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Conditions for one-dimensional supersonic flow of quantum gases
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One can use transsonic Bose-Einstein condensates of alkali atoms to establish the laboratory analog of the
event horizon and to measure the acoustic version of Hawking radiation. We determine the conditions for
supersonic flow and the Hawking temperature for realistic condensates on waveguides where an external
potential plays the role of a supersonic nozzle. The transition to supersonic speed occurs at the potential
maximum and the Hawking temperature is entirely determined by the curvature of the potential.
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I. INTRODUCTION ture for condensates on waveguides. For this, we develop the

The propagation of sound waves in irrotational fluids ishydrodynamic theory of the one-dimensional gas flow
mathematically equivalent to wave propagation in generafrough variable longitudinal areas and under the influence
relativity [1-3]. This analogy supports an intuitive and Of transversal potentials. The one-dimensional gas flow with
simple picture for the event horizdi]: The horizon is the Vvariable area is a textbook theoff0]. In this paper we
place where the fluid exceeds the local speed of sound. Or@nsider a variable potential and arrive at a theory that is still
could, in principle, use such a sonic horizon to generate andimple and fairly general, going beyond the immediate con-
measure the acoustic equivalent of the elusive quantum efern of Bose-Einstein condensates. Having found the veloc-
fects of the event horizon, in particular Hawking radiationity and the density profile at the sonic horizon, we use the
[4,5]. In practice, the way towards artificial black holg  theory of the Hawking effect in fluidg2,13 to compute the
has been thorny. It takes an ultracold quantum fluid to genHawking temperature. This approach is valid as long as the
erate a noticeable quantum effect at the horizon. The onlgas profile varies on longer scales than the healing length
quantum fluids available at the time when the first idea of(the correlation length{13]. The same condition justifies the
artificial black holes appeared in pript] were superfluid  hydrodynamic approximatioff] that we use. Here the spe-
Helium-4 and Helium-3. However, according to the Landaugific properties of the quantum gas are condensed into an
criterion [7], Helium-4 loses superﬂwdlty. well pefore it quation of state and the dynamics is governed by the equa-
reaches the speed of sound, because Helium-4 is a strongﬁym of continuity and the Bernoulli equation. Calculations of
Interacting quantum liquid. Hellum-3_|s a more complex the effective Hawking temperature have been published be-
quantum liquid with a wealth of analogies between the physfore for the one-dimensional gas flow with variable area but

ics of its elementary excitations and general relativity or . .
various other gauge theorig8], yet so far such analogies constant potentiglll]. However, applying transversal poten

have never been experimentally observed in a direct way.
The advent of alkali Bose-Einstein condensg8ismproved

the prospects of sonic horizons in simple quantum fluids and
inspired a renewal of interest in their generation and their
quantum effectd6,10-14. These condensates are weakly

interacting quantum gases, not primarily quantum liquids,
resembling very closely the perfect Bogoliubov gas. The al-
kali condensates are the coldest quantum gases currently v

available[15]. The condensates also allow many ways of

experimental manipulation. For example, condensates can be

generated on atom chip6] and guided in current-carrying

wires in magnetic field§17] or light beams[18]. Tightly

focused spots of light can be used to manipulate the®h, *

eprOItlng the dipole force that Ilgh.t e_xerts on atF’mS- FIG. 1. Scheme of a possible experiment to observe the Hawk-
Waveguides are advantageous for achieving supersonic ﬂo‘ﬂﬁg effect. An optical piston pushes a Bose-Einstein condensate,
because they can confine condensates to longitudinal are@gyfined to a waveguide, over a potential barrier. Both the piston
that are small enough to prevent the formation of vortiCeSanq the barrier can be made by the foci of blue-detuned light beams
Otherwise, the turbulence created would not allow superfluiicting as the potentials indicated in the lower part of the figure. At
flow at supersonic speed. Figure 1 illustrates schematically e barrier the condensate breaks the speed of sound and establishes
possible setup to generate a supersonic flow in a Bosehe acoustic equivalent of the event horizon. The sonic analogue of
Einstein condensate. the Hawking effect should generate an extra thermal cloud of atoms

In this paper we determine the conditions required to exwhere the effective temperature of the cloud depends on the applied
ceed the speed of sound and the resulting Hawking temperaenfining potential.
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tials by tightly focused light beamfgl9] seems to be the force. Consider such a one-dimensional gas flow of particle
easiest way to establish a sonic horizon in a Bose-Einsteidensity p and velocityv through the area with constant

condensate. dischargeQ, as expressed in the equation of continy2g)
For the scheme illustrated in Fig. 1 we find the critical

potential pvA=Q. (3)

W2 3 The densityp and the velocity are averaged quantities over
U= m(cﬁ +-9- ‘(0003)2/3) , (1) the are@A. The stationary gas flow obeys the Bernoulli equa-

2 2 tion [20]

where m denotes the atomic mass angl and vy are the v2 w-U

condensate’s initial speed of sound and flow velocity. If the > Tw= m (4)

applied potential barrier lies below, the quantum gas does
not become supersonic. Abolk the condensate turns from where . denotes the chemical potential, the total energy of
subsonic to supersonic speed at the potential maxitdymn  the gas. For the enthalpy we assume the equation of state
The driving piston will compress the quantum gas such that N

it always obeys the relatiofl) with U,=U,, wherec, is the w=Gp% G,a>0 (5)

local speed of sound immediately in front of the piston andihat describes a general class of gases, including the ideal gas
vo is the flow speed, i.e., the velocity of the piston. and Bose-Einstein condensates within the hydrodynamic ap-

The more tightly confined the potential barrier is the proximation[9]. In the latter case the constants are given by
larger is the resulting velocity gradient at the horizon and thgne relations
higher is the Hawking temperatuiie[1,2]. We find
- ~ _4mh?a
_ hwo LS 2 _ (?Z_U (2) a_lv G= m2 (6)

= y mwo— - 2 ’
27kg 2 X" | horizon

in terms of the(positive) s-wave scattering length of the
wherekg denotes Boltzmann’s constant. We see fhate- condensed atomg9]. Both the areaA and the potentiall
pends entirely on the curvature of the potential at its maxiinay vary along the direction of the gas flow. Equations
mum and on the atomic mass, constituting the effective fre(3)-(5) describe how the gas adjusts to these varying external
guencyw,. The numerical factof3/2 is the sole trace of the parameters.
hydrodynamic properties of the condensate. We calculate the local speed of sourdaccording to the

To achieve an optical potential in the order of the condenstandard theory of sound waves in flui@d] and find
sate’s mean-field energquz) does not pose much of an ex-
perimental problem. The critical issue is the focus required in 2= pa_W = Gap® = aw. (7)
order to generate a noticeable Hawking effg¢t®]. For a d
focus of lengthl, the frequencyw, is in the order ofy2 cy/I,
assuming thatnwj~2U./1?~2md/I. For a narrowly con-
fined sodium condensate witthy~102m/s the Hawking v Q QfG P
energykgT reaches about 15 nK if the potential is focused to v= c = A = Aa ' (8)
|=10% m. Such an enhanced thermal cloud could be observ- P Ve
able (the record of low temperatures measured so far lieas we obtain from Eg$3) and(7). The relation8) allows us
below 1 nK[15]). Since the Hawking temperature is inde- to express the enthalpy in terms ofv and, following from
pendent of the density, see Eg), one may employ a suffi- Eq.(7) also the density and local speed of sound, if required,

It is advantageous to introduce the Mach number

ciently dilute condensate where inelastic three body losses =\ —al(2+a)

do not pose a severe limitation and the condensate’s lifetime c= \,;(é\’_gv) 9)
is long enough. The piston/barrier scheme sketched in Fig. 1 Q<G ’

could act like an evaporative cooling device where the ther-

mal part of the cloud escapes from the subsonic region from A — |\ Ul+a2)

the very beginning. The Hawking radiation is then the major p= 5WG v (10

factor that poses a limit to the final temperature reached. The
dependence of this temperature on the curvature of the pdn fact, within our fluid-mechanical model, all relevant quan-
tential can be exploited to discriminate between a residuatities of the one-dimensional gas flow are functions of the
thermal cloud and the Hawking effect. Mach number.
Il THEORY B. Supersonic flow
Let us establish the conditions for the supersonic flow of a
one-dimensional gas with the equation of st&beWe divide
Our theoretical model is based on the concept of the onethe Bernoulli equatiori4) by w and get
dimensional gas flo\j20]. Here two forces act on the quan- f(y)=1 (11)
tum gas. The waveguide confines the condensate to an effec-
tive areaA and the external potentiél acts as a longitudinal with the function

A. One-dimensional gas flow
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! 4=Qc+ 89, v=+1+6v. (16)

15
We obtain from the scaled Bernoulli equati@ti) with the
definitions(12) and(13), to lowest order in5g and 6v,

N 2
89= 5 (6v)? (17
05 2+a .
Consequentlyg reaches a minimum at the critical parameter,
0 which is consistent with the result that fgr< g, no solution
0 05 1 15 2 exists. Near a minimum of thg parametersq depends qua-
M dratically on the distance from the sonic horizon, assuming
FIG. 2. Plot of the Bernoulli functiorf(v) defined in Eq(12) that the second ,de“Va“Ye af does nOt, vanish, Wh'Ch 1S
for Bose-Einstein condensatéa=1). The function is plotted for Usually the case in practice. Therefof,is proportional to
threeq parameters. Fluid mechanics implies thaiquals unity for ~ the distance. Consequently, if the flow reaches the local

a stationary one-dimensional flow. The top cufge 2) crosses the ~ SPpeed of sound the gas cannot instantly retreat to subsonic
line wheref=1 at two points, defining a subsonfe<1) and a  speed. The flow becomes supersonic. Similarly, a supersonic

supersonid »>1) regime. The central curvég=3/2) corresponds ~ flow will become subsonic wheq reachesq.. Sonic hori-
to the sonic horizon where the fluid moves with the local speed ozons are usually transsonic.
sound(v=1). For the lower curvég=1) no stationary flow exists.

C. Horizons

f= g polral2) _ 3,,2 The flow reaches the speed of sound whenghmram-
=qv 2" (12 eter is both minimal and equal .. The latter condition
determines how the system parameters should be adjusted or
see Fig. 2. All external parameters, in particular the potentiahow they adjust themselves for stationary transsonic flow. If
U and the ared, constitute the single quantity the q parameter at the minimum exceedg a stationary
\ al(L+ai2) subsonic flow exists and therefore the gas does not become
_u-VU (éﬂ) supersonic. Ifg<q. the driving piston compresses the gas
m \Q(G

such thatg evolves to reacly.. The minimum ofg depends
on the way how the system parameters vary in @§). If

that may depend on the longitudinal positiwalong the gas the potential is constant, as in the traditional one-dimensional

flow. Theq parameter is positive, because the total engrgy gas flow[11,20, theq parameter is minimal when the arda

is larger than the potentid). The exponentr/(1+a/2) of  reaches a minimum, i.e., at the waist of the nozzle. Suppose

the first term off(») in Eq. (12) does not exceed the expo- that both the potentidl and the are# vary, with

nent of 2 of the second term. Therefore, the funcfion has

a maximum that depends on the value of ghgarameter. For U=-—2. (18)

a critical parameteq, the maximum off(v) occurs atf=1, AP

coinciding with the solution of the scaled Bernoulli equation. g, example, the intensity of a Gaussian light beam, used to
To find the maximum, we differentiatiév) with respect tov  ¢nfine the flowing condensate, is inversely proportional to

(13

and get the areaA. Since the optical potential is proportional to the
of o light intensity we get3=1. We obtain from the requirement
y— = (f-19 (14)  thatdqg/oA vanishes the critical area
dv 1l+al2
aB-2a+2BV,\YP
that vanishes at=+1 for f=1. Consequently, at the critical Ac= T 2a u) (19

parameterg, the gas flows with the local speed of sound,
establishing a sonic horizofil,2,10,13. In this case the For a Gaussian light beam confining a Bose-Einstein conden-
function (12) reaches unity at sate we get

a Vo
=1+—. =—.
Ge=1+5 (15 Ac 2u
For q< g, the curve off(v) lies below unity and therefore no Transitions from subsonic to supersonic speed and vice versa
stationary flow exists, whereas fqe> g, the gas establishes OCCUr at & specific confining area. Therefore, a Gaussian
two solutions, a subsonic and a supersonic regime. Whicheéam establishes two sonic horizons around its waist, if any;
one of the two regimes is realized depends on the evolutiof€€ Fig- 3-
of the flow. An initially subsonic gas stream stays subsonic
until the flow reaches the local speed of sound. In order to
find out how the gas proceeds beyond the sonic horizon, we In the case when the effective confining afeatays con-
expandq and v in the vicinity of their critical values stant along the gas flow, but the potential varies, the sonic

(20)

D. Critical potential
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potential(1) in the case of Bose-Einstein condensates where

— e . Bty a=1.
gy Woan S oy L
D i, S oy E. Hawking temperature
e . .
5t The transsonic quantum gas generates the equivalent of
T Hawking radiation, a thermal cloud of atoms with the effec-
////' e \"h\\\ T H
s B N tive temperaturg?2]
4 "

- - _ hwg J(vFC)

T , (25

27Kg X horizon
FIG. 3. A Gaussian light beam may both guide and focus the L . )
condensate, appearing as the optical analogue of the de Lavifhe€re the sign is chosen as the opposite sign of the Mach
nozzle. However, as we have shown, the interplay between longi?umber at the horizon. The Hawking temperature thus de-
tudinal confinement and transversal forces will establish two horiP€nds on the gradient of the flow speed and of the local
zons, if any, i.e., a natural double de Laval nozfig speed of sound. Both can be expressed in terms of changes in
the Mach numbew. We obtain from Eq(9) and the defini-

horizon occurs at the potential maximusy, provided thag tion of the Mach number

can adjust tag, by changing the chemical potential such ac Sv 2
that 6Cc=- —, Oov=wvéC+Cor= ov. (26)
2ta v 2+a
[\ al(1+al2) . ;
M= Um<é£) -1+4 (21) Close to the maximum, we represent the potential as
m \Q¢G 2’ o2
~ -0 2
as we obtain from Eq$13) and(15). For example, a driving U~Upn 2 (). (27)

piston compresses the gas until it reaches a stationary flow ) ) .
where it breaks the speed of sound at the potential maximunyVe expresssv in terms oféx, using the relation17) and the
The compression involves changing the energy of the gaglefinition (13) of the g parameter for constar,

i.e., the chemical potential. In the case the potential barrier is 24wl Aa a2
too shallow, i.e., below a critical value,, supersonic flow (8v)2= _aﬂ)<_ﬁ> (8%)2, (28)
will not occur. To give an indication of the required potential 20 2\Q4{G
zghgdfiltti;vnescalculate how the critictl; depends on the initial and apply the relationshi) between the local speed of
Initially, the potential is zero and the gas flows with ve- sound and the Mach number, which gives
locity vg. We read off the chemical potential from the V2 +a
Bernoulli equation(4) and expresg: in terms of the initial v+ 6= wpoX. (29
speed of sound;,, and the initial(subsonig Mach number
Vo, In this way we arrive at the Hawking temperature
—_— m , m(€<1 L8 2) 22) hog N2+« (30
= —Upg=—"" —V5]. =
pEMAT Hv0= " (2T oM orkg 2

We obtain the initialq parameter by solving the scaled Ber- Our result(2) for Bose-Einstein condensates follows fer
noulli equation(11) for g. We express the solution in terms =1. The Hawking temperature is proportional to the charac-

of the chemical potentig22) and get teristic frequencyw, that describes the curvature of the po-
tential. (wg is the oscillation frequency of an inverted har-
Qo= ,,aa/(1+a/2)(1 + i“,,g) - VBa/(lm/Z)ﬂ_ (23) monic oscillator fitted to the potential at the maximuifhe
2 m factor \2+a/2 depends on the equation of state. No other

hydrodynamic properties of the quantum gas contribute to

Equation(13) implies thatq./qo=(u—U.)/ u for constantA, the Hawking temperature.

which gives
q m(% . NUMERICAL SIMULATION
— Cc | _—
Uc_“<1'%) R We tested the predictions of our hydrodynamic theory
with numerical simulations of the Gross-Pitaevskii equation
[9]
n:1+gvg—<l+g>vg/(l+a/2). (24 i 12 P ,
ih—=-———+ +V 31
0 oo T IV (3D

For 0= yy=<1 we get = =0 such that the critical potential

does not exceed the initial internal energy of the gag&  for the macroscopic wave functio of the condensate av-
- 25— i it PP

=u—-mv3/2=mdj/a. Formula (24) determines the critical eraged over the longitudinal area. Hage refers to the ef-
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FIG. 4. Result of the numerical simulation: Density profile of £ 5. Fit of the theoretical predictions with numerical simula-
the evolving condensate in dimensionless units. The optical pistofjgns The figure shows the density profile in dimensionless units
compresses the condensate and pushes it over the potential barrigfe ng the sonic horizon at=0. The theoretical curvesolid line)
as indicated in Fig. 1. Here the condensate becomes supersonic 8 early indistinguishable from the numerical simulation data
its density drops dramatically. The process continues until the re points. In the computation we assumed a piston veloeigy 0.1
ervoir between piston and barrier runs out of atoms. Our numericgl, gimensionless units and fitted the chemical potentiaio the

simulations indicate that the one-dimensional transsonic flow iYjensity profile. A value ofu=0.75 was found to give an excellent
stable, i.e., one-dimensional sonic black holes should be observabﬂ%

without being obscured by instabilities.

fective sswave scattering coupling constant that has been awelates them to the maximum of the potential barrier. Effec-
eraged similarly. The potentiad consists of the sum of two tively, only one independent parameter remains, say the
parts, the confining potentid) and the potential of the op- chemical potentiaju. We determined this parameter by fit-
tical pistonW that is used to drive the condensate from theting the density profile of the hydrodynamic theory, EtD),
right to the left over the potential barrier to supersonic speecto the numerical simulations with=|¢{? in the quasistation-
The condensate is initially confined between the barrier andry regime. We found excellent agreement; see Fig. 5. We
the piston. For the simulations we made the Gross-Pitaevskiilso observed that the one-dimensional supersonic flow is
equation(31) dimensionless such that=m=g,=1, by ap- stable, in agreement with an earlier theoretical prediction
propriately changing the scales of length, time and atomig¢12].
density. We used the potentidls=3exp(—0.1258x%) and W
=5[1_+§tan}*(x—xp_—z_;p t)] Wh_erexp is_th(_e initial position of V. SUMMARY
the piston and, is its velocity. The initial condensate state
att=0 is first determined using the Thomas-Fermi approxi- We developed a hydrodynamic theory to describe the sta-
mation[9] and then propagated in negative imaginary time intionary flow of a quasi-one-dimensional quantum gas. The
the reservoir between the potential barrier and the piston igas is subject to an external potential that may vary in lon-
order to find the lowest energy state for the initial potential.gitudinal direction and is confined to transversal areas that
Finally, it is given a “kick” to match its velocity with the may vary as well, in general. We determined the general
piston speed by multiplying it by a term e[x-pvpx2/(2xp)], conditions for supersonic flow and calculated the Hawking
We used a perfectly-matched layi@¥1] to simulate the ex- temperature of the sonic horizon for the particular case of a
pansion of the supersonic gas into empty space on the legonstant area. Numerical simulations support our hydrody-
edge of the computational domain. The Gross-Pitaevskinamic theory. Our results indicate that the Hawking effect
equation is solved via a Crank-Nicolson discretization andseems observable using Bose-Einstein condensates confined
the use of the tridiagonal matrix algorithThomas algo- 10 a waveguide.
rithm) [22]. Figure 4 shows the density profile of the evolv-
ing condensate. o _ ACKNOWLEDGMENTS
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