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We study the exact dynamics underlying stimulated Raman adiabatic paSSA&AP) for a particle in a
multilevel anharmonic systertthe infinite square welldriven by two sequential laser pulses, each with
constant carrier frequency. In phase space regions where the laser pulses create chaos, the particle can be
transferred coherently into energy states different from those predicted by traditional STIRAP. It appears that
a transition to chaos can provide an additional tool to control the outcome of STIRAP.
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[. INTRODUCTION the molecule may itself be exhibiting the manifestations of
Laser radiation provides a means to control intramolecuchaos and simple pictures of the molecular level structure are

lar processes in a robust manner because of a conservatif!y. not valid. Understanding this dynamics is very impor-
tant for extending STIRAP to wider ranges of molecules

law that comes into play when monochromatic radiation in- hi : Vi
teracts with nonlinear systems. The origin of this conserva- '”'; IS pape(; V‘I’e study tr?(act dyn_amur:]snder ying ISfTI-
tion law is the discrete time-translation invariance of laser-RAP for a model system that contains the essential features

driven systems. For radiation interacting with molecular®f 0W-energy vibration states, or rotational states, of a di-

systems, this conservation law gives rise to stable electrorftomic molecule driven by two laser pulses. We will find, for

photon (phonon-photon, roton-photprstructures described example, that in phase space regions where the laser pu_lses
by conserved eigenstai(zme Floquet statgsof the driven create chaos, the molecule can be transferred coherently into

. .~ . __energy states very different from those predicted by tradi-
system. Floguet states are exa_ct eigenstates of'penodlca tnal STIRAP. It appears that a transition to chaos may pro-
driven systemdq1-3]. Their reality can be seen in recent

: . h i f sodi vide an additional tool to control the outcome of these pro-
atom-optic experimentf4—6,3, where millions of sodium  osses in molecular systems.

[5] or cesium atom_$4], interacting with a time-modulatgd _ STIRAP was first proposed by Hioe and co-workgfs]
standing wave of light, underwent large coherent periodicand |ater confirmed in an experiment involving population
oscillations in momentum in a multiphoton process. Thesgransfer between vibration-rotation states of sodium dimers
coherent oscillations were subsequently found to be due t@, 10]. There are several variations to STIRAP which gener-
the interference of only two or three Floquet eigenstatesily is described as a process involving three particular en-
whose phase space structure was determined by an underlyrgy levels,E;, E,, andE;, of a collection of atoms or mol-
ing chaotic sea induced by the interaction between the atomecules of interest. All atoms or molecules are initially in the
and light[6]. In this paper, we wish to show that similar lowest-energy stat&,;. Two laser pulses then impinge se-
mechanisms are important when laser pulses interact witquentially on the system in order to make a transition toward
intramolecular forces. We will focus on the exact dynamicsthe target statd,. In the “ladder” version of STIRAP the
underlying stimulated Raman adiabatic passé§€IRAP)  target stateE; is the highest state in energy and in th&e™*
for laser pulses interacting with a simple model of intramo-version of the STIRAP the intermediate st&gis the high-
lecular dynamics. est state in energy. The first laser pulse couesnd E;
STIRAP has become an important tool for coherently conwhich contain no population, and the second laser pulse then
trolling and changing the vibration and electronic states oftouplesk; andE,. As a result of these processes, the entire
entire molecular populations with close to 100% efficiency.atomic or molecular population is transferred coherently into
STIRAP involves the application of short laser pulses withthe target state without populating the intermediate state after
carefully chosen carrier frequencies to a molecular systerthe laser pulses have pasgad-17.
for the purpose of exciting the molecules in a controlled As mentioned above, conventional STIRAP analyzes an
manner. This technique causes a coherent change in the estomic or molecular system in terms of three carefully cho-
tire molecular population between molecular states. Tradisen energy levels of the unperturbed system. However, com-
tional models of STIRAP generally view the molecular targetplications arise in real applications since these systems are
as a simplified multilevel system. Indeed, traditional STI-composed of multiple states due to the rotational, vibration,
RAP focuses on three carefully chosen vibration and/or elecand electronic levels of the unperturbed system. Extension of
tronic levels. There are no studies, that we know of, that looKSTIRAP to multilevel systems has been discussed by a num-
at the effect on STIRAP of the actual nonlinear dynamicsber of authors, generally in terms of simplified models using
that occurs when the laser pulses interact with a moleculahe rotating-wave approximation and three or more laser
system. However, we know that laser pulses can induceulses[18-29. Alternatively, Raman-chirped adiabatic pas-
chaos and this can strongly affect the response of the mokage schemd27-29, in which the frequency of the incident
ecule to the laser field. In addition the internal dynamics oflaser pulse is continuously changed, have also been proposed
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to allow the system to climb through a sequence of molecu-
lar energy levels.

In this paper we take a different approach to the problem.
We consider theexact dynamicghat takes place when the
two laser pulses impinge on a multilevel system. Instead of
isolating a certain number of levels of interest and analyzing
the process in terms of the rotating-wave approximation, we
will let the full multilevel dynamics evolve and allow the
system to tell us how many levels we must keep to accu-
rately describe the atomic or molecular dynamics when a F|G. 1. Schematic diagram for the two pulses. The first pulse
radiation field is present. Unlike the previous studies whichconnecting level$E,) and|E) is shown as a solid line. The second
utilize more than two pulses in multilevel systems, we onlypulse connecting level&;) and|E,) is shown as a dotted line. They
apply two pulses and allow as many levels as dictated by theave maximum strengtl,, at timest=t; andt=tg, respectively. The
dynamics participate in the process. One way to see howhole pulse sequence takes a titme, to complete. In the figure,
many levels must be kept is to look at the underlying classif1=1/2Qto te=1/2o, andt;=19/2C.
cal phase space of the system of interest. The laser field,
when interacting with nonlinear intramolecular dynamics Il. CLASSICAL DYNAMICS

will induce nonlinear resonances and chaos in localized re- The model system for this study is a particle located in an

gions of the phase space. Those structures in the classicgfinite square well potential with spatial widtta2The po-

phase space which have a size greater than Planck’s constaghtial energy has the fornd(X)=0 for [x| <a and V(X)=

determine the structure of the Floquet eigenstates of the syfor [X| =a, whereX is the position of the particle. The clas-

tem, and thereby have a direct influence on the STIRARjcal Hamiltonian which describes the dynamics of a particle

process. of massm moving in the potential well and driven by two
The model we use to study the effect of chaos on STIRARsequential pulses of monochromatic radiation is given by

in a multilevel system is that of a particle in an infinite ~>

square-well potentig30,31. The infinite square-well poten-  F= P + U(D% cog ) + UDX cogad) for [X < a,

tial is an anharmonic potential of the forrd" in the limit 2m

n—oo, It can give some insight into the behavior of low- (1)

lying vibration states, or rotation states, of molecular systems here® is th fth icfBis the ti q
in the presence of sequential laser pulses. An approximaﬁé‘ erep is the momentum of the particle,s the time, an

version of the square-well potential we consider here could’f and s are the carmer frequgnues of the first and second
also be constructed in an atom-optics experin@tor in pulses,~resp~ectlvel~y - The amplitude of the fleztcond pulse
semiconductor heterostructures. The dynamics of a particlat timeT is Us(f) [Ug®)]. If we rescale parameters usifig

in an infinite square-well potential is also interesting because xa, p=p#/a, Dozuoﬁ2/2ma2, T=2malt/#, H=HA2/2m&,

the laser pulses can cause the low-energy particle states &d o o= wf,SﬁIZmaz, wheret is Planck’s constant, then the
undergo a transition to cha$32,33. For the case of mono- Hamiltonian is

chromatic laser fields, this transition to chaos is accompanied 5
by a plateau of high-harmonic radiation whose cutoff is de- 1 =P+ U(ixcogwt) + Ust)xcodwg) for x| <1,
termined by the width in energy of the chaotic sea induced (2

by the laser field32]. . .
In the sections below, we describe the behavior of a parg;md all parameters are dimensionless. The energy has been

. ; > . .
ticle in an infinite square-well potential which is driven by rescaled in units ofi“/2main order to make comparisons

two sequential laser pulses whose carrier frequencies aP@'th the corresponding quantum system in subsequent sec-

monochromatic and chosen to couple specific unperturbeﬁons' : .

energy levels of the particle in the square-well potential. We The amplitudesq(t) and U (t) have Gaussian shape of
will find that for the case when the pulse amplitudes varyth® form
slowly in time so that the adiabatic theor¢B¥] is satisfied,  Uq(t) = Ugexd- B(t—t)?], U4t) =Uyexd- Bt-t9?],

the dynamics can be described in terms “snapshots” of the 3)
underlying classical phase space at selected times as the laser

pulses pass through the system. In Sec. Il, we describe theheret; <t,. We can control the duration of each pulse by
classical dynamics that results from the laser pulses. In Seadjusting the paramete® and we can control the amount of
[, we discuss how we will describe the quantum dynamicsoverlap of the two pulses by changitgandts. For simplic-

for the driven system. In Sec. IV we introduce Floquetity, we assume that the maximum amplitudg and width3
theory. In Secs. V=VII we show that a dynamics quite dif- of the two pulses are the same. A schematic picture of the
ferent from that of the traditional STIRAP ladder model canvariation in time of the amplitudes of the two pulses is dis-
occur in multilevel systems due to the presence of chaoglayed in Fig. 1. The first pulse is turned on and drives the
even for fairly weak pulse amplitudes. Finally in Sec. VIII particle in the square well and then, with an appropriate de-
we make some concluding remarks. lay time, the second pulse is turned on. The whole pulse
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FIG. 2. Strobe plots of the
action-angle variableqJ, 6) for
the infinite square-well system
with pulse amplitudet);=3.0 and
frequenciesws=5wy and ws= 3wy,
Strobe plots are shown at time
tix=t1, (b) trx=ts, (C) trx=tc, (d)
tix=ts, and (e) tqs=t,. For each
plot 0<6#<. The three largest
primary resonances=1, 2, and 3,
due to the first pulse are located at
J=2.5, 0.83, and 0.5. The three
largest primary resonances=1,

2, and 3, due to the second pulse
are located af=1.5, 0.5, and 0.3.

sequence ends at the total pulse duration timig,. For the these frequencies will allow us to use Floquet theory when

purpose of marking time intervals in our subsequent discuswe analyze the quantum system. We choose the pulse carrier

sion, we choose timess = tg; te= 2ty andty= 2ot frequencies to bes=37%/4 and w=57*/4. For the fre-
We will be interested in how the classical phase spacéluencies we have chosen, the period of the Hamiltonian is

behaves in thadiabatic limitwhere the pulses are turned on To=8/. For the five cases shown in Figga2-2(e), we fix

and off very slowly relative to certain intrinsic time scales in the amplitude of the pulses by settit® Ur (tr) = Uy s(t1),

the system, such as the periods of the carrier frequencies. () Ut s(tiix) = Ur(t), (€) Urd(tr) =Ugg(to), (d) Ugltrin)

this limit the amplitudedJ(t) and U4(t) remain essentially = Yrs(ts), and(e) Uy4(tr) = Uy (to), respectively. For each

constant during time intervals where the cosine terms oscil®f these choices of amplitude; and U, we show strobe

late many times. We can get an idea of the structure of th@°ts Of the classical phase space, allowing the time depen-
%ence of the cosine waves to vary. The three largest primary

phase space by plotting a Poincaré surface of section of th - X .
phase space for fixed pulse amplitud&. Thus we also ;?32”;20‘??16_;‘3’ 26’12 len_dg (;ec:et;y the_ first pulse are located
consider the Hamiltonian J=2.5,J=0.83, =0.5, re pectively. The three largest
primary resonancey=1,2,3 induced by the second pulse
H = p® + Ug(tr)x cogopt) + Udtgdx codwd) for [x| <1,  are located af=1.5,J=0.5, andJ=0.3, respectively. In Fig.
(4) 23, with Ug(ty)=0.1667 andJ(t;)=0.000 003, the primary
) ) resonances induced by the first pulse are dominant. In Fig.
where the amplitudes are set to constants by choosing thee) with Uj(t,)=0.000 003 andJ((t,) =0.1667, the primary
value at some fixed time=t;,. The Hamiltonian in Eq4) IS resonances induced by the second pulse are dominant. In all
time periodic and we can view the behavior of the phasgases, the first primary resonante=1) is located at the
space using the Poincaré surfaces of sectiBh The  pjghest energy and the higher-order primary resonances are
Poincaré surfaces of section for time-periodic Hamﬂ'@manslocated at decreasing energy mncreases. As a result, this
are strobg pI(_)ts op andx—i.e., plots ofp andx each time system will always have a chaotic region at low energy due
the Hamiltonian goes through one complete oscillation iny yhe gyerlap of higher-order resonances. For energies above
time. the region of influence of the=1 primary of the first pulse,

We can perform a canonical transformation to actionhe phase space is dominated by Kolmogorov-Arnold-Moser
angle variables(J,6) defined asJ=2|p|/7 and #=+m(x (KAM ) tori,

+1)/2. The Hamiltonian then has the form In Fig. 2c), Wheretﬂx=tc=%ttot, the primary»=1 reso-

2P AUt * 1 nances due to the two pulses have equal amplitude and are
= - ;;'X > 504 (2v— 1) 6 — wyt] clearly visible atJ=2.5 andJ=1.5. For this case the pulse
4 = (2v=1) amplitudes areU¢(t;)=U4(t.)=1.103. All the higher-order

primary resonances have been destroyed and a large chaotic

5c0§(2v - 1) 6 - o] sea has formed at low energy.
) Figure 2b) shows the classical phase space at tigpe
=t; when the first pulse reaches its maximum amplitude with
U;(t;)=3.0 and U4(t;)=0.055. The region of phase space
An infinite number of nonlinear resonances are produced imbout the primaryv=1 resonance due to the first pulse is
the classical phase space by the external fields.pFimeary  very distorted by the resonance. Detailed calculation shows
resonancesre located al=J,=2w; J/[(2v-1)7?]. As vin-  that there are small higher-ord@ronprimary resonance is-
creases, the energy at which higher order primary resonancéands betweed=3 andJ=4. Figure 2d) shows the classical
are located decreases. phase space at timg,=t; when the second pulse has

In Fig. 2, we show strobe plots of the classical phasereached its maximum amplitude with¢(t)=0.055 and
space for the case withl;=3.0. The commensurability of U(t)=3.0. The primary=1 resonance due to the first pulse

AUt - 1
R Ew (2v-1

=

for0<60< . (5)
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FIG. 3. Strobe plots of the
action-angle variablegJ,6) for
the infinite square-well system
with pulse amplitude&);=0.5 and
frequenciesws=5wy and ws= 3wy,
respectively. Strobe plots are
shown at timega) tq,=tq, (b) tgiy
=ty, (0) tix=tc, (d) trix=ts, and(e)
tqix=to. For each plot & <.

is very small and its region of influence does not extend venguantum system. This simplifies comparison between the
high in energy. classical and quantum systems.

It is interesting to compare the classical phase space for We can expand the wave functidi(t)), in the unper-
Up=3.0 with a case when the maximum pulse amplitude igurbed energy basis, $@(t))==,c,(t)|E,). Then we can re-
Up=0.5. In Fig. 3, we show the strobe plots of the classicalwrite the Schrodinger equation in the form
phase space at the same timgs=ty, t;, t;, ts, andt, as in

Fig. 2 bu_t withUy=0.5. More island struptures surv_ive \_/vith deq(t) = —iE,c,(t) +i[Us()cod wit)

this relatively weak value of pulse amplitude than in Fig. 2. dt

The invariant surfaces between the twg1l primary reso-

nances are distorted and higher order non-primary resonance + Us(t)COE(wst)]E Xn,n'Coy (1), (8)
islands can be seen even when the pulse amplitudes have n’

reached their maximum values. where ¢, (t)=(E,| (1)) is the probability amplitude to find

the system in theth energy level at timé We will generally

assume that at timé=0 the system is in the sta{g/0))
The Schrodinger equation for the driven square-well sys=|E;). We will then find the statdy(+x)) after the two

tem described in Sec. Il can be writt¢im dimensionless pulses have been turned on and off.

units)

Ill. QUANTUM SYSTEM

’ 7 IV. FL ET STATE
i—(x|(t)) = <_ — + Ug(H)x cogwyt) + Ug(t)x Cos(wst)> OQUET S s

at X Once we fix the amplitudeb;(t=t;,) =U¢(ts;,) and Ug(t
XX|gt)), (6) =t =Ugts), the Hamiltonian becomes time periodic and

. . the Schrodinger equation takes the form
where the momentum operator is given fipy—id/ x. In or-

der to satisfy the boundary condition &t +1, the wave ¢ _ &
function should satisfyy(x=+1,t)=(x=+1|4(t))=0 for all |3t<x| W)=\ - 2 Us(ti)X codwit) + Ug(ti)x co wt)
timest.

For the case of a quantum particle in an infinite square X{X|ydD). (9)

well, when U;s=0 (no driving force, the energy is con- por such systems, the energy is not conserved. However, if
served and we have a compléete set of orthonormal energye carrier frequencies of the pulses are commensurate, so
eigenstates which can be used as basis states to describe g;\fgawsz n:/n, wheren; andn, are integers, then the Hamil-
dynamics of the driven system. For the unperturbed systeMgnian is invariant under a discrete time translatidft)

the energy eigenvalues aB=nx?/4 and the orthonormal =H(t+T,), where the period, of the Hamiltonian is
energy eigenstates atg|E,)=¢,(X)=sinnw(x-1)/2]. The

dipole matrix elements in this basis arg , =(E;|XE,) To:w<ﬁ+&>. (10
where 0 wg
0 [n+n’] (modulo 2 =0, For such systems, Floquet eigenstaigs(t)) [which have
X = 16nn’ ’ (7)  periodT, so | (t+Tp))=|p,(1))] form a complete orthonor-
' 2—n2p [n+n'] (modulo2=1. mal basis which determines the dynamics. Furthermore, the
Floguet eigenphasd3, are conserved quantiti¢$—3].
Note that integer values af (J=n) in the classical Hamil- We can obtain an eigenvalue equation relating and

tonian correspond to the allowed quantized states of thép,(t)). Consider the case when the system is in ttb
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Floquet eigenstate so thhi(t))=e"{¢,(t)). Then substi- the Floquet matrix have been computed. Floquet eigenphases

tution into Eq.(9) yields the eigenvalue equation and eigenstates are obtained by numerically diagonalizing
; the Floquet matriq3].
" . _ Husimi distributions allow us to visualize the distribution
(H(t) Iat>|¢“(t)>_9“|¢“(t)>' (D of probability of the Floquet eigenstates in the underlying
R . classical phase spa¢85]. Physically they describe the loca-
whereHg(t) =H(t)—id/ t is the Floquet Hamiltonian. tion of the particle in the presence of the radiation field and
More generally, when the system is in the stat0)) at  provide important information about the actual dynamics
time t=0, the state of the system at tirhean be written taking place in the system. The Husimi distribution for a
, . Floquet eigenstate |¢,) is defined as H(xg,pg)
[A0) = 20 A (1) = 2 (Ba(0)]14(0))7 %! (1)) =[{a|X0,Po)|% Where the statdxy,py) is a coherent state

that can be represented in the position basif3ad
(12

(L 4 _ (X=x0)? + iPo(X = Xo)
The state of the system at tine T, takes on an especially (X|x0,Po) = 2n) o2 7 '
simple form (16)

[UTo)) = Up(To)|A0)) = 2 €7%T0|,(0) (b, (0)[14(0)), The coherent state is a minimum uncertainty wave packet
“ and has a parameterthat determines the relative dispersion
(13 in both position and momentum space.

B In the subsequent sections, we will consider three differ-
where we have used the fact thet(To))=[¢.(0)). The Flo-  ont choices for carrier frequencies of the pairs of pulses

quet evolution operator KT,), can now be defined: which drive the system. For case |, the first pulse connects
R levelsn=2 andn=3 and the second pulse connects levels

Ur(To) = >, €%T0|¢h,(0)){ b, (0)]. (14 n=1andn=2. This is the traditional model for the STIRAP

a ladder procesgll]. However, as distinct from the usual dis-

. . cussion of STIRAP we will deal with the exact dynamics of
We can compute matrix elements of the Floquet evolut|oqhe system. We will take account of the fact that we have a

operator in the b_asis of unperturbed energy eigenstates_. Th‘ﬁ%ltilevel system that can undergo a transition to chaos. We
the (n, n")th matrix element of the resulting Floquet matrix is will examine the effect of the full nonlinear dynamics on this

given by system. For case Il, the first pulse connects leweld and
~ n=5 and the second pulse connects levetsl and n=4.
Un(To) = (Eq|UR(To) |[En) This is again a ladder process. For this case the underlying
_ i, T chaotic dynamics will have a surprising effect on the transi-
B % & AE| Do O La(O)|En).  (15) tion probabilities. Finally, for case Ill, we considerAapro-
cess in which the first pulse connects levets3 andn=4
The ath eigenvalue of the Floquet matrix),(To) is  and the second pulse connects levetsl andn=4. In all
exp(-iQ,To), and theath eigenvector in the unperturbed en- cases, we consider the exact dynamics of the driven system.
ergy basis is given by a column matrix composed of matrix
elements(E,| ¢,(0)), wheren=1,... . The eigenvalues
Q, can be obtained from expi(),Ty), but only with modu-
lus wg. We refer to the eigenvalueQ, obtained from the
Floguet matrix agigenphases In this section, we examine the dynamics of the driven
For the system we consider here, the Floquet matrix has square-well system when two pulses are applied such that the
natural truncation which is determined by the nonlinear dy-irst pulse connects leveis=2 andn=3 and the second pulse
namics of the system. Classically, the driven square-well syshen connects the levels=1 andn=2. We first determine
tem has a region of mixed phase space bounded at high etiie behavior of Floquet eigenstates at fixed tirves;, dur-
ergies by KAM tori. For the cases we will consider here,ing which the pulses drive the system. The distribution of
where the initial staté/(0)) is the unperturbed energy level probability in the Floquet eigenstates is sensitive to struc-
|(0))=|E,), the statéy{(0)) can never penetrate very far into tures in the classical phase space which are larger than
the high-energy KAM region. This provides a natural trun- Planck’s constant. We then compare the prediction of Floquet
cation of the size of the Floquet matrix and we need to intheory to the actual behavior of the system in the nonadia-
clude only enough unperturbed basis stdg$to cover ad- batic and adiabatic regimes.
equately the region of mixed phase space. Each column of
the Floguet matrix can be constructed by solving the time-
dependent Schrédinger equation for one pefigdvith the
system initially in one of the unperturbed energy eigenstates. The first pulse has carrier frequency:=(Ez—E,)
This integration is performed using each of the unperturbed572/4 and the second pulse has carrier frequeagy(E;
energy eigenstates as an initial state until all the columns of E;)=37?/4. These frequencies are commensurate since

V. CASE [I: FIRST PULSE 2 —3, SECOND
PULSE 1-2

A. Behavior of Floguet eigenstates
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25 = function of t;,. As we will see, the Floquet eigenstates can
w change structure when avoided crossings occur between Flo-
75l Bc* quet eigenphases. To keep track of the changes that occur in

g the Floquet eigenstates, we will give each eigenstate a
3 s unique alphabetical label determined by its dominant depen-
% aj-/\/\ dence on unperturbed energy states at tige 0. We find
%‘3 L that att;,=0 the Floquet eigenstates have the following
5 29T ) structure and we give them the following labels:
3, 24t BC
§ o2t o A=[¢)=|E), D=|¢y=|Es», E=|¢s)=|Es),

0

1
BC'= |¢2>:E(|E2>+ E3), 17

1
BC =|[¢s) = =(|E2) — [Ea)).
V2

The traditional STIRAP ladder process assumes that the
molecule or atom in question can be approximated by a three
level system and causes a coherent population shift of the
atom from level 1 to level 3. We find that the traditional
STIRAP ladder process occurs in our system y<<0.1.

FIG. 4. Floquet eigenphases, for the system with maximurf OF @mplitudedJ<0.1, stateD =|¢,) does not participate in
pulse strengttUy=3.0 and frequencies;=5w, and ws=3w,, are  the dynamics at all. The Floquet eigenvalue curve iy
plotted over the entire intervaltg, <t (3) Floquet eigenphases plotted as a function df;,, crosses that fof), in two places
for four Floquet stated, BC*, BC", andD plotted modw,=72/4.  but does not undergo any avoided crossings. The $ate
(b) Floquet eigenphase curves for the Floquet stite8C*, and  =|¢,) remains predominantly dependent (&) during the
BC . The three-level-wide avoided crossingtat=t. is clear.(c)  entire process. For traditional STIRAP, cuiein Fig. 4(b)
Floquet eigenphase curves for the Floquet staterdD. The sharp  is replaced by staté and the only avoided crossing that
avoided crossing at;,=7 and the crossing k=, are clearly  occurs is the three-way avoided crossinggtt, between
seen. statesA, BC*, and BC". StateA, which is predominantly

composed of the statg;) before the multiple avoided cross-
wsl wg=5/3.From Eq.(10), the period of the Hamiltonian is ing att=t., becomes predominately dependent on siaip
To,=8/m and the Floquet frequencyis wy=27/Ty==?/4.  after the multiple avoided crossing, having interchanged its
Thus, w;=5wy and ws=3wy. We setUy=3.0. “1” character with the “3” character of statBC" andBC™ at

The dynamics of this system tells us that we only need tdhe avoided crossing. Thus, at the end of the process Atate
keep five unperturbed energy eigenstates as a basis to fonwpuld be composed predominately of lewe+3 and the
the Floquet matrix. This can be seen from Fig. 2 where westatesBC" and BC” would be predominately of superposi-
show the underlying classical phase space at selected valutigns of levelsn=1 andn=2.
of t5, during the time that the pulses are on. Bor5, the Once the amplituddJ, becomes greater thad,=0.1,
classical phase space is dominated by KAM tori with almosisomething different happens due to the avoided crossing
constant values o and the unperturbed energy states areshown in Fig. 4c). ForU;<<0.1 the Floquet eigenphases for
very weakly coupled by the dynamics for>5. Thus, to statesA andD in Fig. 4(c) crossat timetﬂxznz;—gttot just
describe the quantum behavior of this system, it is sufficienbeforets,=t.. ForUy>0.1 the Floquet eigenphases for states
to construct a X 5 Floquet matrix with the five basis states A andD in Fig. 4(c) avoid crossingat time t;;,=7;. Before
|E1), ... ,|Es). We find that only four of the five eigenstates of time t;,=7 Floquet stateA is predominately composed of
the Floquet matrix are actively involved in the dynamics.leveln=1 and Floquet stat® is predominately composed of
Their eigenphasef, are plotted modulavy=72/4 in Fig.  level n=4. After the avoided crossing at timg,=17 the
4(a). Two of these Floquet eigenphases are almost degeneradtates have changed their character and Floquet Atase
over the time interval that the pulses act and are not distineomposed predominately of lever4 and Floquet statB is
guishable on the scale shown in Figay Fort;,=0, the four composed predominately of levai=1. Because of the
Floquet eigenphases are approximately degenerate modufwoided crossing &t =7, the entire population gets shifted
wo. from leveln=1 to leveln=4 beforethe traditional STIRAP

We can follow each Floquet eigenstate during the entirdadder process can take place. The traditional STIRAP ladder
process by computing the eigenstates for a sequence of vairocess now occurs amongpopulatedstates. It is interest-
ues oftg, over the interval 8=ty <ty For closely spaced ing to note that the Floquet statédsand D crossat time
values oft;,, Floquet eigenstates at different times belongingtq, =7, = 13/23,,.. A symmetry that was broken earlier ap-
to different eigenphases will be orthogonal. This provides gears to have been restored. These transitions are clearly
means of following the evolution of each eigenstate as @&een in Fig. 5 where we show the level compositions of the

ltot

Ly
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FIG. 5. Probability distribution(E,|¢?> of the unperturbed
energy leveldE,) which compose each of the Floquet eigenstates
(a) BC (b) BC", (c) A, and(d) D, plotted over the entire interval
O<tgy <ty for pulse amplituddJy,=3.0 and frequencies;=5wq
and ws=3wq. The probability curve for levelE,) is labeled with
level quantum numben.

four participating Floquet state&, BC', BC", andD as a
function oft;,.

B. Population transfer

Let us now determine the exact behavior of the system,
when the pulses are applied, by solving the Schrédinger
equation in(8). We will assume that at time=0 the system
is in state|4(0))=|E,;). As we will see, the actual dynamics
of this system is determined by the length of time during
which the pulses are allowed to act. The pulse duration time
necessary to achieve adiabatic behavior of the system is de-
tgrmlned largely .by the aVOIQed Crossings n the .Floque{he unperturbed leveE,) for the system prepared in initial state
eigenphases. At isolated avoided crossings, involving Onl@(0)>:|E ) with maximum pulse strengthi,=3.0 and frequencies
two eigenstates, the states involved interchange their charaw-f:‘,:,w0 alnd =3y, The total pulse du(r)atidn times ata) ty,

ter. . . . =120, (b) t;x=21 000, andc) t;,;=270 000. The numbers attached
Avoided crossings of Floquet eigenphases occur as thﬁ) each curve show the components of the transition probability in

classical phase space becomes chaotic, and a symmetry hgsns of the unperturbed energy eigenstate basis. @agnot in
been broken in that local region of the phase space. Thge adiabatic regime. Casgb) and (c) are within the adiabatic

probability P ; that a transition occurs between the two Flo- regime and basically reproduce the structure of the single Floquet
quet eigenstates involved in &olatedavoided crossing can ejgenstateA in Fig. 5c).

be computed from a formula obtained independently by Lan-
dau[36] and Zenel[37]. For our system, the Landau-Zener y=1.2x 107, giving a Landau-Zener probabilitP ,~0.

probability is given by The first case is not in the adiabatic regime, but the second
7(56)? two cases are in the adiabatic regime because the probability
PLZ = ex[(— ) 3

FIG. 6. The probabilityP,(t)=|(E,| #(1))|? to find the system in

> (18)  of a transition is negligible.

Y In Fig. 6, we show the probabilitp,(t)=|(E,| y(1))|? (for
where Je is the eigenphase spacing at the avoided crossinthe four levelsn=1, 2, 3, 4 to find the system in thath
and vy is the rate of change of the Floquet eigenphases withunperturbed level at time for the three caset,=120, t;y
respect to time;;, in the neighborhood of the avoided cross- =21 000, and;,;=270 000. These results are obtained by di-
ing. rectly solving the Schrodinger equatigd). In all cases we

We have computed the Landau-Zener probabHty for  start the system in the initial statg(0))=|E;) with maxi-
the isolated sharp avoided crossing at titjye=7; shown in - mum pulse strengtlty=3.0. In Fig. a), where there is a
Fig. 4(c). The Landau-Zener probability dependstgp The  large Landau-Zener probability for the system to jump from
largert,,,, the more “stretched out” the horizontal axis in Fig. Floquet stateéA to Floguet statd, the system comes out of
4(c) will be relative to the vertical axis. We have obtained thethe sharp avoided crossing &t =7 still predominately in
following results by analyzing Fig.(4) for different values the level|E;) and the traditional STIRAP ladder process can
of ty. For t,=120, 5e=0.005 andy=0.001 875, giving a then occur at=t.. As the pulses are turned on and off, the
Landau-Zener probability?, ;=0.979 270. Fort,,,=21 000, system transitions from levék,) to level |Eg). In Figs. b)
0e=0.0063 andy=0.00001376, giving a Landau-Zener and Gc), the Landau-Zener probability is essentially zero
probability P, ,=0.0108. Fort;,=270 000, 5¢=0.0030 and and no transition occurs at the sharp avoided crossing at
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tix=7. The system comes out of the sharp avoided crossing 12
in level |E,). As the laser pulses are turned on and off the
system transitions from the initial statg¢(0))=|E;) to the
final state|(+x~))=|E,). Note that both Figs.®) and Gc) J
follow almost exactly the behavior of the Floquet sté#te
shown in Fig. %¢). This is an indication that we are in the
adiabatic regime in Figs.(6) and Gc).

The very large oscillations in the probability in Figgh$
and &c) have been explained by Berf8] in terms of a
sequence of “superadiabatic bases.” He shows that the de
crease in the amplitude of these oscillations as we increas S e
tiot IS @ sign that we are moving further into the adiabatic 0 8 T ] ) ]
regime. The frequencies of the oscillations in Fig&)&nd
6(c) appear to be determined by the difference in Floquet FIG. 7. Strobe plots of the action-angle variablds6) for the
eigenphases of the two Floquet states involved in the sharpfinite square-well system with pulse amplitudgg=13.0 and fre-
avoided crossing. For example, @4=t; the period of the quenmeSw_f:Qwo and ws=15w,, respectively. Strobe plots are
oscillation isT,e~400. The difference in the Floquet eigen- ShOWn at timesa) tu=ty, (b) trix=te, (C) trix=7v=3/5lor, and(d)
phases is |AQ[=|Q,-Q,/=~0.016. Thus, Toe=27/|AQ] tix=ts. The first primary resonance from the first pulse is located a_t
=393. Similarly, att;, = (r,—t;)/2, T.e~600. The difference J=45 and_the first primary resonance from the second pulse is
in the Floquet eigenphases|isQ|=]Q;-Q,/=~0.011. Thus, located au=7.5.

Tos=2m/|AQ|=571. The observed oscillation periods are ) )
the same for both Fig.(B) and Fig. &c). 12 square-well energy eigenstates to accurately describe the

dynamics of this system.

The Floquet matrix that we use to describe the quantum
dynamics is a 1X 12 matrix. However, we find that only ten
Floguet eigenstates are directly involved in the dynamics. To

We now turn on pulses with higher carrier frequencies ink€ep track of these ten Floquet eigenstates, we will give each
order to examine more closely the relation between the quarftate a unique alphabetical label determined by their domi-
tum transitions and their relation to the underlying classican@nt dependence on unperturbed energy states attjjme
dynamics. We first apply a pulse whose carrier frequency ig0- We find that at,=0 the Floguet eigenstates have the
w;=(Es—E,)=972/4. We then apply a second pulse whosefollowing structure and we give them the following labels:

VI. CASE II: FIRST PULSE 4 —5, SECOND PULSE 1—4

carrier frequency is=(E,—E;)=1572/4. The two frequen- A=|d) = |E), B=|dy) =|Ey), C=|dbs) = |Es)
cies are commensurate sineg ws=3/5.From Eq.(10), the ' ' ’
periods of the Hamiltonian and Floquet frequency are again F=|¢e =|Es),

To=8/7 and wy=72/4, respectively. Thusp;=9w, and wq
=15wy. We will consider the case when the maximum am- 1 _ 1
plitude of both pulses itJy=13.0. For these frequencies and DE" = |¢a) = E(|E4>+ |Es)), DE™=|¢s) = E(|E4> - |Es)),
amplitudes, we find that we can induce a transition of the ‘ ‘
entire population from leve|g,;) to level |[E;p). Below we
describpe F|*)]OW this happens" 1> | 10> G= |¢7> = |E7>1 H= |¢8> = |E8>1 I = |¢9> = |E9>;

Classical phase space plots for timgs=ts, t;x=tc, triy J=|¢10) =|E10)- (19
=7y=3/5, andtq=ts are shown in Figs. (d-7(d), re- . _
spectively. The first primary resonance due to the first pulsd "€ Floquet eigenphases corresponding to these ten Floquet
is located a=4.5 and the first primary resonance due to the€igenstates are plotted modulg in Fig. 8. A number of
second pulse is located a£7.5. The frequency of the sec- e}v0|ded crossings occur between the eigenphases durlng the
ond pulse is chosen to connect levats1 andn=4. How- time t_he pulses act on the system. There are four avo!ded
ever, it also connects the levals7 andn=8 sinceEg—E,  CrOSSings that largely determine the dynlamlcs. There is a
=15w,. This is why the first primary resonance due to theMultiple wide avoided crossing ak=t.=3t Which in-
second pulse lies @=7.5. The states belod=4.0 are im-  Volves the seven staté C, DE®, F, H, andl. There is a
mersed in the chaotic sea formed by the higher-order primasharp avoided crossing &= = gt that involves the
ries induced by the two pulses during most of the time thatatesB andG. There is a three-state wide avoided crossing
the one or the other of the pulses have a significant strengtiat tqx= 7y~ %tmt that involves states, B, andH. There is a
Higher-order nonprimary resonance islands can be seesharp avoided crossing atxzrvzétwt which involves the
aboveJ=6.0 during most of the pulse sequence. In Fidp)7 statesA andJ.
there is a chaotic sea which has formed throughout the re- In Fig. 9a) we plot the eigenphases of the seven Floquet
gion J=0-9.Also, during the last half of the pulse sequence,statesB, C, DE*, F, H, and | involved in the multiple
the KAM tori nearJ=10 are highly distorted due to the avoided crossing a;iX:tC:%tmt. These states have support in
formation of the primary resonance at7.5. Thus, from the unperturbed square-well levéls, E,, Es, Eg, E;, Eg, and
classical phase space we see that it requires approximatefig. In Fig. 9b) we show a magnification of the very sharp
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FIG. 8. The ten Floquet eigenphases, plotted modglowhich 7
determine the dynamics for pulse strengig=13.0 and frequencies
ws=9%wy andwg=15wq. The curves are identified following the clas-
sification scheme in Eq19).

avoided crossing between stafeE™ andH at tfix:tC:%ttot. G
The effect of these avoided crossings can be seen in the 00 7

. [
dependence of the Floquet eigenstates on the square-well Loy
states|E,). Plots of Floquet eigenstate®®, H, and G are
shown in Fig. 10 and plots of Floguet eigenstabBss®, C, FIG. 10. Probability distribution{E,| ¢,)|?> of the unperturbed
and F are shown in Fig. 11. There is a complicated inter-energy levels which compose each of the Floquet eigens@t&s
change of levels occurring. As shown [i&3], at such mul- (b) H, and(c) G, plotted over the entire interval Dt <t for
tiple avoided crossings, the Floquet eigenstates emerge withulse strengthU,=13.0 and frequencies;=9w, and ws=15wy,.
very different probability distributions than the entering The probability curve for levelE,) is labeled with level quantum
states. Thus, multiple avoided crossings behave differentlpumbern.

from isolated pairs of avoided crossings where the state§|E ) andG=~|E,), as they enter the avoided crossingat
- 12 ] |

simply interchange character. Multiple avoided crossingg B=|E;) andG=|E,) as they leave. Thus staBe=|E,) as
provide a mechanism for the spread of the manifestations Ofenters7the muItiple2av0idedycrossiﬁgt@1—t —1¢ !
—tc— 2ltot-

I
Let us now consider the transition that causes the popula-
n of the square well to undergo a coherent transition from
level |E,) to level |E;p). This can occur if the system evolves
adiabatically and follows the behavior of Floquet stéte

Lior

chaos in quantum systenmi33].
It is useful to note that there is an isolated avoided CroSSg,
ing att;=7, that causes statd® and G to switch fromB

N
e

Floguer Ejgenphases
AN

DE;

(@)

The level dependence of Floquet st#es shown in Fig.
12(a). It starts out in leve|E;) and then partially switches to
level |Es) at t;,=7, due to a three state avoided crossing
between states, B, andH, and finally atts;, =7, it switches
completely to levelE;o due to a sharp avoided crossing

05| between stated andJ. The avoided crossings at timésg
=7y and t;, =7, that cause these transitions are shown in
1.0 Figs. 13a) and 13b), respectively.
/ @) @)
3 L
3 B 5 8 7
S0} § 1= | 5
3 DE DE
%‘3 é ]J_A\;(c)_ (d
3
§Q7J' 5 6, \& 9
Q & 9 3 &
. 0 cl, £
V72 L 17 Lot
Ly

FIG. 9. (a) The seven Floquet eigenphases, plotted modglo

FIG. 11. Probability distribution(E,| ¢,)|?> of the unperturbed

which are involved in the multiple avoided crossing ta=t; energy levels which compose each of the Floquet eigenstates
=%ttot for pulse strengthJy=13.0 and frequencies;=9wy and wg DE", (b) DE*, (c) C, and(d) F plotted over the entire interval O
=15w,. The curves are identified following the classification <t <t for pulse strengttyy=13.0 and frequencies;=9w, and
scheme in Eq(19). (b) A magnification of the very sharp avoided w=15w,. The probability curve for levelE,) is labeled with level
crossing between Floquet stae&™ andH at tﬁX:tC:%ttot. quantum numben.
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FIG. 12. Probability distribution(E,| ¢,)|?> of the unperturbed
energy levels which compose each of the Floquet eigengiatés
and (b) J, plotted over the entire interval Dty <ty for pulse
strength Uy=13.0 and frequenciew;=9%, and ws=15w,. The
probability curve for leve|E,) is labeled with level quantum num-
bern.

In Fig. 14 we show a sequence of Husimi plots of the
statesB, H, A, andJ as they go through the avoided cross-

ings atty =7y andty,=n,. The Husimi plots show the loca- g1 14, Husimi plots for the Floguet staté B, (b) H, (c) A
tion of the quantum particle in phase space when the systeRhq (d) J plotted in columns from left to right, respectively, for
is in a given eigenstate. The columns from left to right ShoWmaximum pulse strengttu,=13.0 and frequencies:=9w, and
the Floquet stateB, H, A, andJ. From top to bottom, the =154, Each Floquet stat&column) is shown(from top to bot-
Husimi plot of each state is shown at timéep tq, =t;, (b) tom) at times (@) trx=t;, (b) trx=te (C) trx=7v=3/5tcp (d) trix
tix=te (©) tix=T7v, (d) tix=7y, and(e) tg=t,. The sequence =r,=2/3, and(e) t;=t,. The effect of the avoided crossings that
of events causing Floquet stafeto undergo a transition enable Floquet statd to undergo a transition from levéE;) to
from level |E,) to level |E;p can be seen clearly in these level |E;) can be seen clearly.

plots.

4 e o e

Finally in Figs. 1%a) and 1%b), we plot the probability
(@) P.(t)=(E,| /(1))|? (for the ten leveln=1, ..., 10 to find the
HEY system in thenth unperturbed level at time[Fig. 15c) will
H be discussed in Sec. \lIThe system is prepared in initial
4 state |4(0))=|E;) with maximum pulse strengthl,=13.0.

Y{/\/ We obtain these plots by directly solving the Schrodinger

equation (8). In Fig. 15a) we show the results for the
: T ' nqnadiabatic case. We chodgg=600 which is a rapid evo-

M /(@) lution of the pulses. After the pulses have passed, the final
il { state of the system igi(+>))=|Es). The adiabatic case is

g shown in Fig. 18b). We now choosé,;;=6000. The prob-
i abilities now closely follow the behavior of the single Flo-

S
A

|

<
R/

Floguer Ejgenpliases

02} quet eigenstaté as can be seen in Fig. @. After the
. ¥ , pulses have passed, the final state of the systelm(isc))
o Ly L & Lor =|E;. This transition dynamics is determined by the struc-

i ture of the avoided crossings in the Floquet eigenphase

FIG. 13. (a) Magnification of the three Floquet eigenphases for CUVes and by th? phase space structure of the Floquet eigen-
eigenstatesA, B, and H which are involved in the three-state states at the avoided crossing. .
avoided crossing af, = 7y =3/ 5ty for pulse strengtty,=13.0 and The phase space structure of the Floquet eigenststes
frequenciesw;=9w, and ws=150,. The curves are identified fol- the Husimi plotgis determined by structures in the underly-
lowing the classification scheme in E(L9). (b) Magnification of ~ INg classical phase space which are greater than Planck’s
the sharp avoided crossing &f,=n,=2/3, for pulse strength constant. The transition fromy(0))=|E;) to [¢())=|E;p
Up=13.0 and frequencies;=9w, and ws=15w,. Curves of eigen- 0ccurs because at the time of the transition the classical
phases for Floquet eigenstat®sandJ are shown. phase space is connected by a chaotic sea fferh to J
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/adder

FIG. 16. Husimi plot for the Floquet stafefor maximum pulse

0 VTV . W strengthU,=13.0 and frequencie®;=9wq and ws=15w, at time
6000 tiix=13/2Qyy, just before the avoided crossingtat=r,. This state
(E) covers the entire chaotic region of the underlying classical phase
space fromJ=1 to J=9 and the highly distorted mixed region at
J=10.

pulses. Strobe plots of the classical phase space for\the
case for times,=ty, trx=te, trix=7v=0.62y;, andtq, =t are
shown in Figs. 1@®)—17d), respectively. The first primary
6000 resonance due to the first pulse is locateda8.5 (rather
thanJ=4.5 as is in case )land the first primary resonance
FIG. 15. The probabilityl(E,| #(1))|? to find the system in the due to the second pulse is locatedat’.5 (the same as case

unperturbed levelE,) for the system prepared in initial state !!)- FOr case I, a pathway is opened by a chaotic sea that
|(0))=|E4) with maximum pulse strengttly=13.0 for the ladder ~allows a Floguet state to tunnel across the entire energy re-
processes ifia) and (b) and for theA process(c). For the ladder  9ion (see Fig. 1§ from |E;) to |[Eyp at the time of the
process, the frequencies of both pulses @ye9w, and ws=150,  avoided crossing. In the strobe plots of the classical phase
and(a) t,,,=600 and(b) t,,,=6000. For the\ process, the frequen- Space in Fig. 17 for case llI, this pathway is blocked by
cies of both pulses are;=7wy and ws=15w, and (c) t,;=6000.  KAM tori which do not allow the quantum system to tunnel
The numbers attached to each curve show the components of tlaut of the low energy region. We also find fewer avoided
transition probability in terms of the unperturbed energy levels. crossings in the plot of the Floquet eigenphases for this case.

=9 and a strongly distorted KAM region at=10 which VIII. CONCLUSION

allows the quantum state to tunnel into the phase space re- we have found that sequential laser pulses, when applied
gion around)=10. Th|s can be seen from the Husimi plot for to g particle in an anharmonic multilevel system, can induce
the stateA at timetg, = Zotmt which is shown in Fig. 16. The

unperturbed levels=1, n=5, andn=10 are connected via 127

the chaotic sea around the two=1 primary resonances

which exist at the timeﬂxzé—gttm. 10F
J

VII. CASE IlIl: FIRST PULSE 3 —4, SECOND PULSE 1—4

The final case we consider is/a process in which the
system is driven by pulses with carrier frequencigs (E,
-E;)=77%/4 and wg=(E,—E;)=157%/4. These frequencies
are commensurate and the period of the Hamiltonian and the
Floquet frequency are agailfy=8/m and wy=>/4, respec-
tively. To stay as close to case Il parameters as possible, we
chose pulse amplitudeld,=13.0. Although this case looks £ 17, strobe plots of the action-angle variakiasg) for the
similar to case Il, we will find quite different results. infinite square-well system with pulse pulse amplitudés=13.0

In the adiabatic limit, the transitiofE,) — [E) occurs, as  and frequencieso;=7w, and ws=15w;, respectively. Strobe plots
shown in Fig. 1§c), which is very different from case Il. We = are shown at timega) tr,=t;, (b) trix=te, (C) trix=7y,=0.6Q;, and
believe that the difference between these two processes (g t;, =t.. The first primary resonance from the first pulse is located
due to the difference in the phase space distribution of that J=3.5 and the first primary resonance from the second pulse is
resonances and chaos induced in the system by the lasetated at]=7.5.

0 9 T 0 n 9 T 0 T

063405-11



K. NAAND L. E. REICHL PHYSICAL REVIEW A 70, 063405(2004)

nonlinear resonances and a transition to chaos in the dynam-7.5 appears to be blocked by KAM tori and the transition to
ics of the particle. The extent of the region influenced bythe higher-energy states does not occur.
resonances and chaos determines the number of unperturbedin molecular systems, the success of STIRAP will depend
energy eigenstates that must be kept to form the basis usedta the state of the dynamics of the unperturbed molecular
construct the Floquet matrix and to determine the quantunsystem and on the changes in that dynamics induced by the
dynamics. laser pulses. Most molecular systems have regimes of inter-
When the pulses are applied in a manner which adiabatiral chaos and the interplay of these regimes with the dynam-
cally changes the dynamics of the particle, this transition tacs induced by the laser pulses is critical to understanding
chaos can be used to control the coherent transfer of th8TIRAP in these system.
particle across the chaotic sea from a low-lying energy state
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