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One can use transsonic Bose-Einstein condensates of alkali atoms to establish the laboratory analog of the
event horizon and to measure the acoustic version of Hawking radiation. We determine the conditions for
supersonic flow and the Hawking temperature for realistic condensates on waveguides where an external
potential plays the role of a supersonic nozzle. The transition to supersonic speed occurs at the potential
maximum and the Hawking temperature is entirely determined by the curvature of the potential.
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I. INTRODUCTION

The propagation of sound waves in irrotational fluids is
mathematically equivalent to wave propagation in general
relativity [1–3]. This analogy supports an intuitive and
simple picture for the event horizon[1]: The horizon is the
place where the fluid exceeds the local speed of sound. One
could, in principle, use such a sonic horizon to generate and
measure the acoustic equivalent of the elusive quantum ef-
fects of the event horizon, in particular Hawking radiation
[4,5]. In practice, the way towards artificial black holes[6]
has been thorny. It takes an ultracold quantum fluid to gen-
erate a noticeable quantum effect at the horizon. The only
quantum fluids available at the time when the first idea of
artificial black holes appeared in print[1] were superfluid
Helium-4 and Helium-3. However, according to the Landau
criterion [7], Helium-4 loses superfluidity well before it
reaches the speed of sound, because Helium-4 is a strongly
interacting quantum liquid. Helium-3 is a more complex
quantum liquid with a wealth of analogies between the phys-
ics of its elementary excitations and general relativity or
various other gauge theories[8], yet so far such analogies
have never been experimentally observed in a direct way.
The advent of alkali Bose-Einstein condensates[9] improved
the prospects of sonic horizons in simple quantum fluids and
inspired a renewal of interest in their generation and their
quantum effects[6,10–14]. These condensates are weakly
interacting quantum gases, not primarily quantum liquids,
resembling very closely the perfect Bogoliubov gas. The al-
kali condensates are the coldest quantum gases currently
available [15]. The condensates also allow many ways of
experimental manipulation. For example, condensates can be
generated on atom chips[16] and guided in current-carrying
wires in magnetic fields[17] or light beams[18]. Tightly
focused spots of light can be used to manipulate them[19],
exploiting the dipole force that light exerts on atoms.
Waveguides are advantageous for achieving supersonic flow,
because they can confine condensates to longitudinal areas
that are small enough to prevent the formation of vortices.
Otherwise, the turbulence created would not allow superfluid
flow at supersonic speed. Figure 1 illustrates schematically a
possible setup to generate a supersonic flow in a Bose-
Einstein condensate.

In this paper we determine the conditions required to ex-
ceed the speed of sound and the resulting Hawking tempera-

ture for condensates on waveguides. For this, we develop the
hydrodynamic theory of the one-dimensional gas flow
through variable longitudinal areas and under the influence
of transversal potentials. The one-dimensional gas flow with
variable area is a textbook theory[20]. In this paper we
consider a variable potential and arrive at a theory that is still
simple and fairly general, going beyond the immediate con-
cern of Bose-Einstein condensates. Having found the veloc-
ity and the density profile at the sonic horizon, we use the
theory of the Hawking effect in fluids[2,13] to compute the
Hawking temperature. This approach is valid as long as the
gas profile varies on longer scales than the healing length
(the correlation length) [13]. The same condition justifies the
hydrodynamic approximation[9] that we use. Here the spe-
cific properties of the quantum gas are condensed into an
equation of state and the dynamics is governed by the equa-
tion of continuity and the Bernoulli equation. Calculations of
the effective Hawking temperature have been published be-
fore for the one-dimensional gas flow with variable area but
constant potential[11]. However, applying transversal poten-

FIG. 1. Scheme of a possible experiment to observe the Hawk-
ing effect. An optical piston pushes a Bose-Einstein condensate,
confined to a waveguide, over a potential barrier. Both the piston
and the barrier can be made by the foci of blue-detuned light beams
acting as the potentials indicated in the lower part of the figure. At
the barrier the condensate breaks the speed of sound and establishes
the acoustic equivalent of the event horizon. The sonic analogue of
the Hawking effect should generate an extra thermal cloud of atoms
where the effective temperature of the cloud depends on the applied
confining potential.
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tials by tightly focused light beams[19] seems to be the
easiest way to establish a sonic horizon in a Bose-Einstein
condensate.

For the scheme illustrated in Fig. 1 we find the critical
potential

Uc = mSc0
2 +

v0
2

2
−

3

2
sv0c0

2d2/3D , s1d

where m denotes the atomic mass andc0 and v0 are the
condensate’s initial speed of sound and flow velocity. If the
applied potential barrier lies belowUc the quantum gas does
not become supersonic. AboveUc the condensate turns from
subsonic to supersonic speed at the potential maximumUm.
The driving piston will compress the quantum gas such that
it always obeys the relation(1) with Uc=Um wherec0 is the
local speed of sound immediately in front of the piston and
v0 is the flow speed, i.e., the velocity of the piston.

The more tightly confined the potential barrier is the
larger is the resulting velocity gradient at the horizon and the
higher is the Hawking temperatureT [1,2]. We find

T =
"v0

2pkB

Î3

2
, mv0

2 = U−
]2U

] x2U
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, s2d

wherekB denotes Boltzmann’s constant. We see thatT de-
pends entirely on the curvature of the potential at its maxi-
mum and on the atomic mass, constituting the effective fre-
quencyv0. The numerical factorÎ3/2 is the sole trace of the
hydrodynamic properties of the condensate.

To achieve an optical potential in the order of the conden-
sate’s mean-field energymc0

2 does not pose much of an ex-
perimental problem. The critical issue is the focus required in
order to generate a noticeable Hawking effect[19]. For a
focus of lengthl, the frequencyv0 is in the order ofÎ2 c0/ l,
assuming thatmv0

2<2Uc/ l2<2mc0
2/ l2. For a narrowly con-

fined sodium condensate withc0<10−2 m/s the Hawking
energykBT reaches about 15 nK if the potential is focused to
l =10−6 m. Such an enhanced thermal cloud could be observ-
able (the record of low temperatures measured so far lies
below 1 nK [15]). Since the Hawking temperature is inde-
pendent of the density, see Eq.(2), one may employ a suffi-
ciently dilute condensate where inelastic three body losses
do not pose a severe limitation and the condensate’s lifetime
is long enough. The piston/barrier scheme sketched in Fig. 1
could act like an evaporative cooling device where the ther-
mal part of the cloud escapes from the subsonic region from
the very beginning. The Hawking radiation is then the major
factor that poses a limit to the final temperature reached. The
dependence of this temperature on the curvature of the po-
tential can be exploited to discriminate between a residual
thermal cloud and the Hawking effect.

II. THEORY

A. One-dimensional gas flow

Our theoretical model is based on the concept of the one-
dimensional gas flow[20]. Here two forces act on the quan-
tum gas. The waveguide confines the condensate to an effec-
tive areaA and the external potentialU acts as a longitudinal

force. Consider such a one-dimensional gas flow of particle
density r and velocityv through the areaA with constant
dischargeQ, as expressed in the equation of continuity[20]

rvA = Q. s3d

The densityr and the velocityv are averaged quantities over
the areaA. The stationary gas flow obeys the Bernoulli equa-
tion [20]

v2

2
+ w =

m − U

m
, s4d

wherem denotes the chemical potential, the total energy of
the gas. For the enthalpyw we assume the equation of state

w = Gra, G,a . 0 s5d

that describes a general class of gases, including the ideal gas
and Bose-Einstein condensates within the hydrodynamic ap-
proximation[9]. In the latter case the constants are given by
the relations

a = 1, G =
4p"2a

m2 s6d

in terms of the(positive) s-wave scattering lengtha of the
condensed atoms[9]. Both the areaA and the potentialU
may vary along the direction of the gas flow. Equations
(3)–(5) describe how the gas adjusts to these varying external
parameters.

We calculate the local speed of sound,c, according to the
standard theory of sound waves in fluids[20] and find

c2 = r
] w

] r
= Gara = aw. s7d

It is advantageous to introduce the Mach number

n =
v
c

=
Q

rcA
=

Q

A

ÎaG
Îa

w−1/a−1/2, s8d

as we obtain from Eqs.(3) and(7). The relation(8) allows us
to express the enthalpyw in terms ofn and, following from
Eq. (7) also the density and local speed of sound, if required,

c = ÎaSA

Q

Îa

ÎaG
nD−a/s2+ad

, s9d

r = SA

Q
ÎaG nD−1/s1+a/2d

. s10d

In fact, within our fluid-mechanical model, all relevant quan-
tities of the one-dimensional gas flow are functions of the
Mach number.

B. Supersonic flow

Let us establish the conditions for the supersonic flow of a
one-dimensional gas with the equation of state(5). We divide
the Bernoulli equation(4) by w and get

fsnd = 1 s11d

with the function
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f = q na/s1+a/2d −
a

2
n2, s12d

see Fig. 2. All external parameters, in particular the potential
U and the areaA, constitute the single quantity

q =
m − U

m
SA

Q

Îa

ÎaG
Da/s1+a/2d

s13d

that may depend on the longitudinal positionx along the gas
flow. Theq parameter is positive, because the total energym
is larger than the potentialU. The exponenta / s1+a /2d of
the first term offsnd in Eq. (12) does not exceed the expo-
nent of 2 of the second term. Therefore, the functionfsnd has
a maximum that depends on the value of theq parameter. For
a critical parameterqc the maximum offsnd occurs atf =1,
coinciding with the solution of the scaled Bernoulli equation.
To find the maximum, we differentiatefsnd with respect ton
and get

n
] f

] n
=

a

1 + a/2
sf − n2d s14d

that vanishes atn= ±1 for f =1. Consequently, at the critical
parameterqc the gas flows with the local speed of sound,
establishing a sonic horizon[1,2,10,13]. In this case the
function (12) reaches unity at

qc = 1 +
a

2
. s15d

For q,qc the curve offsnd lies below unity and therefore no
stationary flow exists, whereas forq.qc the gas establishes
two solutions, a subsonic and a supersonic regime. Which
one of the two regimes is realized depends on the evolution
of the flow. An initially subsonic gas stream stays subsonic
until the flow reaches the local speed of sound. In order to
find out how the gas proceeds beyond the sonic horizon, we
expandq andn in the vicinity of their critical values

q = qc + dq, n = ± 1 + dn. s16d

We obtain from the scaled Bernoulli equation(11) with the
definitions(12) and (13), to lowest order indq anddn,

dq =
2a

2 + a
sdnd2. s17d

Consequently,q reaches a minimum at the critical parameter,
which is consistent with the result that forq,qc no solution
exists. Near a minimum of theq parameter,dq depends qua-
dratically on the distance from the sonic horizon, assuming
that the second derivative ofq does not vanish, which is
usually the case in practice. Therefore,dn is proportional to
the distance. Consequently, if the flow reaches the local
speed of sound the gas cannot instantly retreat to subsonic
speed. The flow becomes supersonic. Similarly, a supersonic
flow will become subsonic whenq reachesqc. Sonic hori-
zons are usually transsonic.

C. Horizons

The flow reaches the speed of sound when theq param-
eter is both minimal and equal toqc. The latter condition
determines how the system parameters should be adjusted or
how they adjust themselves for stationary transsonic flow. If
the q parameter at the minimum exceedsqc, a stationary
subsonic flow exists and therefore the gas does not become
supersonic. Ifq,qc the driving piston compresses the gas
such thatq evolves to reachqc. The minimum ofq depends
on the way how the system parameters vary in Eq.(13). If
the potential is constant, as in the traditional one-dimensional
gas flow[11,20], theq parameter is minimal when the areaA
reaches a minimum, i.e., at the waist of the nozzle. Suppose
that both the potentialU and the areaA vary, with

U = −
V0

Ab . s18d

For example, the intensity of a Gaussian light beam, used to
confine the flowing condensate, is inversely proportional to
the areaA. Since the optical potential is proportional to the
light intensity we getb=1. We obtain from the requirement
that ]q/]A vanishes the critical area

Ac = Sab − 2a + 2b

2a

V0

m
D1/b

. s19d

For a Gaussian light beam confining a Bose-Einstein conden-
sate we get

Ac =
V0

2m
. s20d

Transitions from subsonic to supersonic speed and vice versa
occur at a specific confining area. Therefore, a Gaussian
beam establishes two sonic horizons around its waist, if any;
see Fig. 3.

D. Critical potential

In the case when the effective confining areaA stays con-
stant along the gas flow, but the potential varies, the sonic

FIG. 2. Plot of the Bernoulli functionfsnd defined in Eq.(12)
for Bose-Einstein condensatessa=1d. The function is plotted for
threeq parameters. Fluid mechanics implies thatf equals unity for
a stationary one-dimensional flow. The top curvesq=2d crosses the
line where f =1 at two points, defining a subsonicsn,1d and a
supersonicsn.1d regime. The central curvesq=3/2d corresponds
to the sonic horizon where the fluid moves with the local speed of
soundsn=1d. For the lower curvesq=1d no stationary flow exists.
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horizon occurs at the potential maximumUm, provided thatq
can adjust toqc by changing the chemical potentialm such
that

m − Um

m
SA

Q

Îa

ÎaG
Da/s1+a/2d

= 1 +
a

2
, s21d

as we obtain from Eqs.(13) and(15). For example, a driving
piston compresses the gas until it reaches a stationary flow
where it breaks the speed of sound at the potential maximum.
The compression involves changing the energy of the gas,
i.e., the chemical potential. In the case the potential barrier is
too shallow, i.e., below a critical valueUc, supersonic flow
will not occur. To give an indication of the required potential
height we calculate how the criticalUc depends on the initial
conditions.

Initially, the potential is zero and the gas flows with ve-
locity v0. We read off the chemical potentialm from the
Bernoulli equation(4) and expressm in terms of the initial
speed of sound,c0, and the initial(subsonic) Mach number
n0,

m = mw0 +
m

2
v0

2 =
mc0

2

a
S1 +

a

2
n0

2D . s22d

We obtain the initialq parameter by solving the scaled Ber-
noulli equation(11) for q. We express the solution in terms
of the chemical potential(22) and get

q0 = n0
−a/s1+a/2dS1 +

a

2
n0

2D = n0
−a/s1+a/2d am

mc0
2 . s23d

Equation(13) implies thatqc/q0=sm−Ucd /m for constantA,
which gives

Uc = mS1 −
qc

q0
D =

mc0
2

a
h,

h = 1 +
a

2
n0

2 − S1 +
a

2
Dn0

a/s1+a/2d. s24d

For 0øn0ø1 we get 1ùhù0 such that the critical potential
does not exceed the initial internal energy of the gasmw0
=m−mv0

2/2=mc0
2/a. Formula (24) determines the critical

potential(1) in the case of Bose-Einstein condensates where
a=1.

E. Hawking temperature

The transsonic quantum gas generates the equivalent of
Hawking radiation, a thermal cloud of atoms with the effec-
tive temperature[2]

T =
"v0

2pkB
U ] sv 7 cd

] x
U

horizon
, s25d

where the sign is chosen as the opposite sign of the Mach
number at the horizon. The Hawking temperature thus de-
pends on the gradient of the flow speed and of the local
speed of sound. Both can be expressed in terms of changes in
the Mach numbern. We obtain from Eq.(9) and the defini-
tion of the Mach number

dc = −
ac

2 + a

dn

n
, dv = ndc + cdn =

2c

2 + a
dn. s26d

Close to the maximum, we represent the potential as

U , Um −
mv0

2

2
sdxd2. s27d

We expressdn in terms ofdx, using the relation(17) and the
definition (13) of the q parameter for constantA,

sdnd2 =
2 + a

2a

v0
2

2
SA

Q

Îa

ÎaG
Da/s1+a/2d

sdxd2, s28d

and apply the relationship(9) between the local speed of
sound and the Mach number, which gives

dv 7 dc =
Î2 + a

2
v0dx. s29d

In this way we arrive at the Hawking temperature

T =
"v0

2pkB

Î2 + a

2
. s30d

Our result(2) for Bose-Einstein condensates follows fora
=1. The Hawking temperature is proportional to the charac-
teristic frequencyv0 that describes the curvature of the po-
tential. (v0 is the oscillation frequency of an inverted har-
monic oscillator fitted to the potential at the maximum.) The
factor Î2+a /2 depends on the equation of state. No other
hydrodynamic properties of the quantum gas contribute to
the Hawking temperature.

III. NUMERICAL SIMULATION

We tested the predictions of our hydrodynamic theory
with numerical simulations of the Gross-Pitaevskii equation
[9]

i"
] c

] t
= −

"2

2m

]2c

] x2 + gAucu2c + Vc s31d

for the macroscopic wave functionc of the condensate av-
eraged over the longitudinal area. HeregA refers to the ef-

FIG. 3. A Gaussian light beam may both guide and focus the
condensate, appearing as the optical analogue of the de Laval
nozzle. However, as we have shown, the interplay between longi-
tudinal confinement and transversal forces will establish two hori-
zons, if any, i.e., a natural double de Laval nozzle[6].
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fectives-wave scattering coupling constant that has been av-
eraged similarly. The potentialV consists of the sum of two
parts, the confining potentialU and the potential of the op-
tical pistonW that is used to drive the condensate from the
right to the left over the potential barrier to supersonic speed.
The condensate is initially confined between the barrier and
the piston. For the simulations we made the Gross-Pitaevskii
equation(31) dimensionless such that"=m=gA=1, by ap-
propriately changing the scales of length, time and atomic
density. We used the potentialsU= 1

2exps−0.1252x2d and W
=5f1+ 1

2tanhsx−xp−vp tdg wherexp is the initial position of
the piston andvp is its velocity. The initial condensate state
at t=0 is first determined using the Thomas-Fermi approxi-
mation[9] and then propagated in negative imaginary time in
the reservoir between the potential barrier and the piston in
order to find the lowest energy state for the initial potential.
Finally, it is given a “kick” to match its velocity with the
piston speed by multiplying it by a term expf−ivpx

2/ s2xpdg.
We used a perfectly-matched layer[21] to simulate the ex-
pansion of the supersonic gas into empty space on the left
edge of the computational domain. The Gross-Pitaevskii
equation is solved via a Crank-Nicolson discretization and
the use of the tridiagonal matrix algorithm(Thomas algo-
rithm) [22]. Figure 4 shows the density profile of the evolv-
ing condensate.

When the gas has reached a quasistationary regime, we
compared the density profile with our hydrodynamic theory
for stationary flow. According to this theory, the profile of the
Mach number, satisfying the relations(11) and(12), depends
on the shape of the potential and on two additional param-
eters, the chemical potentialm and the ratio of the areaA and
the dischargeQ. Equation(21) connects the parameters and

relates them to the maximum of the potential barrier. Effec-
tively, only one independent parameter remains, say the
chemical potentialm. We determined this parameter by fit-
ting the density profile of the hydrodynamic theory, Eq.(10),
to the numerical simulations withr= ucu2 in the quasistation-
ary regime. We found excellent agreement; see Fig. 5. We
also observed that the one-dimensional supersonic flow is
stable, in agreement with an earlier theoretical prediction
[12].

IV. SUMMARY

We developed a hydrodynamic theory to describe the sta-
tionary flow of a quasi-one-dimensional quantum gas. The
gas is subject to an external potential that may vary in lon-
gitudinal direction and is confined to transversal areas that
may vary as well, in general. We determined the general
conditions for supersonic flow and calculated the Hawking
temperature of the sonic horizon for the particular case of a
constant area. Numerical simulations support our hydrody-
namic theory. Our results indicate that the Hawking effect
seems observable using Bose-Einstein condensates confined
to a waveguide.
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FIG. 4. Result of the numerical simulation: Density profile of
the evolving condensate in dimensionless units. The optical piston
compresses the condensate and pushes it over the potential barrier,
as indicated in Fig. 1. Here the condensate becomes supersonic and
its density drops dramatically. The process continues until the res-
ervoir between piston and barrier runs out of atoms. Our numerical
simulations indicate that the one-dimensional transsonic flow is
stable, i.e., one-dimensional sonic black holes should be observable
without being obscured by instabilities.

FIG. 5. Fit of the theoretical predictions with numerical simula-
tions. The figure shows the density profile in dimensionless units
around the sonic horizon atx=0. The theoretical curve(solid line)
is nearly indistinguishable from the numerical simulation data
(points). In the computation we assumed a piston velocityvp=0.1
in dimensionless units and fitted the chemical potentialm to the
density profile. A value ofm=0.75 was found to give an excellent
fit.
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