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We study a system oA identical interacting bosons trapped by an external field by solaimgnitio the
many-body Schrodinger equation. A complete solution by using, for example, the traditional hyperspherical
harmonics(HH) basis develops serious practical problems due to the large degeneracy of HH basis. Symme-
trization of the wave function, calculation of the matrix elements, etc., become an immensely formidable task
as A increases. Instead of the HH basis, here we use a new basis, called “potential harriH)ckasis,
which is a subset of HH basis. We assume that the contribution to the orbital and grand prbital
3(A-1)-dimensional space of the reduced moiiguantum numbers comemly from the interacting pair
This implies inclusion of two-body correlations only and disregard of all higher-body correlations. Such an
assumption is ideally suited for the Bose-Einstein condend), which is required, for experimental
realization of BEC, to be extremely dilute. Hence three and higher-body collisions are almost totally absent.
Unlike the (3A-4) hyperspherical variables in HH basis, the PH basis involves only #hréee variables,
corresponding to three quantum numbers—the orbjtazimuthalm, and the grand orbitalR+| quantum
numbers for any arbitrarA. It drastically reduces the number of coupled equations and calculation of the
potential matrix becomes tremendously simplified, as it involves integralsamigithreevariables for anyA.

One can easily incorporate realistic atom-atom interactions in a straightforward manner. We study the ground

and excited state properties of the condensate for both attractive and repulsive interactions for various particle
number. The ground state properties are compared with those calculated from the Gross-Pitaevskii equation.
We notice that our many-body results converge towards the mean field results as the particle number increases.
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I. INTRODUCTION dergoes BEC below a critical temperatytgpically 10° K)

e . . when most of the atom@oson$ go to the single particle
(Bé(l:t)h ?A?agsh &Egvsgig?rgelgﬁg c;{n?gls_es]aEitigp%??rgggfgnoﬁ/round state. Then the de Broglie wavelength associated

b tion in t d and ddwn t kelvi with the atomic motion is much larger than the interaction
observation in trapped and supercoofddwn to nanokelvin o4 scale. Hence the resulting many body system emerges
temperaturgsalkali atoms in 19954-6] renewed a great

; _ ) _ as essentially a single quantum system where all the atoms
deal of interest, both experimental and theoretical, in th&cnave in a coherent manri8;11]. At zero temperature, the
phenomemon. The importance of this topic is clearly demffect of the excited states are absent and the condensate is
onstrated by the fact that two Independent Nobel Prizes Wergescribed by a Sing|e equation invo|ving the condensate
awarded on BEC related works in quick succession in thgyave function[8]. However this simple picture is no more
recent past. The density of magneto-optically trapped atomigue at a finite temperature due to the existence of interpar-
gas undergoing BEC is extremely oo avoid recombina- ticle interactions. The usual procedure is to start with the
tion of atoms through three and higher body collisipasd  mean field approximation like the Hartree-FaotkF) theory

the number of trapped atoms is typically of the order of a fewfor the many body systerfir—10. This is an independent
hundred to a few million. This is extremely small comparedparticle approach where each individual atom is assumed to
to the Avogadro number. For such a small number of atomsnove in a single particle orbit. These orbits are determined
an exacab initio solution would have been ideally desirable. Self consistently by allowing an atom in one orbital to be
But an interacting system @=(N+1) particles has R rela-  influenced by other atoms in other orbitals through two-body
tive degrees of freedom and ab initio solution of the cor-  interaction. Assuming a contact interaction for the two-body
responding Schrédinger equation is practically impossiblgpotential, viz.,V(r—r")=gs(r—r’), the many body equation

for A>3. Hence the usual theoretical tools that have beemeduces to the famous Gross-PitaevggiP) equation[8]. At

used so far are the mean field modgs-10 and the zero temperature, the effect of excited states are neglected
Thomas-Ferm[8] approximation. The dilute atomic gas un- and the condensate is described by the time independent GP
equation

VZ
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tion is justified since in the cold and dilute gas only binarydue to very large degeneracy of the HH basis for a large
collissions at low energies are relevant. These are characterumber of particles, the number of CDE and the dimension
ized by thes-wave scattering lengtfas), which is indepen- of the potential matrix is too large to be handled by any
dent of the details of two-body potentials. The strength concomputer[14]. On top of all these, the convergence rate of
stantg of the contact interaction is related to the scatteringthe HH expansion, especially for long-range interactions, is

length through8] slow [15]. For these reasons the HHE method has been used
fully for the three body system onljl5-1g. On the other
4mh2ag, hand, as we discussed earlier, the condensate can be treated
9= m (2 broadly as a “single lump of quantum stuff,” since all the

individual atoms in the condensate lie within one single de

The GP equation has been used extensively to study th@roglie wavelengtt{8]. Thus it is reasonable to assume that
BEC [8,11]. Although most of the static, dynamic and ther- the basic properties of the condensate in the lowest approxi-
modynamic properties are fairly well reproduced by the GPmation, is described by a single collective coordinate. This
equation[8], the wave function does not include any corre-led Bohnet al.[13] to go for the K-harmonic approximation,
lation. Furthermore the assumption of a cont&intteraction  in which the HH expansion is restricted effectively to the
is too simple and does not represent the realistic situation. f{rst term only ( which is independent of the hyperangles
has already been shown that the Digfunction is not suit-  Such adrastic approximation may be justified for a contact
able as a replacement of the actual two-body interaction iffitéraction only. Even in this case, for an attractive
exact theories in more than one dimensjag]. This is be- 5_-funct|(_)n Interaction, there_ are mngorous_ly stablesolu-
cause the Hamiltonian then becomes unbound from belojons: Since the wave function becomes independent of the

and the ground state energy diverges for an attractive zerlay perangles and the hyperradius is invariant under any per-

range potential. Solutions are usually obtained in the metalutation of the particles, the wave function becomes totally

stable regioralthough such solutions are not rigorously cor- SYmmet”Cz as .r('aqw_red. The calculation of the potential ma-
rect for an attractives-function potential and the condensate i also_ 5|mpl!f|es 'm”?ense'y and the CD.E reduces 10 a
becomes unstable fo¥ larger than a critical number, due to Single differential equatiopl3]. The hyperradius emerges as

disappearance of the local minimum. This was shown b)}he s_o_ught for collective co_ordmat.e_. In spite (?f the great
Bohnet al. in a hyperspherical calculation keeping the low- simplifications, there are serious criticisms of this approach:

est(most dominantharmonic[13]. A third disadvantage is (+) 1h€ method cannot be applied to any realistic two-body

the non-linearity of the GP equation, so that standard quar{nteracti_on.(Z) Even for a contact inte_ractipn, the _method is
tum mechanics is not applicable without concessional ap[lot satisfactory for attractives-function interaction, for

proximation. Thus one has to go beyond the mean field a Whi.Ch no rigorous solution e_xist$3) Only one. collective
proximation and simple contact interactions variable is involved. Hence it can only describe the gross

Because of the limitations of the mean field theory andfeature_s of the condensatg, without any finer details. Thus a
more rigorous treatment is necessary. But as already men-

GP equation it is desirable to solve the many bdidgar ) _ i .
Schradinger equation directly. The Schrédinger equation foponed a completely rigorous, essentially exact solution of the

a system ofA=(N+1) identical bosons, each of mass Schrédinger equation is possible for the three body system
confined by an external field,,, (acting on each individual only. That has been done to get an idea of the initial trend as

boson and interacting through a mutual two body interactionthe particle numbe( increases from thre_e by' ESFV and Greene
Vis [12]. However that is far from the real situation in a conden-

sate.
A A A An alternative approach of exact numerical diagonaliza-
-2 VI D Vi (R + X V(X - %) |W(X) =EW¥(X), tion of the many body Hamiltonian was adopted by Haugset
2miz i=1 i<j=2 and Haugerud19] for a small numbef<30) of interacting
(3) (via contact interactionbosons confined by a harmonic trap.
However, this was restricted tme and two dimensions only

where x refers to the set of particle coordinates Moreover the process is extremely time consungrgn for
{X1,X2, ... Xa} of Abosons. The center of ma&m) motion  two dimensionalcondensates, with a nagging question of
can be eleminated resulting in a Schrddinger equatiorNin 3 convergence of the chosen harmonic oscillator basis expan-
variables. A standard practice is the use of hypersphericaion. The rate of convergence is expected to be slower for a
harmonics expansiogHHE) method, in which the wave realistic two-body interaction and in three dimensional con-
function is expanded in the complete set of hypersphericaliensates. Although analytic expressions for the matrix ele-
harmonics(HH) spanning thé3N - 1)-dimensional hyperan- ments are greatly simplified for a delta function interaction,
gular spacg14]. Projection on a particular HH leads to a all the problems associated with a contact interaction dis-
system of coupled differential equatiof€DE). However cussed above remain for the two dimensional condensate.
there are several very serious difficulties associated with thelowever, there is no problem with the one dimensional con-
solution of a fairly large number of particles. First the expan-densate, as one dimensional delta function is not pathologi-
sion basis of HH should be properly symmetrized and approeal.
priate conserved quantum numbers properly taken care of. From the above discussion it is clear that an exact treat-
Secondly calculation of matrix elements of all the pairwisement of the many body system in three dimensions is not
two-body potentials is an extremely formidable task. Finally,possible beyond the three body system. On the other hand,
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the single quantum nature of the entire condensate suggesi$)-pair exchange, the total wave function becomes auto-
that out of the thousands to millions of degrees of freedom ofatically totally symmetric. Thus the symmetrization of the
the individual particlesonly a feware physically relevant. wave function is also handled properly.

This is due to the fact that the condensate is possible only at Thus a truly many body equation is reduced to a tractable
extremely low temperaturedow energy of the individual ~mathematical form. The assumptions leading to this are es-
particle3 and extremely low densities. Under these condi-pecially appropriate for the BEC. Hence we adopt the PH
tions only two body collisionsire relevant. Three and higher basis as our starting point. This is theoretically applicable to
body collisions areextremelyrare and correlations beyond a system containing any number of particles, but we will see
two body correlations in the condensate wave function arén Sec. Ill, that numerical difficulties arise as the number of
completely negligible up to a very high degree of precision.particles increases beyond a certain number. In this paper we
Indeed in an experimental situation this is ensured by keepreport some of the basic properties of the condensate for
ing the density extremely low, so that there are no recombivarious particle numbers and compare them with previous
nation via three and higher body collisiofi8]. The mean calculations.

field approach ignores all correlations including two-body Sorenseret al. [20,21] have followed a method which is
correlations. Importance of two-body correlations in BECsimilar in spirit to the present work, although it differs in
has been emphasized by several autfip@s21. Thus physi-  details. They expand the wave function in the adiabatic sub-
cally relevant quantities are contributed by two-body colli- et ®,(p,Q) of the full (N-1)-body Hamiltonian(in c.m.
sions, while the rest of the particles in the condensate do nQfame). Later this is decomposed in Faddeev-like compo-
partate in any motion other than a collective one and arentsy;  This leads to an integro-differential equatiobE)
simply inert spectators. The emerging picture then suggests,, ¢ (=¢j, which is the same foall ij-pairs due to boson

%@/mmetry involving five dimensional integrals and the full

be frozen, while a single pair interacts. This reduces th . . . . -
physically important degrees of freedom of the condensate ,[%3N—4)-d|men5|onal h_ype_rangular differential operatbf.
All_(3N-5) angle derivatives other tham=a;, (Wherer;;

just four—a global length scaléhyperradiug of the entire ‘ X _ ; ; - _ |
condensate, and the three degrees of freedom of the relatie'2P Sin ;j is the relative separation of tii)-pair andp is
vectorf;; =% -%; of the interacting pair. However one has to the hyperradius of the full systemare disregarded, leaving
concede thaany pair out of theA=(N+1) atoms in the con- Only one angle variable. Assumption ofvary short ranged
densate can interact. These are also consistent with the intiv0-body potential reduces the five dimensional integrals to
tive “single quantum stuff’ concept of the condensate. two _d|menS|onaI ones. In t.h|s limit simple expressions are
Among the various possible theoretical approaches t@btained for the integrals in IDE. On the other hand, we
handle the many body system, the HHE method appears yrite the' comple_te R-dimensional Schrodlnger_ equation of
be the most lucrative one, as it readily provides the hyperrath® refative motion of aN+1) boson system in terms of
dius as the most important collective variable. A theoreticafaddeev like components(r;,r), subject to the approxima-
formalism, arising out of the HHE method, was adopted bytion that®(rj;,r) corresponds to zero eigenvalue of the hy-
Fabre de la Ripell§22] in 1986. Although the primary con- perangular momentum operai@ee latey for the (N-1) re-
cern there was an application to the nuclear systems consigpaining relative vectors of the spectators, whilg)-pair
ing of fermions, it was noted that the formalism is applicableinteracts. These are then expanded in the potential harmonics
to a system of identical bosons alg28]. To incorporate the (PH) basis. The assumptions in our method are clearly justi-
importance of the interacting pair and two-body correlationsfied in terms of the physics of the chosen system, which have
he introduced the potential harmoni@@H) expansion basis been stated earlier. While the use of PH basis in nuelei
[23], rather than the general HH basis, thereby reducing theriginally used by Fabre if22,23) is questionable due to
expansion basis to a great extent. Potential harmonics is lgh spatial density of nucleons in a nucleus, its application
subset of HH, where all correlations higher than two-bodyin BEC is ideally suitedthe number of atoms in the conden-
ones are disregarded. In PH, the contribution to the totasate is<1(P in a space of macroscopic linear dimensions of
orbital angular momentum as also the grand orbital quanturarder 102 cm, which is immensely smaller than the
number come®nly from the interacting pair. Here all the Avogadro number As a consequence, the total orbital
(A-2) spectators are assumed to be described by the HH @ind grand orbitalK) angular momenta of the system are
the lowest(zero order. We adopt this procedure since thiscontributed by the interacting pair alone. Apart from this
approximation is quite justified in our situation due to thewell justified fundamental approximation, we need no other
diluteness of BEC, where two-body correlation is the mostapproximation. Although for the first calculation, we have
important and all higher-body correlations can be safely igrestricted ourselves tb=0 and acentral two-body interac-
nored. Using Faddeev like decomposition of the total waveion, both these can be relaxed resulting in a somewhat more
function, and then expanding each such component in acomplicated equation. Finally the system of coupled differ-
appropriate set of PH, the number of CDE can be reducedntial equations in one variablghyperradius,r) can be
drastically. Since the PH involves only four active degrees ofkolved numerically,without additional approximationas
freedom, calculation of potential matrix elements is simpli-done in Ref.[15] and compared with adiabatic approxima-
fied tremendously as compared to that in HH basis. Use afion (AA) in Ref. [28]] using, e.g., renormalized Numerov
realistic two-body interactions and calculation of their matrixmethod. Once again, as a preliminary calculation, we use AA
elements are quite straight forward. Requiring the Faddeeto solve the CDE. Our use of AA in solving the CDE is not
component for théij) interacting pair to be symmetric under an indispensable one; it is done only to reduce the numerical
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calculation. But in the approach of Sorenssral, adiabatic . 1 N
subset is the starting point to separate the hyperangular and R= N 12 X; (7)
hyperradial motions. Furthermore our method can handle Lzt
any two-body potentialcentral or not, short ranged or npt
for noncentral potential, calculation of matrix elements will
involve integrals over two polar angles in addition. The ap- - 2i
proach of Refs[20,2]] requries a very short ranged, central Gi= ir1
potential to reduce the equation to a manageable form. The
present methqd has no such restriction. The chosen normalization eff facilitates writing the Laplace

The paper is organized as follows. In Sec. I, we preseng ;

) X ; L perator in the form

our choice of Jacobi coordinates and express the kinetic en-

andN Jacobi coordinates defined as

(zﬂ—%_}‘,ij), i=1,...N. (8)

ergy in the chosen set of hyperspherical variables. In the 1N+1 , 1, N 5
same section, we introduce the concept of potential harmon- EE Vi= E\VR“‘ 2 Vi 9)
ics basis and obtain the set of coupled differential equations =1 =1

resulting from the many-body Schrodinger equation. The nuThen the relative motiofiafter removal of center of mass
merical method for solving the CDE and results of our cal-motion from Eq.(4)] is described by14,23

culation are presented in Sec. Ill. There we compare our
results for different numbers of particles with those of earlier h?
calculations. Finally in Sec. IV we draw our conclusions. |~
Some of the detailed expressions have been given in the

Appendix. (10

where V=S, smew? andV,, is the sum of all pairwise
Il. THEORY interactions,Vim:Ei'}";li (rjj) expressed in the relative coor-
dinates. HereE is the energy of the relative motion, i.&]
minus energy of c.m. motion. The hyperradius defined as
We consider a system &f=(N+1) identical bosons, each [22]
of massm and confined magnetically in a trap which is ap- N 1/2 5 12
2 2
r= : = rs , 11
24 [N”%i .,] (11)

2 V2 + Virap + Vint(Za, ) = E} Wy, ) =0,

i=1

A. Choice of Jacobi coordinates

proximated by a spherically symmetric harmonic oscillator
potential with frequency. We assume that the atomic cloud
is at zero temperature. The full many body Hamiltonian is

given by which is invariant under permutations of the particle indices
as also three dimensional rotations. The hyperspherical coor-
5 N+1 N+, N+1 dinates are constituted by the hyperradiuand remaining
- > V2+ > Tmedd + > V(% -%) [P0 (3N-1) hyperangles, denoted collectively 6%, in D=3N
2mi; i-1 2 ij>i dimensional space. Note that the choice of Jacobi coordi-
SEV(R), (4) nates Eq(8), is not unique, since the labeling of the particle

indices and consequently that of the Jacobi coordinates are
where X refers to the set of particle coordinates arbitrary. We choose a particular set byespecifying the rela-
{1, %o, ... Knsa} OF (N+1) bosons andE’ is the total energy. tive separation of the interacting paif, as{y and(d, ¢) are
We decompose the total wave functidif(X) as the sum of the two spherical polar coordinates associated \K4]thThe

pairwise partial waves relative length is defined in terms ¢f throughr;;=r cos ¢.
For the rest of N-1) Jacobi coordinates, we define the hy-
N+1 perradiusp;; in the IN-1)-dimensional space by
W(X) = 2 ij (X). (5) N-1 12

ij>i pij = > gﬁ , (12
The Schrodinger equation fa¥; can be written as k=1
N+l which is related WithEN:Fij by

(T+Virap = EN (%) = _V(rij)kzzk Pa(X), (6) pi+r5=r% pj=rsing: (13)

Then our hyperspherical coordinates become
whereT is the total kinetic energy operatdf,,, is the con- _ ]
fining potential v, =S¥ sme?¢ andV(ry) is ‘the pairwise (1. =19,y (14
local central two-body interaction betweéth andjth par- Here Qy_; involves ZN-1) spherical polar angles associ-
ticles, ;= ~X;. Applying the operatoE["} on both sides of  ated with each ofN-1) Jacobi vector§Z;, &, ... ,in-q} and
Eq. (6), and using Eq(5), we get back Eq4). Now instead  (N-2) angles(expressing relative lengthsi.e., a total of
of (N+1) particle coordinates;, the system can alternatively (3N-4) variables. In this choice of hyperspherical coordi-

be described by the center of mass coordirate nates, the Laplace operator takes the f§2@
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N
# 3A-440 LAQ ) m’
VZEEV§_=—2+ —+ (ZN), A=N+1. fPlé}r<n+l(Qij)lplz|£T)+|'(Qij)dﬂij=5KK’5II/5mrn’- (19
o ar roar r
(15) Then the PH expansion of the potential is
L%(Qy) is the grand orbital operator ifBdimensional space V(rp) = 2 AL P Qi VY (r). (20)
which is obtained from a recurrence form{i22] and has the K.Lm
form Al'(i,j) is an operator which is independent gy, but may
9 12(w;;) act on other variables like spin variables. The quantity
L% Q) = 4(1 _22)(9_22 +6[2-N(1 +Z)](?_Z +2 147 V(r) are the “potential multipoles” and for a central po-
tential, it is given by[23]
+ ZM (16) D) I.m
1-7 ' V(K () = <PiK+|(Qij)|V(rij)>
w2
Where_z= cos 2(/{ wjj repz)resent§ the two polar fangl(aﬁ,go) = Vo(D - 3)—1f (N)P22+|(¢)V|(r cos ¢)
associated witlm; andL“({y_,) is the grand orbital operator 0

in 3(N-1) dimensional space. % (sin §)P%(cos ¢)2de, (21)

where the functionéN)P'zﬁﬂ(qb) are defined in the Appendix.

Starting from the multipoles calculated either for he5 or
To expand a functiotv(rj;) in hyperspherical harmonics D=6 (depending whethdD is odd or evepand using simple

(HH) we use the above definition of Jacobi coordinates. It igecurrence formulas potential multipoles for abycan be

easy to see that HH basis which is complete for the expancalculated23].

sion of V(r;;) does not contain any function of the coordinate

£ with i <N and is given by[23]

B. Potential basis and potential multipoles

C. Coupled differential equations

Splitting Eqg. (10) in the manner of Eq.6) for the
Pora(Qip) = Y w) VP52, () Vo(D - 3), (170 (ij)-interacting pair and using Eqgl4)—(16), subject to the
restriction that the eigenvalue &f(Q,_,) is zero, we see

Where(N)P'z',‘z+I is a function involving the Jacobi polynomial i, ; P
and is needed in the general expression of the hypersphericth\at theij) Faddeev component will be a function Gfand

harmonics(see Appendixof grand orbital X+| and orbital |aonly and satisfie$23]

angular momemtunh. The quantity)y(D-3) is the HH of (T+Vyap— E)D(F,1) = —V(ri,»)E d(Fyr), (22
order zero(i.e. grand orbital quantum number is zgiio KI>k

3(N-1) dimensional space, Jy(D-3)=[I'((D-3)/2)/
27P=3/2)12 Thijs new basis set which is a subset constitute
by HH of order (2K+1) are called “potential harmonics”
(PH). These are the eigenfunctions Iof(Q)y), when the ei-
genvalue ofL?(Q,_,) is 0 and satisfies the eigenvalue equa-
tion:

TR
act that it] corresponds to eigenvalue zero of the operator
L2(Qy-1). Next expand the wave functio®(rj;,r) in the
complete set of potential harmoni@shenl is a good quan-
tum numbey as

q/vheretl)(r*- r) differs from the general solutio; by the

[L2(Q) + L(L+D - 2P0 (Q) =0, L£=2K+1- O (1) =1 OPY PR @)U (0. (23
K’

(18 Substitution of Eq.(23) in Eg. (22) and projection on the
The relationL*(Q-;) ¢;(X) =0 implies that we are consider- same basis, leads to the set of coupled differential equations
ing only those states which are invariant under all generalf23]
ized rotations in @\N-1)-dimensional space. Naturally the
contribution to the grand orbital quantum number comes T
only from the interacting pair. This corresponds effectively to mdr? m r
two-body correlations only in the wave function. Due to di- 2 |
luteness of atomic BEC, the effect of higher body correla- + 2 fienVia (DU (1) = 0,
tions can be ignored as the probability for three or more K!
particles to come close at the same time is extremely smaliyhere
This reduces the number of quantum numbers in the new
basis[all the quantum numbers specifying the eigenfunctions Lo=2K+]+ D
of L%(Qy-,) are zerd. It contains only three quantum num- :
bers; orbitall, azimuthalm and grand orbital R+ for any
N, instead 0f(3N—1.) quantum nu.mbers corresponding to fﬁl:EkI>k<7D|2T(+I(Qij)|7)|2f2+l(ﬂkl)>_ (25)
(8N-1) hyperspherical variables in the general HH basis. '
The normalization condition is given by The potential matrix is given by

B2 A2 K2Lk(Lk+ 1)
-t 5t Vtrap(r) -E UIK(r)

(24)
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o m batically for a fixed value of to get an effective potential as

Vi (r) = f Pt (QUpV(rij) P (Qi)dQy. (26)  a parametric function af [16]. This is done by diagonalizing
the potential matrix together with the diagonal hypercentrifu-

So instead of(SN-1) angle variables in HHE method, in gal repulsion and the trapping potential for each value: of
potential harmonics expansion meth@HEM) the integral

Kmax
involves only 3 angle variables. It greatly simplifies the cal- _
culation of the matrix element for arfy. K,E:l Micr (Nxien(1) = @r(Dxiaa(1), (32)

The quantityfﬁI of Egs.(24) and(25) is given by[23]

|
2,=1+ {Z(A— 2)(— %) P?B(' %)
L 1)&,0} / PR, @9

where =(3A-8)/2 and ,8:I+§ and P,%B(x) is the Jacobi _ . _ _
polynomial. Multiplying Eq.(24) by appropriate constant The lowest eigenvalue gives the “lowest eigenpotential,”

where

_ 2
My (r) = Vi (r) + [%{C(ﬁ +1)+4K(K+a+p+1)}

+ Vtrap(r):| Ok - (33

factors, it can be put in a symmetric form: wq(r). As we discussed in the Introduction, the hyperradius
2 g behayes as the most impprtant collective coordinate and
{___ + T {L(L+ D) + AK(K + a+ B+ 1)+ Viguo(F) wq(r) is the potential in which the cond_ensate moves as a
mdr?  mr? ap “single quantum stuff,” except for attractive two-body inter-
. actions andA> A, (see latey. Another collective coordinate
- E} Ui(r) + 2 Vi (DU (1) =0, (28) s the hyperanglep appearing in the wave function through
K’ Egs. (23) and (17), which describes the deviations of the

condensate from hyperspherically symmetric distribution.

where £=1+(3A-6)/2, the symmetrized potential matrix In the HAA approach, an approximate solution of E2B)

Vik: has the form is obtained by solving a single uncoupled differential equa-
_ /o tion [16]
Vi (1) = fi Vi (0 Fien (NgPh?) (29 K
d S AT o o S PV
an mdr2” T &0 o
Uia(r) = fia (h)2ui(r)- (30 (34)

ap i i il
Herehi” is the norm of the Jacobi polynomi&”(x) [24].  The solution of Eq.(34) subject to appropriate boundary
The potential matrix element is obtained from E26), using  onditions ono(r) gives the energyE, which is an upper

Egs.(17) and(A4) of the Appendix, in the form bound for the eigenenergy of E(8) . The partial waves of

+1 ; ( \/m> 5 Eqg. (28) are given in HAA by[16]
et = [ ey 15 petomiace o V(1) = Gr) ol (39

wherew(2)=(1-2)*(1+2)# is the weight function of the Ja- This_appyoximatior! is usqally called uncou.pled adifabatic ap-
cobi polynomials[24]. For Gaussian interaction with=3,  Proximation(UAA) in the literaturg16,26; disregarding the
the integral can be obtained analytica[lg5], from where third term on the left side of Eq34) one gets the so-called

that the HAA is in very good agreemefitaving less than 1%

errorn with the exact solution of the CDE for both atomic

IIl. NUMERICAL METHOD AND RESULTS [27-29 and nucleaf30,3]] cases. Since this is adequate for
_ this preliminary application of this new method, we adopt
A. Numerical method the HAA, instead of solving the full set of CDE by exact

For a chosen number of par“cléﬁ) and a chosen inter- numerical algorithm like the renormalized Numerov method

action potentia[V(rij)], we calculate the potential matrix for [32,33.

a fixed value of hyperradiugr) from Egs. (29) and (31 . ) . )

using a multipoint Gauss-Jacobi quadrature. For the present B. Choice of two body interaction potential

calculation we select=0 and truncate the PH expansion |In this paper we compare our results with those of the GP
basis of Eq(23) to a maximunkK value(=Kp,,). Inorderto  equation as also with other calculations using a contact
simplify the solution of the set of coupled differential equa- s-interaction. But as-function interaction is not a physical
tions, Eq.(28), we adopt the hyperspherical adiabatic ap-one since it diverges at;=0 and nothinge.g., centrifugal
proximation (HAA) [16,24. In this approximation it is as- repulsion can prevent its overwhelming effect. As a result,
sumed that the hyperradial motion is slow compared to thehe Hamiltonian becomes unbound from below for an attrac-
hyperangular motions. Hence the latter can be solved adiaive § interaction. This is manifest in the effective potential
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' ' ‘ ' ' ' tive (-8.18963x 10° 0.u). In the same figure, we also plot
o4 ] the Born approximation foras. (corresponding tor
=0.0855 0.u), given by[12]
0.2+ 4
o ®-_M [ 3
@y (0.4.)0 - - ¢ = 22 f d*r V(r)- (37)
02} i For a Gaussian interaction this integral can be done analyti-
a cally and gives
-04 — —
2m N
t ! 1 1 1 ] (=) 3% .
<1000 -800  -600  -400  -200 0 200 400 c = #2 Vol 4 (38)

Vo (0.u.)
From Fig. 1, it is seen that the Born approximation is good
FIG. 1. Plot of calculatedas; as a function ofV, for ro  only for small values ofV|. In this work, we use the exact
=0.0855 o.u. The dotted line corresponds to the Born approximaresult and not the Born approximation. For repulsive poten-

tion (a(s?)- tials, we choose a conveniently small valuergfand calcu-
late V, by the exact procedure.
wo(r), which for a particle numbefA) less than a critical Choosing a smaller value of, V, increases in magnitude

value (A,) produces a local minimum at a finite valuerof ~and the potential becomes stiffer. For very small values,of
(giving rise to a metastable solutiprbut wo(r)——= asr  V(rij) simulates as-function. For attractive interactions, we

— 0 for any number of particlesee following subsection, as perform a model calculation with chosen values pandV,,.
also Ref. 12 Thus there are no rigorously acceptable and

stable solution for any, since the attractive essential singu- C. Results
larity at r=0 will pull the system tor—0 and the corre- i ) ) )
sponding wave function will diverge at=0. Although the With this choice of potential we have solved the CDE Eq.

sfunction is particularly convenient for analytic calcula- (28) for various number of particles. We use oscillator units
tions, it is desirable to choose an interaction which would(0-U) in which energy and length are expressed in units of
either remain finite or at worst introduce a removable singuoscillator energy and oscillator lengthw and v/mw, re-
larity asr;;— O for attractive cases. Then the hypercentrifu-Spectively, wheres is the circular frequency of the harmonic
gal repulsion in Eq(28) (which is nonvanishing even fdr ~ confining potentigl The matrix element, Eq31), has been
=0, K=0 and increases rapidly dsincreasepwill not allow  calculated by a multipoint Gauss-Jacobi quadrature, the
the interacting particles to come too close to each other. waumber of points being decided by the condition of conver-

thus choose a Gaussian potential of strengfland range,  9ence of a typical matrix element. We first verify that our
results are independent of the choice gfif V, is appropri-

V(rij):voe‘rﬁ”g- (36) ately calculated using two-body Schrodinger equation, so
that a,; has the same valud 00 bohr for®’Rb, which has a

Choosing appropriate values 9§ andrg, the potential can repulsive interaction In a few representative calculations,
be made either soft or stiff. A particular experimental situa-the ground state energy and low lying excitation spectrum of
tion at the low temperature limit is characterized by thethe condensate containidgparticles have been found to be
s-wave scattering lengtte,). For given values of/, andry, stable within numerical errors, for several values pfang-
one can calculateas, by solving the two-body radial ing from 0.1 o.u. to 0.005 o.u. As for example, the ground
Schrddinger equation for positive energies, in the zero enstate energy per particle for a condensate contaidindO
ergy limit. Alternately, for a suitably chosen valuegfand  bosons approaches a convergenceyaecreases from 0.1 to
an experimentally known value @ one can findVy nu-  0.005. Relative change in the energy per particle fngm
merically from the solution of the two-body Schrédinger =0.01 o.u. to 0.005 o.u. is only about 0.012%. Asde-
equation in theE— 0+ limit. In Fig. 1, we present a plot of creases, the calculation of the matrix elements as also the
calculatedag. as a function ofV, for r;=0.0855 0.u. As is solution of Eq(34) become extremely CPU time consuming.
well known, a.. is positive and monotonically continuous for This is because for very smalj, one has to introduce very
V,>0. The scattering length becomes negativeVgsbe-  fine r-mesh intervalgtypically 10°° 0.u), which increases
comes negative and continues te at a particular negative CPU time enormously. To keep the numerical calculations
value ofV,. At this point,a. has an infinite discontinuity and manageable, we choose;=0.005 o.u. andV,=3.1985
as V, decreases furtheg,. starts from + and decreases x10° o.u. (which corresponds to JILA’Rb experiments
continuously to <0 at a second particular value ®,. The  with a;,;=100 bohr and trap frequenay=200 H2. We next
first, second, ..., branch of the cury@sV, decreases from test the convergence of our resultskgg,, increases by cal-
positive valuep correspond respectively to zero, one, ...,culating the ground state energy per particle of the conden-
two-body bound states. For a stable BEC, we choose the firsiate forV,=3.1985x 10° 0.u. andr,=0.005 o.u. Our results
branch of the curve. From Fig. 1, one notices that figr are presented in Table I. It is seen that the energy per particle
=0.0855 o.u., the first discontinuity occurs at abdlg  converges quite rapidly as,,, increases. For example, for
=-184 o0.u. Fory=0.005 o.u., this value is much more nega- A=20, the change in energy is less than 0.001%Kag
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TABLE I. Calculated ground state energy per partiGte o.u.)
of the condensate containiny particles for variouK,,, values,
showing convergence trend aK,, increases (Vy=3.1985
X 10° 0.u. andr,=0.005 0.L.

Kmax 2 4 6 8 10 12

A

3 1.50041 1.50031 1.50026 1.50023 1.50021 1.50019

5 150123 1.50117 1.50112 1.50108 1.50104 1.50101

10 1.50350 1.50348 1.50346 1.50344 1.50342 1.50340 10 \ \ X ! . . . .

15 150453 1.50451 1.50450 1.50449 1.50449 0 2 4 6 8 0 12 14 16 18
20 1.50539 1.50538 1.50537 1.50536 1.50536 "

25 1.50618 1.50617 1.50617 1.50616 1.50616 FIG. 3. Plot ofwy(r) as a function of (dotted and continuous
30 1.50693 1.50692 1.50692 1.50691 curves togethgrfor A=10 (subcritical numberfor a model attrac-
35 150764 1.50763 1.50763 1.50766 tive two-body interaction\Vo=-100 0.u.,r;=0.0855 0.u), which

corresponds tag,.=—0.1176 o.u.

increases from 2 to 10. Another interesting observation igeft out in Table I. In all subsequent calculations, we keep
that the ground state energlecreasesas K, increases, K, ..=4.We are at present trying to overcome these difficul-
which is consistent with the Rayleigh-Ritz principle. Thus it ties for largeA by improved numerical techniques.
is reassuring that our method is working satisfactorily and is  |n Fig. 2, we present a plot of the lowest eigenpotential in
fast converging. EAA for A=20, for a model repulsive interaction witt,
However a numerical difficulty appears as the particle=20 o.u. andr,=0.1 o.u. (dotted curvg corresponding to
number(A) andKacincrease. The quantity increases rap-  a,.=0.01553 0.u(224.3 bohy. In the same figure, we also
idly with A (e.g., =0.5 for A=3 and @=71 for A=50), include the noninteractingV,=0, a;.=0) case(continuous
while 8 remains constant & (for 1=0). Thus the Jacobi curve, which naturally lies below the repulsive interaction
polynomial [P3#(2)] as also its weight functiofwi(z)] are  (a.>0) curve. In Fig. 3, we plotwg(r) for an attractive
highly asymmetric functions in the intervt1,1] (see Ref. interaction, viz.,V,=-100 0.u.,r,=0.0855 o.u.(note from
24). They have tremendous variation in their valges., 2 Fig. 1 that this corresponds to zero two-body bound state and
to zerg as the argument varies from -1 to +1 for lare  a,.=—0.1176 o.u.for A=10 . Since we cannot go to large
Furthermorew(z) increases from 0 to®2within avery small  values ofA due to numerical problems mentioned above, we
interval close toz=-1, for largea. In addition,Pﬁ’B(z) hasn keepA small and increas¥, to study the critical behavior
nodes in the interval-1,1]. Hence unavoidable numerical (see belowat a lower value oAA. Both these curves have the
error creeps into the numerical integration of the potentiageneral features same as those found in earlier calculations
matrix, using Eq(31) . Consequently the calculated energy using K-harmonics approximatiofil3]. Figure 3 shows a
per particle and other physical quantities show irregularitymetastable region with a local minimum af(r), which is
for A=40, as also for smalleA with large K, Therefore preceded by a collapse region for smalleAs A increases
we have restricted\ to 35. Even for 15<A<235, some re- above a critical valuéA,), the metastable region disappears.
sults for largeK .« are not reliable. Hence these have beenThis is seen in Fig. 4 foA=16 for the sam&/, andr,. These

160 . T T T T T T T asc| —0 T

140 - asc = 0.01553 - - ]

120 _

100 _ FIG. 2. Lowest eigenpotential
wo(r) for A=20 as a function of. Con-

tinuous curve is fora,,=0 (no
two-body interactionand the dot-
ted curve is for a repulsive inter-
7] action (as=0.01553 0.U.

80

60

40

20 1 | . I 1 | 1 ! | {
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200 r-

i
ol 6 O o 0 o o o ]
-200 1 - sl |
-400 - -
wolr) -600 | i B ot + + + + + + T
-800 | .
X 3+ .
-1000 f: i
-1200 1 1 21 o o o o o o 4
-1400 1 1 I 1 L 1 t L 1 ! 1
0 5 10 15 20 25 30 5 10 15 20 25 30 35
r A
FIG. 4. Plot ofwg(r) as a function of (dotted and continuous FIG. 5. Three low-lying excitation frequencies for various val-
curves togetherfor A=16 (critical numbey for the same attractive ues of particle numbefA), corresponding to the JILA experiment
two-body potential as in Fig. 3. with 8’Rb atomgas.=100 bohr; oscillator frequency =200 HEn-

. ergies are in oscillator units.
features are the same as reported eafli€. However, in

our case, since/(r) is finite for r—0, and the repulsive
centrifugal term goes as %, there is no real collapse. For
very smallr, w(r) becomes strongly repulsive even for an Finally we calculate and plot the ground state ener er
attractive two body interaction. This is represented by the _ . (y 32 ) pe g ¥R
dotted lines in Figs. 3 and 4. Note that the dotted and conparticle (Eo/A-5hw) as a function o for selected val-

tinuous parts together constitute the entire calculasgd) ues ofA (10’. 20, and 3pfor a repulsive interaction in Fig. 7.
curve. The smalf (repulsive part is plotted with a different Qorrespondlng curves are f'rom the bottom upwards respec-
(dotte.q curve to emphasize that the remaining gasntinu- tively. We compare these with the corresponding values cal-
ous portion of ay(r) Fr)\as the same behavior asgobtained withCUIated from the GP equation. This curve is the topmost in
PO  of wo . T Fig. 7. One notices that our results approach the GP result as
attractive contact interaction in Ref. 13. Only the dotted part

diff Kably f th o tin Ref. 13, | A increases for a fixedas, as expected. We also note that
Iners remarkably from the corresponding part in Ret. L3. 1N, energies are below those of the GP equation, indicating
reality for A>A,,, there is a very narrow and deep well at a

i value of - h Il th ticl il be t d within 2nee again a better result from the variational point of view.
small vajue ofr, hence all Ine particies will be trapped within Figure 7 agrees qualitatively with a similar figure of Ref.
this well. As the particles come within a small region, corre-

. . [19], where exact diagonalization of the Hamiltonian was
;pondmg to a small val_ue of the density of thg condensate Lo tomed for one and two dimensional condensates, respec-
increases, and due to increased three and higher body col vely,
sions, molecule formation takes place with the disappearance "
of the BEC. The deep and narrow well iny(r) near the
origin, for an attractive two-body interaction with> A, IV. CONCLUSIONS
can support a lowlying, highly localized bound state, which
describes the formation of molecules. Although this is the In this paper, we have investigated the0 properties of
lowest lying state in the correspondingy(r), it does not @ Bose-Einstein condensa(BEC), consisting ofA atoms
represent the ground state of the condensate, which has &4R0son$ trapped by an external field and interactivig re-
ready “collapsed.” This gives a realistic scenario of whatdlistic two-body interactions. Amb initio treatment of the
happens a# increases abovA,, for attractive interactions. Schrodinger equation involves8-1) degrees of freedom
For an attractiveS-function interaction, the lack of a rigorous
solution fails to give a realistic picture and one talks of a TABLE Il. Calculated excitation energiggn o.u) of the first
“collapse of the condensate” in a qualitative fashion. three excited states for different numbéts of 8’Rb atomgparam-

We next calculate first three excited states for differenteters as in Table)!
number of particlegA) in the condensate. These are shown
in Fig. 5. Values ofE®* for n=1,2,3have been represented A 1st 2nd 3rd
by diamonds, pluses, and squares, respectively. The excitg-

asA? and particles are pushed outwards, by Akdependent
hypercentrifugal repulsion in E¢28).

. - - . 2.00116 4.00283 6.00494
tion energy increases slowly with. They agree fairly well
with the K-harmonic approximatiorf13]. In Table Il, we 2.00130 4.00428 6.00962
present numerical values and notice that the excitation enef? 2.00231 4.00705 6.01268
gies increase gradually with. 15 2.00355 4.0130 6.03147
In Fig. 6, we plot the ground state wave functidg(r), as 20 2.00471 4.01647 6.04604
a function of the global lengthfor various values oA. Itis 25 2.00671 4.03225 6.12762
seen that as the particle number increases, the peédKrof 3o 2.03276 4.08846 6.17127
shifts towards larger values af This is understandable, 35 208319 4.10225 6.27118

since for largeA, the total repulsion of all the pairs increases
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0.8 T T T T T T T
0.7 -
0.6 |
0.5 |-
FIG. 6. Plot of ground state
Golr) 04r wave function as a function of hy-
03 L perradius(r) for various indicated
’ values ofA, in the chosen trap.
0.2
0.1}
0

for the relative motion. Use of traditional hyperspherical har-numerical calculation. Since we make Faddeev like decom-
monics expansiorfHHE) method is impossible foA> 3, position of the full wave function, an appropriate symmetri-
due to tremendous and mounting complexity of the methogation of the wave function under exchange of the interacting
as particle number increases beyond three. We circumvemair guarantees full symmetrization. Moreover, the potential
this difficulty by exploiting the subset of potential harmonics matrix elements involve integrals ovenly threeangle vari-
(PM) basis, instead of the full set of hyperspherical harmon-ables, leading to an immense reduction in the complexity of
ics (HH) basis. The PH basis is obtained as the subset of Hthe numerical procedure fok particles. Since there are no
needed for expanding the two-body potential for the interacttheoretical restrictions oA, this opens the possibility of an
ing pair. The choice of PH basis corresponds to inclusion ofipproximate, but very reliablep initio solution of the large
two-body correlations and disregard of all higher-body cor-but finite body condensate. However, a numerical difficulty
relations in the condensate. On the other hand, two-bodgrises due to the fact that the parametef=(3A-8)/2] of
correlations are very important in BEC and cannot be disrethe Jacobi polynomialsP%#(x), and its associated weight
garded as in mean field theories or the GP equation. Thifunction, become very large #sincreases. These cause nu-
assumption is exactly appropriate for the BEC, since fommerical problems, foA=40. We are at present attempting to
practical realization of BEC, the density of atoms must beremove this difficulty by appropriate numerical procedure. In
kept so low that there are practically no three and highethe present report, we restrict ourselvedte 35, for which
body collisions. Existence of the latter type of collisions reliable calculations are possible.

would facilitate formation of molecules and consequent We have compared our results with earlier calculations for
depletion of the condensate. As a consequence of this ag=3 [12], K-harmonic approximatioiil3], exact diagonal-
sumption,only fouractive degrees of freedom of the conden-ization of the Hamiltonian in one and two dimensigh8§] as
sate(instead of a total of 8- 3 degrees of freedom for the also with the predictions of the GP equatif8]. As a pre-
relative motion of theA particle system are physically liminary calculation we have taken two-body Gaussian inter-
important—these are constituted by the global lerigyper-  actions of varying range. Our results agree qualitatively with
radius,r) and the three active angle variables of the PH. Inthe previous ones, most of which use a contact interaction.
effect onefreezesthe remaining(3A-7) angle variables of This demonstrates the reliability and feasibility of our
PH. This leads to a tremendous simplification of the actuamethod. Thus a reliablab initio calculation for a large but

0.1 T T ; T ¥ T T T
A=10 ——
A=20 - -
0.8 |- AR T
0.06 |- | FIG. 7. Plot of ground state
Eo/A - 3/2hw : energy per particle (Eg/A

-3/2hw) as a function ofAag for

a repulsive interaction for indi-
cated values ofA and the GP
results.

0.04

002t .-

002 004 0.06 008 0.1 012 014 016 0.18 0.2
Aag
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finite number of atoms in a condensate, where individual |_i2_1(Qi_l)

particles interact via realistic two-body interactions, appears + ZTzi

feasible. Extension of our method to a larger number of par-

ticles as also use of more realistic two-body interaction isvherez=cos 2p,, w; represents the set of two polar angles

underway. of ¢ and ¢'s are given by Eq.(Al). Note thatLi(Ql)
=12(w,) and L3 (Qy) =L2(Qy) appear in Eq(15).

i=2,...N), (A2)
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An eigenfunction ofL?(Q)y) is called hyperspherical har-

where

APPENDIX: HYPERSPHERICAL VARIABLES Dot i 1
AND HYPERSPHERICAL HARMONICS Py =

1 3
1. Hyperspherical variables I‘<VJ n IJ 2>F(n] Il 2)

The relative motion of theA=(N+1) particle system is X (cos ¢;)i(sin ¢j)ﬁj—1pr’;j—l'li+1/2(cos 2h)
described in terms dfl Jacobi coordinates defined by E§) !
and having 8l degrees of freedom. An equivalent set of
hyperspherical variables is constituted by the hyperra@ius
defined by Eq. (11), 2N spherical polar angles of with

51152- cees rEN and(N-1) hyperangle{d’z,(ﬁs, e PN} giv- 3
ing the length of the Jacobi vectofs, &,... . . ¢\, through V= vt 2n+ >

2VJF(VJ - nJ)F(nJ + 1) 12

(1=2,3,...N), (A4)

{N=T COS ¢y, 3j
= [’J + E -1
{n-1=T SIN ¢y COS -1, ]
=L; +2n-+|-+ﬂ—1 (1=2,3,...N). (A5)
IN—p =T SIN ¢ySIN 1 COS Do, ) =23 0
In Eq. (A4) P2#(x) is a Jacobi polynomial. In EGA3), [£]
represents the set of guantum numbers
{U,m), (I, my), ... ,(In, M), N, N5, ... 0N} for a  fixed

{o=T SNy SiN -y ... . SiNh3COS by, value of grand orbital quantum numbér L. The quantum
_ _ _ _ numberZ; is defined through
=1 SiN ¢y SiN Ppq ... . SiN3SiN ¢y,
& &N SIN Py-1 ¢3Sin ¢, Li= Loyt 2n + 1) (A6)
(¢1=0). (A1) with £,=I,. Hence
Equation(Al) automatically satisfies Eq11). N
L=Ly=11+2 (20 +1)). (A7)

j=2

2. Grand orbital operator )

The HH of Eq.(A3) forms the uncoupled basis. For systems
with a good orbital angular momentutn=I,+I,+---+Iy,
one has to couple the individual orbital angular momenta—

The general grand orbital operatb?((2y) of Eq. (15) is
defined through14]

) P ) J then the projection quantum numbeng, m,, ... ,my are re-

L) = (9_¢2 +[3(i = 2)cot ¢ + 2(cot ¢; — tan ¢i)]0_¢i placed by the(N-1) intermediately coupled angular mo-
|2 2 menta and the projectioM of L.

" () 4 Liza(2i-y) The potential harmonicéPH) given by Eq.(17) corre-

cog & Sir? ¢ sponds toly=I, I1=l,=l3="--=Iy-1=0, such thatL=Iy=I,

P P 12(w) M=my=m and grand orbitaIEE_L‘,N:ZKH with Ny=ng
=41-D)—+62-i(1+z)]—+2—- =---=ny-;=0 and K=ny. Substitution of these in Egs.

iz iz T1+z (A3)~(A5) gives the PH of Eq(17).
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