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In this paper, an exact unitary transformation is examined that allows for the construction of solutions of
coupled nonlinear Schrödinger equations with additional linear field coupling, from solutions of the problem
where this linear coupling is absent. The most general case where the transformation is applicable is identified.
We then focus on the most important special case, namely the well-known Manakov system, which is known
to be relevant for applications in Bose-Einstein condensates consisting of different hyperfine states of87Rb. In
essence, the transformation constitutes a distributed, nonlinear as well as multi-component generalization of the
Rabi oscillations between two-level atomic systems. It is used here to derive a host of periodic and quasi-
periodic solutions including temporally oscillating domain walls and spiral waves.
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INTRODUCTION

The recent progress in experimental and theoretical stud-
ies of Bose-Einstein condensates(BECs) [1] has made soli-
tary matter waves physically relevant objects. One-
dimensional(1D) dark [2] and bright[3] solitons have been
observed in recent experiments. On the other hand, optical
solitons have a time-honored history as fundamental nonlin-
ear excitations in optical fibers and waveguides(see, e.g., the
recent reviews[4,5]).

A very relevant generalization of this class of physical
systems and of the solitary waves they can support concerns
the case of multiple coupled components. There has recently
been a considerable volume of work relevant to the proper-
ties of coupled BECs ranging from the ground-state solutions
[6,7] to the small-amplitude excitations[8] of the order pa-
rameters. Furthermore, the formation of various structures
including domain walls[9,10], bound dark-dark[11], dark-
bright [12], dark-antidark, dark-gray, bright-antidark, and
bright-gray soliton complexes[13], as well as spatially peri-
odic states[14] was also predicted. On the other hand, ex-
perimental results have been reported for mixtures of differ-
ent spin states of87Rb [15] and mixed condensates[16,17]. It
is relevant to mention the efforts towards the realization of
two-component BECs from different atomic species, such as
41K-87Rb [18] and7Li- 133Cs [19].

Typically, the relevant model for two coupled BECs in-
volves two nonlinearly coupled Gross-Pitaevskii(GP) equa-
tions. However, in experiments with a radio-frequency(or an
electric field) coupling two separate hyperfine states[15,20],
the relevant model involves also a linear coupling between
the wave functions. The governing normalized equations are
then of the form

ic1t = F−
1

2
D + V + a11uc1u2 + a12uc2u2Gc1 + ac2, s1d

ic2t = F−
1

2
D + V + a12uc1u2 + a22uc2u2Gc2 + ac1, s2d

whereV;Vsrd is the relevant potential, typically consisting
of a magnetic trap and/or an optical lattice[1,21], while c j’s
represent the condensate wave functions. The intra- and in-
terspecies interactions are characterized by the coefficients
ajj s j =1,2d and a12, respectively, while a denotes the
strength of the radio-frequency(or electric field) coupling.
Note that Eqs.(1) and (2), combining both linear and non-
linear couplings, occur in fiber optics as well: In that case,
c j’s are two coupled electric field envelopes of the same
wavelength but of different polarizations and the linear cou-
pling is generated either by a twist applied to the fiber in the
case of two linear polarizations, or by an elliptic deformation
of the fiber’s core in the case of circular polarizations[22,23]
(linear coupling is impossible when considering waves of
different wavelengths). Another optical model, with only lin-
ear coupling between two modes, applies to nonlinear fiber
couplers[24] or dual-core nonlinear fibers(see, e.g.,[25]). In
the context of BECs, this coupling has been recently exam-
ined for extended wave solutions in[26].

In the present work, we aim to study a unitary transfor-
mation in the context of Eqs.(1) and (2) that completely
absorbs the linear coupling between the components into an
oscillatory temporal dependence. We illustrate the value of
this transformation in a twofold way: on the one hand, we
use it to understand the role of the linear coupling between
the components as a means of creating Rabi oscillations be-
tween the matter present in the two components(e.g., hyper-
fine states) [27] and their analog in power oscillations be-
tween polarizations in optical systems. On the other hand, we
use it to constructexacttime-periodic solutions of such lin-
early coupled nonlinear Schrödinger equations. This way, we
identify time-periodic Thomas-Fermi clouds and extended
waves in one spatial dimension, as well as oscillating domain
walls and vortices in two dimensions. Since the transforma-
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tion is exact only in the so-called Manakov case ofa11
=a22=a12 [28], we investigate numerically what happens to
the constructed time-periodic solutions in cases(relevant to
87Rb experiments) wherea11Þa22Þa12. Finally, we general-
ize the transformation to show that analogous constructions
are feasible with a higher number of components. Our focus
here is in illustrating the generality and applicability of the
transformation to a very broad host of settings(multiple
component, as well as higher-dimensional cases, also in the
presence of external potentials). We should note that special
cases of this transformation have previously been identified
in optics (in the integrable case of the two-component, one-
dimensional Manakov solitons in the absence of a potential
[23]), as well as in a different format in BECs[in two-
component, 1D condensates in the presence of a periodic
potential [29], where solutions were constructed as unitary
transformations of stationary solutions of Eq.(6) below;
there, the nonstationarity was introduced by the mixing of
two stationary solutions that were not in phase].

ANALYTICAL RESULTS

Assuming thata11=a22;g and a12;h, Eqs. (1) and (2)
take the following matrix form:

ict − aPc = −
1

2
Dc + sc†Gcdc + Vsxdc, s3d

where

G = Sg 0

0 h
D, P = S0 1

1 0
D . s4d

Furthermore, in the special caseh=g (henceG=gI, with I
being the identity matrix), we may consider Eq.(3) as a
homogeneous equation(LHS) with an inhomogeneous part
(RHS); in this case, the solution of the homogeneous equa-
tion is given by

c = Ustdc0 = e−iaPtc0 = S cossatd − i sinsatd
− i sinsatd cossatd

Dc0.

s5d

Using a variation of parameters approach, we substitute this
in the equation forc. This results in

ic0t = −
1

2
Dc0 + sc0

†Gc0dc0 + Vsxdc0, s6d

i.e., the same equation as Eq.(3), but without the electric
field coupling terms. As mentioned above, large classes of
exact stationary and nonstationary solutions to this equation
were constructed in[9–14,29]. Those solutions can now be
used to construct exact solutions to Eq.(3). Importantly, such
stablesolutions are also relevant to the more general model
Eqs. (1) and (2), and in particular to the BEC experiments
with 87Rb [16] or 23Na [17]: in that case, the deviations of the
values of the nonlinear coefficientsajk from 1 are typically
on the order of 3%. Such a small difference acts as a small
perturbation and does not alter the stability of the solutions
(see also the numerical results below). Note that, typically,

these solutions will be nonstationary and, in particular, time-
periodic.

The success of this simple variation of parameters method
can be phrased differently in physical terms: Eq.(6) is in-
variant under unitary transformations, as it is an additive
combination of the linear Schrödinger equation and a nonlin-
ear term with a matrixG that commutes with any matrix.
Then the extra linear coupling terms can be removed by us-
ing a time-dependent unitary transformation, which does not
affect the other terms of the equation. Thus, the solutions of
Eq. (3) can be thought of as rotating in “spin space.”

We should note that more general nonlinear coupling ma-
tricesG commute withU. In particular,

G̃ = S0 1

1 0
D s7d

also commutes withU. The relevant dynamical equations,

however, containing the termsc0
†G̃c0dc0 result in nonlineari-

ties of the formuc1u2c2 andc1
2c2

! in the dynamical equation
for c1 and hence seem less physically relevant.

The density of the different componentsni = uciu2 si
=1,2d is given by

n1 = cos2satduc01u2 + sin2satduc02u2 + uc01uuc02u

3sinsu2 − u1dsins2atd, s8d

n2 = cos2satduc02u2 + sin2satduc01u2 + uc01uuc02u

3sinsu1 − u2dsins2atd, s9d

wherec01= uc01ueiu1, c02= uc02ueiu2. Note that ifc01 and c02
are time-independent, thenn1+n2 does not depend on time.
Thus it is alocal constant of the motion[as opposed to the
global constantesn1+n2ddx which is conserved forany G].
This is equivalent to the statement that the nonlinear term in
Eq. (3) is invariant under the unitary transformation given by
Ustd. Notice also that the existence of stationary solutions of
Eq. (3) requires the expressions(8) and(9) to be independent
of t, which only happens when bothc10 andc20 are station-
ary and equal. Furthermore, clearly the above unitary trans-
formation illustrates that the linear coupling does not affect
the integrable nature of the 1D Manakov model[for Vsxd
=0].

NUMERICAL RESULTS

We now turn to the practical usefulness of the transforma-
tion, i.e., constructing time-periodic solutions of Eq.(3) from
stationary solutions of Eq.(6), as well as quasiperiodic solu-
tions of the former from periodic ones of the latter(i.e., the
transformation always inserts an additional frequency in the
time dependence of the solution). While one can follow this
path also in the absence of the potential for the known, exact
solutions of the Manakov model, we will focus herein on the
casewith the potential, which is more relevant to BECs
[15–17,20].

Exact solutions in the presence of a potential are not often
available in explicit form for Eq.(6). However, in the pres-
ence of the physically relevant, optical lattice potential[30]
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of the formV=−V0 sin2smxd (in one spatial dimension), large
classes of such stationary solutions can exist such as[14,31]

c01 = fÎB1 cossmxd − iÎB1 + A1 sinsmxdge−iv1t,

c02 = fÎB2 cossmxd − iÎB2 + A2 sinsmxdge−iv2t,

wherev1,2,A1,2,B1,2 are appropriate constants. These solu-
tions then become exact, genuinely time-periodic solutions
of Eq. (3) according to Eq.(5). Such a solution is given in
the top panel of Fig. 1. The bottom panel of the figure illus-
trates a quasiperiodic solution of Eq.(3), constructed from a
periodic one of the form c01=ÎA1snsmx,kde−iv1t,

c02=Î−A2cnsmx,kde−iv2t in the elliptic function potential
V=−V0sn2smx,kd, which degenerates into the OL one fork
→0.

However, typically such explicit solutions are not known,
e.g., in the presence of a magnetic trap potential. Then one
can use relaxational methods such as a Newton iteration or
imaginary time integration to obtain stationary solutions of
Eq. (6) and exploit the time dependence inherent in Eq.(5) to
excite exact matter wave oscillations between the two com-
ponents, producing exact, nonstationary solutions of Eq.(3).
A one-dimensional example of this strategy is shown in Fig.
2 for the ground-state BEC in a magnetic trap potential
[1,21] of the formVsxd=V2x2/2. c2 is initialized at an exact
stationary solution[in the presence ofVsxd, obtained via a
Newton method], while c1sx,0d=0. However, an interesting
question then concerns the potential persistence of the Rabi
oscillations when the unitary transformation is no longer ex-
act (i.e., for hÞg). This is examined in the bottom set of
panels in Fig. 2. Clearly, small deviations from theh=g limit
(relevant to the BEC context wherea11<a22<a12) lead to
persistence of the matter wave oscillations but with a quasi-
periodic beating character. Beyond a critical threshold, how-
ever, the oscillations disappear and give rise to chaotic be-
havior.

Naturally, the same idea for constructing nonstationary
solutions can be carried over to two spatial dimensions. We
illustrate the principle in the case of domain walls(DWs)
and vortices in two spatial dimensions(relevant results, but
for a rotating trap, were reported in[32]). As concerns the
DW solutions, instead of using the more “standard” circular
DWs (between a less repulsive component in the middle of
the trap and a more repulsive one forming an outer shell)
[6,7], we will use the recently proposed dipolar(i.e., recti-
linear) and quadrupolar(i.e., crosslike) DWs of [33]. Once
such a stationary state is reached for Eq.(6) (via imaginary-
time integration), using it as an initial condition in Eqs.(1)
and (2) produces a time-periodic solution of the latter. Such
examples are shown in Fig. 3 for the different types of DWs
in the case of a magnetic trap potentialVsrd=s1/2dV2r2 sr2

;x2+y2d. We should note that the DW can, in principle,
exist if the immiscibility conditionD;a11a22−a12

2 ø0 is sat-
isfied. In particular, the quadrupolar DWs can persist even
for D=0 (or g=h=1) and hence the resulting “rotating pro-
peller” solutions are exact time-periodic solutions of Eq.(3).
In the bottom panel of Fig. 3, a DW cross is shown for the
practical case ofa11=1.03,a12=1, anda22=0.97 (these val-
ues pertain to two different spin states of87Rb [16]). On the
other hand, the dipolar DWs only persist ifDø−0.061,
which cannot be satisfied for the87Rb parameters. In the top
panel of Fig. 3, such a dipolar DW is shown, in the limiting
caseD=−0.061(for g=1 andh=1.03); apparently, the time-
periodic, dipolar DWs are only approximate solutions. Simi-
larly to the 1D results, ifhÞg (or, generally,DÞ0), we have
found that there is a maximum(minimum) critical hc sDcd up
to which the Rabi oscillations persist(for the bulk of each
component): hc=1.67sDc=−1.78d for dipolar DWs andhc

=1.28sDc=−0.64d for the quadrupolar DWs.
Finally, one can use a similar construction for a pair of

vortex structures with two components(see, e.g., Fig. 4). In

FIG. 1. Top panel: two spatial periods of the time-periodic os-
cillations of the densityn2 for the trigonometric solution in the OL
potential. Hereg=1, a=1, m=1, v1=v2= 1

2m2+B1+B2, and V0

=1, A1=2, A2=V0−A1=−1,B1=1, B2=2. Bottom panel: two spatial
periods of a quasiperiodic-in-time oscillation of the densityn2 for
the elliptic function solution given in the text. Herem=1, g=1, a
=p, v1= 1

2m2s1+k2d−A2, v2= 1
2m2−A2. Also V0=1, A1=2, A2=V0

+m2k2−A1=1.
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this case, we initialize the imaginary time integration, in the
absence of the linear coupling, with one component having a
vortex centered at(5, 0), while the other has a vortex at
s−5,0d. After the configuration relaxes to the stationary vor-
tex pair solution of Eqs.(1) and (2), we again turn on the
linear coupling and obtain a spiral rotation between the vor-
tices resembling a spiral wave(see also[34] for a relevant
result in a single component BEC). In this case also, there is
a critical hc=1.32sDc=−0.74d beyond which the regularity
of Rabi oscillations is destroyed. In this case, the breakup
leads to the formation of spiral patterns in the condensate.

CONCLUSIONS AND GENERALIZATIONS

In this paper, we have illustrated the possibility of coupled
Bose-Einstein condensates to sustainexactperiodic and qua-

siperiodic patterns in the presence of an experimentally real-
izable, linear coupling between the components. Similar re-
sults should be immediately applicable to linearly coupled
optical systems close to the Manakov limit. A unitary trans-
formation, commuting with the nonlinear kernel, was identi-
fied as the source of such solutions and as a way of “factor-
ing out” the linear coupling by means of time-dependent
oscillatory behavior with a frequency equal to the strength of
the linear coupling. We demonstrated the relevance of this
transformation in constructing various solutions in the pres-
ence of external potentials such as the optical lattice and the
magnetic trap potential. We also illustrated the robustness of
the mechanism in demonstrating that the phenomenon per-
sists even for a wide range of parameter values(rather than
only for the special yet experimentally relevant case of equal
inter- and intraspecies interaction for which it is exact).

FIG. 2. (Color online) Top two panels: the two subplots show exact Rabi oscillations of a ground-state BEC in the presence of a magnetic
trap. The oscillation frequency is given bya=0.8. The magnetic potential has a frequencyV=0.1. The two subplots show the contour of the
space-time evolution of the density of each component. Bottom left panels: evolution of the density at the center of the magnetic trap, i.e.,
at x=0 for the two components. Bottom right panels: evolution at the center of the magnetic trap, forhÞg, namely forh=1.2 (top subplot),
h=1.5 (middle subplot), andh=2 (bottom subplot).
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Finally, we would like to indicate that this mechanism is
not restricted to the particular case of two linearly coupled
components, but in fact generalizes to higher numbers of
components(e.g., three linearly coupled hyperfine states can
also be realized in the context of BECs[26]). In this case, the
termaPc in Eq. (3) should be substituted withâc, whereâ
is a symmetricn3n matrix (with zeros along the diagonal).
The unitary transformation then becomesUstd=e−itâ; e.g., in

the special case wheren=3 and all off-diagonal elements are
identical, then Ustd=fbi jg, with diagonal elementsb j j

=s1/3ds2eiat+e−2iatd and off-diagonal onesbi j =b j j +eiat.

ACKNOWLEDGMENTS

This work was supported in part by NSF-DMS-0139093
(B.D.), NSF-DMS-0204585, NSF-CAREER, and the Eppley
Foundation for Research(P.G.K.).

[1] F. Dalfovoet al., Rev. Mod. Phys.71, 463 (1999).
[2] S. Burgeret al., Phys. Rev. Lett.83, 5198 (1999); J. Den-

schlaget al., Science287, 97 (2000); B.P. Andersonet al.,
Phys. Rev. Lett.86, 2926(2001).

[3] K.E. Streckeret al., Nature (London) 417, 150 (2002); L.
Khaykovichet al., Science296, 1290(2002).

[4] B.A. Malomed, Prog. Opt.43, 71 (2002); A.V. Buryak et al.,
Phys. Rep.370, 63 (2002).

FIG. 3. Top panels: Contour plots of the densityuc1u2 for a
dipolar DW(the densityuc2u2 of the other species is complementary
to uc1u2) for t=0 (a), T/4 (b), T/2 (c), and 3T/4 (d), with T=p /a
<15.7sa=0.2d; V=0.045,D=−0.061. The pattern persists for long
times with the species “interchanging places.” Bottom panels: Same
as the top but for the quadrupolar DW withD=−9310−4 (the re-
spective nonlinearity coefficients pertain to87Rb). The Rabi oscil-
lation of this oscillating DW gives the impression of a rotating
propeller.

FIG. 4. Top panels: contour plots ofuc1u2 for two coupled vor-
tices, initially placed atx= ±5, for t=0 (a), T/4 (b), T/2 (c), and
3T/4 (d), with T=p /a<15.7 sa=0.2d; V=0.045, D=−9310−4

s87Rbd). The vortices “interchange locations”(in a structure resem-
bling a spiral wave). Bottom panels: Same as the top but forD=
−3 (g=1, h=2). The configuration breaks up forming spiral
patterns.

LINEARLY COUPLED BOSE-EINSTEIN… PHYSICAL REVIEW A 70, 063605(2004)

063605-5



[5] Yu.S. Kivshar and B. Luther-Davies, Phys. Rep.298, 81
(1998).

[6] T.-L. Ho and V.B. Shenoy, Phys. Rev. Lett.77, 3276(1996);
H. Pu and N.P. Bigelow,ibid. 80, 1130(1998).

[7] B.D. Esryet al., Phys. Rev. Lett.78, 3594(1997).
[8] Th. Buschet al., Phys. Rev. A56, 2978 (1997); R. Graham

and D. Walls,ibid. 57, 484 (1998); H. Pu and N.P. Bigelow,
Phys. Rev. Lett.80, 1134(1998); B.D. Esry and C.H. Greene,
Phys. Rev. A57, 1265(1998).

[9] M. Trippenbachet al., J. Phys. B33, 4017(2000).
[10] S. Coen and M. Haelterman, Phys. Rev. Lett.87, 140401

(2001).
[11] P. Öhberg and L. Santos, Phys. Rev. Lett.86, 2918(2001).
[12] Th. Busch and J.R. Anglin, Phys. Rev. Lett.87, 010401

(2001).
[13] P.G. Kevrekidiset al., Eur. Phys. J. D28, 181 (2004).
[14] B. Deconincket al., J. Phys. A36, 5431(2003).
[15] C.J. Myattet al., Phys. Rev. Lett.78, 586 (1997).
[16] D.S. Hall et al., Phys. Rev. Lett.81, 1539(1998); M.R. Mat-

thewset al., ibid. 81, 243 (1998).
[17] D.M. Stamper-Kurnet al., Phys. Rev. Lett.80, 2027(1998).
[18] G. Modugnoet al., Science294, 1320(2001).

[19] M. Mudrich et al., Phys. Rev. Lett.88, 253001(2002).
[20] D.S. Hall (personal communication).
[21] P.G. Kevrekidis and D.J. Frantzeskakis, Mod. Phys. Lett. B

18, 173 (2004).
[22] B.A. Malomed, Phys. Rev. A43, 410 (1991).
[23] M.J. Potasek, J. Opt. Soc. Am. B10, 941 (1993).
[24] S.M. Jensen, IEEE J. Quantum Electron.18, 1580(1982).
[25] B.A. Malomedet al., Phys. Rev. E53, 4084(1996).
[26] M.A. Porteret al., e-print nlin. CD/0401023.
[27] M.R. Matthewset al., Phys. Rev. Lett.83, 3358(1999).
[28] S.V. Manakov, Sov. Phys. JETP38, 248 (1974).
[29] R.M. Bradleyet al., e-print nlin. PS/0403043.
[30] F.S. Cataliottiet al., Science293, 843(2001); A. Trombettoni

and A. Smerzi, Phys. Rev. Lett.86, 2353(2001); M. Greiner
et al., Appl. Phys. B: Lasers Opt.73, 769 (2001).

[31] J.C. Bronskiet al., Phys. Rev. Lett.86, 1402(2001).
[32] J.J. García-Ripollet al., Phys. Rev. A66, 021602(R) (2002).
[33] B.A. Malomedet al., Phys. Rev. A70, 043616(2004).
[34] N.G. Parkeret al., Phys. Rev. Lett.92, 160403(2004);. N.P.

Proukakiset al., J. Opt. B: Quantum Semiclassical Opt.6,
S380(2004).

DECONINCK et al. PHYSICAL REVIEW A 70, 063605(2004)

063605-6


