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The existence of image states in small clusters is shown, using a quantum-mechanical many-body approach.
We present image state energies and wave functions for spherical jellium clusters up to 186 atoms, calculated
in the GW approximation, whereG is the Green’s function andW is the dynamically screened Coulomb
interaction, which by construction contains the dynamic long-range correlation effects that give rise to image
effects. In addition, we find that image states are also subject to quantum confinement. To extrapolate our
investigations to clusters in the mesoscopic size range, we propose a semiclassical model potential, which we
test against our fullGW results.
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INTRODUCTION

Image states are highly extended, excited electronic states
that occur predominantly at the surface of a polarizable ma-
terial when an extra electron is added to the system. Elec-
trons in such an image state feel the attractive force of the
charge induced in the material even far away from the sur-
face due to the extremely long-ranged correlation of the Cou-
lomb potential.

In the past, research on image states was mostly devoted
to metal surfaces, both experimentally[1] and theoretically
[2]. Recently, however, studies have also been extended to
nanotubes[3] and metallic nanowires on surfaces[4]. Unlike
surfaces, isolated nanoclusters are not stationary and image
states can therefore only be resolved indirectly with the ex-
perimental techniques currently available. By measuring the
capture cross section of low-energy electrons, for instance,
Kasperovichet al. were able to identify a clear signature of
image effects in free sodium clusters of 4 nm radius[5].

In the context of water clusters, polar molecules, and clus-
ters of rare gas atoms, excess electron states have been
widely discussed in the literature[6]. The electron-electron
interaction in these clusters is typically included using qua-
siclassical dielectric screening, which becomes justified in
the mesoscopic regime but is not parameter-free[7–9]. For
smaller clusters, the interaction of the excess electron with
the cluster has been modeled using electron-atom pseudopo-
tentials, with the ground state geometry from molecular dy-
namics[10]; image states were not included in the study.

While the effect of the cluster polarization potential on the
scattering[11] and capture[12] cross section has been stud-
ied with a variety of different approaches, we will focus in
this paper specifically on the bound states that arise from the

interaction of the excess electron with its image charges. We
report first-principles calculations for jellium clusters with
sodium densities as a prototype system for isolated nanoclus-
ters. The Coulomb interaction between all valence electrons
is taken into account in the framework of many-body pertur-
bation theory. The image state energies and wave functions
were obtained using theGW approximation[13], which has
proven to be very successful for the description of image
effects[2,14,15] and other quasiparticle properties[16]. Our
calculations predict the existence of image states in these
zero-dimensional nanostructures even down to relatively
small cluster sizes.

By way of illustration, the classical image potential out-
side a neutral solid sphere with radiusRc and dielectric con-
stant« has the form[17]
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for r .Rc. The last expression illustrates the limit of a per-
fectly conducting spheres«→`d; the familar image potential
of a flat surface, −1/4z wherez=r −Rc, is recovered for large
cluster radii.

The image potential for a solid sphere(1) decays asymp-
totically as −1/r4 and thus much more rapidly than the image
potential of the planar surface. However, in a region of size
of orderRc just outside the surface, the much more accom-
modating flat-surface form prevails(Fig. 1).

As previously reported[3], the image potential of a me-
tallic tube with radius Rt decays asymptotically as
−1/frRtlnsr /Rtdg and is thus effectively situated closer to the
flat-surface limit in Fig. 1. For both the cluster and the tube,
the image potential depends on the radius of the nanostruc-
ture. For clusters, this dependence is considerable, as Fig. 1
illustrates, and consequently has a strong effect on the bind-
ing energy and the wave functions of the image states, as we
will show in the following.

COMPUTATIONAL APPROACH

The quasiparticle energies and wave functions are for-
mally the solution of the quasiparticle equation
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with the effective one-particle Hamiltonian,Ĥ0, including
the Hartree and the external potential. The nonlocal, dynami-
cal self-energySsr ,r 8 ;vd contains the electron exchange
and correlation effects beyond the Hartree mean field and is,
in theGW approximation, given byS=GW [13], whereG is
the Green’s function, andW the dynamically screened Cou-
lomb interaction.

In the jellium clusters studied in this paper, the atomic
nuclei are replaced by a homogeneous, positive background
charge, r+srd=r0QsRc−rd, with r0=3/4prs. The Wigner-
Seitz radiusrs is indicative of the electron density of the
material and we chose a value ofrs=4.0 for the jellium clus-
ters with sodium densities presented here.

The electrostatic potential created by the background
charge density,r+srd, is spherically symmetric and, therefore,
all cross section planes through the origin of the cluster are
equivalent. It is thus sufficient to describe the system by two
radial coordinatesr andr8 and one angular coordinateu that
denotes the angle between the vectorsr and r 8. The self-
energy then assumes the much simpler formSsr ,r8 ,u ;vd
=o,=0

` fS,
xsr ,r8d+S,

csr ,r8 ;vdgP,scosud.
The Legendre expansion coefficients of the exchange,S,

x,
and the correlation part,S,

c, of the self-energy are calculated
directly, thereby surpassing the need for an explicit treatment
of the angular dependence. We use a real-space and imagi-
nary time representation[18] to calculate the self-energy
from the Kohn-Sham Green’s function of a preceding
density-functional calculation in the local density approxi-
mation(LDA ). The expression for the self-energy on the real
frequency axis is obtained by means of analytic continuation
[18].

To obtain the quasiparticle energies and wave functions,
the quasiparticle equation(2) is fully diagonalized in the
basis of the LDA wave functions. The ionization potential
and the electron affinities calculated in this way agree well
with available data from photoionization experiments[19]
and are also in excellent agreement with the only previous
GWstudy on spherical jellium clusters by Saitoet al. [20], in
which a plasmon pole model was used. The energy range in
which surface and image states occur in jellium clusters,
however, was not included in their investigation.

IMAGE STATES IN METAL CLUSTERS

In Fig. 2 we present the highest image state[21] calcu-
lated for the clusters Na138 and Na186, respectively[22]. Both
image states are very similar in character and extend ex-
tremely far into the vacuum having an almost insignificant
overlap with the cluster. Most strikingly, however, is that the
corresponding LDA states bear no resemblance to the image
state wave functions. Due to the absence of long-range cor-
relation effects in density-functional theory(DFT), the cor-
responding state in the LDA calculation becomes an un-
bound state that is scattered by the effective potential. This
observation proves that a full diagonalization of the quasi-
particle Hamiltonian(2) is necessary, because the LDA wave
functions no longer provide a good description of the quasi-
particle wave functions, as is the case for bulk[23] and low-
lying cluster[20,24] states. The exchange-correlation poten-
tial in the LDA decays exponentially in the vacuum region as
opposed to the −1/r4 behavior of the image potential felt by
an extra electron. The similarity between these two potentials
for small clusters is coincidental and leads in certain cases to
bound image states even in the LDA(see Fig. 3).

Owing to the much more rapid decay of the image poten-
tial for a solid sphere(1), the energy band in which image
states are found is reduced to,0.2 eV below the vacuum
level for a small cluster compared to an energy range of
approximately 1 eV found at metal surfaces[2]. The image
state binding energies of −0.025 eV for Na138 and −0.037 eV

FIG. 1. The classical image potential,vim
c srd

[Eq. (1)], of a solid sphere with«=1000 becomes
more accommodating with increasing radiusRc

(in a.u.) and is bound by the planar surface(solid
line to the right) and the atomic limit(solid line
to the left).

FIG. 2. For each of the clusters Na138 and Na186, a loosely
bound image state is found that predominantly resides in the
vacuum region outside the cluster and has very little overlap with
the cluster region. In the LDA, neither an image state nor a bound
state with the same quantum numbers can be obtained.(The ener-
gies are referenced with respect to the vacuum and the gray box
marks the extent of the clusters.)
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for Na186 are thus small in relation to energies of a few tenths
of an eV observed for sodium surfaces[2]. For larger clus-
ters, the overlap of the higher image states with the cluster
region becomes negligible(see Fig. 2). We therefore expect
these states to be insensitive to any atomic structure of the
cluster, and to be long lived.

Focusing on the highest image state in the sodium cluster
series, we now demonstrate that image states are subject to
quantum confinement effects. In Fig. 3, we have illustrated
the evolution of the state(L=0,N=4) with increasing cluster
size. In the smallest cluster, Na34, the image state is most
narrowly bound at only −0.036 eV, whereas in the next
larger cluster, Na40, it is localized closer to the surface and
exhibits more overlap with the cluster itself. The same state
has evolved into a surface resonance for the Na58 cluster and
will eventually become an ordinary bound cluster state for
larger quantum dots. This size dependence of the image
states results from a delicate interplay between the confine-
ment of the cluster potential and the long range of the image
potential. If there was no overlap of the image state wave
function with the cluster region, as assumed in many classi-
cal approaches, then the image states in the size range de-
picted in Fig. 3 would be identical, since the variation of the
image potential itself can be regarded as negligible in this
range(see Fig. 1). In reality, however, the overlap with the
cluster increases with cluster size, as can be seen in Fig. 3,
which is accompanied by an increase in binding energy. Sub-
sequently, the electron in the image state will sample less and
less of the long-ranging image tail. A reduced confinement
by the external cluster potential will therefore lead to a stron-
ger confinement by the image potential and thus to a stronger
localization overall.

Furthermore, Na34 is the smallest cluster in the sodium
series for which at least one image state is bound. This ob-
servation therefore positively answers the question that arises
from Eq.(1) and Fig. 1 if there exists a minimum cluster size
for image effects to become important.

Experimentally it has recently been demonstrated by Kas-
perovichet al. [5] that the size of sodium nanoclusters can be

determined by measuring the contribution to the capture
cross section that arises from image effects. In this context
we therefore like to emphasize that, in contrast to surfaces,
spherical nanostructures provide an extra parameter to tailor
the binding energy and the shape of an images state.

TOWARDS THE MESOSCOPIC SIZE RANGE

In the final part of this paper we will pursue the notion of
incorporating image effects into a suitable model potential in
the framework of our DFT calculations, in order to predict
image states for clusters in the mesoscopic size range. Our
full GW results will thereby serve as a reference to establish
the validity of the model and to give an estimate of its trans-
ferability.

Because the exchange-correlation potential in the LDA
vxcsrd is proportional to a power of the electron density, it
will decay exponentially outside the cluster. The image po-
tential (1) on the other hand is long ranging since it asymp-
totically follows an inverse power-law behavior that varies
between −1/r4 for small clusters and −1/r for larger ones. In
the vicinity of the cluster surface, the exponentially decaying
vxcsrd will thus be shallower than the image potential, which
then approaches zero much more slowly after a crossover
point with the LDA potential(see Fig. 4).

In the spirit of image state calculations for surfaces per-
formed by Serenaet al. and Chulkovet al. [25], who apply
model potentials to correct the erroneous decay of the Kohn-
Sham exchange-correlation potential, we have constructed an
effective potential

vmodsr,«d = 5vxcsrd, r , Rc − d

psrd, Rc − d , r , Rc + d

vim
c sr,«d, Rc + d , r

6 s3d

for our jellium clusters, based on the classical image poten-
tial of a solid sphere(1). The model potential is designed to
be local, so that it can be employed on the level of our
DFT–LDA calculations. The interpolation functionpsrd is a
third-order polynomial which joins smoothly and continu-
ously ontovxc and vim at r =Rc±d. For the value ofd we
impose the constraintvxcsRc−dd,vim

c sRc+dd in order to
avoid an unphysical shape of the potential in the intermediate
region. Because the occupied wave functions and thus the

FIG. 3. The highest image state(solid line) in Na34 becomes
more tightly bound and more strongly localized with increasing
cluster size, Na40, and eventually evolves into a surface resonance
in Na58. For comparison, the LDA wave functions have been in-
cluded(dashed lines).

FIG. 4. The model potential of Eq.(3) of a Na138 cluster with
«=1000 (solid line) crosses over with the exponentially decaying
LDA vxc potential(dashed line) and follows the inverse power-law
decay of the classical image potential[Eq. (1)] (dotted line) by
construction.
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density might be slightly altered by the modifications, we
determine the model potential self-consistently, applying
Eq. (3) at every iteration of the density.

In Fig. 4 we present the model potential obtained for the
Na138 cluster and a dielectric constant of«=1000. Inside the
cluster, the model potential follows the shape of the LDA–
vxc potential, but in the immediate vicinity of the cluster
surface it approaches zero much faster. At a distance of ap-
proximately one-half of the cluster radius away from the sur-
face the model potential, which by construction follows the
inverse power-law decay of the classical image potential,
vim

c srd, crosses over with the exponentially decaying
exchange-correlation potential in the LDA, as expected.

The inclusion of long-range correlation effects in this
fashion proves to be necessary to reproduce the same image
states as our full quasiparticle calculations, in particular in
those cases where the LDA breaks down(see Fig. 2). The
shape of the image state wave functions and the energies
dependend on the dielectric constant, while thenumberof
such states is insensitive to it.

To close the discussion on our model potential, we apply
it to a cluster approaching the mesoscopic size range. For
this purpose we chose the cluster Na508 that has a radius of
31.9 a.u. Our model potential calculation yields six image
states, whereas only three of them have a corresponding state
in the LDA. The highest image state predicted by the model
is very narrowly bounds−0.004 eVd. It extends extremely far
into the vacuum and reaches its intensity maximum as far as
two cluster radii away from the surface. This observation
corroborates the conjecture that the number of image states
increases for larger clusters until the familiar Rydberg series
is recovered in the limit of infinitely large clusters. It further

suggests that clusters with 2.5 times this radius, as those
studied experimentally by Kasperovichet al. [5] (see also
line for 86.2 a.u. in Fig. 1) will already bind a considerable
number of image states, which will then contribute notice-
ably to the electron capture rate, as observed in the experi-
ment [5].

CONCLUSIONS

In conclusion, we have presented image states for small
clusters from a full quantum-mechanical many-body calcula-
tion. In contrast to surfaces, nanoclusters contain a finite
number of image states, that are subject to quantum confine-
ment effects. In order to describe image states in theGW
approximation correctly, a full diagonalization of the quasi-
particle Hamiltonian is necessary, because the LDA wave
functions no longer provide a good description of the
quasiparticle wave functions. To extend the discussion to
mesoscopic clusters, we have devised a model potential that
captures the correct asymptotic decay of the image potential
and yields images states in qualitative agreement with the
quasiparticle states of ourGW approach.
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