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The interaction of a two-level dipolar molecule with two laser pulses, where one laser’s frequency is tuned
to the energy level separation(pump laser) while the second laser’s frequency is extremely small(probe laser),
is investigated. A dipolar molecule is one with a nonzero difference between the permanent dipole moments of
the molecular states. As shown previously[A. Brown, Phys. Rev. A66, 053404(2002)], the final population
transfer between the two levels exhibits a dependence on the carrier-envelope phase of the probe laser. Based
on the rotating-wave approximation(RWA), an effective Hamiltonian is derived to account for the basic
characteristics of the carrier-envelope phase dependence effect. By analysis of the effective Hamiltonian,
scaling properties of the system are found with regard to field strengths, pulse durations, and frequencies.
According to these scaling properties, the final-state population transfer can be controlled by varying the
carrier-envelope phase of the probe laser field using lasers with weak field strengths(low intensities) and
relatively long pulse durations. In order to examine the possible roles of background states, the investigation is
extended to a three-level model. It is demonstrated that the carrier-envelope phase effect still persists in a
well-defined manner even when neighboring energy levels are present. These results illustrate the potential of
utilizing excitation in dipolar molecules as a means of measuring the carrier-envelope phase of a laser pulse or
if one can manipulate the carrier envelope phase, as a method of controlling population transfer in dipolar
molecules. The results also suggest that the carrier-envelope phases must be taken into account properly when
performing calculations involving pump-probe excitation schemes with laser frequencies which differ widely
in magnitude.
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I. INTRODUCTION

In recent years, due to advances in laser technology, few-
cycle (optical) laser pulses[1] have been widely used either
to probe the properties of matter or to control the physical
processes arising from the laser-matter interaction. For such
short pulses, the timing of the field oscillation cycles within
a laser pulse will play an important role. For example, for a
few-cycle laser pulse, the time-dependent electric fieldEstd
= fstdcossvt+dd will change significantly if the carrier-
envelope phase(CEP) d of the pulse—i.e., the relative phase
of the carrier frequency with respect to the pulse envelope
fstd—is changed. Note that the CEP is sometimes also re-
ferred to as the “absolute” phase.

The dependence of physical observables on the CEP is
quite general for laser pulses of a few optical cycles interact-
ing with matter. Both experimental and theoretical studies
have revealed a variety of laser-induced processes that de-
pend on the CEP of the laser field causing the excitation. The
majority of these studies fall into three categories: angular
distributions of photoelectrons emitted from atomic targets
[2–14], high-harmonic generation[15–22], and photoemis-
sion yields from metal surfaces[23–25]. There have been
fewer investigations of the use of few-cycle laser pulses with
a well-defined CEP for inducing and controlling dynamics in
molecular systems[26–29]. These studies have investigated
the role of the CEP in the control of HCN→HNC isomer-

ization [26], in the vibrational trapping of HD+ and HCl+

molecular ions[27], in the modification of the dissociation
probabilities for HOD and H2O [28], and in the control of
transition probabilities in dipolar molecules[29]. As intu-
itively predicted, most of the investigations where depen-
dence of observables on the CEP is exhibited have the re-
quirement of ultrashort pulse duration such that only a few
optical cycles are contained within the pulse envelope—e.g.,
<5 fs for l=800 nm. However, Sansoneet al. [15] have
recently demonstrated the CEP dependence of high-harmonic
generation in Ar using 20-fs pulses with a wavelength of
800 nm. Additionally, in order for the CEP effects to mani-
fest themselves, many of the proposed schemes, especially
those involving atomic targets, require lasers of high inten-
sity s.1014 W/cm2d. In general, the CEP dependence of
photoemission from metals involves lasers of lower
intensity—i.e., I <1012 W/cm2. While these requirements
are true of most mechanisms involving a single pulsed laser,
Brown and Meath have discussed[29] frequency and inten-
sity scaling as it pertains to CEP effects. These scaling prop-
erties are apparent in experimental measurements of CEP
effects involving excitation of atomic Rydberg states using
much weaker radio-frequency fields[4,30]. Also, it should be
emphasized that the importance of the CEP does not simply
depend on how many laser cycles are contained within the
pulse but rather depends on the rise and fall times of the
pulse[27,29,30].

Recently, one of the authors(A.B.) and co-workers have
proposed a two-laser pump-probe scenario that can be used
to access the CEP of the probe laser[31,32]. Two other*Electronic address: alex.brown@ualberta.ca
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multiple-pulse excitation schemes have also been proposed
where a physical observable depends on the CEP of one of
the laser fields[33,34]. These are distinct from the usual
multipulse excitations which depend on the relative phase
difference between the pulses[35,36]. Brumer, Frishman,
and Shapiro[33] have predicted chiral selection, within a
minimal four-level model ofL and D enantiomers, that de-
pends on the CEP of one laser in a three-laser excitation
scheme. In a recent paper[34], which is similar in spirit to
our pump-probe work in dipolar molecules[31,32], Ban-
drauk et al. have proposed a technique for measuring the
CEP of a femtosecond infared(IR) laser pulse with the help
of an attosecond ultraviolet laser pulse. They demonstrated
that the asymmetry in photoelectron signals from hydrogen
atom excitation reproduced the electric field of the IR pulse.
Thus, the ionization asymmetry could be used to measure
directly the carrier-envelope phase of the femtosecond IR
pulse.

In this paper, we primarily consider the interaction of a

two-level dipolar sdW Þ0Wd molecule with two-color pump-
probe laser pulses. The pump laser frequency is tuned close
to the energy level separation of the stationary states
svpump<E21=E2−E1d, and the probe laser frequency is much
smaller compared to the energy level separationsvprobe

!E21d. The pulse duration of the pump pulse is chosen such
that its spectral bandwidth is significant relative to the probe
frequency. The terms “pump” and “probe” refer to the rela-
tive magnitude of the carrier frequencies of the pulses rather
than to their time order. Figure 1 presents a schematic for the
model system. For this system, obvious dependence of the
final molecular state populations on the probe laser CEP has
been determined[31,32], even for situations when the pump
and probe laser pulses are several tens of optical periods
long. It was shown[31,32] that the probe laser CEP effect is
negligible for nondipolarsd=0d molecules. In Sec. II, we
develop analytic expressions based on the rotating-wave ap-
proximation (RWA) that allow the determination of the
physical origin of the CEP effect. The expressions developed
provide an interpretation of the strong CEP dependence of
the excitation process as due to the interference of multiple
optical paths from the initial to the final state or, alterna-
tively, as due to the probe laser becoming an effective ul-
trashort pulse modulated by the pump pulse envelope. From
the RWA Hamiltonian derived, scaling properties for the sys-
tem are determined and show that a large CEP dependence
can also be observed for long laser pulses with relatively
weak field strengths. In Sec. III A, we demonstrate the appli-
cability of the RWA expressions by comparing final excited-
state populations calculated using the RWA to exact results.

While two-level models are extremely useful, the role of
background states is investigated in Sec. III B by considering
several three-level systems. The effect of the third level on
the CEP dependence of the final excited-state populations is
examined via exact calculations. Finally, in Sec. IV, we draw
some brief conclusions regarding the utility of these results.
Unless stated otherwise, atomic units are used throughout
this paper.

II. THEORY

Within the semiclassical dipole approximation, the time-
dependent wave function for aN-level molecule interacting
with an electric field(laser or lasers) is given in matrix form
by

i
]aI std

]t
= H= stdaI std = fE= − mW

=
· «WstdgaI std. s1d

HereaI std is the column vector defined byfaI stdg j =ajstd, and
the energy and dipole moment matrices are defined by
sE= d jk=Ejd jk andsmW

=
d jk=kf jumW ufkl, wheremW is the dipole mo-

ment operator andf j is the orthonormalized time-
independent wave function for stationary statej having en-
ergyEj. For a two-level model, as considered in Sec. III A,j
andk run over the indices 1 and 2 while for the three-level
model considered in Sec. III B, the indices run from 1 to 3.
In Eq. (1), «Wstd represents the total time-dependent electric
field. For the pump-probe pulsed laser excitation process
considered here, the electric field can be written as

«Wstd = o
i=1

2

êi«i f istdcossvit + did, s2d

whereêi, «i, vi, di, and f istd are the polarization vector, am-
plitude, frequency, CEP, and pulse envelope of fieldi, re-
spectively. The subscript 1 refers to the pump laser while 2
refers to the probe laser. The pulse envelopes considered are
Gaussian,f istd=expf−st /tid2g, whereti is the pulse length for
field i. The time delay between the two laser pulses is set to
zero for simplicity; the effect of time delay is considered
elsewhere[37]. Therefore, the terms “pump” and “probe” do
not refer to the relative time order of the pulses but to the
relative magnitudes of their carrier frequencies.

As is well known, generally, closed-form expressions are
not available for the time-dependent state amplitudesajstd in
Eq. (1). Before we proceed further theoretically, we note
that, numerically, the exact time-dependent amplitudesajstd
can be obtained by using the Cranck-Nicholson method[38]
to solve Eq.(1). For a small time stepdt, over which the total
electric field can be considered constant, the state amplitudes
can be determined from

aI st + dtd = expf− iH= dtgaI std < F1 − iH= dt/2

1 + iH= dt/2
GaI std. s3d

Repeatedly applying the above equation will generate the
time evolution of the system, and the state populations can
be determined viaPjstd= uajstdu2 using the appropriate initial
conditions. Here the molecule is taken to be in the ground

FIG. 1. Schematic of the two-level system interacting with
pump svpump<E21d and probe laserssvprobe!E21d. The spectral
bandwidth spanned by the temporally short pump pulses is indi-
cated byDvpump.
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state initially—i.e.,a1stid=1 andanstid=0 snù2d whereti is
the time that the laser-molecule interaction begins. The final-
state populations will bePjstfd, wheretf is the time that the
laser-molecule interaction ends. While in generaltf =` sti =
−`d for Gaussian pulses, numerically we choose a final time
tf =at (an initial time ti =−at) such that the perturbation of
the molecule by the field forutu.at is negligible. Since
tprobe.tpump for the situations considered in this paper,t is
the probe pulse duration. The numerical parametera=4 for
the Gaussian pulses considered in this paper.

We now proceed with an analytic derivation for the two-
level model, which has been studied previously[31,32] for
the excitation scheme given in Fig. 1. The approximate
model developed below for two levels provides further in-
sight into the physical processes leading to the probe laser
carrier envelope phase effect and allows optimum conditions
for exhibiting the effect to be determined. All results pre-
sented for the three-level model are determined exactly using
Eq. (3).

For later theoretical simplicity, we transform from theaI std
representation into an interaction representation defined by

ajstd = bjstdexpH− iFEjst − tid − mW j j ·E
ti

t

«Wst8ddt8GJ . s4d

The coefficientsbjstd then satisfy

i
d

dt
Sb1std

b2std
D = S 0 H12

H21 0
DSb1std

b2std
D , s5d

with the diagonal matrix elements of the Hamiltonian equal
to zero and the off-diagonal matrix elements given by

H12 = H21
* = − mW 12 · «WstdexpF− iE21st − tid + idW ·E

ti

t

«Wst8ddt8G .

s6d

Here we have introduced two important parameters to char-
acterize the system: the energy separation of the excited and
ground states,E21=E2−E1.0, and the difference between
the permanent dipole moments of the excited and ground

states,dW =mW 22−mW 11.
Up until this point, everything is general and exact for the

two-level system. To simplify the problem, we assume that

the lasers are linearly polarized andmW 12idWi«Wstd. Therefore,
only the magnitudes of the dipole moments and laser fields
will be indicated subsequently; the effect of orientational av-
eraging is the subject of another paper[37].

Following Ref.[39], if the durations of the pulses,t1 and
t2, are long enough—i.e.,sv1t1d−1!1 andsv2t2d−1!1—we
can approximateH12 in Eq. (6) as

H12 = H21
* = − m12f«1f1stdcossv1t + d1d + «2f2stdcossv2t

+ d2dg 3 expf− iE21st − tidgexphifz1f1stdsinsv1t + d1d

+ z2f2stdsinsv2t + d2dgj, s7d

wherez1=«1d/v1 andz2=«2d/v2. Using the identity

expfix sinsudg = o
n

Jnsxdexpsinud s8d

and the recursion relation

Jnsxd =
x

2n
fJn−1sxd + Jn+1sxdg, s9d

the off-diagonal matrix elementssH12=H21
* d can be written

as

H12 = −
m12

d
o

m=−`

`

o
n=−`

`

Jm„z1f1std…Jn„z2f2std…smv1 + nv2d

3 expf− isE21 − mv1 − nv2dtgexpfismd1 + nd2dg.

s10d

In Eqs.(8)–(10), Jnsxd is a Bessel function of integer ordern
and argumentx. The unimportant overall phase factor
expsiE21tid has been omitted from Eq.(10) for clarity.

For the frequencies we are considering,v1<E21 and v2
!E21, the dominant interactions will involve the absorption
of a single photon of frequencyv1. Thus, we can setm=1.
As long as the field strength of the pump laser is such that
m12«1/E21!1, the use of this RWA is justified; the RWA is
not invoked for the probe laser field. The Hamiltonian matrix
elementsH12=H21

* can then be written as

H12 = −
m12v1

d
exps− iDtdJ1„z1f1std…expsid1d

3F o
n=−`

`

Jn„z2f2std…expfinsv2t + d2dg

+ o
n=−`

` Snv2

v1
DJn„z2f2std…expfinsv2t + d2dgG . s11d

Here D=E21−v1 is the detuning from the one-photon reso-
nance. The overall phase factor expsid1d could be omitted
from Eq. (11). Therefore, it is clear from Eq.(11) that the
final population transfer is independent of the pump laser’s
CEPd1. Of course, this also implies that the final population
transfer does not depend on the relative phase difference be-
tween the fields. Since the analytic expression indicates that
the final results are independent of the pump laser’s CEP, all
exact calculations are carried out ford1=0; previous exact
calculations[31] have verified thed1 independence of the
final excited-state populations for the laser parameters con-
sidered in this paper.

Whenn is small,nv2/v1!1 sincev2!E21<v1. There-
fore, for smalln, the first term in the brackets of Eq.(11) will
dominate the second term. On the other hand, whenn be-
comes large, such thatnv2/v1 is greater than or equal to 1,
Jn(z2f2std) becomes exponentially small, at least for the pa-
rameters considered in this paper wherez2ø1 [40]. Thus,
the second term can be omitted again. So only the first term
in the brackets of Eq.(11) is retained. Under this assumption,
the Hamiltonian matrix elements are
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H12 = H21
* = −

m12v1

d
J1„z1f1std…

3exps− iDtd o
n=−`

`

Jn„z2f2std…expfinsv2t + d2dg.

s12d

By using Eq.(8), we can recontract the summation to obtain

H12 = −
m12v1

d
J1„z1f1std…exps− iDtdexpfiz2f2stdsinsv2t

+ d2dg. s13d

From a practical viewpoint, usually a short pump pulse is
interrogating the CEP of a longer probe pulse—i.e.,t1!t2.
Thus in the regime wherez1f1std is significant—i.e., utu
,4t1—f2std<1 (see the discussion below for a quantitative
example). Under these conditions, we reach an effective
Hamiltonian to approximate the exact Hamiltonian of Eq.(6)
as

H12 = −
m12v1

d
J1„z1f1std…exps− iDtdexpfiz2 sinsv2t + d2dg.

s14d

Furthermore, ifz1=d«1/v1 in Eq. (14) is small(note that for
all the calculations in this paper,z1,0.7), then the expansion
for the Bessel function,

Jl„zfstd… = f lstdo
n=0

`
hzf1 − f2stdg/2jn

n!
Jl+nszd, s15d

can be used and only the first term in the infinite summation
can be retained. Thus,H12 in Eq. (14) can be approximated
as

H12 = − 1
2m12«1f1stdexps− iDtdexpfiz2 sinsv2t + d2dg.

s16d

In obtaining Eq.(16), we have also made use of the fact that
for z1,0.7, J1sz1d can be well approximated asz1/2 (note
z1=«1d/v1). Equation(16) is the basic result of this paper.
When the pump pulse is tuned exactly to the one-photon
resonanceD=0, scaling properties can be readily identified
from Eq. (16). For a given set of molecular parameters(E21,
m12, andd), if the field parameters are scaled by a parameter
g such thatv2→v2/g, «2→«2/g, «1→«1/g, andt1→gt1,
then Eq.(5) would be invariant under the Hamiltonian, Eq.
(16). Because the validity of Eq.(16) depends onz1
=d«1/v1 being small, the rescaling parameter should be con-
sidered to be greater than 1,g.1.

A. Two-level model

First, we need to show that the effective Hamiltonian, Eq.
(16), provides good agreement with the exact results in pa-
rameter regimes where all the approximations used in deriv-
ing it are justified. The model system and laser parameters
we utilize come from recent studies[31,32] of the probe

laser CEP effect. The two-level model is representative of a
substituted aromatic molecule[41]. The relevant system
properties areE21=0.1 a.u. s21 947 cm−1d, m12=3.0 a.u.
s7.62 Dd, and d=6.5 a.u.s16.52 Dd. The pumpsi =1d and
probe si =2d laser parameters arev1=E21=0.1 a.u., v2
=v1/11, «1=3.9310−3 a.u. sI =5.331011 W/cm2d, «2=8.5
310−4 a.u. sI =2.531010 W/cm2d, t1=15.2 fs (10 optical
cycles), and t2=250 fs (15 optical cycles). Using these pa-
rameters, all approximation made in reaching Eq.(16) are
reasonable—i.e.,sv1t1d−1=0.016!1, sv2t2d−1=0.011!1,
m12«1/E21=0.117!1, z1=d«1/v1=0.25, z2=d«2/v2=0.61
!v1/v2=11, and atutu=4t1, f2std=0.94<1. It is shown in
[31] that for these parameters, complete control can be
achieved by varying the probe laser carrier phased2 from 0
to p /2; i.e., the final excited-state populationP2sd2,`d
= ua2sd2,`du2 changes from 0 to 1 over this CEP range. In
Fig. 2, we compare the final excited-state population
P2sd2,`d versus the CEP of the probe laser as determined
from the exact Hamiltonian, Eq.(6), and from the approxi-
mate Hamiltonian, Eq.(16). For these choices of laser pa-
rameters, the approximate results are in good quantitative
agreement with the exact ones. Two symmetries can be iden-
tified in Fig. 2—i.e., P2sd2,`d=P2s2p−d2,`d and
P2sd2,`d=P2sp−d2,`d. These can be readily explained us-
ing the approximate Hamiltonian, Eq.(16). From Eq.(16),
we haveH12s−t ,d2d=H12

* st ,2p−d2d. If we defineUsti ,tf ,d2d
as the evolution operator fromti to tf with CEPd2, we have
Us−` ,` ,d2d=U* s−` ,` ,2p−d2d and thus P2s2p−d2d
=P2sd2d. For the special case where the pump laser is tuned
exactly to the one-photon resonancesD=E21−v1=0d, as in
Fig. 2, we haveH12s−t ,d2d=H12st ,p−d2d. In this case,U
3s−` ,` ,d2d=Us−` ,` ,p−d2d and P2sp−d2d=P2sd2d. Due
to these symmetries, we only consider the parameter regime
of d2P f0,pg for the following examples utilizing the two-
level model.

We now consider a wider parameter space to further test
the validity of Eq.(16). The parameter regime presented in
Fig. 3 of Ref.[31], where«1P f0.002:0.01g, d2P f0,pg, and
the other parameters are the same as for Fig. 2, is considered.
Figure 3(a) illustrates the final excited-state population as

FIG. 2. The final population of the excited stateP2sd2,`d versus
probe laser CEPd2 for parameters described in text. The solid line
is the exact result and the dashed line is the approximate result.
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determined from the exact Hamiltonian, Eq.(6), while Fig.
3(b) shows the results calculated using the approximate
Hamiltonian, Eq. (16). The absolute difference between
P2sd2,`d as determined from the exact and approximate
Hamiltonians is plotted in Fig. 3(c). Comparing Figs. 3(a)
and 3(b), the results are in excellent qualitative agreement.
However, Fig. 3(c) reveals that there are significant quanti-
tative discrepancies for«1.0.005 a.u. due to a systematic
shift in the positions of maxima and minima; compare Figs.
3(a) and 3(b). For «1,0.005, the results from Eq.(16) pro-
vide excellent quantitative agreement with the exact results;
the absolute discrepancy of the final-state populations is less
than 0.06.

We have also tested Eq.(16) for pump frequencies de-
tuned from the one-photon resonance—i.e.,sE21−v1d=D
Þ0. For these cases, the approximation also provides good
agreement with the exact results(not shown here). Since the
dependence of the final-state populations on the probe laser’s
CEP is strongest for the pump laser tuned exactly to the
one-photon resonance[31], we concentrate on theD=0 case
in the following.

From Eq.(12), we can readily identify the origin of the
CEP dependence effect since it provides a clear physical pic-
ture in the energy domain. As discussed in the original pa-
pers in[31,32] using an empirical model, the dependence of
the final molecular-state population on the probe laser’s CEP
arises from the interference between different optical path-
ways from the initial to the final state. These pathways in-
volve the same number of pump laser photons(here just one
photon) but different numbers of probe photons. For ex-
ample, we can include three possible optical pathways in Eq.
(12) as has be done empirically in Refs.[31,32]; i.e., the
number of pump and probe photonssNpump,Nprobed involved
is (1,0), (1,1), and s1,−1d. Including only these pathways
and solving for the final-state population as a function of
probe laser CEP phase, we obtain excellent quantitative
agreement between these results and the exact results for the
molecule and field parameters of Fig. 2.

By examining Eq.(16), we find a complementary physical
picture for the CEP dependence in the time domain. In Eq.
(16), the Hamiltonian takes the form of an “electric field”
expfiz2 sinsv2t+d2dg modulated by a “pulse envelope”f1std.
In order to have significant CEP dependence from this effec-
tive “laser pulse,” firstz2=d«2/v2 must not be too small,
since for z2!1, expfiz2 sinsv2t+d2dg.1 regardless of the
value of d2; note that in the calculations presented herez2
,1. Second, if the optical period of the probe field is much
greater than the pump pulse duration—i.e.,
2p /v2@t1—thenz2 sinsv2t+d2d will change little in the re-
gime where f1std is significant. Thus, there would be no
phase dependence, asz2 sinsv2t+d2d would become an over-
all phase factor that has no effect on the final-state popula-
tions. On the other hand, if the optical period of the probe
laser is much smaller than pump pulse duration—i.e.,
2p /v2!t1—then there will be many effective “optical
cycles” in the “pulse.” This situation is similar to that for a
long pulse duration, where the CEP is not important. Clearly,
for the pump-probe excitation scheme introduced in Refs.
[31,32], it is not how many optical cycles are in the pump or
probe laser pulses that is of critical importance. Rather, it is
the number of probe optical cycles within the pump pulse
that determines whether there is an effect of the CEP of the
probe laser. This also explains why the probe pulse length
does not affect the final phase dependence significantly as
long as it contains several optical cycles. In fact, as is shown
from Eqs. (13) and (14), a plane wave could be used to
approximate the probe laser.

The above criteria suggest that the CEP dependence effect
can be optimized(maximized) by choosing the pulse length
of the pump lasert1 and the probe laser frequencyv2 such
that v2,2p /t1. Figure 4 illustrates the final excited-state
populationP2sd2,`d as a function of the probe laser’s CEP
and the pump laser’s pulse length(which is given in units of
optical period of pump laser,n1=t1/ f2p /v1g). Except for
the change in the pulse length of the pump laser, all other
molecular and laser parameters are the same as in Fig. 2.
From Fig. 4, it is clear that the phase dependence is most
significant for the pulse lengths wherev2,2p /t1—i.e., n1
,v1/v2=11.

In Fig. 5, the dependence of final population of the ex-
cited state versus the probe laser CEP is presented for a

FIG. 3. The final population of the excited stateP2sd2,`d versus
probe laser CEPd2 and the pump laser field strength for(a) the
exact results and(b) the approximate results. Panel(c) plots the
difference between the exact and approximate results. See text for
details.
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rescaling ofg=10; see the discussion in Sec. II. The laser
parameters before rescaling are those of Fig. 2. With this
scaling, the probe laser frequency is now 110 times smaller
than the pump laser frequency,v2=E21/110 s200 cm−1d. The
field strength for the pump laser is 3.9310−4 a.u. sI =5.3
3109 W/cm2d and that for the probe laser is 8.5
310−5 a.u. sI =2.53108 W/cm2d. The pump pulse duration
is 152 fs(100 optical cycles). The results presented in Fig. 5
have been determined by integrating Eq.(4) exactly. The
complete phase control demonstrated in Fig. 2 is reproduced
with the rescaled parameters. Therefore, complete phase con-
trol can be achieved for much weaker fields and longer pulse
durations by using a low-frequency probe laser. Or thinking
about the consequences in an alternative fashion, the depen-
dence of the excited-state populations on CEP is manifested
for weaker fields and longer pulse durations if the pump and
probe frequencies differ greatly in magnitude—i.e.,v1/v2
@1.

The significance of identifying scaling properties is that
by using low-frequency pulses, much weaker fields may be
used to detect the CEP dependence effect described in
[31,32]. By utilizing weaker fields, alteration of the molecu-
lar system is minimized by excluding effects such as ioniza-

tion and dynamic Stark energy level shifts. The two-level
model is much more appropriate for weak fields and longer
pulses[42] since the effects of background states are mini-
mized. In addition, the use of a low-frequency laser makes it
easier to stabilize and manipulate the probe laser phase[30].
Thus, experimental observation of the carrier-envelope phase
dependence effect described here should be feasible.

B. Three-level model

The two-level model clearly demonstrates the CEP depen-
dence of the final-state populations for the excitation of di-
polar molecules with the pump-probe scenario illustrated in
Fig. 1. However, for molecular systems, the energy levels
may be congested, and for a complex molecular system such
as the one our two-level model is based upon, each of the
two levels could be within a manifold of closely spaced en-
ergy levels. Between and within each manifold, the levels
might be coupled by the probe laser frequencyv2 and/or by
the bandwidth of pump laserDv1,2p /t1. In order to exam-
ine the role that background states may play in the expres-
sion of the CEP effect, we consider a three-level model. The
general effects of background states can be extracted from
this minimal model. It is again worth emphasizing the scal-
ability of the CEP effect since reducing field strengths and
increasing pulse durations will minimize the role of back-
ground states; i.e., the two-level model discussed in Sec.
III A will be applicable.

We consider the effect of nearby levels by examining the
same pump-probe excitation scheme given in Fig. 1 but for a
three-level model, which is based on the previous two-level
model. The pumpsi =1d and probesi =2d laser parameters
are the same as those considered initially in Sec. III A—i.e.,
v1=E21=0.1 a.u., v2=v1/11, «1=3.9310−3 a.u. sI =5.3
31011 W/cm2d, «2=8.5310−4 a.u. sI =2.531010 W/cm2d,
t1=15.2 fs (10 optical cycles), and t2=250 fs (15 optical
cycles). The relevant system properties for levels 1 and 2 are
E21=0.1 a.u. s21947 cm−1d, m12=3 a.u. s7.62 Dd, and d21

=m22−u11=6.5 a.u.s16.52 Dd. A third energy level is intro-
duced above the excited state. The important properties that
define the third state are its energy spacing from the second
state, the transition dipole connecting it to the ground state 1,
the transition dipole connecting it to state 2, and its perma-
nent dipole moment. The energy of the third state is chosen
to be E31=12E21/11=E21+v2, E31=E21+v2/2, or E31=E21
+2v2. In the first case, levels 2 and 3 are exactly in reso-
nance with the probe laser frequencyv2, and thus the se-
quential 1→2→3 excitation is feasible. In the second and
third cases, levels 2 and 3 are off resonance and the third
state may only be populated due to processes related to the
bandwidth of the pump laser. Two possible situations are
considered for the the transition dipole moment connecting
levels 1 and 3: one is for strongly coupled states—i.e.,m13
=1—and the other for uncoupled states—i.e.,m13=0. For
each of these 1→3 transition dipole moments, three different
transition dipole moments connecting states 2 and 3 have
been considered:m23=0.0 a.u., 0.1 a.u., and 1.0 a.u. In order
to ease interpretation, we consider the third level to have a
permanent dipole moment such thatd31=m33−m11=6.5 a.u.

FIG. 4. The final population of the excited stateP2sd2,`d versus
probe laser CEPd2 and the duration of the pump laser(in units of
optical period of pump laser; see text for details). Here we only
show the exact numerical results.

FIG. 5. The final population of the excited state versus probe
laser CEP for the parameters in Fig. 2 rescaled byg=10 (see text
for details).
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andd32=m33−m22=0. All of these molecular parameters are
chosen to be realistic and to simulate the relevant effects of
neighboring energy levels on the CEP dependence of the
final excited-state populations in the 1→2 transition.

We first consider the situation where states 1 and 3 are not
coupled,m13=0, and the energy of the third state is chosen to
be E31=12E21/11=E21+v2. Therefore, the population in the
neighboring energy level 3 can only arise via sequential cou-
pling through excited state 2. In Fig. 6, the final excited-state
populationsP2sd2,`d andP3sd2,`d are illustrated as a func-
tion of the probe laser’s CEP for three choices ofm23 (0 a.u.,
0.1 a.u., and 1.0 a.u.). Note thatm13=0 plus m23=0 corre-
sponds to the original two-level results of Fig. 2 and thus the
final population of state 3 is zero; see Fig. 6(b). The primary
effect of the introduction of the third level is to cause a
systematic decrease in the population of state 2. The CEP
dependence of the final-state populations is retained and it
has approximately the same symmetry as in the two-level
case. There is a slight breaking of the symmetry—i.e.,

P2sd2,`dÞP2s2p−d2,`d—for the strongly coupled case
wherem23=1. The effect of the third level can be understood
by considering the Rabi frequency of the population transfer
from state 2 to state 3. Due to the sequentially coupled nature
for this case, population in state 3 only arises via state 2. The
Rabi period of the 2-3 transition,T<2p / sm23«2d, is 1800 fs
or 180 fs form23=0.1 or 1.0, respectively[note thatf2std is
approximately constant during the pump pulse]. Since this
Rabi period is much larger than the pump pulse length, the
evolution of the system can be divided into two stages. In the
first stage, the two-level system comprised of states 1 and 2
interacts with the pump and probe laser fields, and this re-
sults in the population of state 2 over a time scale dictated by
the duration of the pump laser(which is much shorter than
the Rabi period governing evolution into state 3). In the sec-
ond stage, the two-level system comprised of states 2 and 3
interacts with only the probe laser as the pump laser has
finished. As discussed in Sec. II, the first process depends on
the CEPd2. The second process which involves a weak laser
field of long pulse duration is independent ofd2. Therefore,
the behavior of this sequential coupled three-level system
retains the general CEP dependence exhibited in the original
two-level system. Note that as the Rabi period for the 2
→3 transition becomes shorter—i.e.,m23 increases for a
fixed probe field strength—the excitation cannot be separated
into these two sequential processes and the symmetry seen in
the two-level system is broken.

We now consider the situation where state 3 is coupled
directly to state 1 and, possibly, also to state 2. Again, the
energy of the third state is chosen to beE31=12E21/11
=E21+v2. Therefore, population in state 3 can arise both by
direct excitation from state 1 and by sequential excitations
via state 2. Figure 7 illustrates the final excited-state popula-
tions P2sd2,`d and P3sd2,`d as a function of the probe la-
ser’s CEP for three choices ofm23 (0.0 a.u., 0.1 a.u., and
1.0 a.u.). Clearly, there is still a dependence of the final-state
populations on the probe laser’s CEP. The general phase de-
pendence in the two-level system is retained for state 2 in the
three-level system. However, the 1→3 coupling introduces
significant asymmetry in the final population of state 2 for
the probe laser’s CEP betweenf0,pg andfp ,2pg. The asym-
metry arises since there is now a direct pathway from the
ground state to excited state 3. The pump laser is not tuned to
the one-photon resonance with state 3—i.e.,v1ÞE31. As
shown by Brown[31], for the two-level system, when the
pump laser is tuned away from the one-photon resonance,
there is symmetry aroundd2=p rather than aroundp /2 as is
the case here when the pump laser is tuned to the one-photon
resonance. The broken symmetry in the three-level model
arises due to competition between the direct excitation to
state 3 versus excitation to state 2. It is thus dictated by the
relative magnitudes of them12 andm13 transition dipole mo-
ments and the pump laser field strength; recall thatd12=d13,
so the permanent dipole moments play no role in the com-
petition between these two processes.

It should be emphasized that the results of Figs. 6 and 7
correspond to the worst case scenario, where the upper levels
are resonantly coupled byv2 and state 3 is within the band-
width of pump laser. Even for this case, the general CEP

FIG. 6. The final population of the excited states versus probe
laser CEP for the laser parameters of Fig. 2:(a) state 2 and(b) state
3. The transition dipole moment connecting states 2 and 3 ism23

=1.0 a.u.(solid line), 0.1 a.u.(dashed line), and 0.0 a.u.(dotted
line). There is no transition dipole moment connecting states 1 and
3—i.e., m13=0.0 a.u. The final population of state 3 is zero when
m13=m23=0 since this corresponds to the original two-level results
of Fig. 2.
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dependence is well retained. However, due to the scaling law
discussed in Sec. II, the original in-resonance system can
always be rescaled to be off resonance. For example, for the
above three-level system, if the molecular configuration is
kept unchanged, but all the laser parameters are rescaled by
g=2, the resulting excitation probabilities to state 2 will re-
turn to the original two-level results shown in Fig. 2; i.e., the
background level will have no effect.

We now explicitly consider the off-resonance case where
the energy of the third state is chosen to beE31=E21+v2/2
or E31=E21+2v2. State 3 is coupled directly to state 1,m13
=1.0 a.u., and to state 2,m23=1.0 a.u. Figure 8 illustrates the
final excited-state populationsP2sd2,`d and P3sd2,`d as a
function of the probe laser’s CEP for the two possible ener-
gies of state 3. As discussed above, the laser parameters are
the same as for the results illustrated in Fig. 2. When state 3
is far off resonance of the probe laser frequency and outside
the bandwidth of the pump laser—i.e.,E31=E21+2v2—the
results are nearly identical to those for the two-level model;
there is a very small populations,0.01d in state 3. On the
other hand, when state 3 is off resonance with the probe

frequency but within the band width of the pump laser—i.e.,
E31=E21+v2/2—a significant asymmetry in the final popu-
lation of state 2 for the probe laser’s CEP betweenf0,pg and
fp ,2pg is exhibited. As discussed for Fig. 7, the broken sym-
metry arises due to competition between the direct excitation
to state 3 versus excitation to state 2. Clearly, if the probe
laser is off resonance relative to the energy spacing with the
background state and the bandwidth of the pump laser is
smaller than the energy spacing, the two-level model be-
comes applicable. Both of these criteria can be satisfied uti-
lizing the scaling rules that have been determined.

The results based on the three-level model demonstrate
that the two-level model provides qualitatively correct be-
havior. While neighboring energy levels can influence the
details of the CEP effect, it is important to note that the laser
parameters can always be rescaled to quantitatively justify
the use of a two-level model.

IV. SUMMARY AND CONCLUSIONS

By considering the Hamiltonians derived in Sec. II—i.e.,
Eqs.(12) and(16)—several important points with regards to

FIG. 7. The final population of the excited states versus probe
laser CEP for the laser parameters of Fig. 2:(a) state 2 and(b) state
3. The transition dipole moment connecting states 2 and 3 ism23

=1.0 a.u.(solid line), 0.1 a.u.(dashed line), and 0.0 a.u.(dotted
line). The transition dipole moment connecting states 1 and 3 is
m13=1.0 a.u.

FIG. 8. The final population of the excited states versus probe
laser CEP for the laser parameters of Fig. 2:(a) state 2 and(b) state
3. The transition dipole moment connecting states 2 and 3 ism23

=1.0 a.u. and the transition dipole moment connecting states 1 and
3 is m13=1.0 a.u. The energy of the third state isE31=E21+v2/2
(solid line) or E31=E21+2v2 (dashed line).
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the appearance of the CEP effect in the two-level system can
be noted. If the probe laser frequency is decreased, the pump
pulse length must be increased for a CEP effect to be dem-
onstrated in order to maintain the conditiont1<1/v2. As the
frequency of probe laser decreases, absorption pathways in-
volving greater numbers of probe photons would be acti-
vated if the pump and probe laser field strengths are not
adjusted accordingly; see Eq.(12). In general, having more
active optical paths will decrease the dependence of the final
molecular-state populations on the CEP of the probe laser
[31]. If the pump and probe laser field strengths are de-
creased according to the rescaling of the parameters dis-
cussed in Sec. II, the laser plus molecule system will have
the same physical conditions as the original one. Thus, for
these scaled pulse parameters, an identical CEP dependence
effect would be found as in the original situation. If there is
strong CEP dependence of the final molecular-state popula-
tions in the original parameter regime, a much longer pump
pulse length and much weaker fields could be used to
achieve the same phase dependence which originally need
relatively short pulses and strong fields.

If the carrier envelope phase of the probe pulse is un-
known, the results presented here demonstrate that a second
laser (the pump pulse) can be used to determine the CEP
through a measurement of the excited-state population in di-
polar molecules—e.g., as achieved through a subsequent ion-
ization step and measurement of total ion yield. However, the
measurement of an unknown carrier envelope phase requires
detailed knowledge of the molecular structure—i.e., ener-
gies, transition dipole moments, and permanent dipole mo-
ments. Also, in the situations where the two-level results are
most applicable—i.e., long and weak laser pulses where the
scaling can be utilized—there is little need for measurement
of the CEP since it can be measured via other means[30].

On the other hand, if the CEP of the probe laser can be
precisely manipulated, the results presented here demonstrate
that the final population of the excited state can be com-
pletely controlled—i.e., varied between 0% and 100% popu-
lation. While this is certainly interesting, work is currently
underway to determine of one can exhibit similar control, for
example, in three-level systems where the upper levels are
degenerate. This represents the simplest model for chemical
control as the two degenerate states can correspond to differ-
ent products.

The results presented here, as well as those in Refs.
[31,32], also demonstrate that when a laser-matter interaction
involving a temporally short high-frequency pump compo-
nent (which leads to a resonance transition of the system)
and a long low-frequency probe component is considered,
the possible effects of the CEP must be examined carefully.
The focus of this paper, as well as the previous ones[31,32],
has been on situations where the CEP of the probe laser can
be controlled. However, if the CEP of the laser pulses cannot
be precisely controlled in experiments, the results clearly
demonstrate that theoretical predictions must be properly
phase averaged in order to interpret the experimental results.
For example, if both carrier-envelope phases were set to zero
(as is often done for calculations), when computing the final
excited-state population for the molecule and field param-
eters of Fig. 2, a final-state population of zero would be
predicted. However, if the properly phase-averaged results
were determined, one would obtainP2s`d=0.502.

In conclusion, we have further discussed the problem of
using pump(in resonance with the two-level system) and
probe (having a much smaller frequency than the energy
level spacing) lasers to produce a CEP dependence of the
final molecular-state populations in a simple two-level dipo-
lar molecule. By considering a three-level model, we have
shown that the CEP effect persists even in the presence of
background states. Using RWA techniques, an effective
Hamiltonian was derived for the two-level model that pro-
vides a clear physical picture of the CEP dependence effect
from both the energy-domain and time-domain perspectives.
In the energy domain, different photoexcitation channels in-
terfere, while in the time domain, an effective ultrashort
pulse is formed by the combination of pump and probe la-
sers. We demonstrated that the phase dependence will be
most significant when the probe frequency is similar to the
pulse duration of the pump laser—i.e.,v2<2p /t1. With the
help of a qualitative discussion of the physical mechanism,
scaling properties were found which show that using weak
and low-frequency fields, a strong CEP dependence of the
final molecular-state populations can still be exhibited. By
rescaling the laser parameters, the effects of background
states can be minimized or removed entirely. These findings
may help the possible setup of experimental tests of the
phase dependence effect described here.
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