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When a single two-level atom interacts with a pair of Laguerre-Gaussian beams with opposite helicity, this
leads to an efficient exchange of angular momentum between the light field and the center-of-mass motion of
the atom. When the radial motion is trapped by an additional potential, the wave function of a single localized
atom can be split into components that rotate in opposite direction. This suggests a scheme for atom interfer-
ometry without mirror pulses.
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I. INTRODUCTION

It is well known that light may carry both angular and
linear momentum. When a light field interacts with matter,
exchange of momentum and angular momentum between
light and matter can occur. Laguerre-Gaussian(LG) light
modes are known to carry orbital angular momentum. If one
employs the paraxial approximation for the light field, simple
expressions for the field amplitudes and its average angular
momentum can be derived[1]. An easy way to produce such
beams is using spiral phase plates[2].

Another important question is the separability of the total
angular momentum into “orbital” and “spin” parts[3]. The
orbital part is associated with the phase distribution of the
light field, and the spin part is connected with its polariza-
tion. This question is essential in the context of momentum
transfer from light to the atom when one includes atomic
internal degrees of freedom. It has been shown that “spin”
and “orbital” angular momentum of the photon are trans-
ferred from the quantized light field to, respectively, the in-
ternal and the external angular momentum of the atom. The
interaction with a LG mode is a possible way to entangle
internal and external degrees of freedom of an atom[4]. The
transfer of the angular momentum of light to particles has
been also experimentally demonstrated in[5], where trapped
massive particles are set into rotation while interacting with
the light field. Other authors have studied the cooling prop-
erties for atoms using LG beams[6]. LG beams have also
been proposed as a two-dimensional trapping potential for
Bose condensates[7].

Whereas angular momentum exchange between light and
matter is a relatively new topic, the linear momentum ex-
change is a well-established issue[8,9]. It is well known that
two counterpropagating waves lead to a more efficient ex-
change of linear momentum between an atom and the light
field than a single traveling wave. Using quantum language
for a classical light field, one can describe such an interaction
as a sequence of successive single-photon absorption and
emission events. This suggests that one may expect more
efficient angular momentum exchange between a light field
and an atom if one uses two LG modes with opposite helic-
ity, e.g., counterrotating waves.

II. GENERAL FRAMEWORK

We start with radiation fields propagating along thez axis
with wave numberk and carrying orbital angular momentum

(Laguerre-Gaussian beams). If one considers the paraxial
limit of these waves, the expressions for the light fields are
particularly simple[1]:

Esr,z,f,td = E0sr,zdeiskz−vt+lfd + c.c., s1d

where r ,z,f are the cylindrical coordinates,v is the fre-
quency, and the integer indexl indicates the helicity of the
LG beam. For two Laguerre-Gaussian beams with opposite
helicity, namely,l and −l, the total field can be written as

Esr,z,f,td = 2E0sr,zdcoslf eiskz−vtd + c.c. s2d

We indicated already in the Introduction that one expects a
more efficient exchange of angular momentum between the
light field and the atom in the configuration(2) than in a
single LG mode. This expectation is based on the corre-
sponding situation of momentum exchange between an atom
and a standing light wave. In addition to the light field(2),
the atomic motion in the radial direction is assumed to be
confined by an extra trapping potentialUsrd with cylindrical
symmetry.

The z dependence of the amplitudeE0sr ,zd is slow and
can be ignored. Properly shaping the LG mode, the radial
dependence ofE0sr ,zd can be ignored on the characteristic
width of the trapping potentialUsrd. The trapping potential
Usrd is supposed to confine the atom on the cylindrical shell
with radius r0. Thus, we assume thatE0sr ,zd.E0 is con-
stant. For a two-level atom the Hamiltonian in the rotating-
wave approximation can then be written as

Ĥ = Ĥ0 + Usrd + 2"vRcoslfseiskz−vtduelkgu + e−iskz−vtduglkeud,

s3d

where vR is the Rabi frequency of each of the traveling
waves that create the standing wave,v is the laser frequency,
and

Ĥ0 =
P̂2

2M
+

"v0

2
suelkeu − uglkgud s4d

is the Hamiltonian for a free atom, whereP̂ is the momentum
operator of the atom,ugl and uel indicate the ground and
excited states, andv0=sEe−Egd /" defines the transition fre-
quency of a free atom.
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The dynamics of the atom is rather simple if the laser is
far detuned. We assume that

uDu @ vR, s5d

where the detuningD is defined asD=v0−v. For an atom in
the ground state, the excited state can be adiabatically elimi-
nated, which leads to an effective Hamiltonian in the well-
known form

Ĥ =
P̂2

2M
+ Usrd + Vsfd, s6d

where the light-shift potential is specified by

Vsfd = − "V cos2lf s7d

with V=vR
2 /D.

III. TRAPPING IN COUNTERROTATING FIELDS

Some general conclusions on the bound states of the
Hamiltonian (6) directly follow from its symmetry proper-

ties. We introduce the unitary translation operatorT̂ defined
as

T̂ufl = Uf +
p

l
L , s8d

where ufl indicates the states with fixed azimuthal angle.
Since the Hamiltonian(6) is invariant for rotation about an
anglep / l, it follows from a rotational version of the Bloch
theorem that the eigenstates of this Hamiltonian are also

eigenstates ofT̂. The eigenvalue relation can be expressed as

T̂uCql j = e−isp/ldquCql j , s9d

whereq is referred to as the angular quasimomentum andj
identifies the energy band. We consider a single energy band,
and we suppress the indexj . We can restrictq to the first
Brillouin zone given as

− l ø q , l . s10d

The eigenstatesuCql should be periodic inf with period 2p,
because a rotation over 2p must leave the wave function
invariant. The finite range off leads to a discretization of
angular quasimomentum. On the other hand, a rotation over

2p is equivalent to the action of the operatorT̂2l. Since it
follows from Eq.(9) that

T̂2luCql = e−2ipquCql,

we conclude that the only possible values of the angular
quasimomentum are determined from the condition

e−2ipq = 1.

Henceq must be integer, and each band contains 2l Bloch
states. For example, forl =2 the first Brillouin zone contains
only the four valuesq=−2,−1, 0, 1 of the angular quasimo-
mentum.

Also, in analogy to the case of an infinite linear lattice,
one can introduce localized Wannier statesuQnl in the usual

manner, as Fourier transforms of the Bloch states

uCql =
1

Î2l
o

n=−1

l−1

eiqsp/ldnuQnl.

Obviously, the number of Wannier states within an energy
band is equal to 2l, just like the number of Bloch states.

In Fig. 1 we plot the trapping potential(7) Vsx,yd /"V for
l =2, 4 in Cartesian coordinates. When the potential is suffi-
ciently deep, atoms can be bound in the angular wells, and
the Wannier states are confined to a single well. An addi-
tional confining potentialUsrd is required to trap particles in
the radial direction, and to avoid their escape. Then the po-
tential (7) can create a circular lattice, where particles are
located near the minima of the periodic potential. A circular
optical lattice has many applications, as discussed recently
by several authors[10]. A wave packet in such a lattice can
show interesting dynamics, such as revivals and bouncing, as
discussed recently in[11].

IV. DIFFRACTION IN COUNTERROTATING FIELDS

Since the potentials have a cylindrical symmetry, it is con-
venient to express the kinetic energy in cylindrical coordi-
nates, and we write

FIG. 1. Circular lattice structure due to the trapping potential
Vsx,yd. The plot showsVsx,yd /"V for l =2, 4 in Cartesian
coordinates.
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P̂2

2M
= −

"2

2M
S ]2

] z2 +
1

r

]

] r
r

]

] r
+

1

r2

]2

] f2D . s11d

The dynamics along thez axis is completely free. For sim-
plicity, we assume that the radial potentialUsrd is narrow, so
that the radial motion is restricted to a ring with radiusr0,
and we ignore radial dispersion in the present section. We
return to it in Sec. VI, where the effect of the radial disper-
sion is estimated. The motion of an atom in the angular di-
rection is then described by the one-dimensional Hamil-
tonian

Ĥ = −
"2

2I

]2

]2f
− "V cos2lf, s12d

which has the azimuthal angle as the only coordinate. The
quantity I =Mr0

2 is the moment of inertia. This Hamiltonian
is the circular counterpart of the Hamiltonian for simple lin-
ear diffraction. The main difference is that the coordinatef
is periodic, which forces the angular wave numberl to be
integer. Diffraction of a single atom described by such a
linear Hamiltonian has been extensively studied theoretically
and experimentally by several groups[8,9].

Just as is usually done for linear diffraction, we consider
the situation that an initially localized atom interacts with the
optical potential during a small interaction intervalf−t ,0g,
where the atom picks up momentum from the lattice. The
transition from the near field immediately after the interac-
tion and the far field is described by free evolution. We as-
sume the atom to be initially in its ground state and situated
in a small segment of the ring. Since the angular wave func-
tion Fsfd of the atom must be periodic at all times, we
cannot represent a localized wave packet by a Gaussian. The
initial state at the beginning of the interaction interval is
taken as

Fsf,− td = CNcos2Nf

2
, s13d

with N a large natural number, andCN the normalization
constant

CN =
22N

Î2pS4N

2N
D . s14d

The state(13) can be written as a Fourier series, which is just
an expansion in the angular momentum eigenstates. This
gives

Fsf,− td =
1

Î2p
o

m=−N

N

cmeimf, s15d

with

cm =
1

ÎS4N

2N
DS

2N

N + m
D . s16d

The initial state(13) is localized aroundf=0, which is clear
from the asymptotic form

cos2Nf

2
. expH−

N f2

4
J s17d

for largeN. The half width in the azimuthal angle is of the
order of Î2/N. From the asymptotic form of the binomial
coefficient

S2N

N + m
D . 22N 1

ÎpN
expS−

m2

N
D

we find the asymptotic expression of the Fourier coefficient

cm . S 2

pN
D1/4

expS−
m2

N
D . s18d

This demonstrates that the half width in angular momentum
is of the order ofÎN/2.

If we take the durationt of the light pulse short and the
moment of inertiaI is large, so that"2l2t / s2Id, no propaga-
tion occurs, and the kinetic-energy term can be neglected
during the interaction. This is equivalent to the standard
Raman-Nath approximation applied by Cooket al. [8]. Then
the final state at time 0 after the interaction is

Fsf,0d = Fsf,− tdexpsiVt cos2lfd. s19d

This state can be expressed as an expansion in angular mo-
mentum eigenstates, in the form of a Fourier series, which is
just an expansion in the angular momentum eigenstates. This
gives

Fsf,0d =
1

Î2p
o
m

zmeimf, s20d

where

zm = expsiVt/2do
n

incm−2nlJnsVt/2d s21d

in terms of the ordinary Bessel functions.
States with large angular momentumumu.N are initially

not populated, whereas all angular momentum states get
populated after the interaction. Thus, the configuration with
two LG modes leads to more efficient exchange between the
light field and the atom than a single LG beam. The physical
interpretation is the same as for diffraction in the field of
classical counterpropagating waves: an atom picks up a pho-
ton from the light beam with one helicity and emits a photon
into the opposite one. In Fig. 2 we present a typical diffrac-
tion pattern calculated in angular momentum space. More
precisely, we plot the angular momentum coefficientsucmu2
before the interaction, and the coefficientsuzmu2 after the in-
teraction with the circular lattice, forVt=6. In the latter
case, the momentum peaks correspond to different values of
n. The distance between neighboring peaks is equal to 2l.
The half width of each peak is of the order ofÎN/2. In order
that the angular momentum peaks be separately visible, it is
necessary that the initial angular distribution covers several
azimuthal potential wells.
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V. FREE EVOLUTION ON A RING

As shown above, the angular momentum distribution of
an atom after the interaction with a pair of counterrotating
LG beams can be broad. However, as a result of the Raman-
Nath approximation, the angular distribution of the atom has
not been modified during the interaction, so thatuFsf ,
−tdu2= uFsf ,0du2. In this section we investigate the spatial
form of the atomic distribution in the far field, i.e., after free
evolution of the atom over the ring. As before, the motion
along thez axis is completely free and the radial motion is
restricted on a ring. The initial state of this free evolution is
given by Eq.(19), with the expansion in angular momentum
states given by Eqs.(20) and (21). For positive times, the
atomic motion is still restricted to the ring with radiusr0 by
the confining potentialUsrd, and the evolution of the angular
wave functionFsfd is governed by the Hamiltonian(12)
with V=0. With the initial state(20), the time-dependent
wave function is given by the expansion

Fsf,td =
1

Î2p
o
m

zmexpsimf − iztm2d s22d

where j=" / s2Id, and the coefficientszm are given in Eq.
(21). As displayed in Fig. 2, the distributionuzmu2 typically
separates into a number of peaks centered atm̄=2nl, where
n=0, ±1, ±2,…, which are separated by 2l. Thus, the super-
position state(22) can be considered as a series of elemen-

tary wave packets centered at 2nl, in the angular momentum
space. Each of these peaks gives a separate contribution to
the wave function that moves with its own angular group
velocity 2jm̄=4jnl;nn. The angular separation between
neighboring wave packets is given by 4jlt, which is propor-
tional to l. Since wave packets with opposite angular mo-
mentum values will move in opposite directions, i.e., clock-
wise and anticlockwise, they will eventually meet again at
some timet=T and start to interfere.

In order to estimate the time value that interference sets
in, we use the fact that for not too small argumentsVt /2 the
Bessel functionJnsVt /2d with the maximal value is the one
with n=nmax.Vt /2. Hence, the meeting time of the pair of
strongest counterpropagating packets is

T =
p

vmax
=

p

2jVtl
.

The exact expression for the time-dependent wave func-
tion can be given in an integral form by using the mathemati-
cal identity [12]

expsimf − ijtm2d =
1

Î4pijt
E

−`

`

df8eimf8expfisf − f8d2/4jtg,

s23d

which can be checked by performing the integration. When
substituting this identity in the right-hand side of Eq.(22),
and using the expansion(20), we arrive at the exact expres-
sion

Fsf,td =
1

Î4pijt
E

−`

`

df8Fsf8,0dexpfisf − f8d2/4jtg.

s24d

A similar equation is well known to describe the free evolu-
tion of a quantum particle in one dimension. In the present
case it is crucial that the integration be performed over all
values off8, while using that the wave functionFsf8 ,0d is
periodic. Because of this periodicity, we can express the in-
tegral in (24) as a sum of bounded integrals,

Fsf,td =
1

Î4ipjt
o

p=−`

` E
2pp

2psp+1d

df8Fsf8,0d

3expfisf − f8d2/4jtg. s25d

By a shift of variables the integrations can be performed over
the interval f0,2pg, which leads to an integral expression
over a single interval,

Fsf,td =
1

Î4ipjt
o

p=−`

`

expfisf − 2ppd2/4jtg

3E
0

2p

df8F̃sf8,td

3expf− isf − 2ppdf8/2jtg. s26d

FIG. 2. Probability distribution of angular momentumm before
(upper) and after the pulse(lower). Here the helicity of the circular
lattice isl =10, the initial state is determined byN=10 and the pulse
durationt is given byVt=6.
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Here we introduced the modified wave functionF̃ which is
just the initial wave function, modified by a phase factor,
defined by

F̃sf8,td = Fsf8,0dexpfif82/4jtg. s27d

In order to emphasize its physical significance, we write Eq.
(26) in the form

Fsf,td =
1

Î2ijt
o

p=−`

`

expfisf − 2ppd2/4jtgFSf − 2pp

2jt
D ,

s28d

where the functionF is the Fourier transform of the modified
wave function defined over a single period,

Fsxd =
1

Î2p
E

0

2p

df8F̃sf8,tdexpf− ixf8g. s29d

For a freely evolving quantum particle in one dimension,
the time-dependent wave function has the same form as the
term with p=0 in Eq. (28). The other terms can be under-
stood from the periodic nature of the dynamics on the circle,
where each period of the initial wave function serves as an
additional source that contributes to the wave function
Csf ,td in the relevant intervalf0,2pg. Because of the finite
range of the integration in Eq.(29), the distinction between
the modified wave function and the initial wave function
vanishes for timest obeying the inequalityt@1/sjNd, when
we find in a good approximation

F̃sf8,td . Fsf8,0d. s30d

In this limit, the functionF is just the Fourier transform of
the initial wave functionFsf ,0d, andFsf ,td is simply de-
termined by the Fourier transformF of the initial wave func-
tion Fsf ,0d multiplied by a phase factor. Equation(28) has
the flavor of the far-field picture of the time-dependent wave
function. The Fourier transform of the initial state determines
not only the momentum wave function, but also the
asymptotic form of the coordinate wave function, scaled by a
factor that varies linearly with time. Characteristic for the
present case of evolution on a circle is that each interval of
length 2p serves as a separate source, each giving a contri-
bution to Fsf ,td. Since the Fourier transform of the wave
function determines the angular momentum amplitudes, we
may conclude that the wave function for not too small times
has the same form as the initial distribution of angular mo-
mentum, scaled by the factor 2jt.

It is clarifying to follow the temporal evolution of
uFsf ,tdu2 by distinguishing two time regions, namely, 0ø t
,T and tùT. In the region 0ø t,T, the wave function has
not yet spread beyond a single period of length 2p, and only
a single term in Eq.(28) [or Eq. (26)] differs from zero. The
contributions to the wave function coming from different
sources do not overlap yet, so that one can neglect the inter-
ference term between them. At later timestùT, the diffrac-
tion pattern on the intervalf0,2pg is formed as an interfer-
ence pattern between two and more terms in the
superposition state(25). This picture is confirmed by numeri-

cal calculation of the diffraction pattern for the two time
regimes. In Fig. 3 the angular probability distribution
uFsf ,tdu2 is shown for a timet,T. The spatial pattern re-
sembles the angular momentum distribution shown in Fig. 2.
Figure 4 displays the same probability distribution for a later
time t.T. One notices that the counterrotating components
give rise to clear interference fringes. These fringes will be
quite sensitive to any perturbation in one of the arms. This
suggests to use the present scheme as an atomic interferom-
eter[12]. Usually, interferometers have two key components,
namely, a beam splitter and a mirror. A coherent incoming
atomic beam is split into spatially separated components by
the beam splitter. Two arms are formed, which freely propa-
gate and may undergo different phase shifts, which are
probed by recombining the two arms. The interference pat-
tern contains the information about the phase perturbation in
one of the arms. Recombination usually requires atomic mir-
rors. In atom optics, beam splitters and mirrors are com-
monly realized by using light pulses, with carefully selected
duration and shape.

FIG. 3. Angular distributionuFsf ,tdu2 is plotted versus the azi-
muthal anglef before the left and right rotating components cross.
Here jt=3p310−3; the value ofN determining the width of the
initial state, the helicityl, and the pulse durationt are the same as
in Fig. 2.

FIG. 4. Angular distributionuFsf ,tdu2 is plotted versus the azi-
muthal anglef after the left and right rotating components cross.
Here jt=6p310−3; the value ofN, the helicity l, and the pulse
durationt are the same as in Fig. 2.
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In the present case, only a single pulse is required that
splits the initial atomic wave packet into components rotat-
ing to the left and to the right. No mirrors are employed in
this scheme. Instead, one uses the radial potentialUsrd to
constrain the atomic motion to a ring. Radial potentials can
be realized by hollow light beams, which are widely used in
atomic interferometric schemes.

VI. RADIAL DISPERSION

In this section we consider the radial dynamics of the
diffracted wave function during its free evolution, after the
passage of the circular lattice. We assume that the wave func-
tion at timet=0, after the diffracting pulse, is factorized as

Csr,f,0d = Qsr,0dFsf,0d, s31d

where the radial partQ of the wave function is sharply
peaked atr=r0, and the angular wave function is specified
by Eq. (20). The radial function Q is normalized
fe0

`dr Q2srdr=1g.
We wish to study the possible deformation of the wave

packet, when the radial dispersion is included during the
stage of free evolution. We take the simplest possible trap-
ping potential, which allows radial dispersion, and we take
for the confining potentialVsrd after the diffraction an infi-
nitely deep cylindrical box with radiusa, as defined by

Vsrd = H0 for r ø a,

` for r . a.
J s32d

This potential models a hollow light beam. With this poten-
tial, the normalized eigenfunctions of the Hamiltonian for the
cylindrical coordinates during the free-evolution stage take
the form

Cnmsr,fd = Rnmsrd
1

Î2p
eim f, s33d

where the radial functionsRnm are solutions of the equation
[13]

F−
"2

2M
S1

r

]

] r
r

]

] r
−

m2

r2 D + VsrdGRnmsrd = EnmRnmsrd,

s34d

with Enm the corresponding eigenenergies. The radial func-
tions are proportional to the Bessel function of orderm,

Rnmsrd ~ Jmsanmr/ad, s35d

with Rnm normalized in the interval 0ørøa. In order that
the wave function vanishes at the edger=a of the cylindrical
well, we have to take the numbersanm for various values of
n as the subsequent zeros of the Bessel functionJm. This
determines the corresponding eigenenergies as

Enm= "lanm
2 s36d

with l=" / s2Ma2d. For each value of the angular momentum
m, the set of functionsRnmsrd is complete. An expansion of
the initial state(31) in the energy eigenfunction is found

when we expand the initial radial wave functionQsr ,0d in
the radial eigenfunctions(35), so that

Qsr,0d = o
n

cnmRnmsrd, s37d

while substituting Eq.(20) for the initial angular state
Fsf ,0d. For the time-dependent state we find

Csr,f,td = o
m

1
Î2p

zmeimfQmsr,td, s38d

where them-dependent radial wave functionQm is

Qmsr,td = o
n

cnmRnmsrdexps− iEnmt/"d. s39d

From Eq. (37) one notices thatQmsr ,0d=Qsr ,0d, inde-
pendent of the angular momentumm. It is obvious from the
radial Schrōdinger equation(34) and the initial condition
(31) that the normalized radial wave function obeys the iden-
tity Qmsr ,td=Q−msr ,td for all m. Moreover, since the total
wave function before diffraction is even inf, it must remain
even for all times. This implies thatzm=z−m for all m. So just
as discussed in Sec. IV, the angular distribution separates
into different wave packets that are counterrotating. Since
the phase ofzmQm is even inm, its derivative with respect to
m will be odd, and the angular group velocities of packets
with opposite values ofm̄ will be opposite. This leads to
interference after the packets have traversed the entire ring.
The initial radial function is taken as a narrow Gaussian

Qsr,0d ~ expf− sr − r0d2/2L2g. s40d

HereL is the width andr0 represents the initial position of
the wave packet within the box. The normalized wave func-
tion Qmsr ,td describes the radial dynamics for each value of
the angular momentumm. As an example, we evaluate the
time behavior of the average radius for each angular momen-
tum, with the given initial radial state(40), according to the
expression

krstdlm =E
0

`

druQmsr,tdu2r2.

The result is displayed in Fig. 5, in the special case thatm
=10. The average radius displays oscillations, which can be
understood as arising from the outward motion due to the
centrifugal potential, followed by reflection at the hard wall
of the cylinder. The oscillations display collapse, followed by
a revival. These may be viewed as arising from the initial
dephasing of the contribution from the radial eigenfunctions
Rnm with different values ofn, due to their energy difference.
The revival of the oscillation can be understood from the
discrete nature of the contributing energy eigenvalues, when
the phase factors due to neighboring eigenenergies have built
up a phase difference 2p. Because of the conservation of
angular momentum, the probability density near the origin
remains zero. The interference between the counterrotating
wave packets is illustrated in Fig. 6, for the ring at radius
r=r0=a/2. Figure 6 shows the short-time separation of the
angular wave packets. Figure 6 displays the interference that
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arises as soon as overlap occurs aroundf=p between the
clockwise and the anticlockwise rotating packets. This dem-
onstrates that the radial wave functionsQmsr ,td for different
values ofm have sufficient overlap, so that the angular inter-
ference survives the effect of radial dispersion at least for a
single value of the radiusr. When a measurement integrates
over the values ofr, the interference must be expected to be
weaker.

VII. CONCLUSIONS

In this paper we describe the diffraction of an atomic
wave by a circular optical lattice. Such a lattice can be
formed by the superposition of two Laguerre-Gaussian
beams with opposite helicity, which gives rise to a standing
wave in the angular direction. Such a light field will split a
single localized atom into clockwise and anticlockwise rotat-
ing components. If the system is in a trapping potential in the
form of a ring or in a cylindrical box, these counterrotating
components give rise to interference. We express the spatial
pattern in the far diffraction field in terms of the Fourier
transform of the near-field diffraction pattern. The Raman-
Nath approximation is assumed, which puts an upper bound
to the interaction time. A longer interaction time would sig-
nificantly complicate the analysis. The periodic nature of the
circular motion modifies this relation compared with the case
of diffraction by a linear standing wave. The general conclu-

sions are backed up by numerical calculations. Characteristic
for the circular case is that the wave packets corresponding
to opposite angular momentum will cross each other, even
without applying light pulses to reverse their motion, as in
more common interferometric schemes. We show that the
interference is not fully suppressed by radial dispersion
within a cylindrical box. This indicates that the scheme is
reasonably robust to changes in the radial confining poten-
tial.
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