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We study the exact dynamics underlying stimulated Raman adiabatic passage(STIRAP) for a particle in a
multilevel anharmonic system(the infinite square well) driven by two sequential laser pulses, each with
constant carrier frequency. In phase space regions where the laser pulses create chaos, the particle can be
transferred coherently into energy states different from those predicted by traditional STIRAP. It appears that
a transition to chaos can provide an additional tool to control the outcome of STIRAP.
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I. INTRODUCTION

Laser radiation provides a means to control intramolecu-
lar processes in a robust manner because of a conservation
law that comes into play when monochromatic radiation in-
teracts with nonlinear systems. The origin of this conserva-
tion law is the discrete time-translation invariance of laser-
driven systems. For radiation interacting with molecular
systems, this conservation law gives rise to stable electron-
photon (phonon-photon, roton-photon) structures described
by conserved eigenstates(the Floquet states) of the driven
system. Floquet states are exact eigenstates of periodically
driven systems[1–3]. Their reality can be seen in recent
atom-optic experiments[4–6,3], where millions of sodium
[5] or cesium atoms[4], interacting with a time-modulated
standing wave of light, underwent large coherent periodic
oscillations in momentum in a multiphoton process. These
coherent oscillations were subsequently found to be due to
the interference of only two or three Floquet eigenstates
whose phase space structure was determined by an underly-
ing chaotic sea induced by the interaction between the atoms
and light [6]. In this paper, we wish to show that similar
mechanisms are important when laser pulses interact with
intramolecular forces. We will focus on the exact dynamics
underlying stimulated Raman adiabatic passage(STIRAP)
for laser pulses interacting with a simple model of intramo-
lecular dynamics.

STIRAP has become an important tool for coherently con-
trolling and changing the vibration and electronic states of
entire molecular populations with close to 100% efficiency.
STIRAP involves the application of short laser pulses with
carefully chosen carrier frequencies to a molecular system
for the purpose of exciting the molecules in a controlled
manner. This technique causes a coherent change in the en-
tire molecular population between molecular states. Tradi-
tional models of STIRAP generally view the molecular target
as a simplified multilevel system. Indeed, traditional STI-
RAP focuses on three carefully chosen vibration and/or elec-
tronic levels. There are no studies, that we know of, that look
at the effect on STIRAP of the actual nonlinear dynamics
that occurs when the laser pulses interact with a molecular
system. However, we know that laser pulses can induce
chaos and this can strongly affect the response of the mol-
ecule to the laser field. In addition the internal dynamics of

the molecule may itself be exhibiting the manifestations of
chaos and simple pictures of the molecular level structure are
likely not valid. Understanding this dynamics is very impor-
tant for extending STIRAP to wider ranges of molecules

In this paper we study theexact dynamicsunderlying STI-
RAP for a model system that contains the essential features
of low-energy vibration states, or rotational states, of a di-
atomic molecule driven by two laser pulses. We will find, for
example, that in phase space regions where the laser pulses
create chaos, the molecule can be transferred coherently into
energy states very different from those predicted by tradi-
tional STIRAP. It appears that a transition to chaos may pro-
vide an additional tool to control the outcome of these pro-
cesses in molecular systems.

STIRAP was first proposed by Hioe and co-workers[7,8]
and later confirmed in an experiment involving population
transfer between vibration-rotation states of sodium dimers
[9,10]. There are several variations to STIRAP which gener-
ally is described as a process involving three particular en-
ergy levels,E1, E2, andE3, of a collection of atoms or mol-
ecules of interest. All atoms or molecules are initially in the
lowest-energy stateE1. Two laser pulses then impinge se-
quentially on the system in order to make a transition toward
the target stateE3. In the “ladder” version of STIRAP the
target stateE3 is the highest state in energy and in the “L”
version of the STIRAP the intermediate stateE2 is the high-
est state in energy. The first laser pulse couplesE2 and E3
which contain no population, and the second laser pulse then
couplesE1 andE2. As a result of these processes, the entire
atomic or molecular population is transferred coherently into
the target state without populating the intermediate state after
the laser pulses have passed[11–17].

As mentioned above, conventional STIRAP analyzes an
atomic or molecular system in terms of three carefully cho-
sen energy levels of the unperturbed system. However, com-
plications arise in real applications since these systems are
composed of multiple states due to the rotational, vibration,
and electronic levels of the unperturbed system. Extension of
STIRAP to multilevel systems has been discussed by a num-
ber of authors, generally in terms of simplified models using
the rotating-wave approximation and three or more laser
pulses[18–29]. Alternatively, Raman-chirped adiabatic pas-
sage schemes[27–29], in which the frequency of the incident
laser pulse is continuously changed, have also been proposed
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to allow the system to climb through a sequence of molecu-
lar energy levels.

In this paper we take a different approach to the problem.
We consider theexact dynamicsthat takes place when the
two laser pulses impinge on a multilevel system. Instead of
isolating a certain number of levels of interest and analyzing
the process in terms of the rotating-wave approximation, we
will let the full multilevel dynamics evolve and allow the
system to tell us how many levels we must keep to accu-
rately describe the atomic or molecular dynamics when a
radiation field is present. Unlike the previous studies which
utilize more than two pulses in multilevel systems, we only
apply two pulses and allow as many levels as dictated by the
dynamics participate in the process. One way to see how
many levels must be kept is to look at the underlying classi-
cal phase space of the system of interest. The laser field,
when interacting with nonlinear intramolecular dynamics
will induce nonlinear resonances and chaos in localized re-
gions of the phase space. Those structures in the classical
phase space which have a size greater than Planck’s constant
determine the structure of the Floquet eigenstates of the sys-
tem, and thereby have a direct influence on the STIRAP
process.

The model we use to study the effect of chaos on STIRAP
in a multilevel system is that of a particle in an infinite
square-well potential[30,31]. The infinite square-well poten-
tial is an anharmonic potential of the formx2n in the limit
n→`. It can give some insight into the behavior of low-
lying vibration states, or rotation states, of molecular systems
in the presence of sequential laser pulses. An approximate
version of the square-well potential we consider here could
also be constructed in an atom-optics experiment[6] or in
semiconductor heterostructures. The dynamics of a particle
in an infinite square-well potential is also interesting because
the laser pulses can cause the low-energy particle states to
undergo a transition to chaos[32,33]. For the case of mono-
chromatic laser fields, this transition to chaos is accompanied
by a plateau of high-harmonic radiation whose cutoff is de-
termined by the width in energy of the chaotic sea induced
by the laser field[32].

In the sections below, we describe the behavior of a par-
ticle in an infinite square-well potential which is driven by
two sequential laser pulses whose carrier frequencies are
monochromatic and chosen to couple specific unperturbed
energy levels of the particle in the square-well potential. We
will find that for the case when the pulse amplitudes vary
slowly in time so that the adiabatic theorem[34] is satisfied,
the dynamics can be described in terms “snapshots” of the
underlying classical phase space at selected times as the laser
pulses pass through the system. In Sec. II, we describe the
classical dynamics that results from the laser pulses. In Sec.
III, we discuss how we will describe the quantum dynamics
for the driven system. In Sec. IV we introduce Floquet
theory. In Secs. V–VII we show that a dynamics quite dif-
ferent from that of the traditional STIRAP ladder model can
occur in multilevel systems due to the presence of chaos,
even for fairly weak pulse amplitudes. Finally in Sec. VIII
we make some concluding remarks.

II. CLASSICAL DYNAMICS

The model system for this study is a particle located in an
infinite square well potential with spatial width 2a. The po-
tential energy has the formVsx̃d=0 for ux̃u,a and Vsx̃d=`
for ux̃uùa, wherex̃ is the position of the particle. The clas-
sical Hamiltonian which describes the dynamics of a particle
of massm moving in the potential well and driven by two
sequential pulses of monochromatic radiation is given by

H̃ =
p̃2

2m
+ Ũfst̃dx̃ cossṽ f t̃d + Ũsst̃dx̃ cossṽst̃d for ux̃u , a,

s1d

where p̃ is the momentum of the particle,t̃ is the time, and
ṽ f and ṽs are the carrier frequencies of the first and second
pulses, respectively. The amplitude of the first[second] pulse

at time t̃ is Ũfst̃d fŨsst̃dg. If we rescale parameters usingx̃

=xa, p̃=p" /a, Ũ0=U0"2/2ma2, t̃=2ma2t /", H̃=H"2/2ma2,
andṽ f,s=v f,s" /2ma2, where" is Planck’s constant, then the
Hamiltonian is

H = p2 + Ufstdx cossv ftd + Usstdx cossvstd for uxu , 1,

s2d

and all parameters are dimensionless. The energy has been
rescaled in units of"2/2ma in order to make comparisons
with the corresponding quantum system in subsequent sec-
tions.

The amplitudesUfstd and Usstd have Gaussian shape of
the form

Ufstd = U0 expf− bst − tfd2g, Usstd = U0 expf− bst − tsd2g,

s3d

where tf , ts. We can control the duration of each pulse by
adjusting the parameterb and we can control the amount of
overlap of the two pulses by changingtf andts. For simplic-
ity, we assume that the maximum amplitudeU0 and widthb
of the two pulses are the same. A schematic picture of the
variation in time of the amplitudes of the two pulses is dis-
played in Fig. 1. The first pulse is turned on and drives the
particle in the square well and then, with an appropriate de-
lay time, the second pulse is turned on. The whole pulse

FIG. 1. Schematic diagram for the two pulses. The first pulse
connecting levelsuE2l anduE3l is shown as a solid line. The second
pulse connecting levelsuE1l anduE2l is shown as a dotted line. They
have maximum strengthU0 at timest= tf andt= ts, respectively. The
whole pulse sequence takes a timet= ttot to complete. In the figure,
t1=1/20ttot, tc=1/2ttot, andt2=19/20ttot.
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sequence ends at the total pulse duration timet= ttot. For the
purpose of marking time intervals in our subsequent discus-
sion, we choose timest1= 1

20ttot, tc= 1
2ttot, andt2= 19

20ttot.
We will be interested in how the classical phase space

behaves in theadiabatic limitwhere the pulses are turned on
and off very slowly relative to certain intrinsic time scales in
the system, such as the periods of the carrier frequencies. In
this limit the amplitudesUfstd and Usstd remain essentially
constant during time intervals where the cosine terms oscil-
late many times. We can get an idea of the structure of the
phase space by plotting a Poincaré surface of section of the
phase space for fixed pulse amplitudes[3]. Thus we also
consider the Hamiltonian

H = p2 + Ufstfixdx cossv ftd + Usstfixdx cossvstd for uxu , 1,

s4d

where the amplitudes are set to constants by choosing their
value at some fixed timet= tfix. The Hamiltonian in Eq.(4) is
time periodic and we can view the behavior of the phase
space using the Poincaré surfaces of section[3]. The
Poincaré surfaces of section for time-periodic Hamiltonians
are strobe plots ofp andx—i.e., plots ofp andx each time
the Hamiltonian goes through one complete oscillation in
time.

We can perform a canonical transformation to action-
angle variablessJ,ud defined asJ=2upu /p and u= ±psx
+1d /2. The Hamiltonian then has the form

H =
p2J2

4
−

4Ufstfixd
p2 o

n=−`

`
1

s2n − 1d2cosfs2n − 1du − v ftg

−
4Usstfixd

p2 o
n=−`

`
1

s2n − 1d2cosfs2n − 1du − vstg

for 0 ø u ø p. s5d

An infinite number of nonlinear resonances are produced in
the classical phase space by the external fields. Theprimary
resonancesare located atJ=Jn;2v f,s/ fs2n−1dp2g. As n in-
creases, the energy at which higher order primary resonances
are located decreases.

In Fig. 2, we show strobe plots of the classical phase
space for the case withU0=3.0. The commensurability of

these frequencies will allow us to use Floquet theory when
we analyze the quantum system. We choose the pulse carrier
frequencies to bev f =3p2/4 and vs=5p2/4. For the fre-
quencies we have chosen, the period of the Hamiltonian is
T0=8/p. For the five cases shown in Figs. 2(a)–2(e), we fix
the amplitude of the pulses by setting(a) Uf,sstfixd;Uf,sst1d,
(b) Uf,sstfixd;Uf,sstfd, (c) Uf,sstfixd;Uf,sstcd, (d) Uf,sstfixd
;Uf,sstsd, and (e) Uf,sstfixd;Uf,sst2d, respectively. For each
of these choices of amplitudeUf and Us, we show strobe
plots of the classical phase space, allowing the time depen-
dence of the cosine waves to vary. The three largest primary
resonancessn=1,2,3d induced by the first pulse are located
at J=2.5,J=0.83, andJ=0.5, respectively. The three largest
primary resonancessn=1,2,3d induced by the second pulse
are located atJ=1.5,J=0.5, andJ=0.3, respectively. In Fig.
2(a), with Ufst1d=0.1667 andUsst1d=0.000 003, the primary
resonances induced by the first pulse are dominant. In Fig.
2(e), with Ufst2d=0.000 003 andUsst2d=0.1667, the primary
resonances induced by the second pulse are dominant. In all
cases, the first primary resonancesn=1d is located at the
highest energy and the higher-order primary resonances are
located at decreasing energy asn increases. As a result, this
system will always have a chaotic region at low energy due
to the overlap of higher-order resonances. For energies above
the region of influence of then=1 primary of the first pulse,
the phase space is dominated by Kolmogorov-Arnold-Moser
(KAM ) tori.

In Fig. 2(c), where tfix= tc= 1
2ttot, the primaryn=1 reso-

nances due to the two pulses have equal amplitude and are
clearly visible atJ=2.5 andJ=1.5. For this case the pulse
amplitudes areUfstcd=Usstcd=1.103. All the higher-order
primary resonances have been destroyed and a large chaotic
sea has formed at low energy.

Figure 2(b) shows the classical phase space at timetfix
= tf when the first pulse reaches its maximum amplitude with
Ufstfd=3.0 and Usstfd=0.055. The region of phase space
about the primaryn=1 resonance due to the first pulse is
very distorted by the resonance. Detailed calculation shows
that there are small higher-order(nonprimary) resonance is-
lands betweenJ=3 andJ=4. Figure 2(d) shows the classical
phase space at timetfix= ts when the second pulse has
reached its maximum amplitude withUfstsd=0.055 and
Usstsd=3.0. The primaryn=1 resonance due to the first pulse

FIG. 2. Strobe plots of the
action-angle variablessJ,ud for
the infinite square-well system
with pulse amplitudesU0=3.0 and
frequenciesv f =5v0 andvs=3v0.
Strobe plots are shown at times(a)
tfix= t1, (b) tfix= tf, (c) tfix= tc, (d)
tfix= ts, and (e) tfix= t2. For each
plot 0øuøp. The three largest
primary resonancesn=1, 2, and 3,
due to the first pulse are located at
J=2.5, 0.83, and 0.5. The three
largest primary resonancesn=1,
2, and 3, due to the second pulse
are located atJ=1.5, 0.5, and 0.3.
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is very small and its region of influence does not extend very
high in energy.

It is interesting to compare the classical phase space for
U0=3.0 with a case when the maximum pulse amplitude is
U0=0.5. In Fig. 3, we show the strobe plots of the classical
phase space at the same timestfix= t1, tf, tc, ts, and t2 as in
Fig. 2 but withU0=0.5. More island structures survive with
this relatively weak value of pulse amplitude than in Fig. 2.
The invariant surfaces between the twon=1 primary reso-
nances are distorted and higher order non-primary resonance
islands can be seen even when the pulse amplitudes have
reached their maximum values.

III. QUANTUM SYSTEM

The Schrödinger equation for the driven square-well sys-
tem described in Sec. II can be written(in dimensionless
units)

i
]

]t
kxucstdl = S−

]2

]x2 + Ufstdx cossv ftd + Usstdx cossvstdD
3kxucstdl, s6d

where the momentum operator is given byp̂=−i] /]x. In or-
der to satisfy the boundary condition atx= ±1, the wave
function should satisfycsx= ±1,td=kx= ±1ucstdl=0 for all
times t.

For the case of a quantum particle in an infinite square
well, when Uf,s=0 (no driving force), the energy is con-
served and we have a complete set of orthonormal energy
eigenstates which can be used as basis states to describe the
dynamics of the driven system. For the unperturbed system,
the energy eigenvalues areEn=n2p2/4 and the orthonormal
energy eigenstates arekxuEnl=fnsxd=sinfnpsx−1d /2g. The
dipole matrix elements in this basis arexn,n8=kEnux̂uEn8l
where

xn,n8 = 5 0 fn + n8g smodulo 2d = 0,

16nn8

p2sn2 − n82d2 fn + n8g smodulo 2d = 1.6 s7d

Note that integer values ofJ sJ=nd in the classical Hamil-
tonian correspond to the allowed quantized states of the

quantum system. This simplifies comparison between the
classical and quantum systems.

We can expand the wave functionucstdl, in the unper-
turbed energy basis, soucstdl=oncnstduEnl. Then we can re-
write the Schrödinger equation in the form

dcnstd
dt

= − iEncnstd + ifUfstdcossv ftd

+ Usstdcossvstdgo
n8

xn,n8cn8std, s8d

where cnstd=kEnucstdl is the probability amplitude to find
the system in thenth energy level at timet. We will generally
assume that at timet=0 the system is in the stateucs0dl
= uE1l. We will then find the stateucs+`dl after the two
pulses have been turned on and off.

IV. FLOQUET STATES

Once we fix the amplitudesUfst= tfixd=Ufstfixd and Usst
= tfixd=Usstfixd, the Hamiltonian becomes time periodic and
the Schrödinger equation takes the form

i
]

]t
kxucstdl = S−

]2

]x2 + Ufstfixdx cossv ftd + Usstfixdx cossvstdD
3kxucstdl. s9d

For such systems, the energy is not conserved. However, if
the carrier frequencies of the pulses are commensurate, so
v f /vs=nf /ns, wherenf andns are integers, then the Hamil-
tonian is invariant under a discrete time translationHstd
=Hst+T0d, where the periodT0 of the Hamiltonian is

T0 = pS nf

v f
+

ns

vs
D . s10d

For such systems, Floquet eigenstatesufastdl [which have
periodT0 so ufast+T0dl= ufastdl] form a complete orthonor-
mal basis which determines the dynamics. Furthermore, the
Floquet eigenphasesVa are conserved quantities[1–3].

We can obtain an eigenvalue equation relatingVa and
ufastdl. Consider the case when the system is in theath

FIG. 3. Strobe plots of the
action-angle variablessJ,ud for
the infinite square-well system
with pulse amplitudesU0=0.5 and
frequenciesv f =5v0 andvs=3v0,
respectively. Strobe plots are
shown at times(a) tfix= t1, (b) tfix

= tf, (c) tfix= tc, (d) tfix= ts, and(e)
tfix= t2. For each plot 0øuøp.
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Floquet eigenstate so thatucstdl=e−iVatufastdl. Then substi-
tution into Eq.(9) yields the eigenvalue equation

SĤstd − i
]

]t
Dufastdl = Vaufastdl, s11d

whereĤFstd; Ĥstd− i] /]t is the Floquet Hamiltonian.
More generally, when the system is in the stateucs0dl at

time t=0, the state of the system at timet can be written

ucstdl = o
a

Aae−iVatufastdl = o
a

kfas0ducs0dle−iVatufastdl.

s12d

The state of the system at timet=T0 takes on an especially
simple form

ucsT0dl = ÛFsT0ducs0dl = o
a

e−iVaT0ufas0dlkfas0ducs0dl,

s13d

where we have used the fact thatufasT0dl= ufas0dl. The Flo-

quet evolution operator Uˆ
FsT0d, can now be defined:

ÛFsT0d = o
a

e−iVaT0ufas0dlkfas0du. s14d

We can compute matrix elements of the Floquet evolution
operator in the basis of unperturbed energy eigenstates. Then
thesn,n8dth matrix element of the resulting Floquet matrix is
given by

Un,n8sT0d = kEnuÛFsT0duEn8l

= o
a

e−iVaT0kEnufas0dlkfas0duEn8l. s15d

The ath eigenvalue of the Floquet matrixUn,n8sT0d is
exps−iVaT0d, and theath eigenvector in the unperturbed en-
ergy basis is given by a column matrix composed of matrix
elements,kEnufas0dl, where n=1, . . . ,̀ . The eigenvalues
Va can be obtained from exps−iVaT0d, but only with modu-
lus v0. We refer to the eigenvaluesVa obtained from the
Floquet matrix aseigenphases.

For the system we consider here, the Floquet matrix has a
natural truncation which is determined by the nonlinear dy-
namics of the system. Classically, the driven square-well sys-
tem has a region of mixed phase space bounded at high en-
ergies by KAM tori. For the cases we will consider here,
where the initial stateucs0dl is the unperturbed energy level
ucs0dl= uE1l, the stateucs0dl can never penetrate very far into
the high-energy KAM region. This provides a natural trun-
cation of the size of the Floquet matrix and we need to in-
clude only enough unperturbed basis statesuEnl to cover ad-
equately the region of mixed phase space. Each column of
the Floquet matrix can be constructed by solving the time-
dependent Schrödinger equation for one periodT0 with the
system initially in one of the unperturbed energy eigenstates.
This integration is performed using each of the unperturbed
energy eigenstates as an initial state until all the columns of

the Floquet matrix have been computed. Floquet eigenphases
and eigenstates are obtained by numerically diagonalizing
the Floquet matrix[3].

Husimi distributions allow us to visualize the distribution
of probability of the Floquet eigenstates in the underlying
classical phase space[35]. Physically they describe the loca-
tion of the particle in the presence of the radiation field and
provide important information about the actual dynamics
taking place in the system. The Husimi distribution for a
Floquet eigenstate ufal is defined as Hsx0,p0d
= ukfa ux0,p0lu2, where the stateux0,p0l is a coherent state
that can be represented in the position basis as[32]

kxux0,p0l = S 1

s2p
D1/4

expS−
sx − x0d2

s2 +
ip0sx − x0d

"
D .

s16d

The coherent state is a minimum uncertainty wave packet
and has a parameters that determines the relative dispersion
in both position and momentum space.

In the subsequent sections, we will consider three differ-
ent choices for carrier frequencies of the pairs of pulses
which drive the system. For case I, the first pulse connects
levels n=2 andn=3 and the second pulse connects levels
n=1 andn=2. This is the traditional model for the STIRAP
ladder process[11]. However, as distinct from the usual dis-
cussion of STIRAP we will deal with the exact dynamics of
the system. We will take account of the fact that we have a
multilevel system that can undergo a transition to chaos. We
will examine the effect of the full nonlinear dynamics on this
system. For case II, the first pulse connects levelsn=4 and
n=5 and the second pulse connects levelsn=1 and n=4.
This is again a ladder process. For this case the underlying
chaotic dynamics will have a surprising effect on the transi-
tion probabilities. Finally, for case III, we consider aL pro-
cess in which the first pulse connects levelsn=3 andn=4
and the second pulse connects levelsn=1 andn=4. In all
cases, we consider the exact dynamics of the driven system.

V. CASE I: FIRST PULSE 2\3, SECOND
PULSE 1\2

In this section, we examine the dynamics of the driven
square-well system when two pulses are applied such that the
first pulse connects levelsn=2 andn=3 and the second pulse
then connects the levelsn=1 andn=2. We first determine
the behavior of Floquet eigenstates at fixed timest= tfix dur-
ing which the pulses drive the system. The distribution of
probability in the Floquet eigenstates is sensitive to struc-
tures in the classical phase space which are larger than
Planck’s constant. We then compare the prediction of Floquet
theory to the actual behavior of the system in the nonadia-
batic and adiabatic regimes.

A. Behavior of Floquet eigenstates

The first pulse has carrier frequencyv f =sE3−E2d
=5p2/4 and the second pulse has carrier frequencyvs=sE2

−E1d=3p2/4. These frequencies are commensurate since
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v f /vs=5/3. From Eq.(10), the period of the Hamiltonian is
T0=8/p and the Floquet frequencyis v0=2p /T0=p2/4.
Thus,v f =5v0 andvs=3v0. We setU0=3.0.

The dynamics of this system tells us that we only need to
keep five unperturbed energy eigenstates as a basis to form
the Floquet matrix. This can be seen from Fig. 2 where we
show the underlying classical phase space at selected values
of tfix during the time that the pulses are on. ForJ.5, the
classical phase space is dominated by KAM tori with almost
constant values ofJ and the unperturbed energy states are
very weakly coupled by the dynamics forn.5. Thus, to
describe the quantum behavior of this system, it is sufficient
to construct a 535 Floquet matrix with the five basis states
uE1l , . . . ,uE5l. We find that only four of the five eigenstates of
the Floquet matrix are actively involved in the dynamics.
Their eigenphasesVa are plotted modulov0=p2/4 in Fig.
4(a). Two of these Floquet eigenphases are almost degenerate
over the time interval that the pulses act and are not distin-
guishable on the scale shown in Fig. 4(a). For tfix=0, the four
Floquet eigenphases are approximately degenerate modulo
v0.

We can follow each Floquet eigenstate during the entire
process by computing the eigenstates for a sequence of val-
ues of tfix over the interval 0ø tfixø ttot. For closely spaced
values oftfix, Floquet eigenstates at different times belonging
to different eigenphases will be orthogonal. This provides a
means of following the evolution of each eigenstate as a

function of tfix. As we will see, the Floquet eigenstates can
change structure when avoided crossings occur between Flo-
quet eigenphases. To keep track of the changes that occur in
the Floquet eigenstates, we will give each eigenstate a
unique alphabetical label determined by its dominant depen-
dence on unperturbed energy states at timetfix=0. We find
that at tfix=0 the Floquet eigenstates have the following
structure and we give them the following labels:

A = uf1l = uE1l, D = uf4l = uE4l, E = uf5l = uE5l,

BC+ = uf2l =
1
Î2

suE2l + uE3ld, s17d

BC− = uf3l =
1
Î2

suE2l − uE3ld.

The traditional STIRAP ladder process assumes that the
molecule or atom in question can be approximated by a three
level system and causes a coherent population shift of the
atom from level 1 to level 3. We find that the traditional
STIRAP ladder process occurs in our system forU0,0.1.
For amplitudesU0,0.1, stateD= uf4l does not participate in
the dynamics at all. The Floquet eigenvalue curve forV4,
plotted as a function oftfix, crosses that forV1 in two places
but does not undergo any avoided crossings. The stateD
= uf4l remains predominantly dependent onuE4l during the
entire process. For traditional STIRAP, curveD in Fig. 4(b)
is replaced by stateA and the only avoided crossing that
occurs is the three-way avoided crossing attfix= tc between
statesA, BC+, and BC−. StateA, which is predominantly
composed of the stateuE1l before the multiple avoided cross-
ing at t= tc, becomes predominately dependent on stateuE3l
after the multiple avoided crossing, having interchanged its
“1” character with the “3” character of statesBC+ andBC− at
the avoided crossing. Thus, at the end of the process stateA
would be composed predominately of leveln=3 and the
statesBC+ and BC− would be predominately of superposi-
tions of levelsn=1 andn=2.

Once the amplitudeU0 becomes greater thanU0=0.1,
something different happens due to the avoided crossing
shown in Fig. 4(c). For U0,0.1 the Floquet eigenphases for
statesA and D in Fig. 4(c) crossat time tfix=tI <

10
23ttot just

beforetfix= tc. ForU0.0.1 the Floquet eigenphases for states
A and D in Fig. 4(c) avoid crossingat time tfix=tI. Before
time tfix=tI Floquet stateA is predominately composed of
level n=1 and Floquet stateD is predominately composed of
level n=4. After the avoided crossing at timetfix=tI the
states have changed their character and Floquet stateA is
composed predominately of leveln=4 and Floquet stateD is
composed predominately of leveln=1. Because of the
avoided crossing attfix=tI, the entire population gets shifted
from level n=1 to leveln=4 beforethe traditional STIRAP
ladder process can take place. The traditional STIRAP ladder
process now occurs amongunpopulatedstates. It is interest-
ing to note that the Floquet statesA and D cross at time
tfix=tII <13/23ttot. A symmetry that was broken earlier ap-
pears to have been restored. These transitions are clearly
seen in Fig. 5 where we show the level compositions of the

FIG. 4. Floquet eigenphases, for the system with maximum
pulse strengthU0=3.0 and frequenciesv f =5v0 and vs=3v0, are
plotted over the entire interval 0ø tfixø ttot. (a) Floquet eigenphases
for four Floquet statesA, BC+, BC−, andD plotted modv0=p2/4.
(b) Floquet eigenphase curves for the Floquet statesD, BC+, and
BC−. The three-level-wide avoided crossing attfix= tc is clear.(c)
Floquet eigenphase curves for the Floquet statesA andD. The sharp
avoided crossing attfix=tI and the crossing attfix=tII are clearly
seen.
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four participating Floquet statesA, BC+, BC−, and D as a
function of tfix.

B. Population transfer

Let us now determine the exact behavior of the system,
when the pulses are applied, by solving the Schrödinger
equation in(8). We will assume that at timet=0 the system
is in stateucs0dl= uE1l. As we will see, the actual dynamics
of this system is determined by the length of time during
which the pulses are allowed to act. The pulse duration time
necessary to achieve adiabatic behavior of the system is de-
termined largely by the avoided crossings in the Floquet
eigenphases. At isolated avoided crossings, involving only
two eigenstates, the states involved interchange their charac-
ter.

Avoided crossings of Floquet eigenphases occur as the
classical phase space becomes chaotic, and a symmetry has
been broken in that local region of the phase space. The
probability PLZ that a transition occurs between the two Flo-
quet eigenstates involved in anisolatedavoided crossing can
be computed from a formula obtained independently by Lan-
dau [36] and Zener[37]. For our system, the Landau-Zener
probability is given by

PLZ = expS−
psded2

2g
D , s18d

wherede is the eigenphase spacing at the avoided crossing
andg is the rate of change of the Floquet eigenphases with
respect to timetfix in the neighborhood of the avoided cross-
ing.

We have computed the Landau-Zener probabilityPLZ for
the isolated sharp avoided crossing at timetfix=tI shown in
Fig. 4(c). The Landau-Zener probability depends onttot. The
largerttot, the more “stretched out” the horizontal axis in Fig.
4(c) will be relative to the vertical axis. We have obtained the
following results by analyzing Fig. 4(c) for different values
of ttot. For ttot=120, de=0.005 andg=0.001 875, giving a
Landau-Zener probabilityPLZ=0.979 270. Forttot=21 000,
de=0.0063 andg=0.000 013 76, giving a Landau-Zener
probability PLZ=0.0108. Forttot=270 000,de=0.0030 and

g=1.2310−7, giving a Landau-Zener probabilityPLZ<0.
The first case is not in the adiabatic regime, but the second
two cases are in the adiabatic regime because the probability
of a transition is negligible.

In Fig. 6, we show the probabilityPnstd= ukEnucstdlu2 (for
the four levelsn=1, 2, 3, 4) to find the system in thenth
unperturbed level at timet for the three casesttot=120, ttot
=21 000, andttot=270 000. These results are obtained by di-
rectly solving the Schrödinger equation(8). In all cases we
start the system in the initial stateucs0dl= uE1l with maxi-
mum pulse strengthU0=3.0. In Fig. 6(a), where there is a
large Landau-Zener probability for the system to jump from
Floquet stateA to Floquet stateD, the system comes out of
the sharp avoided crossing attfix=tI still predominately in
the leveluE1l and the traditional STIRAP ladder process can
then occur att= tc. As the pulses are turned on and off, the
system transitions from leveluE1l to level uE3l. In Figs. 6(b)
and 6(c), the Landau-Zener probability is essentially zero
and no transition occurs at the sharp avoided crossing at

FIG. 5. Probability distributionukEnufalu2 of the unperturbed
energy levelsuEnl which compose each of the Floquet eigenstates
(a) BC− (b) BC+, (c) A, and (d) D, plotted over the entire interval
0ø tfixø ttot for pulse amplitudeU0=3.0 and frequenciesv f =5v0

and vs=3v0. The probability curve for leveluEnl is labeled with
level quantum numbern.

FIG. 6. The probabilityPnstd= ukEnucstdlu2 to find the system in
the unperturbed leveluEnl for the system prepared in initial state
ucs0dl= uE1l with maximum pulse strengthU0=3.0 and frequencies
v f =5v0 and vs=3v0. The total pulse duration times are(a) ttot

=120, (b) ttot=21 000, and(c) ttot=270 000. The numbers attached
to each curve show the components of the transition probability in
terms of the unperturbed energy eigenstate basis. Case(a) is not in
the adiabatic regime. Cases(b) and (c) are within the adiabatic
regime and basically reproduce the structure of the single Floquet
eigenstateA in Fig. 5(c).
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tfix=tI. The system comes out of the sharp avoided crossing
in level uE4l. As the laser pulses are turned on and off the
system transitions from the initial stateucs0dl= uE1l to the
final stateucs+`dl= uE4l. Note that both Figs. 6(b) and 6(c)
follow almost exactly the behavior of the Floquet stateA
shown in Fig. 5(c). This is an indication that we are in the
adiabatic regime in Figs. 6(b) and 6(c).

The very large oscillations in the probability in Figs. 6(b)
and 6(c) have been explained by Berry[38] in terms of a
sequence of “superadiabatic bases.” He shows that the de-
crease in the amplitude of these oscillations as we increase
ttot is a sign that we are moving further into the adiabatic
regime. The frequencies of the oscillations in Figs. 6(b) and
6(c) appear to be determined by the difference in Floquet
eigenphases of the two Floquet states involved in the sharp
avoided crossing. For example, attfix= tf the period of the
oscillation isTosc<400. The difference in the Floquet eigen-
phases is uDVu= uV1−V4u<0.016. Thus, Tosc=2p / uDVu
=393. Similarly, attfix=stI − tfd /2, Tosc<600. The difference
in the Floquet eigenphases isuDVu= uV1−V4u<0.011. Thus,
Tosc=2p / uDVu=571. The observed oscillation periods are
the same for both Fig. 6(b) and Fig. 6(c).

VI. CASE II: FIRST PULSE 4 \5, SECOND PULSE 1\4

We now turn on pulses with higher carrier frequencies in
order to examine more closely the relation between the quan-
tum transitions and their relation to the underlying classical
dynamics. We first apply a pulse whose carrier frequency is
v f =sE5−E4d=9p2/4. We then apply a second pulse whose
carrier frequency isvs=sE4−E1d=15p2/4. The two frequen-
cies are commensurate sincev f /vs=3/5.From Eq.(10), the
periods of the Hamiltonian and Floquet frequency are again
T0=8/p and v0=p2/4, respectively. Thus,v f =9v0 and vs
=15v0. We will consider the case when the maximum am-
plitude of both pulses isU0=13.0. For these frequencies and
amplitudes, we find that we can induce a transition of the
entire population from leveluE1l to level uE10l. Below we
describe how this happens.

Classical phase space plots for timestfix= tf, tfix= tc, tfix
=tIV=3/5ttot, and tfix= ts are shown in Figs. 7(a)–7(d), re-
spectively. The first primary resonance due to the first pulse
is located atJ=4.5 and the first primary resonance due to the
second pulse is located atJ=7.5. The frequency of the sec-
ond pulse is chosen to connect levelsn=1 andn=4. How-
ever, it also connects the levelsn=7 andn=8 sinceE8−E7
=15v0. This is why the first primary resonance due to the
second pulse lies atJ=7.5. The states belowJ=4.0 are im-
mersed in the chaotic sea formed by the higher-order prima-
ries induced by the two pulses during most of the time that
the one or the other of the pulses have a significant strength.
Higher-order nonprimary resonance islands can be seen
aboveJ=6.0 during most of the pulse sequence. In Fig. 7(b)
there is a chaotic sea which has formed throughout the re-
gion J=0–9.Also, during the last half of the pulse sequence,
the KAM tori near J=10 are highly distorted due to the
formation of the primary resonance atJ=7.5. Thus, from
classical phase space we see that it requires approximately

12 square-well energy eigenstates to accurately describe the
dynamics of this system.

The Floquet matrix that we use to describe the quantum
dynamics is a 12312 matrix. However, we find that only ten
Floquet eigenstates are directly involved in the dynamics. To
keep track of these ten Floquet eigenstates, we will give each
state a unique alphabetical label determined by their domi-
nant dependence on unperturbed energy states at timetfix
=0. We find that attfix=0 the Floquet eigenstates have the
following structure and we give them the following labels:

A = uf1l = uE1l, B = uf2l = uE2l, C = uf3l = uE3l,

F = uf6l = uE6l,

DE+ = uf4l =
1
Î2

suE4l + uE5ld, DE− = uf5l =
1
Î2

suE4l − uE5ld,

G = uf7l = uE7l, H = uf8l = uE8l, I = uf9l = uE9l,

J = uf10l = uE10l. s19d

The Floquet eigenphases corresponding to these ten Floquet
eigenstates are plotted modulov0 in Fig. 8. A number of
avoided crossings occur between the eigenphases during the
time the pulses act on the system. There are four avoided
crossings that largely determine the dynamics. There is a
multiple wide avoided crossing attfix= tc= 1

2ttot which in-
volves the seven statesB, C, DE±, F, H, and I. There is a
sharp avoided crossing attfix=tIII < 3

8ttot that involves the
statesB andG. There is a three-state wide avoided crossing
at tfix=tIV< 3

5ttot that involves statesA, B, andH. There is a
sharp avoided crossing attfix=tV< 2

3ttot which involves the
statesA andJ.

In Fig. 9(a) we plot the eigenphases of the seven Floquet
statesB, C, DE±, F, H, and I involved in the multiple
avoided crossing attfix= tc= 1

2ttot. These states have support in
the unperturbed square-well levelsE3, E4, E5, E6, E7, E8, and
E9. In Fig. 9(b) we show a magnification of the very sharp

FIG. 7. Strobe plots of the action-angle variablessJ,ud for the
infinite square-well system with pulse amplitudesU0=13.0 and fre-
quenciesv f =9v0 and vs=15v0, respectively. Strobe plots are
shown at times(a) tfix= tf, (b) tfix= tc, (c) tfix=tIV=3/5ttot, and (d)
tfix= ts. The first primary resonance from the first pulse is located at
J=4.5 and the first primary resonance from the second pulse is
located atJ=7.5.
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avoided crossing between statesDE− andH at tfix= tc= 1
2ttot.

The effect of these avoided crossings can be seen in the
dependence of the Floquet eigenstates on the square-well
statesuEnl. Plots of Floquet eigenstatesB, H, and G are
shown in Fig. 10 and plots of Floquet eigenstatesDE±, C,
and F are shown in Fig. 11. There is a complicated inter-
change of levels occurring. As shown in[33], at such mul-
tiple avoided crossings, the Floquet eigenstates emerge with
very different probability distributions than the entering
states. Thus, multiple avoided crossings behave differently
from isolated pairs of avoided crossings where the states
simply interchange character. Multiple avoided crossings
provide a mechanism for the spread of the manifestations of
chaos in quantum systems[33].

It is useful to note that there is an isolated avoided cross-
ing at tfix=tIII that causes statesB and G to switch fromB

<uE2l andG<uE7l, as they enter the avoided crossing attIII ,
to B<uE7l andG<uE2l as they leave. Thus stateB<uE7l as
it enters the multiple avoided crossing attfix= tc= 1

2ttot.
Let us now consider the transition that causes the popula-

tion of the square well to undergo a coherent transition from
level uE1l to level uE10l. This can occur if the system evolves
adiabatically and follows the behavior of Floquet stateA.
The level dependence of Floquet stateA is shown in Fig.
12(a). It starts out in leveluE1l and then partially switches to
level uE5l at tfix=tIV due to a three state avoided crossing
between statesA, B, andH, and finally attfix=tV it switches
completely to leveluE10l due to a sharp avoided crossing
between statesA and J. The avoided crossings at timestfix
=tIV and tfix=tV that cause these transitions are shown in
Figs. 13(a) and 13(b), respectively.

FIG. 8. The ten Floquet eigenphases, plotted modulov0, which
determine the dynamics for pulse strengthU0=13.0 and frequencies
v f =9v0 andvs=15v0. The curves are identified following the clas-
sification scheme in Eq.(19).

FIG. 9. (a) The seven Floquet eigenphases, plotted modulov0,
which are involved in the multiple avoided crossing attfix= tc
= 1

2ttot for pulse strengthU0=13.0 and frequenciesv f =9v0 andvs

=15v0. The curves are identified following the classification
scheme in Eq.(19). (b) A magnification of the very sharp avoided
crossing between Floquet statesDE− andH at tfix= tc= 1

2ttot.

FIG. 10. Probability distributionukEnufalu2 of the unperturbed
energy levels which compose each of the Floquet eigenstates(a) B,
(b) H, and (c) G, plotted over the entire interval 0ø tfixø ttot for
pulse strengthU0=13.0 and frequenciesv f =9v0 and vs=15v0.
The probability curve for leveluEnl is labeled with level quantum
numbern.

FIG. 11. Probability distributionukEnufalu2 of the unperturbed
energy levels which compose each of the Floquet eigenstates(a)
DE−, (b) DE+, (c) C, and (d) F plotted over the entire interval 0
ø tfixø ttot for pulse strengthU0=13.0 and frequenciesv f =9v0 and
vs=15v0. The probability curve for leveluEnl is labeled with level
quantum numbern.
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In Fig. 14 we show a sequence of Husimi plots of the
statesB, H, A, andJ as they go through the avoided cross-
ings attfix=tIV andtfix=tV. The Husimi plots show the loca-
tion of the quantum particle in phase space when the system
is in a given eigenstate. The columns from left to right show
the Floquet statesB, H, A, andJ. From top to bottom, the
Husimi plot of each state is shown at times(a) tfix= tf, (b)
tfix= tc, (c) tfix=tIV, (d) tfix=tV, and(e) tfix= t2. The sequence
of events causing Floquet stateA to undergo a transition
from level uE1l to level uE10l can be seen clearly in these
plots.

Finally in Figs. 15(a) and 15(b), we plot the probability
Pnstd= ukEnucstdlu2 (for the ten levelsn=1, . . . ,10) to find the
system in thenth unperturbed level at timet [Fig. 15(c) will
be discussed in Sec. VII]. The system is prepared in initial
state ucs0dl= uE1l with maximum pulse strengthU0=13.0.
We obtain these plots by directly solving the Schrödinger
equation (8). In Fig. 15(a) we show the results for the
nonadiabatic case. We choosettot=600 which is a rapid evo-
lution of the pulses. After the pulses have passed, the final
state of the system isucs+`dl= uE5l. The adiabatic case is
shown in Fig. 15(b). We now choosettot=6000. The prob-
abilities now closely follow the behavior of the single Flo-
quet eigenstateA as can be seen in Fig. 12(a). After the
pulses have passed, the final state of the system isucs+`dl
= uE10l. This transition dynamics is determined by the struc-
ture of the avoided crossings in the Floquet eigenphase
curves and by the phase space structure of the Floquet eigen-
states at the avoided crossing.

The phase space structure of the Floquet eigenstates(see
the Husimi plots) is determined by structures in the underly-
ing classical phase space which are greater than Planck’s
constant. The transition fromucs0dl= uE1l to ucs`dl= uE10l
occurs because at the time of the transition the classical
phase space is connected by a chaotic sea fromJ=1 to J

FIG. 12. Probability distributionukEnufalu2 of the unperturbed
energy levels which compose each of the Floquet eigenstates(a) A
and (b) J, plotted over the entire interval 0ø tfixø ttot for pulse
strength U0=13.0 and frequenciesv f =9v0 and vs=15v0. The
probability curve for leveluEnl is labeled with level quantum num-
ber n.

FIG. 13. (a) Magnification of the three Floquet eigenphases for
eigenstatesA, B, and H which are involved in the three-state
avoided crossing attfix=tIV=3/5ttot for pulse strengthU0=13.0 and
frequenciesv f =9v0 and vs=15v0. The curves are identified fol-
lowing the classification scheme in Eq.(19). (b) Magnification of
the sharp avoided crossing attfix=tV=2/3ttot for pulse strength
U0=13.0 and frequenciesv f =9v0 andvs=15v0. Curves of eigen-
phases for Floquet eigenstatesA andJ are shown.

FIG. 14. Husimi plots for the Floquet states(a) B, (b) H, (c) A,
and (d) J plotted in columns from left to right, respectively, for
maximum pulse strengthU0=13.0 and frequenciesv f =9v0 and
vs=15v0. Each Floquet state(column) is shown(from top to bot-
tom) at times (a) tfix= tf, (b) tfix= tc, (c) tfix=tIV=3/5ttot, (d) tfix

=tV=2/3ttot, and(e) tfix= t2. The effect of the avoided crossings that
enable Floquet stateA to undergo a transition from leveluE1l to
level uE10l can be seen clearly.
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=9 and a strongly distorted KAM region atJ=10 which
allows the quantum state to tunnel into the phase space re-
gion aroundJ=10. This can be seen from the Husimi plot for
the stateA at time tfix= 13

20ttot which is shown in Fig. 16. The
unperturbed levelsn=1, n=5, andn=10 are connected via
the chaotic sea around the twon=1 primary resonances
which exist at the timetfix= 13

20ttot.

VII. CASE III: FIRST PULSE 3 \4, SECOND PULSE 1\4

The final case we consider is aL process in which the
system is driven by pulses with carrier frequenciesv f =sE4

−E3d=7p2/4 andvs=sE4−E1d=15p2/4. These frequencies
are commensurate and the period of the Hamiltonian and the
Floquet frequency are againT0=8/p andv0=p2/4, respec-
tively. To stay as close to case II parameters as possible, we
chose pulse amplitudesU0=13.0. Although this case looks
similar to case II, we will find quite different results.

In the adiabatic limit, the transitionuE1l→ uE3l occurs, as
shown in Fig. 15(c), which is very different from case II. We
believe that the difference between these two processes is
due to the difference in the phase space distribution of the
resonances and chaos induced in the system by the laser

pulses. Strobe plots of the classical phase space for theL
case for timestfix= tf, tfix= tc, tfix=tIV=0.62ttot, andtfix= ts are
shown in Figs. 17(a)–17(d), respectively. The first primary
resonance due to the first pulse is located atJ=3.5 (rather
than J=4.5 as is in case II) and the first primary resonance
due to the second pulse is located atJ=7.5 (the same as case
II ). For case II, a pathway is opened by a chaotic sea that
allows a Floquet state to tunnel across the entire energy re-
gion (see Fig. 16) from uE1l to uE10l at the time of the
avoided crossing. In the strobe plots of the classical phase
space in Fig. 17 for case III, this pathway is blocked by
KAM tori which do not allow the quantum system to tunnel
out of the low energy region. We also find fewer avoided
crossings in the plot of the Floquet eigenphases for this case.

VIII. CONCLUSION

We have found that sequential laser pulses, when applied
to a particle in an anharmonic multilevel system, can induce

FIG. 16. Husimi plot for the Floquet stateA for maximum pulse
strengthU0=13.0 and frequenciesv f =9v0 and vs=15v0 at time
tfix=13/20ttot, just before the avoided crossing attfix=tV. This state
covers the entire chaotic region of the underlying classical phase
space fromJ=1 to J=9 and the highly distorted mixed region at
J=10.

FIG. 17. Strobe plots of the action-angle variablessJ,ud for the
infinite square-well system with pulse pulse amplitudesU0=13.0
and frequenciesv f =7v0 and vs=15v0, respectively. Strobe plots
are shown at times(a) tfix= tf, (b) tfix= tc, (c) tfix=tIV=0.60ttot, and
(d) tfix= ts. The first primary resonance from the first pulse is located
at J=3.5 and the first primary resonance from the second pulse is
located atJ=7.5.

FIG. 15. The probabilityukEnucstdlu2 to find the system in the
unperturbed leveluEnl for the system prepared in initial state
ucs0dl= uE1l with maximum pulse strengthU0=13.0 for the ladder
processes in(a) and (b) and for theL process(c). For the ladder
process, the frequencies of both pulses arev f =9v0 and vs=15v0

and(a) ttot=600 and(b) ttot=6000. For theL process, the frequen-
cies of both pulses arev f =7v0 and vs=15v0 and (c) ttot=6000.
The numbers attached to each curve show the components of the
transition probability in terms of the unperturbed energy levels.
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nonlinear resonances and a transition to chaos in the dynam-
ics of the particle. The extent of the region influenced by
resonances and chaos determines the number of unperturbed
energy eigenstates that must be kept to form the basis used to
construct the Floquet matrix and to determine the quantum
dynamics.

When the pulses are applied in a manner which adiabati-
cally changes the dynamics of the particle, this transition to
chaos can be used to control the coherent transfer of the
particle across the chaotic sea from a low-lying energy state
to a highly excited energy state. Floquet theory provides an
accurate means of describing the dynamical behavior of
these driven systems in the adiabatic limit. The type of popu-
lation transfer that is allowed depends on the nature of the
Floquet eigenphase avoided crossings created by the under-
lying transition to chaos and the ability of the corresponding
Floquet eigenstates to tunnel across vast regions of the phase
space because of the induced chaos. In cases I and II,
avoided crossings occurred between Floquet eigenstates
which had spread throughout the available phase space, and
a coherent flow of probability from the low-energy side to
the high-energy side of the chaotic sea occurred. In case III,
the path to the high-energy states around the resonance atJ

=7.5 appears to be blocked by KAM tori and the transition to
the higher-energy states does not occur.

In molecular systems, the success of STIRAP will depend
on the state of the dynamics of the unperturbed molecular
system and on the changes in that dynamics induced by the
laser pulses. Most molecular systems have regimes of inter-
nal chaos and the interplay of these regimes with the dynam-
ics induced by the laser pulses is critical to understanding
STIRAP in these system.
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