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We study a system ofA identical interacting bosons trapped by an external field by solvingab initio the
many-body Schrödinger equation. A complete solution by using, for example, the traditional hyperspherical
harmonics(HH) basis develops serious practical problems due to the large degeneracy of HH basis. Symme-
trization of the wave function, calculation of the matrix elements, etc., become an immensely formidable task
as A increases. Instead of the HH basis, here we use a new basis, called “potential harmonics”(PH) basis,
which is a subset of HH basis. We assume that the contribution to the orbital and grand orbital[in
3sA−1d-dimensional space of the reduced motion] quantum numbers comesonly from the interacting pair.
This implies inclusion of two-body correlations only and disregard of all higher-body correlations. Such an
assumption is ideally suited for the Bose-Einstein condensate(BEC), which is required, for experimental
realization of BEC, to be extremely dilute. Hence three and higher-body collisions are almost totally absent.
Unlike the s3A−4d hyperspherical variables in HH basis, the PH basis involves only threeactive variables,
corresponding to three quantum numbers—the orbitall, azimuthalm, and the grand orbital 2K+ l quantum
numbers for any arbitraryA. It drastically reduces the number of coupled equations and calculation of the
potential matrix becomes tremendously simplified, as it involves integrals overonly threevariables for anyA.
One can easily incorporate realistic atom-atom interactions in a straightforward manner. We study the ground
and excited state properties of the condensate for both attractive and repulsive interactions for various particle
number. The ground state properties are compared with those calculated from the Gross-Pitaevskii equation.
We notice that our many-body results converge towards the mean field results as the particle number increases.
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I. INTRODUCTION

Although the phenomenon of Bose-Einstein condensation
(BEC) was known for a long time[1–3], its experimental
observation in trapped and supercooled(down to nanokelvin
temperatures) alkali atoms in 1995[4–6] renewed a great
deal of interest, both experimental and theoretical, in the
phenomemon. The importance of this topic is clearly dem-
onstrated by the fact that two independent Nobel Prizes were
awarded on BEC related works in quick succession in the
recent past. The density of magneto-optically trapped atomic
gas undergoing BEC is extremely low(to avoid recombina-
tion of atoms through three and higher body collisions) and
the number of trapped atoms is typically of the order of a few
hundred to a few million. This is extremely small compared
to the Avogadro number. For such a small number of atoms
an exactab initio solution would have been ideally desirable.
But an interacting system ofA=sN+1d particles has 3N rela-
tive degrees of freedom and anab initio solution of the cor-
responding Schrödinger equation is practically impossible
for A.3. Hence the usual theoretical tools that have been
used so far are the mean field models[7–10] and the
Thomas-Fermi[8] approximation. The dilute atomic gas un-

dergoes BEC below a critical temperature(typically 10−9 K)
when most of the atoms(bosons) go to the single particle
ground state. Then the de Broglie wavelength associated
with the atomic motion is much larger than the interaction
length scale. Hence the resulting many body system emerges
as essentially a single quantum system where all the atoms
behave in a coherent manner[8,11]. At zero temperature, the
effect of the excited states are absent and the condensate is
described by a single equation involving the condensate
wave function[8]. However this simple picture is no more
true at a finite temperature due to the existence of interpar-
ticle interactions. The usual procedure is to start with the
mean field approximation like the Hartree-Fock(HF) theory
for the many body system[7–10]. This is an independent
particle approach where each individual atom is assumed to
move in a single particle orbit. These orbits are determined
self consistently by allowing an atom in one orbital to be
influenced by other atoms in other orbitals through two-body
interaction. Assuming a contact interaction for the two-body

potential, viz.,VsrW−r8W d=gdsrW−r8W d, the many body equation
reduces to the famous Gross-Pitaevskii(GP) equation[8]. At
zero temperature, the effect of excited states are neglected
and the condensate is described by the time independent GP
equation

F−
¹2

2m
,2 + VextsrWd + gf2srWdGfsrWd = mfsrWd, s1d

where nsrWd=f2srWd is the condensate density andm is the
chemical potential. For a first approach the contact interac-
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tion is justified since in the cold and dilute gas only binary
collissions at low energies are relevant. These are character-
ized by thes-wave scattering lengthsascd, which is indepen-
dent of the details of two-body potentials. The strength con-
stantg of the contact interaction is related to the scattering
length through[8]

g =
4p"2asc

m
. s2d

The GP equation has been used extensively to study the
BEC [8,11]. Although most of the static, dynamic and ther-
modynamic properties are fairly well reproduced by the GP
equation[8], the wave function does not include any corre-
lation. Furthermore the assumption of a contactd-interaction
is too simple and does not represent the realistic situation. It
has already been shown that the Diracd-function is not suit-
able as a replacement of the actual two-body interaction in
exact theories in more than one dimension[12]. This is be-
cause the Hamiltonian then becomes unbound from below
and the ground state energy diverges for an attractive zero
range potential. Solutions are usually obtained in the meta-
stable region(although such solutions are not rigorously cor-
rect for an attractived-function potential) and the condensate
becomes unstable forN larger than a critical number, due to
disappearance of the local minimum. This was shown by
Bohn et al. in a hyperspherical calculation keeping the low-
est (most dominant) harmonic[13]. A third disadvantage is
the non-linearity of the GP equation, so that standard quan-
tum mechanics is not applicable without concessional ap-
proximation. Thus one has to go beyond the mean field ap-
proximation and simple contact interactions.

Because of the limitations of the mean field theory and
GP equation it is desirable to solve the many bodylinear
Schrödinger equation directly. The Schrödinger equation for
a system ofA=sN+1d identical bosons, each of massm,
confined by an external fieldVtrap8 (acting on each individual
boson) and interacting through a mutual two body interaction
V is

F−
¹2

2m
o
i=1

A

,i
2 + o

i=1

A

Vtrap8 sxW id + o
i, j=2

A

VsxW i − xW jdGCsxWd = ECsxWd,

s3d

where xW refers to the set of particle coordinates
hxW1,xW2, . . . ,xWAj of A bosons. The center of mass(c.m.) motion
can be eleminated resulting in a Schrödinger equation in 3N
variables. A standard practice is the use of hyperspherical
harmonics expansion(HHE) method, in which the wave
function is expanded in the complete set of hyperspherical
harmonics(HH) spanning thes3N−1d-dimensional hyperan-
gular space[14]. Projection on a particular HH leads to a
system of coupled differential equations(CDE). However
there are several very serious difficulties associated with the
solution of a fairly large number of particles. First the expan-
sion basis of HH should be properly symmetrized and appro-
priate conserved quantum numbers properly taken care of.
Secondly calculation of matrix elements of all the pairwise
two-body potentials is an extremely formidable task. Finally,

due to very large degeneracy of the HH basis for a large
number of particles, the number of CDE and the dimension
of the potential matrix is too large to be handled by any
computer[14]. On top of all these, the convergence rate of
the HH expansion, especially for long-range interactions, is
slow [15]. For these reasons the HHE method has been used
fully for the three body system only[15–18]. On the other
hand, as we discussed earlier, the condensate can be treated
broadly as a “single lump of quantum stuff,” since all the
individual atoms in the condensate lie within one single de
Broglie wavelength[8]. Thus it is reasonable to assume that
the basic properties of the condensate in the lowest approxi-
mation, is described by a single collective coordinate. This
led Bohnet al. [13] to go for the K-harmonic approximation,
in which the HH expansion is restricted effectively to the
first term only ( which is independent of the hyperangles).
Such adrastic approximation may be justified for a contact
interaction only. Even in this case, for an attractive
d-function interaction, there are norigorously stablesolu-
tions. Since the wave function becomes independent of the
hyperangles and the hyperradius is invariant under any per-
mutation of the particles, the wave function becomes totally
symmetric, as required. The calculation of the potential ma-
trix also simplifies immensely and the CDE reduces to a
single differential equation[13]. The hyperradius emerges as
the sought for collective coordinate. In spite of the great
simplifications, there are serious criticisms of this approach:
(1) The method cannot be applied to any realistic two-body
interaction.(2) Even for a contact interaction, the method is
not satisfactory for attractived-function interaction, for
which no rigorous solution exists.(3) Only one collective
variable is involved. Hence it can only describe the gross
features of the condensate, without any finer details. Thus a
more rigorous treatment is necessary. But as already men-
tioned a completely rigorous, essentially exact solution of the
Schrödinger equation is possible for the three body system
only. That has been done to get an idea of the initial trend as
the particle number increases from three by Esry and Greene
[12]. However that is far from the real situation in a conden-
sate.

An alternative approach of exact numerical diagonaliza-
tion of the many body Hamiltonian was adopted by Haugset
and Haugerud[19] for a small numbersø30d of interacting
(via contact interaction) bosons confined by a harmonic trap.
However, this was restricted toone and two dimensions only.
Moreover the process is extremely time consumingeven for
two dimensionalcondensates, with a nagging question of
convergence of the chosen harmonic oscillator basis expan-
sion. The rate of convergence is expected to be slower for a
realistic two-body interaction and in three dimensional con-
densates. Although analytic expressions for the matrix ele-
ments are greatly simplified for a delta function interaction,
all the problems associated with a contact interaction dis-
cussed above remain for the two dimensional condensate.
However, there is no problem with the one dimensional con-
densate, as one dimensional delta function is not pathologi-
cal.

From the above discussion it is clear that an exact treat-
ment of the many body system in three dimensions is not
possible beyond the three body system. On the other hand,
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the single quantum nature of the entire condensate suggests
that out of the thousands to millions of degrees of freedom of
the individual particlesonly a feware physically relevant.
This is due to the fact that the condensate is possible only at
extremely low temperatures(low energy of the individual
particles) and extremely low densities. Under these condi-
tionsonly two body collisionsare relevant. Three and higher
body collisions areextremelyrare and correlations beyond
two body correlations in the condensate wave function are
completely negligible up to a very high degree of precision.
Indeed in an experimental situation this is ensured by keep-
ing the density extremely low, so that there are no recombi-
nation via three and higher body collisions[8]. The mean
field approach ignores all correlations including two-body
correlations. Importance of two-body correlations in BEC
has been emphasized by several authors[20,21]. Thus physi-
cally relevant quantities are contributed by two-body colli-
sions, while the rest of the particles in the condensate do not
partate in any motion other than a collective one and are
simply inert spectators. The emerging picture then suggests
that most of the degrees of freedom of these spectators can
be frozen, while a single pair interacts. This reduces the
physically important degrees of freedom of the condensate to
just four—a global length scale(hyperradius) of the entire
condensate, and the three degrees of freedom of the relative
vector rWi j =xW i −xW j of the interacting pair. However one has to
concede thatanypair out of theA=sN+1d atoms in the con-
densate can interact. These are also consistent with the intui-
tive “single quantum stuff” concept of the condensate.

Among the various possible theoretical approaches to
handle the many body system, the HHE method appears to
be the most lucrative one, as it readily provides the hyperra-
dius as the most important collective variable. A theoretical
formalism, arising out of the HHE method, was adopted by
Fabre de la Ripelle[22] in 1986. Although the primary con-
cern there was an application to the nuclear systems consist-
ing of fermions, it was noted that the formalism is applicable
to a system of identical bosons also[23]. To incorporate the
importance of the interacting pair and two-body correlations,
he introduced the potential harmonics(PH) expansion basis
[23], rather than the general HH basis, thereby reducing the
expansion basis to a great extent. Potential harmonics is a
subset of HH, where all correlations higher than two-body
ones are disregarded. In PH, the contribution to the total
orbital angular momentum as also the grand orbital quantum
number comesonly from the interacting pair. Here all the
sA−2d spectators are assumed to be described by the HH of
the lowest(zero) order. We adopt this procedure since this
approximation is quite justified in our situation due to the
diluteness of BEC, where two-body correlation is the most
important and all higher-body correlations can be safely ig-
nored. Using Faddeev like decomposition of the total wave
function, and then expanding each such component in an
appropriate set of PH, the number of CDE can be reduced
drastically. Since the PH involves only four active degrees of
freedom, calculation of potential matrix elements is simpli-
fied tremendously as compared to that in HH basis. Use of
realistic two-body interactions and calculation of their matrix
elements are quite straight forward. Requiring the Faddeev
component for thesi j d interacting pair to be symmetric under

si j d-pair exchange, the total wave function becomes auto-
matically totally symmetric. Thus the symmetrization of the
wave function is also handled properly.

Thus a truly many body equation is reduced to a tractable
mathematical form. The assumptions leading to this are es-
pecially appropriate for the BEC. Hence we adopt the PH
basis as our starting point. This is theoretically applicable to
a system containing any number of particles, but we will see
in Sec. III, that numerical difficulties arise as the number of
particles increases beyond a certain number. In this paper we
report some of the basic properties of the condensate for
various particle numbers and compare them with previous
calculations.

Sorensenet al. [20,21] have followed a method which is
similar in spirit to the present work, although it differs in
details. They expand the wave function in the adiabatic sub-
set Fnsr ,Vd of the full sN−1d-body Hamiltonian(in c.m.
frame). Later this is decomposed in Faddeev-like compo-
nentsfi j . This leads to an integro-differential equation(IDE)
for f (=fi j , which is the same forall i j -pairs due to boson
symmetry) involving five dimensional integrals and the full

s3N−4d-dimensional hyperangular differential operatorL̂2.
All s3N−5d angle derivatives other thana=a12 (where r ij

=Î2r sinai j is the relative separation of thesi j d-pair andr is
the hyperradius of the full system), are disregarded, leaving
only one angle variable. Assumption of avery short ranged
two-body potential reduces the five dimensional integrals to
two dimensional ones. In this limit simple expressions are
obtained for the integrals in IDE. On the other hand, we
write the complete 3N-dimensional Schrödinger equation of
the relative motion of asN+1d boson system in terms of
Faddeev like componentsFsrWi j ,rd, subject to the approxima-
tion that FsrWi j ,rd corresponds to zero eigenvalue of the hy-
perangular momentum operator(see later) for the sN−1d re-
maining relative vectors of the spectators, whilesi j d-pair
interacts. These are then expanded in the potential harmonics
(PH) basis. The assumptions in our method are clearly justi-
fied in terms of the physics of the chosen system, which have
been stated earlier. While the use of PH basis in nuclei(as
originally used by Fabre in[22,23]) is questionable due to
high spatial density of nucleons in a nucleus, its application
in BEC is ideally suited(the number of atoms in the conden-
sate isø106 in a space of macroscopic linear dimensions of
order 10−2 cm, which is immensely smaller than the
Avogadro number). As a consequence, the total orbitalsld
and grand orbitalsKd angular momenta of the system are
contributed by the interacting pair alone. Apart from this
well justified fundamental approximation, we need no other
approximation. Although for the first calculation, we have
restricted ourselves tol =0 and acentral two-body interac-
tion, both these can be relaxed resulting in a somewhat more
complicated equation. Finally the system of coupled differ-
ential equations in one variable(hyperradius,r) can be
solved numerically,without additional approximation[as
done in Ref.[15] and compared with adiabatic approxima-
tion (AA ) in Ref. [28]] using, e.g., renormalized Numerov
method. Once again, as a preliminary calculation, we use AA
to solve the CDE. Our use of AA in solving the CDE is not
an indispensable one; it is done only to reduce the numerical
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calculation. But in the approach of Sorensenet al., adiabatic
subset is the starting point to separate the hyperangular and
hyperradial motions. Furthermore our method can handle
any two-body potential(central or not, short ranged or not);
for noncentral potential, calculation of matrix elements will
involve integrals over two polar angles in addition. The ap-
proach of Refs.[20,21] requries a very short ranged, central
potential to reduce the equation to a manageable form. The
present method has no such restriction.

The paper is organized as follows. In Sec. II, we present
our choice of Jacobi coordinates and express the kinetic en-
ergy in the chosen set of hyperspherical variables. In the
same section, we introduce the concept of potential harmon-
ics basis and obtain the set of coupled differential equations
resulting from the many-body Schrödinger equation. The nu-
merical method for solving the CDE and results of our cal-
culation are presented in Sec. III. There we compare our
results for different numbers of particles with those of earlier
calculations. Finally in Sec. IV we draw our conclusions.
Some of the detailed expressions have been given in the
Appendix.

II. THEORY

A. Choice of Jacobi coordinates

We consider a system ofA=sN+1d identical bosons, each
of massm and confined magnetically in a trap which is ap-
proximated by a spherically symmetric harmonic oscillator
potential with frequencyv. We assume that the atomic cloud
is at zero temperature. The full many body Hamiltonian is
given by

F−
¹2

2m
o
i=1

N+1

,i
2 + o

i=1

N+1
1

2
mv2xi

2 + o
i j .i

N+1

VsxW i − xW jdGCsxWd

= E8CsxWd, s4d

where xW refers to the set of particle coordinates
hxW1,xW2, . . . ,xWN+1j of sN+1d bosons andE8 is the total energy.
We decompose the total wave functionCsxWd as the sum of
pairwise partial waves

CsxWd = o
i j .i

N+1

ci jsxWd. s5d

The Schrödinger equation forci j can be written as

sT + Vtrap8 − E8dci jsxWd = − Vsr ijd o
kl.k

N+1

cklsxWd, s6d

whereT is the total kinetic energy operator,Vtrap8 is the con-
fining potential,Vtrap8 =oi=1

N+11
2mv2xi

2 andVsr ijd is the pairwise
local central two-body interaction betweenith and j th par-
ticles,rWi j =xW i −xW j. Applying the operatoroi j .i

N+1 on both sides of
Eq. (6), and using Eq.(5), we get back Eq.(4). Now instead
of sN+1d particle coordinatesxW i, the system can alternatively

be described by the center of mass coordinateRW

RW =
1

N + 1o
i=1

N+1

xW i s7d

andN Jacobi coordinates defined as

zi
W =Î 2i

i + 1
SxW i+1 −

1

i
o
j=1

i

xW jD, i = 1, . . . ,N. s8d

The chosen normalization ofzW i facilitates writing the Laplace
operator in the form

1

2o
i=1

N+1

¹i
2 =

1

2A
¹R

2 + o
i=1

N

¹zi

2 s9d

Then the relative motion[after removal of center of mass
motion from Eq.(4)] is described by[14,23]

F−
"2

m
o
i=1

N

¹zi

2 + Vtrap + VintszW1,...,zWNd − EGcszW1, . . . ,zWNd = 0,

s10d

whereVtrap=oi=1
N 1

2mv2zi
2 andVint is the sum of all pairwise

interactions,Vint=oi j .i
N+1Vsr ijd expressed in the relative coor-

dinates. HereE is the energy of the relative motion, i.e.,E8
minus energy of c.m. motion. The hyperradiusr is defined as
[22]

r = Fo
i=1

N

zi
2G1/2

= F 2

N + 1o
i,j.i

r i j
2G1/2

, s11d

which is invariant under permutations of the particle indices
as also three dimensional rotations. The hyperspherical coor-
dinates are constituted by the hyperradiusr and remaining
s3N−1d hyperangles, denoted collectively byVN in D=3N
dimensional space. Note that the choice of Jacobi coordi-
nates Eq.(8), is not unique, since the labeling of the particle
indices and consequently that of the Jacobi coordinates are
arbitrary. We choose a particular set by specifying the rela-

tive separation of the interacting pair,rWi j aszWN andsq ,wd are
the two spherical polar coordinates associated withrWi j . The
relative length is defined in terms off throughr ij =r cosf.
For the rest ofsN−1d Jacobi coordinates, we define the hy-
perradiusri j in the 3sN−1d-dimensional space by

ri j = Fo
k=1

N−1

zk
2G1/2

, s12d

which is related withzWN=rWi j by

ri j
2 + r ij

2 = r2, ri j = r sin f· s13d

Then our hyperspherical coordinates become

sr,VNd = sr,f,q,w,VN−1d· s14d

Here VN−1 involves 2sN−1d spherical polar angles associ-

ated with each ofsN−1d Jacobi vectorshzW1,zW2, . . . ,zWN−1j and
sN−2d angles(expressing relative lengths), i.e., a total of
s3N−4d variables. In this choice of hyperspherical coordi-
nates, the Laplace operator takes the form[22]
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¹2 ; o
i=1

N

¹zi

2 =
]2

] r2 +
3A − 4

r

]

] r
+

L2sVNd
r2 , A = N + 1.

s15d

L2sVNd is the grand orbital operator in 3N-dimensional space
which is obtained from a recurrence formula[22] and has the
form

L2sVNd = 4s1 − z2d
]2

] z2 + 6f2 − Ns1 + zdg
]

] z
+ 2

l2svi jd
1 + z

+ 2
L2sVN−1d

1 − z
, s16d

wherez=cos 2f, vi j represents the two polar anglessq ,wd
associated withrWi j andL2sVN−1d is the grand orbital operator
in 3sN−1d dimensional space.

B. Potential basis and potential multipoles

To expand a functionVsr ijd in hyperspherical harmonics
(HH) we use the above definition of Jacobi coordinates. It is
easy to see that HH basis which is complete for the expan-
sion ofVsr ijd does not contain any function of the coordinate

zW i with i ,N and is given by[23]

P2K+l
l,m sVi jd = Yl

msvi jdsNdP2K+l
l,0 sfdY0sD − 3d, s17d

wheresNdP2K+l
l,0 is a function involving the Jacobi polynomial

and is needed in the general expression of the hyperspherical
harmonics(see Appendix) of grand orbital 2K+ l and orbital
angular momemtuml. The quantityY0sD−3d is the HH of
order zero(i.e. grand orbital quantum number is zero) in
3sN−1d dimensional space, Y0sD−3d=fGssD−3d /2d /
2psD−3d/2g1/2. This new basis set which is a subset constituted
by HH of order s2K+ ld are called “potential harmonics”
(PH). These are the eigenfunctions ofL2sVNd, when the ei-
genvalue ofL2sVN−1d is 0 and satisfies the eigenvalue equa-
tion:

fL2sVNd + LsL + D − 2dgP2K+l
l,m sVi jd = 0, L = 2K + l ·

s18d

The relationL2sVN−1dci jsxWd=0 implies that we are consider-
ing only those states which are invariant under all general-
ized rotations in 3sN−1d-dimensional space. Naturally the
contribution to the grand orbital quantum number comes
only from the interacting pair. This corresponds effectively to
two-body correlations only in the wave function. Due to di-
luteness of atomic BEC, the effect of higher body correla-
tions can be ignored as the probability for three or more
particles to come close at the same time is extremely small.
This reduces the number of quantum numbers in the new
basis[all the quantum numbers specifying the eigenfunctions
of L2sVN−1d are zero]. It contains only three quantum num-
bers; orbitall, azimuthalm and grand orbital 2K+ l for any
N, instead ofs3N−1d quantum numbers corresponding to
s3N−1d hyperspherical variables in the general HH basis.
The normalization condition is given by

E P2K+l
l,m*

sVi jdP2K8+l8
l8m8 sVi jddVi j = dKK8dll8dmm8. s19d

Then the PH expansion of the potential is

Vsr ijd = o
K,l,m

Al
msi, jdP2K+l

l,m sVi jdVK
sD,ldsrd. s20d

Al
msi , jd is an operator which is independent ofr ij , but may

act on other variables like spin variables. The quantity
VK

sD,ldsrd are the “potential multipoles” and for a central po-
tential, it is given by[23]

VK
sD,ldsrd = kP2K+l

l,m sVi jduVsr ijdl

= uY0sD − 3du−1E
0

p/2
sNdP2K+l

l,0 sfdVlsr cosfd

3ssin fdD−4scosfd2df, s21d

where the functionssNdP2K+l
l,0 sfd are defined in the Appendix.

Starting from the multipoles calculated either for theD=5 or
D=6 (depending whetherD is odd or even) and using simple
recurrence formulas potential multipoles for anyD can be
calculated[23].

C. Coupled differential equations

Splitting Eq. (10) in the manner of Eq.(6) for the
si j d-interacting pair and using Eqs.(14)–(16), subject to the
restriction that the eigenvalue ofL2sVN−1d is zero, we see
that thesi j d Faddeev component will be a function ofrWi j and
r only and satisfies[23]

sT + Vtrap − EdFsrWi j ,rd = − Vsr ijd o
k,l.k

FsrWkl,rd, s22d

whereFsrWi j ,rd differs from the general solutionci j by the
fact that it corresponds to eigenvalue zero of the operator
L2sVN−1d. Next expand the wave functionFsrWi j ,rd in the
complete set of potential harmonics(when l is a good quan-
tum number) as

FsrWi j ,rd = r−sD−1d/2o
K8

P2K8+l
lm sVi jduK8

l srd. s23d

Substitution of Eq.(23) in Eq. (22) and projection on the
same basis, leads to the set of coupled differential equations
[23]

F−
"2

m

d2

dr2 +
"2

m

LKsLK + 1d
r2 + Vtrapsrd − EGuK

l srd

+ o
K8

fK8l
2 VKK8srduK8

l srd = 0, s24d

where

LK = 2K + l +
D − 3

2
,

fKl
2 = ok,l.k

kP2K+l
lm sVi jduP2K+l

lm sVkldl. s25d

The potential matrix is given by
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VKK8srd =E P2K+l
lm*

sVi jdVsr ijdP2K8+l
lm sVi jddVN. s26d

So instead ofs3N−1d angle variables in HHE method, in
potential harmonics expansion method(PHEM) the integral
involves only 3 angle variables. It greatly simplifies the cal-
culation of the matrix element for anyN.

The quantityfkl
2 of Eqs.(24) and (25) is given by[23]

fKl
2 = 1 +F2sA − 2dS−

1

2
Dl

PK
abS−

1

2
D

+
sA − 2dsA − 3d

2
PK

abs− 1ddl,0GY PK
abs1d, s27d

where a=s3A−8d /2 and b= l + 1
2 and PK

absxd is the Jacobi
polynomial. Multiplying Eq. (24) by appropriate constant
factors, it can be put in a symmetric form:

F−
"2

m

d2

dr2 +
"2

mr2
hLsL + 1d + 4KsK + a + b + 1dj + Vtrapsrd

− EGUKlsrd + o
K8

V̄KK8srdUK8lsrd = 0, s28d

where L= l +s3A−6d /2, the symmetrized potential matrix

V̄KK8 has the form

V̄KK8srd = fKlVKK8srdfK8lshK
abhK8

abd−1/2 s29d

and

UKlsrd = fKlshK
abd1/2uK

l srd· s30d

HerehK
ab is the norm of the Jacobi polynomialPK

absxd [24].
The potential matrix element is obtained from Eq.(26), using
Eqs.(17) and (A4) of the Appendix, in the form

VKK8srd =E
−1

+1

PK
abszdVSrÎ1 + z

2
DPK8

abszdwlszddz, s31d

wherewlszd=s1−zdas1+zdb is the weight function of the Ja-
cobi polynomials[24]. For Gaussian interaction withA=3,
the integral can be obtained analytically[25], from where
one can directly check the numerical accuracy.

III. NUMERICAL METHOD AND RESULTS

A. Numerical method

For a chosen number of particlessAd and a chosen inter-
action potentialfVsr ijdg, we calculate the potential matrix for
a fixed value of hyperradiussrd from Eqs. (29) and (31)
using a multipoint Gauss-Jacobi quadrature. For the present
calculation we selectl =0 and truncate the PH expansion
basis of Eq.(23) to a maximumK values=Kmaxd. In order to
simplify the solution of the set of coupled differential equa-
tions, Eq. (28), we adopt the hyperspherical adiabatic ap-
proximation (HAA ) [16,26]. In this approximation it is as-
sumed that the hyperradial motion is slow compared to the
hyperangular motions. Hence the latter can be solved adia-

batically for a fixed value ofr to get an effective potential as
a parametric function ofr [16]. This is done by diagonalizing
the potential matrix together with the diagonal hypercentrifu-
gal repulsion and the trapping potential for each value ofr:

o
K8=1

Kmax

MKK8srdxK8lsrd = vlsrdxKlsrd, s32d

where

MKK8srd = V̄KK8srd + F "2

mr2
hLsL + 1d + 4KsK + a + b + 1dj

+ VtrapsrdGdKK8. s33d

The lowest eigenvalue gives the “lowest eigenpotential,”
v0srd. As we discussed in the Introduction, the hyperradius
behaves as the most important collective coordinate and
v0srd is the potential in which the condensate moves as a
“single quantum stuff,” except for attractive two-body inter-
actions andA.Acr (see later). Another collective coordinate
is the hyperanglef appearing in the wave function through
Eqs. (23) and (17), which describes the deviations of the
condensate from hyperspherically symmetric distribution.

In the HAA approach, an approximate solution of Eq.(28)
is obtained by solving a single uncoupled differential equa-
tion [16]

F−
"2

m

d2

dr2 + v0srd + o
K=0

KmaxUdxK0srd
dr

U2

− EGz0srd = 0·

s34d

The solution of Eq.(34) subject to appropriate boundary
conditions onz0srd gives the energyE, which is an upper
bound for the eigenenergy of Eq.(28) . The partial waves of
Eq. (28) are given in HAA by[16]

UKlsrd . z0srdxK0srd. s35d

This approximation is usually called uncoupled adiabatic ap-
proximation(UAA ) in the literature[16,26]; disregarding the
third term on the left side of Eq.(34) one gets the so-called
extreme adiabatic approximation(EAA). It has been shown
that the HAA is in very good agreement(having less than 1%
error) with the exact solution of the CDE for both atomic
[27–29] and nuclear[30,31] cases. Since this is adequate for
this preliminary application of this new method, we adopt
the HAA, instead of solving the full set of CDE by exact
numerical algorithm like the renormalized Numerov method
[32,33].

B. Choice of two body interaction potential

In this paper we compare our results with those of the GP
equation as also with other calculations using a contact
d-interaction. But ad-function interaction is not a physical
one since it diverges atr ij =0 and nothing(e.g., centrifugal
repulsion) can prevent its overwhelming effect. As a result,
the Hamiltonian becomes unbound from below for an attrac-
tive d interaction. This is manifest in the effective potential
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v0srd, which for a particle numbersAd less than a critical
value sAcrd produces a local minimum at a finite value ofr
(giving rise to a metastable solution), but v0srd→−` as r
→0 for any number of particles(see following subsection, as
also Ref. 12). Thus there are no rigorously acceptable and
stable solution for anyA, since the attractive essential singu-
larity at r =0 will pull the system tor →0 and the corre-
sponding wave function will diverge atr =0. Although the
d-function is particularly convenient for analytic calcula-
tions, it is desirable to choose an interaction which would
either remain finite or at worst introduce a removable singu-
larity as r ij →0 for attractive cases. Then the hypercentrifu-
gal repulsion in Eq.(28) (which is nonvanishing even forl
=0, K=0 and increases rapidly asA increases) will not allow
the interacting particles to come too close to each other. We
thus choose a Gaussian potential of strengthV0 and ranger0

Vsr ijd = V0e
−ri j

2/r0
2
· s36d

Choosing appropriate values ofV0 and r0, the potential can
be made either soft or stiff. A particular experimental situa-
tion at the low temperature limit is characterized by the
s-wave scattering lengthsascd. For given values ofV0 andr0,
one can calculateasc by solving the two-body radial
Schrödinger equation for positive energies, in the zero en-
ergy limit. Alternately, for a suitably chosen value ofr0 and
an experimentally known value ofasc one can findV0 nu-
merically from the solution of the two-body Schrödinger
equation in theE→0+ limit. In Fig. 1, we present a plot of
calculatedasc as a function ofV0 for r0=0.0855 o.u. As is
well known,asc is positive and monotonically continuous for
V0.0. The scattering length becomes negative asV0 be-
comes negative and continues to −` at a particular negative
value ofV0. At this point,asc has an infinite discontinuity and
as V0 decreases further,asc starts from +̀ and decreases
continuously to −̀ at a second particular value ofV0. The
first, second, . . ., branch of the curve(asV0 decreases from
positive values) correspond respectively to zero, one, . . .,
two-body bound states. For a stable BEC, we choose the first
branch of the curve. From Fig. 1, one notices that forr0
=0.0855 o.u., the first discontinuity occurs at aboutV0
=−184 o.u. Forr0=0.005 o.u., this value is much more nega-

tive (−8.189633105 o.u.). In the same figure, we also plot
the Born approximation forasc (corresponding to r0
=0.0855 o.u.), given by[12]

asc
sBd =

m

2p"2 E d3r VsrWd· s37d

For a Gaussian interaction this integral can be done analyti-
cally and gives

asc
sBd =

2m

"2 V0r0
3
Îp

4
· s38d

From Fig. 1, it is seen that the Born approximation is good
only for small values ofuV0u. In this work, we use the exact
result and not the Born approximation. For repulsive poten-
tials, we choose a conveniently small value ofr0 and calcu-
late V0 by the exact procedure.

Choosing a smaller value ofr0, V0 increases in magnitude
and the potential becomes stiffer. For very small values ofr0,
Vsr ijd simulates ad-function. For attractive interactions, we
perform a model calculation with chosen values ofr0 andV0.

C. Results

With this choice of potential we have solved the CDE Eq.
(28) for various number of particles. We use oscillator units
so.u.d in which energy and length are expressed in units of
oscillator energy and oscillator length("v and Î" /mv, re-
spectively, wherev is the circular frequency of the harmonic
confining potential). The matrix element, Eq.(31), has been
calculated by a multipoint Gauss-Jacobi quadrature, the
number of points being decided by the condition of conver-
gence of a typical matrix element. We first verify that our
results are independent of the choice ofr0, if V0 is appropri-
ately calculated using two-body Schrödinger equation, so
that asc has the same value(100 bohr for87Rb, which has a
repulsive interaction). In a few representative calculations,
the ground state energy and low lying excitation spectrum of
the condensate containingA particles have been found to be
stable within numerical errors, for several values ofr0 rang-
ing from 0.1 o.u. to 0.005 o.u. As for example, the ground
state energy per particle for a condensate containingA=10
bosons approaches a convergence asr0 decreases from 0.1 to
0.005. Relative change in the energy per particle fromr0
=0.01 o.u. to 0.005 o.u. is only about 0.012%. Asr0 de-
creases, the calculation of the matrix elements as also the
solution of Eq.(34) become extremely CPU time consuming.
This is because for very smallr0, one has to introduce very
fine r-mesh intervals(typically 10−5 o.u.), which increases
CPU time enormously. To keep the numerical calculations
manageable, we chooser0=0.005 o.u. and V0=3.1985
3106 o.u. (which corresponds to JILA87Rb experiments
with asc=100 bohr and trap frequencyn=200 Hz). We next
test the convergence of our results asKmax increases by cal-
culating the ground state energy per particle of the conden-
sate forV0=3.19853106 o.u. andr0=0.005 o.u. Our results
are presented in Table I. It is seen that the energy per particle
converges quite rapidly asKmax increases. For example, for
A=20, the change in energy is less than 0.001% asKmax

FIG. 1. Plot of calculatedasc as a function ofV0 for r0

=0.0855 o.u. The dotted line corresponds to the Born approxima-
tion sasc

sBdd.
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increases from 2 to 10. Another interesting observation is
that the ground state energydecreasesas Kmax increases,
which is consistent with the Rayleigh-Ritz principle. Thus it
is reassuring that our method is working satisfactorily and is
fast converging.

However a numerical difficulty appears as the particle
numbersAd andKmax increase. The quantitya increases rap-
idly with A (e.g., a=0.5 for A=3 and a=71 for A=50),
while b remains constant at12 (for l =0). Thus the Jacobi
polynomial fPn

a,bszdg as also its weight functionfwlszdg are
highly asymmetric functions in the intervalf−1,1g (see Ref.
24). They have tremendous variation in their values(e.g., 2a

to zero) as the argument varies from −1 to +1 for largeA.
Furthermorewlszd increases from 0 to 2a within a very small
interval close toz=−1, for largea. In addition,Pn

a,bszd hasn
nodes in the intervalf−1,1g. Hence unavoidable numerical
error creeps into the numerical integration of the potential
matrix, using Eq.(31) . Consequently the calculated energy
per particle and other physical quantities show irregularity
for Aù40, as also for smallerA with largeKmax. Therefore
we have restrictedA to 35. Even for 15øAø35, some re-
sults for largeKmax are not reliable. Hence these have been

left out in Table I. In all subsequent calculations, we keep
Kmax=4. We are at present trying to overcome these difficul-
ties for largeA by improved numerical techniques.

In Fig. 2, we present a plot of the lowest eigenpotential in
EAA for A=20, for a model repulsive interaction withV0
=20 o.u. andr0=0.1 o.u. (dotted curve) corresponding to
asc=0.01553 o.u.s224.3 bohrd. In the same figure, we also
include the noninteracting(V0=0, asc=0) case(continuous
curve), which naturally lies below the repulsive interaction
sasc.0d curve. In Fig. 3, we plotv0srd for an attractive
interaction, viz.,V0=−100 o.u.,r0=0.0855 o.u.(note from
Fig. 1 that this corresponds to zero two-body bound state and
asc=−0.1176 o.u.) for A=10 . Since we cannot go to large
values ofA due to numerical problems mentioned above, we
keepA small and increaseV0 to study the critical behavior
(see below) at a lower value ofA. Both these curves have the
general features same as those found in earlier calculations
using K-harmonics approximation[13]. Figure 3 shows a
metastable region with a local minimum ofv0srd, which is
preceded by a collapse region for smallerr. As A increases
above a critical valuesAcrd, the metastable region disappears.
This is seen in Fig. 4 forA=16 for the sameV0 andr0. These

TABLE I. Calculated ground state energy per particle(in o.u.)
of the condensate containingA particles for variousKmax values,
showing convergence trend asKmax increases (V0=3.1985
3106 o.u. andr0=0.005 o.u.).

Kmax 2 4 6 8 10 12

A

3 1.50041 1.50031 1.50026 1.50023 1.50021 1.50019

5 1.50123 1.50117 1.50112 1.50108 1.50104 1.50101

10 1.50350 1.50348 1.50346 1.50344 1.50342 1.50340

15 1.50453 1.50451 1.50450 1.50449 1.50449

20 1.50539 1.50538 1.50537 1.50536 1.50536

25 1.50618 1.50617 1.50617 1.50616 1.50616

30 1.50693 1.50692 1.50692 1.50691

35 1.50764 1.50763 1.50763 1.50766

FIG. 2. Lowest eigenpotential
for A=20 as a function ofr. Con-
tinuous curve is forasc=0 (no
two-body interaction) and the dot-
ted curve is for a repulsive inter-
action sasc=0.01553 o.u.d.

FIG. 3. Plot ofv0srd as a function ofr (dotted and continuous
curves together) for A=10 (subcritical number) for a model attrac-
tive two-body interaction(V0=−100 o.u.,r0=0.0855 o.u.), which
corresponds toasc=−0.1176 o.u.
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features are the same as reported earlier[13]. However, in
our case, sinceVsrd is finite for r →0, and the repulsive
centrifugal term goes as 1/r2, there is no real collapse. For
very smallr, v0srd becomes strongly repulsive even for an
attractive two body interaction. This is represented by the
dotted lines in Figs. 3 and 4. Note that the dotted and con-
tinuous parts together constitute the entire calculatedv0srd
curve. The smallr (repulsive) part is plotted with a different
(dotted) curve to emphasize that the remaining part(continu-
ous portion) of v0srd has the same behavior as obtained with
attractive contact interaction in Ref. 13. Only the dotted part
differs remarkably from the corresponding part in Ref. 13. In
reality for A.Acr, there is a very narrow and deep well at a
small value ofr; hence all the particles will be trapped within
this well. As the particles come within a small region, corre-
sponding to a small value ofr, the density of the condensate
increases, and due to increased three and higher body colli-
sions, molecule formation takes place with the disappearance
of the BEC. The deep and narrow well inv0srd near the
origin, for an attractive two-body interaction withA.Acr,
can support a lowlying, highly localized bound state, which
describes the formation of molecules. Although this is the
lowest lying state in the correspondingv0srd, it does not
represent the ground state of the condensate, which has al-
ready “collapsed.” This gives a realistic scenario of what
happens asA increases aboveAcr for attractive interactions.
For an attractived-function interaction, the lack of a rigorous
solution fails to give a realistic picture and one talks of a
“collapse of the condensate” in a qualitative fashion.

We next calculate first three excited states for different
number of particlessAd in the condensate. These are shown
in Fig. 5. Values ofEn

ex for n=1,2,3have been represented
by diamonds, pluses, and squares, respectively. The excita-
tion energy increases slowly withA. They agree fairly well
with the K-harmonic approximation[13]. In Table II, we
present numerical values and notice that the excitation ener-
gies increase gradually withA.

In Fig. 6, we plot the ground state wave function,z0srd, as
a function of the global lengthr for various values ofA. It is
seen that as the particle number increases, the peak ofz0srd
shifts towards larger values ofr. This is understandable,
since for largeA, the total repulsion of all the pairs increases

asA2 and particles are pushed outwards, by theA-dependent
hypercentrifugal repulsion in Eq.(28).

Finally we calculate and plot the ground state energy per
particle sE0/A− 3

2"vd as a function ofAasc for selected val-
ues ofA (10, 20, and 30) for a repulsive interaction in Fig. 7.
Corresponding curves are from the bottom upwards respec-
tively. We compare these with the corresponding values cal-
culated from the GP equation. This curve is the topmost in
Fig. 7. One notices that our results approach the GP result as
A increases for a fixedAasc, as expected. We also note that
our energies are below those of the GP equation, indicating
once again a better result from the variational point of view.
Figure 7 agrees qualitatively with a similar figure of Ref.
[19], where exact diagonalization of the Hamiltonian was
performed for one and two dimensional condensates, respec-
tively.

IV. CONCLUSIONS

In this paper, we have investigated theT=0 properties of
a Bose-Einstein condensate(BEC), consisting ofA atoms
(bosons) trapped by an external field and interactingvia re-
alistic two-body interactions. Anab initio treatment of the
Schrödinger equation involves 3sA−1d degrees of freedom

FIG. 4. Plot ofv0srd as a function ofr (dotted and continuous
curves together) for A=16 (critical number) for the same attractive
two-body potential as in Fig. 3.

FIG. 5. Three low-lying excitation frequencies for various val-
ues of particle numbersAd, corresponding to the JILA experiment
with 87Rb atoms(asc=100 bohr; oscillator frequency =200 Hz). En-
ergies are in oscillator units.

TABLE II. Calculated excitation energies(in o.u.) of the first
three excited states for different numberssAd of 87Rb atoms(param-
eters as in Table I).

A 1st 2nd 3rd

3 2.00116 4.00283 6.00494

5 2.00130 4.00428 6.00962

10 2.00231 4.00705 6.01268

15 2.00355 4.0130 6.03147

20 2.00471 4.01647 6.04604

25 2.00671 4.03225 6.12762

30 2.03276 4.08846 6.17127

35 2.08319 4.10225 6.27118
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for the relative motion. Use of traditional hyperspherical har-
monics expansion(HHE) method is impossible forA.3,
due to tremendous and mounting complexity of the method
as particle number increases beyond three. We circumvent
this difficulty by exploiting the subset of potential harmonics
(PM) basis, instead of the full set of hyperspherical harmon-
ics (HH) basis. The PH basis is obtained as the subset of HH
needed for expanding the two-body potential for the interact-
ing pair. The choice of PH basis corresponds to inclusion of
two-body correlations and disregard of all higher-body cor-
relations in the condensate. On the other hand, two-body
correlations are very important in BEC and cannot be disre-
garded as in mean field theories or the GP equation. This
assumption is exactly appropriate for the BEC, since for
practical realization of BEC, the density of atoms must be
kept so low that there are practically no three and higher
body collisions. Existence of the latter type of collisions
would facilitate formation of molecules and consequent
depletion of the condensate. As a consequence of this as-
sumption,only fouractive degrees of freedom of the conden-
sate(instead of a total of 3A−3 degrees of freedom for the
relative motion of theA particle system) are physically
important—these are constituted by the global length(hyper-
radius,r) and the three active angle variables of the PH. In
effect onefreezesthe remainings3A−7d angle variables of
PH. This leads to a tremendous simplification of the actual

numerical calculation. Since we make Faddeev like decom-
position of the full wave function, an appropriate symmetri-
zation of the wave function under exchange of the interacting
pair guarantees full symmetrization. Moreover, the potential
matrix elements involve integrals overonly threeangle vari-
ables, leading to an immense reduction in the complexity of
the numerical procedure forA particles. Since there are no
theoretical restrictions onA, this opens the possibility of an
approximate, but very reliable,ab initio solution of the large
but finite body condensate. However, a numerical difficulty
arises due to the fact that the parametera f=s3A−8d /2g of
the Jacobi polynomials,Pn

a,bsxd, and its associated weight
function, become very large asA increases. These cause nu-
merical problems, forAù40. We are at present attempting to
remove this difficulty by appropriate numerical procedure. In
the present report, we restrict ourselves toAø35, for which
reliable calculations are possible.

We have compared our results with earlier calculations for
A=3 [12], K-harmonic approximation[13], exact diagonal-
ization of the Hamiltonian in one and two dimensions[19] as
also with the predictions of the GP equation[8]. As a pre-
liminary calculation we have taken two-body Gaussian inter-
actions of varying range. Our results agree qualitatively with
the previous ones, most of which use a contact interaction.
This demonstrates the reliability and feasibility of our
method. Thus a reliableab initio calculation for a large but

FIG. 6. Plot of ground state
wave function as a function of hy-
perradiussrd for various indicated
values ofA, in the chosen trap.

FIG. 7. Plot of ground state
energy per particle sE0/A
−3/2"vd as a function ofAasc for
a repulsive interaction for indi-
cated values ofA and the GP
results.
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finite number of atoms in a condensate, where individual
particles interact via realistic two-body interactions, appears
feasible. Extension of our method to a larger number of par-
ticles as also use of more realistic two-body interaction is
underway.
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APPENDIX: HYPERSPHERICAL VARIABLES
AND HYPERSPHERICAL HARMONICS

1. Hyperspherical variables

The relative motion of theA=sN+1d particle system is
described in terms ofN Jacobi coordinates defined by Eq.(8)
and having 3N degrees of freedom. An equivalent set of
hyperspherical variables is constituted by the hyperradiussrd
defined by Eq. (11), 2N spherical polar angles of

zW1,zW2. . . . . ,zWN and sN−1d hyperangleshf2,f3, . . . .fNj giv-

ing the length of the Jacobi vectorszW1,zW2. . . . . ,zWN, through

zN = r cosfN,

zN−1 = r sin fN cosfN−1,

zN−2 = r sin fNsin fN−1 cosfN−2,

A

z2 = r sin fN sin fN−1 . . . . sinf3 cosf2,

z1 = r sin fN sin fN−1 . . . . sinf3 sin f2,

sf1 = 0d. sA1d

Equation(A1) automatically satisfies Eq.(11).

2. Grand orbital operator

The general grand orbital operator,L2sVNd of Eq. (15) is
defined through[14]

Li
2sVid =

]2

] fi
2 + f3si − 2dcot fi + 2scot fi − tanfidg

]

] fi

+
l2svid

cos2 fi
+

Li−1
2 sVi−1d
sin2 fi

= 4s1 − zi
2d

]2

] zi
2 + 6f2 − is1 + zidg

]

] zi
+ 2

l2svid
1 + zi

+ 2
Li−1

2 sVi−1d
1 − zi

si = 2, . . . ,Nd, sA2d

wherezi =cos 2fi, vi represents the set of two polar angles

of zW i and fi’s are given by Eq.(A1). Note that L1
2sV1d

= l2sv1d andLN
2sVNd;L2sVNd appear in Eq.(15).

3. Hyperspherical harmonics

An eigenfunction ofL2sVNd is called hyperspherical har-
monics(HH) and is given(without angular momentum cou-
pling) by [34]

YfLgsVNd = Yl1m1
sv1dp

j=2

N

Yl jmj
sv jds jdPL j

l j,L j−1sf jd, sA3d

where

s jdPL j

l j,L j−1sf jd = 5 2n jGsn j − njdGsnj + 1d

GSn j − nj − l j −
1

2
DGSnj + l j +

3

2
D6

1/2

3scosf jdl jssin f jdL j−1Pnj

n j−1,l j+1/2scos 2f jd

s j = 2,3, . . . ,Nd, sA4d

with

n j = n j−1 + 2nj + l j +
3

2

= L j +
3j

2
− 1

= L j−1 + 2nj + l j +
3j

2
− 1 s j = 2,3, . . . ,Nd. sA5d

In Eq. (A4) Pn
a,bsxd is a Jacobi polynomial. In Eq.(A3), fLg

represents the set of quantum numbers
hsl1,m1d ,sl2,m2d , . . . ,slN,mNd ,n2,n3, . . . ,nNj for a fixed
value of grand orbital quantum numberL=LN. The quantum
numberLi is defined through

Li = Li−1 + 2ni + l i , sA6d

with L1= l1. Hence

L ; LN = l1 + o
j=2

N

s2nj + l jd. sA7d

The HH of Eq.(A3) forms the uncoupled basis. For systems

with a good orbital angular momentumLW = lW1+ lW2+¯ + lWN,
one has to couple the individual orbital angular momenta—
then the projection quantum numbersm1, m2, . . . ,mN are re-
placed by thesN−1d intermediately coupled angular mo-

menta and the projectionM of LW .
The potential harmonics(PH) given by Eq.(17) corre-

sponds tolN= l, l1= l2= l3=¯ = lN−1=0, such thatL= lN= l,
M =mN=m and grand orbitalL;LN=2K+ l with n2=n3
=¯ =nN−1=0 and K=nN. Substitution of these in Eqs.
(A3)–(A5) gives the PH of Eq.(17).
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