.(via imaginary-
“le6 time integration, using it as an initial condition in Eq$1)
and(2) produces a time-periodic solution of the latter. Such
FIG. 1. Top panel: two spatial periods of the time-periodic os-examples are shown in Fig. 3 for the different types of DWs
cillations of the density, for the trigonometric solution in the OL in the case of a magnetic trap potentiél)=(1/2)Q?? (r?
potential. Hereg=1, a=1, m=1, w;=w,=3MP+B+B,, andV,  =x%+y?). We should note that the DW can, in principle,
=1,A1=2,Ap=Vo=A,=-1,B;=1,B,=2. Bottom panel: two spatial exist if the immiscibility conditionA = a,,a,,-a%,<0 is sat-
periods of a quasiperiodic-in-time oscillation of the densigyfor isfied. In particular, the quadrupolar DWs can persist even
the elliptic function solution given in the text. Here=1, g=1, « for A=0 (or g=h=1) and hence the resulting “rotating pro-
=, 01=3MA(L+K2) = Ag, 0, =3MP=Ay. AlSO Vo=1, A1=2, A;=V5  peller” solutions are exact time-periodic solutions of E).
P -A =1 In the bottom panel of Fig. 3, a DW cross is shown for the
practical case o&;;,=1.03,a,,=1, anda,,=0.97 (these val-
of the formV=-V, sir’(mx) (in one spatial dimensignlarge  ues pertain to two different spin states®éRb [16]). On the
classes of such stationary solutions can exist sugi481 other hand, the dipolar DWs only persist ¥<-0.061,
which cannot be satisfied for t#8Rb parameters. In the top

Yo = [VBy cogmx) — iVBy + Ay sin(mxJe7“, panel of Fig. 3, such a dipolar DW is shown, in the limiting
caseA=-0.061(for g=1 andh=1.03; apparently, the time-
Yoz = [\/B_2 cogmx) — i\/BZJrA2 sinmx]e ez, periodic, dipolar DWs are only approximate solutions. Simi-

larly to the 1D results, ih+ g (or, generallyA # 0), we have
where w; 5,A; »,B; » are appropriate constants. These solu-found that there is a maximugminimum) critical he (Ay) up
tions then become exact, genuinely time-periodic solutiongo which the Rabi oscillations persidior the bulk of each
of Eqg. (3) according to Eq(5). Such a solution is given in component h.=1.67(A.=-1.78 for dipolar DWs andh,
the top panel of Fig. 1. The bottom panel of the figure illus-=1.28(A.=-0.64 for the quadrupolar DWs.
trates a quasiperiodic solution of E@), cg\structed from a Finally, one can use a similar construction for a pair of
periodic one of the form ug,=VA;snmxk)e'!,  vortex structures with two componer(see, e.g., Fig. ¥ In
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FIG. 2. (Color online Top two panels: the two subplots show exact Rabi oscillations of a ground-state BEC in the presence of a magnetic
trap. The oscillation frequency is given ly=0.8. The magnetic potential has a frequeficy0.1. The two subplots show the contour of the
space-time evolution of the density of each component. Bottom left panels: evolution of the density at the center of the magnetic trap, i.e.,
atx=0 for the two components. Bottom right panels: evolution at the center of the magnetic trag; donamely forh=1.2 (top subplo},
h=1.5(middle subplox, andh=2 (bottom subplot

this case, we initialize the imaginary time integration, in thesiperiodic patterns in the presence of an experimentally real-
absence of the linear coupling, with one component having é&able, linear coupling between the components. Similar re-
vortex centered at5, 0), while the other has a vortex at sults should be immediately applicable to linearly coupled

(=5,0). After the configuration relaxes to the stationary vor-optical systems close to the Manakov limit. A unitary trans-

tex pair solution of Eqs(1l) and (2), we again turn on the formation, commuting with the nonlinear kernel, was identi-

linear coupling and obtain a spiral rotation between the vorfied as the source of such solutions and as a way of “factor-
tices resembling a spiral wavsee alsq34] for a relevant ing out” the linear coupling by means of time-dependent
result in a single component BEQn this case also, there is oscillatory behavior with a frequency equal to the strength of
a critical h,=1.32(A.=-0.74 beyond which the regularity the linear coupling. We demonstrated the relevance of this
of Rabi oscillations is destroyed. In this case, the breakugransformation in constructing various solutions in the pres-

leads to the formation of spiral patterns in the condensate. ence of external potentials such as the optical lattice and the
magnetic trap potential. We also illustrated the robustness of

the mechanism in demonstrating that the phenomenon per-
sists even for a wide range of parameter val(ragher than

In this paper, we have illustrated the possibility of coupledonly for the special yet experimentally relevant case of equal
Bose-Einstein condensates to sustfactperiodic and qua- inter- and intraspecies interaction for which it is eyact

CONCLUSIONS AND GENERALIZATIONS
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FIG. 3. Top panels: Contour plots of the density/2 for a  FIG. 4. Top panels: contour plots fty|? for two coupled vor-
dipolar DW (the densityls|2 of the other species is complementary tices, initially placed ak=+5, for t=0 (&), T/4 (b), T/2 (c), and
to |¢4/?) for t=0 (a), T/4 (b), T/2 (c), and 3/4 (d), with T=7/a §U4(®lWMWT=ﬂ4?*157(a=03:Q=904&A=-9X1U4
~15.7(a=0.2); 0=0.045,A=-0.061. The pattern persists for long ( .Rb)). The vortices “interchange locationgh a structure resem-
times with the species “interchanging places.” Bottom panels: SamBling a spiral wavg Bottom panels: Same as the top but for
as the top but for the quadrupolar DW witt= -9 1074 (the re- -3 (g=1, h=2). The configuration breaks up forming spiral

spective nonlinearity coefficients pertain &Rb). The Rabi oscil- ~ Patterns.
lation of this oscillating DW gives the impression of a rotating
propeller. the special case where=3 and all off-diagonal elements are

Finally, we would like to indicate that this mechanism is Ejelr}tlgca;éitftrleqzﬁt(t)_[gii]f:f dvy|th dllagonal _elengttS'B”
not restricted to the particular case of two linearly coupled_( )( &) and off-diagonal one; =5 '
components, but in fact generalizes to higher numbers of
componentge.g., three linearly coupled hyperfine states can
also be realized in the context of BE(ZH)]). In this case, the
term aPy in Eq. (3) should be substituted withy, wherea This work was supported in part by NSF-DMS-0139093
is a symmetrian X n matrix (with zeros along the diagonal (B.D.), NSF-DMS-0204585, NSF-CAREER, and the Eppley
The unitary transformation then beconig&)=e e.g., in  Foundation for ResearatP.G.K).
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