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Diffraction by circular optical lattices
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When a single two-level atom interacts with a pair of Laguerre-Gaussian beams with opposite helicity, this
leads to an efficient exchange of angular momentum between the light field and the center-of-mass motion of
the atom. When the radial motion is trapped by an additional potential, the wave function of a single localized
atom can be split into components that rotate in opposite direction. This suggests a scheme for atom interfer-
ometry without mirror pulses.
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I. INTRODUCTION (Laguerre-Gaussian beandf one considers the paraxial

It is well known that light may carry both angular and Iimit_ of these_ waves, the expressions for the light fields are
linear momentum. When a light field interacts with matter,Particularly simplef1]:
exchange of momentum and angular momentum between _ i (kz-wt+
light and matter can occur. Laguerre-Gauss{a) light E(p.2,¢,0) = Eolp,2)€" P+ec, (@)
modes are known to carry orbital angular momentum. If onevhere p,z, ¢ are the cylindrical coordinatesy is the fre-
employs the paraxial approximation for the light field, simple quency, and the integer indéxndicates the helicity of the
expressions for the fle!d amplitudes and its average angularg peam. For two Laguerre-Gaussian beams with opposite
momentum can be derived]. An easy way to produce such pejicity, namely,l and 4, the total field can be written as
beams is using spiral phase plafgs _

Another important question is the separability of the total E(p,z ¢,t) = 2Eq(p,z)cosl ¢ €&V + ¢ c. (2)
angular momentum into “orbital” and “spin” parf{8]. The o . .
orbital part is associated with the phase distribution of the/Ve indicated already in the Introduction that one expects a

light field, and the spin part is connected with its polariza-more efficient exchange of angular momentum between the
tion. This question is essential in the context of momentuntight field and the atom in the configuratiq@) than in a
transfer from light to the atom when one includes atomicsingle LG mode. This expectation is based on the corre-
internal degrees of freedom. It has been shown that “spinsponding situation of momentum exchange between an atom
and “orbital” angular momentum of the photon are trans-and a standing light wave. In addition to the light figR),
ferred from the quantized light field to, respectively, the in-the atomic motion in the radial direction is assumed to be
ternal and the external angular momentum of the atom. Theonfined by an extra trapping potentid{p) with cylindrical
interaction with a LG mode is a possible way to entanglesymmetry.

internal and external degrees of freedom of an aémThe The z dependence of the amplitud&(p,z) is slow and
transfer of the a_mgular momentum of light to particles has;an pe ignored. Properly shaping the LG mode, the radial
been also experimentally demonstratedsh where trapped gependence oFy(p,2) can be ignored on the characteristic
massive particles are set into rotation while interacting W'”\Nidth of the trapping potentiall(p). The trapping potential

the light field. Other authors have studied the cooling prop- . d fine th h lindrical shell
erties for atoms using LG beanfi§]. LG beams have also U_(p) IS Suppose to confine the atom on the cylindrical sne
been proposed as a two-dimensional trapping potential fofith radius po. Thus, we assume thdiy(p,2) =E, is con-

Bose condensatd3]. stant. For a two-level atom the Hamiltonian in the rotating-

Whereas angular momentum exchange between light anfave approximation can then be written as
matter is a relatively new topic, the linear momentum ex- . . _ _
change is a well-established isgi8e9)]. It is well known that ~ H=Ho+U(p) + 2hiwgcosl p(€**“V]e)(g| + e =V |g)(e]),
two counterpropagating waves lead to a more efficient ex- (3)
change of linear momentum between an atom and the light
field than a single traveling wave. Using quantum languaga&vhere wg is the Rabi frequency of each of the traveling
for a classical light field, one can describe such an interactiowaves that create the standing wawes the laser frequency,
as a sequence of successive single-photon absorption af&d
emission events. This suggests that one may expect more .
efficient angular momentum exchange between a light field .= P_2 + fiwg _ 4
and an atom if one uses two LG modes with opposite helic- 07 oM 2 (exel -[g)(g)) )
ity, e.g., counterrotating waves. R
is the Hamiltonian for a free atom, whelPes the momentum
Il. GENERAL FRAMEWORK operator of the atom|g) and |e) indicate the ground and
We start with radiation fields propagating along thexis ~ excited states, and,=(E.~Eg)/# defines the transition fre-
with wave numbek and carrying orbital angular momentum quency of a free atom.
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The dynamics of the atom is rather simple if the laser is
far detuned. We assume that

|A| > (,()R, (5)
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where the detuning is defined af\ =wy—w. For an atom in ; B ",»,’.,,./,,;.;,,;.
the ground state, the excited state can be adiabatically elimi- i
nated, which leads to an effective Hamiltonian in the well-

known form

~  P?
H=— +U(p) +V(¢), (6)

2M
where the light-shift potential is specified by
V(¢p) = — Q) cosl ¢ (7)

with Q=w3/A.
A
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IIl. TRAPPING IN COUNTERROTATING FIELDS

Some general conclusions on the bound states of the
Hamiltonian (6) directly follow from its symmetry proper-
ties. We introduce the unitary translation operafadefined
as

T|¢p) = ‘¢+]—T>, 8)

W_here|q§> indicgtes_ the gta_tes V_Vith fixed az_imuthal angle. FIG. 1. Circular lattice structure due to the trapping potential
Since the Hamiltoniar6) is invariant for rotation about an \y v) The plot showsV(x,y)/AQ for 1=2, 4 in Cartesian

angle/l, it follows from a rotational version of the Bloch ¢gordinates.
theorem that the eigenstates of this Hamiltonian are also

eigenstates of. The eigenvalue relation can be expressed agnanner, as Fourier transforms of the Bloch states
T|wy), = e ™w,),, (9)
-1

whereq is referred to as the angular quasimomentum gnd W) = i_ D gaming .
identifies the energy band. We consider a single energy band, v = "
and we suppress the indéxWe can restric to the first

Brillouin zone given as

1

Obviously, the number of Wannier states within an energy
-I=qg<l. (10)  band is equal to |2 just like the number of Bloch states.

The eigenstateld,) should be periodic i with period 2, In Fig. 1 we plot the trapping potentiel) V(x,y)/A{ for
because a rotation overm2must leave the wave function I':2, 4 in Cartesian coordinates. When the potential is suffi-
invariant. The finite range of leads to a discretization of Ci€ntly deep, atoms can be bound in the angular wells, and
angular quasimomentum. On the other hand, a rotation ovéf'® \Wannier states are confined to a single well. An addi-
. ivalent to the action of the operaftf. Since it tional cpnflmng potentlaU(p) is requwgd to trap particles in
fzom(;\?vse?rlélr\:]aég (9) that P ' the radial direction, and to avoid their escape. Then the po-
' tential (7) can create a circular lattice, where particles are
-]-z||q, )= e 27 ) Iocgted near the minima of thg p(_ariodic potgntial. A circular
4 @ optical lattice has many applications, as discussed recently
we conclude that the only possible values of the angulaby several authorfl0]. A wave packet in such a lattice can
quasimomentum are determined from the condition show interesting dynamics, such as revivals and bouncing, as
G Am_q discussed recently iflL1].
Henceq must be integer, and each band contaih8®ch
states. For example, fée 2 the first Brillouin zone contains IV. DIFFRACTION IN COUNTERROTATING FIELDS
only the four valueg=-2,-1, 0, 1 of the angular quasimo-
mentum. Since the potentials have a cylindrical symmetry, it is con-
Also, in analogy to the case of an infinite linear lattice, venient to express the kinetic energy in cylindrical coordi-
one can introduce localized Wannier sta@g) in the usual nates, and we write
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P2 :_ﬁ_(ﬂ_+ 19 o, U_), 12 codd — exp{-—‘/’} 17)
2M ~ 2M\ 92 pap' dp p?ad? 2 4

The dynamics along the axis is completely free. For sim- for largeN. The half width in the azimuthal angle is of the

plicity, we assume that the radial potentiflp) is narrow, so  order of V2/N. From the asymptotic form of the binomial

that the radial motion is restricted to a ring with radjgys ~ coefficient

and we ignore radial dispersion in the present section. We

return to it in Sec. VI, where the effect of the radial disper- 2N _ ZZNL m?

sion is estimated. The motion of an atom in the angular di- a V’%ex B

rection is then described by the one-dimensional Hamil-

tonian we find the asymptotic expression of the Fourier coefficient
~ h? P 1/4 P
H=-———-%Qcol ¢, 12 2
27 ’ " =) o) 9

which has the azimuthal angle as the only coordinate. The o

quantity | =Mp is the moment of inertia. This Hamiltonian This demonstrates that the half width in angular momentum

is the circular counterpart of the Hamiltonian for simple lin- iS Of the order ofyN/2.. _

ear diffraction. The main difference is that the coordinate ~ |f we take the durationr of the light pulse short and the

is periodic, which forces the angular wave numbédo be ~ Moment of inertia is large, so thati?l?7/(2l), no propaga-

integer. Diffraction of a single atom described by such ation occurs, and the kinetic-energy term can be neglected

linear Hamiltonian has been extensively studied theoreticallfuring the interaction. This is equivalent to the standard

and experimentally by several grouf9]. Raman-Nath approximation applied by Caoetkal. [8]. Then
Just as is usually done for linear diffraction, we considerthe final state at time 0 after the interaction is

the situation that an initially localized atom interacts with the )

optical potential during a small interaction intenfair, 0], ®(¢,0) = (¢, ~ expliQ7cos ¢). (19

\tl;lgr?;(i?[ié?]efritr?t]hglifafgeﬁoiﬁﬂgégtglogég? tlr?ét'ﬁﬁ'eggﬁhis state can be expressed as an expansion in angular mo-
y mentum eigenstates, in the form of a Fourier series, which is

tion and the far field IS .d_escr_|b§d by free evolution. We a5ist an expansion in the angular momentum eigenstates. This
sume the atom to be initially in its ground state and s'tuateagives

in a small segment of the ring. Since the angular wave func=

tion ®(¢) of the atom must be periodic at all times, we

cannot represent a localized wave packet by a Gaussian. The Dd(p,0) = i—z Le™?, (20)
initial state at the beginning of the interaction interval is V27 m
taken as
s where
— N~
($,=7) = Cyoos™, 13 (= expliQr2) S i o (Q712) (21)
with N a large natural number, andy the normalization "
constant in terms of the ordinary Bessel functions.
92N States with large angular momentdm| >N are initially
Cn=—F/——=. (14 not populated, whereas all angular momentum states get
/277(4’\') populated after the interaction. Thus, the configuration with
2N two LG modes leads to more efficient exchange between the

. . . ... light field and the atom than a single LG beam. The physical
The statg(13) can be written as a Fourier series, which ISJl"Stinterpretation is the same as for diffraction in the field of

an expansion in the angular momentum eigenstates. Th@assical counterpropagating waves: an atom picks up a pho-

gives ton from the light beam with one helicity and emits a photon
1 N , into the opposite one. In Fig. 2 we present a typical diffrac-
O(p,- 7)== > ™, (15  tion pattern calculated in angular momentum space. More
V27 e precisely, we plot the angular momentum coefficigts?
with before the interaction, and the coefficiehfg|? after the in-
teraction with the circular lattice, fof27=6. In the latter
= 1 (2’\' ) (16) case, the momentum peaks correspond to different values of
m- AN\ \N+m/’ n. The distance between neighboring peaks is equall.to 2
<2N> The half width of each peak is of the orderdf/2. In order

that the angular momentum peaks be separately visible, it is
The initial state(13) is localized around)=0, which is clear necessary that the initial angular distribution covers several
from the asymptotic form azimuthal potential wells.
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025 |\|,m|2 tary wave packets centered atl2in the angular momentum
space. Each of these peaks gives a separate contribution to
the wave function that moves with its own angular group
velocity 2ém=4énl=v,. The angular separation between
0.15 neighboring wave packets is given bgl4 which is propor-
tional to |. Since wave packets with opposite angular mo-
mentum values will move in opposite directions, i.e., clock-
wise and anticlockwise, they will eventually meet again at
some timet=T and start to interfere.
005 In order to estimate the time value that interference sets
in, we use the fact that for not too small argumeiits 2 the

: m 2 Bessel functionl,(£27/2) with the maximal value is the one
) N 0 5 with n=n,.,=Q7/2. Hence, the meeting time of the pair of
IC lz strongest counterpropagating packets is
0.05 w v
- Umax 2804
The exact expression for the time-dependent wave func-
0.03 tion can be given in an integral form by using the mathemati-
cal identity[12]
0.02
i H 1 N img’ i 2
expime — i &m?) = s do'e™ exdi(¢ - ¢')%4ét],
VATl —00
A J l A
-100 -50 0 50 100 23

FIG. 2. Probability distribution of angular momentumbefore ~ Which can be checked by performing the integration. When
(upped and after the pulsdowen). Here the helicity of the circular  Substituting this identity in the right-hand side of Hg2),
lattice isl =10, the initial state is determined By=10 and the pulse and using the expansiq@0), we arrive at the exact expres-

duration 7 is given byQr=6. sion
1 * :
V. FREE EVOLUTION ON A RING D(p,t) = . igtf A’ D(¢',0)exdi(h— ¢)2A¢t].
. . . | ST —%
As shown above, the angular momentum distribution of
an atom after the interaction with a pair of counterrotating (24)

LG beams can be broad. However, as a result of the Raman-

Nath approximation, the angular distribution of the atom hag> Similar equation is well known to describe the free evolu-
not been modified during the interaction, so thdx(s, tion of a quantum particle in one dimension. In the present

-7)|2=|®(¢,0)2. In this section we investigate the spatial case it is crucial that the integration be performed over all
form of the atomic distribution in the far field, i.e., after free Val'ﬁ'es. of¢’, while using that _thg wave functiob(¢’,0) is .
evolution of the atom over the ring. As before, the motionP€ricdic. Because of this periodicity, we can express the in-
along thez axis is completely free and the radial motion is (€97l in(24) as a sum of bounded integrals,

restricted on a ring. The initial state of this free evolution is

. : S 2m(p+1)
given by Eq.(19), with the expansion in angular momentum (1) = f de' (', 0)
states given by Eqg20) and (21). For positive times, the N Wgtp__w 2mp '
atomic motion is still restricted to the ring with radigg by 5
the confining potentidl(p), and the evolution of the angular xexfi(¢ = ¢')74ét]. (25

wave function®(¢) is governed by the Hamiltonia(l2)
with Q=0. With the initial state(20), the time-dependent
wave function is given by the expansion

By a shift of variables the integrations can be performed over
the interval[0,27], which leads to an integral expression
over a single interval,

Dbt = =2 Lrexpimg—icm?)  (22)
N2 m

(1) = — E exii(¢ - 2mp)74&]
where ¢é=#/(21), and the coefficientg,, are given in Eq. elp=—e
(21). As displayed in Fig. 2, the distributioff,|? typically e
separates into a number of peaks centerem=a®nl, where Xf de'®(4",1)
n=0,+1,+2,..., which are separated by.Z'hus, the super- 0
position statg22) can be considered as a series of elemen- xXexg—i(¢-2mp) P’ 12&]. (26)
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Here we introduced the modified wave functidnwhich is o (d),t)|2
just the initial wave function, modified by a phase factor, .
defined by

B(¢',1) = D(¢', 0)explip F4ét]. (27) 08
In order to emphasize its physical significance, we write Eq. 06

(26) in the form

(1) @tpgwexmw 2mp)2I4&t]F 2 )

(28)
where the functiork is the Fourier transform of the modified
wave function defined over a single period,

2m

F(x) = oo dop' D(¢' Hexd - ixe'].

v2mJo

- -n/2 0 2 T

FIG. 3. Angular distributiorj®(¢,1)|? is plotted versus the azi-
muthal anglep before the left and right rotating components cross.
Here &=37Xx 1073, the value ofN determining the width of the

) o . _initial state, the helicityl, and the pulse durationare the same as
For a freely evolving quantum particle in one dimension,in Fig. 2.

the time-dependent wave function has the same form as the
term with p=0 in Eqg.(28). The other terms can be under- cal calculation of the diffraction pattern for the two time
stood from the periodic nature of the dynamics on the circleregimes. In Fig. 3 the angular probability distribution
where each period of the initial wave function serves as afd(¢,t)|? is shown for a time<T. The spatial pattern re-
additional source that contributes to the wave functionsembles the angular momentum distribution shown in Fig. 2.
W(¢,1) in the relevant intervdl0, 2]. Because of the finite  Figure 4 displays the same probability distribution for a later
range of the integration in Eq29), the distinction between time t>T. One notices that the counterrotating components
the modified wave function and the initial wave function give rise to clear interference fringes. These fringes will be
vanishes for times obeying the inequality>1/(éN), when  quite sensitive to any perturbation in one of the arms. This
we find in a good approximation suggests to use the present scheme as an atomic interferom-
~ eter[12]. Usually, interferometers have two key components,
O(¢',1) = D(¢',0). (300 namely, a beam splitter and a mirror. A coherent incoming
In this limit, the functionF is just the Fourier transform of atomic beam_is split into spatially separateq components by
the initial wave function®(¢,0), and®(¢, 1) is simply de- the beam splitter. Two arms are formed, which freely propa-
termined by the Fourier transforfof the initial wave func-

gate and may undergo different phase shifts, which are
tion d(¢,0) multiplied by a phase factor. Equatig®8) has

(29)

probed by recombining the two arms. The interference pat-
tern contains the information about the phase perturbation in

the flavor of the far-field picture of the time-dependent wave

function. The Fourier transform of the initial state determine
not only the momentum wave function, but also the
asymptotic form of the coordinate wave function, scaled by

S

a

one of the arms. Recombination usually requires atomic mir-
rors. In atom optics, beam splitters and mirrors are com-
monly realized by using light pulses, with carefully selected
duration and shape.

factor that varies linearly with time. Characteristic for the
present case of evolution on a circle is that each interval of
length 27 serves as a separate source, each giving a contri-
bution to ®(¢,t). Since the Fourier transform of the wave
function determines the angular momentum amplitudes, we
may conclude that the wave function for not too small times
has the same form as the initial distribution of angular mo-
mentum, scaled by the factogt2

It is clarifying to follow the temporal evolution of
|®(¢,1)]? by distinguishing two time regions, namely=Q
<Tandt=T. In the region G<t<T, the wave function has
not yet spread beyond a single period of length and only
a single term in Eq(28) [or Eq.(26)] differs from zero. The
contributions to the wave function coming from different
sources do not overlap yet, so that one can neglect the inter-
ference term between them. At later tintes T, the diffrac-
tion pattern on the intervdl, 277] is formed as an interfer- muthal angleg after the left and right rotating components cross.
ence pattern between two and more terms in thedere &=67x 1073 the value ofN, the helicityl, and the pulse
superposition stat@5). This picture is confirmed by numeri- duration7 are the same as in Fig. 2.

@ @,e)

0.5

04

7] 3n/2 2n

¢

FIG. 4. Angular distributiorj®(¢,t)|? is plotted versus the azi-
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In the present case, only a single pulse is required thavhen we expand the initial radial wave functi@ip,0) in
splits the initial atomic wave packet into components rotatthe radial eigenfunction&35), so that
ing to the left and to the right. No mirrors are employed in
this scheme. Instead, one uses the radial potebtia) to Q(p,0) = 2 CrrRum), (37)
constrain the atomic motion to a ring. Radial potentials can n
be realized by hollow light beams, which are widely used inwhjle substituting Eq.(20) for the initial angular state

atomic interferometric schemes. ®(¢,0). For the time-dependent state we find
1 imao
VI. RADIAL DISPERSION W(p,pH) =2 \J,—Zwﬁme Qnm(p.t), (38)
m V

In this section we consider the radial dynamics of the here them-d dent radial functi .
diffracted wave function during its free evolution, after the Nere them-dependent radial wave functia@y is
passage of the circular lattice. We assume that the wave func- n=Sc R expl— &t/ 39
tion at timet=0, after the diffracting pulse, is factorized as Q1) zn“ o)X= 1Ennt /1) (39)

W(p,¢,0) =Q(p,0)d(,0), (3D From Eq.(37) one notices thaQ,,(p,0)=Q(p,0), inde-

where the radial parQ of the wave function is sharply Pendentof the angular momentum Itis obvious from the
peaked ap=p,, and the angular wave function is specified radial Schédinger gquat|0r‘(34) and the .|n|t|al condmo_n
by Eq. (20). The radial function Q is normalized (3 that the normalized radial wave func‘uon.obeys the iden-
[[Zdp QAp)p=1]. tity Qu(p,t)=Q_(p,t) for all m. Moreover, since the total

We wish to study the possible deformation of the waveVaVe function before diffraction is even i, it must remain

packet, when the radial dispersion is included during thefVen for all imes. This implies thaf,= ¢, for all m. So just

stage of free evolution. We take the simplest possible trap@S discussed in Sec. IV, the angular distribution separates

ping potential, which allows radial dispersion, and we take!Nt© different wave packets that are counterrotating. Since
for the confining potentiaV/(p) after the diffraction an infi- € Phase 0f,Qn is even inm, its derivative with respect to

nitely deep cylindrical box with radiua, as defined by vr‘\r/]itvr;lllcl)gp?ocs)i?g’vzrl]gefsh%f%nv%;fllat:eg?;;)o;/i(tetleocﬁﬁz ?efa%e::lt(c?ts

Vip) {0 forp<a, interference after the packets have traversed the entire ring.
p =

% for p>a. (32)  The initial radial function is taken as a narrow Gaussian

This potential models a hollow light beam. With this poten- Q(p,0) = exd - (p— po)/2L7]. (40
tial, the normalized eigenfunctions of the Hamiltonian for theyere | is the width andp, represents the initial position of
cylindrical coordinates during the free-evolution stage takgpe \wave packet within the box. The normalized wave func-

the form tion Q(p,t) describes the radial dynamics for each value of
1 . the angular momenturm. As an example, we evaluate the
Voo, ) = Roml(p) =€ ¢ (33)  time behavior of the average radius for each angular momen-
N2m tum, with the given initial radial statet0), according to the
where the radial functionB,,, are solutions of the equation €XPression
[13] -
— 2 2
_ﬁ(}i i_@)_'_v( R=c R <P(t)>m_fo dP|Qm(P,t)| p-
oM p(?ppﬂp pz p m\P) = CnmnmlP) s

The result is displayed in Fig. 5, in the special case that
(34) =10. The average radius displays oscillations, which can be
understood as arising from the outward motion due to the
centrifugal potential, followed by reflection at the hard wall
of the cylinder. The oscillations display collapse, followed by
Rin(p) = In(anmpl@), (35)  a revival. These may be viewed as arising from the initial
dephasing of the contribution from the radial eigenfunctions
R.m with different values oh, due to their energy difference.
The revival of the oscillation can be understood from the
discrete nature of the contributing energy eigenvalues, when
the phase factors due to neighboring eigenenergies have built
up a phase differencem2 Because of the conservation of
Eam=HNa?,, (36)  angular momentum, the probability density near the origin
remains zero. The interference between the counterrotating
with \=#/(2Ma?). For each value of the angular momentumwave packets is illustrated in Fig. 6, for the ring at radius
m, the set of function®,(p) is complete. An expansion of p=p,=a/2. Figure 6 shows the short-time separation of the
the initial state(31) in the energy eigenfunction is found angular wave packets. Figure 6 displays the interference that

with &, the corresponding eigenenergies. The radial func
tions are proportional to the Bessel function of ordgr

with R, normalized in the interval €& p<a. In order that
the wave function vanishes at the eggea of the cylindrical

well, we have to take the numbets,,, for various values of
n as the subsequent zeros of the Bessel funclignThis

determines the corresponding eigenenergies as
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FIG. 5. Time behavior of the average radial distake@)),/a

for the angular momentumm=10. N is the same as in Fig. 2, the 1

width of the initial Gaussian i$.=0.01a, and the initial average

radial distance igpg=a/2.

¢

0.6
arises as soon as overlap occurs arogirdr between the
clockwise and the anticlockwise rotating packets. This dem-
onstrates that the radial wave functioQg(p,t) for different 02
values ofm have sufficient overlap, so that the angular inter-
ference survives the effect of radial dispersion at least for a 0 ) n w2 g 2w
single value of the radius. When a measurement integrates
over the values op, the interference must be expected to be  Fig, 6. Angular distribution|¥(pg, ¢,1)[? in the presence of

weaker. radial dispersion, at the ring=po=a/2. The time values are deter-
mined by\t;=7X 1072 and \t,=27 X 10°3. N,I,Qr are the same
VIlI. CONCLUSIONS as in Fig. 2.

In this paper we describe the diffraction of an atomic . . . .
wave by a circular optical lattice. Such a lattice can beSionS are backed up by numerical calculations. Characteristic

formed by the superposition of two Laguerre—Gaussiarfor the ci_rcular case is that the wave packets corresponding
beams with opposite helicity, which gives rise to a standing® OPPOSite angular momentum will cross each other, even
wave in the angular direction. Such a light field will split a Without applying light pulses to reverse their motion, as in

single localized atom into clockwise and anticlockwise rotat-T0r€ common interferometric schemes. We show that the

ing components. If the system is in a trapping potential in thdntérference is not fully suppressed by radial dispersion
form of a ring or in a cylindrical box, these counterrotating within a cylindrical box. This indicates that the scheme is

components give rise to interference. We express the spatigg@sonably robust to changes in the radial confining poten-

pattern in the far diffraction field in terms of the Fourier tial.

transform of the near-field diffraction pattern. The Raman-

Nath approximation is assumed, which puts an upper bound

to the interaction time. A longer interaction time would sig- ACKNOWLEDGMENT

nificantly complicate the analysis. The periodic nature of the

circular motion modifies this relation compared with the case This work is part of the research program of the “Stich-
of diffraction by a linear standing wave. The general conclu-ting voor Fundamenteel Onderzoek der MateieOM).
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