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A quantum-mechanical(QM) and semiclassical(SC) study of inelastic collisions in collinear three-body
Coulomb systems below the three-body disintegration threshold is presented. The QM results are obtained by
solving the stationary Schrödinger equation in hyperspherical coordinates using the slow/smooth variable
discretization method. After appropriate rescaling of the hyperspherical coordinates, an asymptotic parameter
0øhø1 that depends only on the masses of particles and has the meaning of an effective Planck’s constant for
the motion in hyperradius emerges. The SC results are obtained in the leading order approximation of the
asymptotic expansion inh. The main attention is paid to investigatinghow the SC and QM results converge as
h→0. It is shown that the overall agreement for a wide spectrum of systems and processes is surprisingly good
even forh,1. However, because of interference effects the convergence is not monotonic, and the SC results
may be grossly in error in the situations where a destructive interference occurs. The analysis of hidden
crossings clarifies mechanisms of the nonadiabatic transitions. It is shown that if the oppositely charged
particle is located between the two others, the nonadiabatic transitions occur near the top of the potential
barrier via the well-knownT series of hidden crossings. If it is located on one end of the system, then there is
no potential barrier for real values of the angular variable, but there still exists an extremum in the complex
plane; the mechanism of nonadiabatic transitions in this case is called the complexT series of hidden crossings.
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I. INTRODUCTION

Systems in which one degree of freedom can be treated as
“classical” (or “slow”) while the others remain “quantal”(or
“fast”) are of great interest for further development of quan-
tum theory and its applications. The selected degree of free-
dom is characterized by higher rate of the accumulation of
action, which can be explained by the presence of a small
parameterh having the meaning of an effective Planck’s con-
stant for the motion in the corresponding variable. Therefore
an adequate theoretical approach to such systems is the
asymptotic solution of the problem forh→0, i.e., the semi-
classical approximation. In this approach, “quantal” degrees
of freedom are eliminated by the expansion in the adiabatic
basis and the resulting set of ordinary differential equations
describing the motion in the “classical” variable is solved by
asymptotic methods. Historically, the first application of such
an approach was the treatment of the rotational and vibra-
tional spectra of diatomic molecules by Born and Oppen
heimer[1]; the selected variable here is the internuclear dis-
tance and the small parameter is provided by the electron-to-
nucleus mass ratio. The termsemiclassical(or quasiclassi-
cal, in Russian tradition) is commonly used for this kind of
approximation in time-independent formulations[2–5]. A
similar theoretical scheme in time-dependent problems, in
which case the selected variable is time and the small param-
eter is the characteristic velocity of “slow” subsystem or the
rate of variation of external conditions, is usually called the
adiabatic approach[6]. It has been pioneered by Born and
Fock [7] who derived the first definite, albeit negative, result

concerning the probability of nonadiabatic transitions(the
adiabatic theorem). We consider the termssemiclassicaland
adiabatic in the above context essentially as synonyms
whose exact meaning isasymptotic. Because our analysis is
based on the stationary Schrödinger equation, we adopt the
time-independent terminology.

The main virtue of the semiclassical(SC) theory is that it
not only enables one to obtain an approximate quantitative
description of the dynamics in the situations where an accu-
rate quantum-mechanical(QM) solution is not accessible,
but also clarifies its physical mechanisms. However, SC re-
sults have limited accuracy and usually cannot be improved.
From the pragmatic viewpoint, accuracy is eventually the
key factor that determines whether such results are meaning-
ful and useful or not. An asymptotic estimate of the error is
usually available, e.g.,Oshd, which, however, tells nothing
about its actual numerical magnitude. In order to appreciate
how smallOshd is for the given class of problems it is de-
sirable to study some simplified but still realistic model for
which a reliable QM solution can be obtained and simulta-
neously an SC solution is expected to be valid and to analyze
how these two solutions converge with each other as the
asymptotic parameterh tends to zero. A study of this type is
presented in this paper.

The class of problems we have in mind, towards which
our analysis is directed, is low energy collisions in three-
body Coulomb systems. The model we chose to consider is
the collinear three-body Coulomb problem. The stationary
Schrödinger equation describing this model allows a very
accurate numerical solution in hyperspherical coordinates. At
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the same time, after appropriate rescaling of the hyperspheri-
cal coordinates, the Schrödinger equation can be presented in
such a form that an effective Planck’s constanth for the
motion in hyperradius emerges. The parameterh depends
only on the masses of particles, is dimensionless, and varies
in the interval 0øhø1. The SC solution becomes exact for
h→0, so by varyingh one can observe how the SC and QM
results converge. To analyze this convergence is one of the
goals of this study. We believe that the conclusions made in
this respect should remain valid also for three-dimensional
systems for which, however, such an analysis would be much
more laborious. The other goal is to discuss mechanisms of
the collinear dynamics. These results cannot be transferred
directly to the three-dimensional case, but present a neces-
sary first step in that direction.

There exists a great number of studies devoted to the
comparison of SC and QM results for various physical sys-
tems, especially in the field of slow atomic and molecular
collisions, see[2–5] and references therein. In this situation,
it is natural to ask what is the reason for undertaking yet
another study of this type. We answer this question by em-
phasizing some features of the collinear three-body Coulomb
problem that distinguish it from the majority of other models
considered earlier. First, it reproduces all the spectrum of
states and processes possible in three-body Coulomb systems
in three dimensions—this is what was meant above by a
realistic model. Second, it has two degrees of freedom(this
is the minimum number of degrees of freedom for a model to
be realistic) which, in contrast to various two-state and mul-
tistate models[8–10], will be treated explicitly. Finally, it
contains a continuously changeable small parameterh. The
existence of an explicit small parameter is not that important
for obtaining an SC solution for one particular system, but it
is essential for understanding how the SC and QM results
converge.

The paper is organized as follows. Basic equations de-
scribing the collinear three-body Coulomb problem are for-
mulated in Sec. II. The problem contains four parameters,
two mass ratios and two charge ratios; in addition, two
physically different arrangements of three particles on a line
are possible, depending on where the oppositely charged par-
ticle is located. In this paper, we restrict our consideration to
two particular families of systems, one for each of the two
arrangements, whose members differ only by the value ofh.
Our QM treatment is based on the slow/smooth variable dis-
cretization (SVD) method [11]. The SVD suggests a very
efficient approach to the numerical solution of the
Schrödinger equation for systems with one “classical” degree
of freedom, as is confirmed by the growing number of its
applications in hyperspherical studies of two-[12] and three-
[13] electron atoms, ion-atom collisions[14], three-body
Coulomb systems involving exotic particles[15,16], and
chemical reactions[17,18]. Because a detailed description of
the program used to obtain the QM results has been pub-
lished recently[19], we only briefly outline its structure in
Sec. III. On the contrary, our SC treatment is discussed rather
in detail in Sec. IV. There are two basic questions that should
be answered by the theory: how to calculate the probabilities
of transitions and what are their mechanisms. An answer to
the first question was given by Landau[20], who showed

that in the SC approximation probabilities of nonadiabatic
transitions are determined by crossing points of the adiabatic
potentials and are typically exponentially small, and Stueck-
elberg[21], who in the same year published a solution to the
generic two-state problem. An answer to the second question
should be sought in the properties of the adiabatic basis,
namely, in the phenomenon of hidden crossings discovered
by Solov’ev[22], see also[6,23] and references therein. Ac-
cordingly, our SC treatment consists of two parts: a descrip-
tion of the procedure used to obtain the SC results(Secs.
IV A–IV D ) and the analysis of hidden crossings(Sec. IV E).
Section V presents the results of scattering calculations. Sec-
tion VI concludes the paper.

II. THE COLLINEAR THREE-BODY COULOMB
PROBLEM

We consider a system of three particles with massesmi
and chargesei, i =1,2,3, constrained to move along a
straight line and interacting via the Coulomb forces. Particles
will be called by their numbers, and pairs of particles, by the
number of the remaining particle. It should be assumed that
particles cannot penetrate through each other in collisions
(see the discussion of boundary conditions below), so they
preserve their order on the line. We enumerate them as
shown in Fig. 1(a). Only the case when one of the particles is
charged oppositely to the others will be considered. By con-
vention we assume thate2e3,0, i.e., the interaction in pair 1
is attractive. Then there are two possibilities, eithere1e3,0
or e1e3.0, which will be referred to as cases A and B, re-
spectively, see Fig. 1(b). In case A, the system can disinte-
grate into a free particle and a bound pair in two ways,
s23d+1 and 2+s31d, which will be called arrangements 1 and
2, while in case B such disintegration can occur only in
arrangement 1. Case A under the condition that particles 1
and 2 are identical, i.e.,m1=m2 ande1=e2, will be called the
symmetric case.

The stationary Schrödinger equation for this system reads

sT + V − EdC = 0, s1d

whereT is the kinetic energy,

FIG. 1. Three particles on a line.(a) The convention for their
numbers; this order does not change during the motion.(b) Two
physically different variants of their relative position; open and
closed circles symbolize oppositely charged particles.
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V is the Coulomb potential energy,

V =
e3e2

X3 − X2
+

e1e3

X1 − X3
+

e1e2

X1 − X2
=
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+
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=
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, s3d

Csfd is the effective charge,

Csfd =
z1

sinf
+

z2

sinsg3 − fd
+

z3

sinsg2 + fd
, s4d

andE is the total energy measured from the three-body dis-
integration threshold. The different sets of coordinates used
here are defined as follows.Xi are the coordinates of particles
on the line with the origin at the center of mass, thusm1X1
+m2X2+m3X3=0. xa and ya, a=1,2, are twosets of the
mass-scaled Jacobi coordinates,

x1 =Î m1mtot

m2 + m3
X1,

y1 =Î m2m3

m2 + m3
sX3 − X2d, s5ad

and

x2 = −Î m2mtot

m1 + m3
X2,

y2 =Î m1m3

m1 + m3
sX1 − X3d, s5bd

related to each other by the kinematic rotation[24]

Sx2

y2
D = Scosg3 sing3

sing3 − cosg3
DSx1

y1
D . s6d

Finally, R andf are the hyperspherical coordinates,

R= Îx1
2 + y1

2 = Îx2
2 + y2

2,

f = arctansy1/x1d = g3 − arctansy2/x2d. s7d

In these equations,zi are the pair charges,

zi = ei+1ei+2Î mi+1mi+2

mi+1 + mi+2
, s8d

gi are the angles of kinematic rotations,

gi = arctanÎ mimtot

mi+1mi+2
, 0 ø gi ø p/2, s9d

where si , i +1,i +2d is a cyclic permutation of(1,2,3), and
mtot=m1+m2+m3. The volume element in configuration
space isdV=dxadya=RdRdf.

Let us discuss the boundary conditions. Equation(1)
should be considered in the region −`,X2øX3øX1,`
that in hyperspherical coordinates is represented by the sec-
tor

0 ø R, `, 0 ø f ø g3. s10d

Its boundaries correspond to binary collisions in pairs 1sf
=0d and 2sf=g3d, and its apexsR=0d represents the point
of triple collision. In order that matrix elements of the poten-
tial energy(3) be finite, the solutions of Eq.(1) must vanish
at the points of interparticle collisions. Therefore one should
require

uCsR,fduf=0 = uCsR,fduf=g3
= 0. s11d

This boundary condition justifies our assumption that par-
ticles cannot penetrate through each other; it is specific to
one-dimensional Coulomb problems, the situation in spaces
of higher dimension is different. In the symmetric case, the
solutions of Eq.(1) are either evenss= +d or odd ss=−d
under the permutation of identical particles 1 and 2, so it is
sufficient to consider only a half of the sector(10) with the
additional boundary condition

U ]CsR,fd
]f

U
f=g3/2

= 0 for s = + ,

uCsR,fduf=g3/2 = 0 for s = − . s12d

The boundary conditions in the asymptotic regionR→` de-
pend on the energyE. In this paper we consider only inelas-
tic collisions below the three-body disintegration threshold.
In case A, there are three types of such processes: excitation
in arrangementa,

s23dn + 1↔ s23dm + 1, a = 1, s13ad

2 + s31dn ↔ 2 + s31dm, a = 2, s13bd

and rearrangement,

s23dn + 1↔ 2 + s31dm, s13cd

where indicesn andm identify states of the bound pair in the
initial and final states of the system. Threshold energies for
various scattering channels are given by

En
sad =

za
2En

"2 , a = 1,2, n = 1,2, . . . , s14d

whereEn denotes the hydrogenic spectrum,

En = −
1

2n2 . s15d

By convention we assume thatuz1uù uz2u, henceEn
s1døEn

s2d,
which is always possible to achieve by interchanging simi-
larly charged particles 1 and 2. The asymptotic boundary
conditions for processes(13) in the energy rangeE,0 can
be formulated in a standard way; we do not reproduce them
here, for details see Ref.[19]. The scattering matrixS can be
divided into four blocksSsabd with elementsSnm

sabd, where the
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upper indices refer to arrangements and the lower ones to
states. In the symmetric caseSs11d=Ss22d andSs12d=Ss21d, and
it is more convenient to consider a symmetrized scattering
matrix Sssd defined by

Ss±d = Ss11d ± Ss12d. s16d

In case B, only processes(13a) in arrangementa=1 are pos-
sible, soS=Ss11d.

III. QUANTUM-MECHANICAL TREATMENT

The QM description of processes(13) can be obtained by
solving the Schrödinger equation(1) numerically. These days
such a solution is quite feasible, although for obtainingreli-
able results the experience of the researcher still matters
more than the power of the computer. Recently we have
developed a programCTBC that enables one to solve the col-
linear three-body Coulomb problem for a wide spectrum of
systems and processes in the energy range below the three-
body disintegration threshold[19]. Because major computa-
tional technologies used inCTBC have already been described
in the literature, here we only briefly outline its general struc-
ture. In the internal regionRøRm, Eq. (1) is solved in terms
of hyperspherical coordinates using the SVD method[11] in
combination with theR-matrix propagation technique[25].
In the external regionRùRm, Eq. (1) is solved separately in
each attractive Coulomb valley extending along the direc-
tions ya=0 in terms of the appropriate set of Jacobi coordi-
nates using the asymptotic expansions developed in[26,27]
and implemented in[28]. Internal and external solutions are
then matched along the arcR=Rm to construct a global so-
lution from which the scattering matrix is obtained. More
details on the program and results of illustrative calculations
for a number of systems and processes can be found in[19].
We wish to emphasize that in spite of swift brevity of this
section the numerical solution of Eq.(1) by no means should
be considered as something of secondary importance in this
work. On the contrary, it is availability of accurate QM re-
sults that makes the present attempt to appreciate the quality
of the SC solution possible.

IV. SEMICLASSICAL TREATMENT

A. Scaling

Let us introduce scaled hyperspherical coordinates,

R̃; h"−2uz1uR, f̃ ; h−1f, s17ad

scaled energies,

sẼ,Ẽn
sadd ; "2uz1u−2sE,En

sadd, s17bd

and scaled charges,

C̃ ; huz1u−1C, z̃i ; uz1u−1zi , s17cd

where

h =
2g3

p
, 0 ø h ø 1. s18d

After scaling, all the quantities under consideration become
dimensionless with the units of hyperradius and energy given
by

R0 =
"2

huz1u
, E0 =

z1
2

"2 . s19d

These units characterize pair 1:R0 estimates the value of
hyperradius on the boundary between the regions of conden-
sation(all particles are so close together that the kinetic en-
ergy dominates over the potential one) and fragmentation in
arrangement 1(pair 1 in the ground state and particle 1 are
separated), andE0 defines the energies of bound states in pair
1. Similar units could be defined in case A for pair 2, but in
case B there are no bound states in pair 2, so such units
would lose their meaning. ThusR0 andE0 are natural units
for the problem. Only scaled quantities will be considered in
the following, so from here on we omit the tilde. The effec-
tive charge is now explicitly given by

Csfd = −
h

sinfhfg
+

hz2

sinfhsp/2 − fdg
+

hz3

sinfg2 + hfg
,

s20d

the threshold energies are

En
s1d = En, En

s2d = z2
2En, s21d

and the pair charges are(note that after scalingz1=−1)

z2 = −
e1

e2
Îm1sm2 + m3d

m2sm1 + m3d
, z3 = −

e1

e3
Îm1sm2 + m3d

m3sm1 + m2d
.

s22d

According to our conventions, −1øz2,0 in case A andz2
.0 in case B;z3 may have arbitrary value, but its sign is
opposite to that ofz2.

One reason for scaling(17a)–(17c) is to bring systems
with vastly different masses and/or charges of particles as far
as possible to a common scale in configuration and energy
spaces. But there is also a deeper goal: scaling reveals the
asymptotic parameterh essential for the SC treatment of the
problem. A resemblance of this notation to Planck’s constant
is not accidental. Indeed, in scaled hyperspherical coordi-
nates the Schrödinger equation(1) reads

F−
h2

2R

]

]R
R

]

]R
−

1

2R2

]2

]f2 +
Csfd

R
− EGCsR,fd = 0,

s23d

thush has the meaning of an effective Planck’s constant for
the motion inR. The configuration space(10) is now defined
by

0 ø R, `, 0 ø f ø p/2, s24d

so its boundaries do not depend anymore onh. The effective
charge(20) does depend onh, explicitly and via its depen-
dence on the masses of particles that can be converted into a
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dependence onh and the ratiom1/m2. However, this depen-
dence does not modify the asymptotic structure of the prob-
lem because for any fixed value ofm1/m2

uCsfduh→0 = −
1

f
−

e1

e2sp/2 − fd
−

2e1

pe3
+ Osh2d. s25d

Thus in the limith→0 the parameterh enters Eq.(23) only
in the form of an effective Planck’s constant for the motion
in R, which renders this equation amenable to the analysis by
asymptotic methods. As follows from Eqs.(9) and (18), h
depends only on the masses of particles andh!1 corre-
sponds tom3!minsm1,m2d, therefore our SC treatment is
expected to yield exact results in the limit of heavy-light-
heavy systems.

As can be seen from Eqs.(20) and (22), besidesh there
are three more parameters in the problem, one mass ratio
m1/m2 and two charge ratiose1/e2 and e1/e3. To keep the
length of the paper finite, we consider two particular families
of systems, one for each of the two cases A and B. Systems
in these families differ only by the value ofh, while the other
parameters are fixed by the conditionse1=e2=−e3 in case A,
e1=−e2=e3 in case B, and in both casesm1=m2=Mm3,
where the mass ratioM is related toh by

M =
cossph/2d

1 − cossph/2d
, h =

2

p
arctan

Î1 + 2M

M
. s26d

Three representative combinations of the masses withM
=` (heavy-light-heavy, e.g.,pep in case A andpep̄ in case
B), M =1 (equal masses, e.g.,ee+e in case A ande+eein case
B), andM =0 (light-heavy-light, e.g.,epein case A andepe+

in case B) correspond toh=0, 2/3, and 1, respectively. The
effective charge(20) for these families takes the form

Csfd = −
h

sinfhfg
7

h

sinfhsp/2 − fdg

±
h

2 sinsph/4dcosfhsf − p/4dg
s27ad

=−
1

f
7

1

p/2 − f
±

2

p
+ Osh2d, s27bd

where the upper(lower) signs stand for case A(B). It has an
attractive singularity atf=0 and another attractive(repul-
sive) singularity in case A(B) at f=p /2 that originate from
the Coulomb interactions in pairs 1 and 2, respectively, see
Fig. 2. Function(27a) only weakly depends onh being very
close to its limiting form(27b) for all values ofh in the
interval (18). For these systemsuz2u=1, so the threshold en-
ergies(21) are simply given by the hydrogenic spectrum,

En
s1d = En

s2d = En. s28d

Note that the systems in case A are symmetric; we shall
consider two permutation symmetriess=± separately.

B. Primitive semiclassical solutions

Keeping in mind possible applications of the present ap-
proach to the three-body Coulomb problem in three dimen-

sions, without complicating the analysis in this section in-
stead of Eq.(23) we consider a more general equation,

F−
h2

2Rd−1

]

]R
Rd−1 ]

]R
+

L2

2R2 +
CsVd

R
− EGCsR,Vd = 0.

s29d

This equation describes a few-body Coulomb system with
d-dimensional configuration space parameterized by hyper-
spherical coordinatessR,Vd, whereV denotes a set ofd−1
angular variables andL is the grand angular momentum op-
erator[29]. A relation with the notation above is established
by d=2, V=f, andL2=−]2/]f2. It will be assumed that the
effective chargeCsVd does not depend on the asymptotic
parameterh.

Let us introduce some notation related to the adiabatic
basis. The adiabatic Hamiltonian for Eq.(29) is

UsRd =
1

2
L2 + RCsVd. s30d

Its eigenfunctions defined by

fUsRd − UnsRdgFnsV;Rd = 0, n = 1,2, . . . , s31d

and satisfying the regularity boundary conditions on the hy-
persphere constitute the adiabatic basis. We normalize them
by kFnsV ;Rd uFmsV ;Rdl=dnm, where k¯l denotes integra-
tion overV. Along with the adiabatic eigenvaluesUnsRd, it is
convenient to introduce the adiabatic potentialsVnsRd, effec-
tive quantum numbersNnsRd, and momentaKnsRd,

VnsRd = UnsRd/R2, s32ad

NnsRd = f− 2VnsRdg−1/2, s32bd

KnsRd = h2fE − VnsRdgj1/2. s32cd

The matrices of nonadiabatic couplings are given by

PnmsRd = kFnsV;Rdu]/]RuFmsV;Rdl, s33ad

QnmsRd = kFnsV;Rdu]2/]R2uFmsV;Rdl, s33bd

and the nonadiabatic corrections to the adiabatic potentials
are

FIG. 2. The effective charge(27a) for two extreme values ofh
in cases A and B. The solid curves correspond to Eq.(27b).
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vnsRd =
D

R2 −
1

2
QnnsRd, D =

sd − 1dsd − 3d
8

. s34d

Let us introduce a new function,

csR,Vd = Rsd−1d/2CsR,Vd, s35d

and rewrite Eq.(29) as

F−
h2

2

]2

]R2 +
UsRd + h2D

R2 − EGcsR,Vd = 0. s36d

The asymptotic solutions to this equation forh→0 can be
sought in many different forms. Being interested only in the
leading order terms, we adopt the following simplestansatz:

csR,Vd = expfih−1S0sRd + iS1sRdgwsR,Vd, s37ad

where

w = w0 + hw1 + ¯ , s37bd

and functionsS0, S1, and all thewk do not depend onh. It is
clear that the termS1 could be removed from the exponent in
Eq. (37a) by absorbing it into thew. To eliminate this ambi-
guity we requirekw0uw0l=1. Substituting Eqs.(37a) and
(37b) into Eq.(36) and collecting terms of the same order in
h, in the zeroth order we have

F1

2
S08

2 +
UsRd
R2 − EGw0 = 0, s38d

where the prime denotes differentiation inR. Thusw0 must
be an eigenfunction ofUsRd, and thenS0 is determined by
the corresponding eigenvalue. Consider the solution

S0 = ±ER

KnsRddR, w0 = FnsV;Rd. s39d

In the first order we obtain

F− iS08
]

]R
+ S08S18 −

i

2
S09Gw0 + F1

2
S08

2 +
UsRd
R2 − EGw1 = 0.

s40d

From this we find

S1 =
i

2
ln S08 s41d

and

w1 = ± icsRdFnsV;Rd ± iKnsRd o
mÞn

PnmsRd
VnsRd − VmsRd

FmsV;Rd.

s42d

The coefficientcsRd here remains undefined. It is determined
by the equation arising in the second order of the expansion,
which yields

csRd =ERF3Kn8
2

8Kn
3 −

Kn9

4Kn
2 −

vn

Kn

− o
mÞn

KnPnm
2

Vn − Vm
GdR.

s43d

This process could be continued to obtain higher terms in Eq.
(37b). Summarizing the results, the primitive SC solutions of
Eq. (36) are given by

cn
±sR,Vd =

expS± ih−1ER

KnsRddRD
Kn

1/2sRd
FnsV;Rd, s44d

while Eqs.(42) and (43) give an estimate of the error term.
It is useful to take a look at these results from a different

side. The solutions of Eq.(36) can be expanded in the adia-
batic basis as

csR,Vd = o
n

FnsRdFnsV;Rd. s45d

Substituting this into Eq.(36), one obtains a set of ordinary
differential equations forFnsRd,

F−
h2

2

d2

dR2 + VnsRd − EGFnsRd

=− h2vnsRdFnsRd + h2 o
mÞn

FPnmsRd
d

dR
+

1

2
QnmsRdGFmsRd.

s46d

In the hyperspherical approach proposed by Macek[30] one
seeks accurate numerical solutions to these equations. This
approach has proven to be very efficient and is currently
widely used for solving various few-body problems in
atomic[31] and molecular[32] physics. It is easy to see that
the primitive SC solutions(44) can be obtained by neglecting
the right-hand sides of Eqs.(46) and solving the resulting
decoupled equations using the SC approximation. The pur-
pose of an alternative derivation discussed above was to em-
phasize an intimate relation between the SC approximation
and the adiabatic basis[1]. Indeed, we have seen that the
asymptotic expansion(37a) and (37b) singles out the adia-
batic basis. On the other hand, any complete angular basis
can be used to expand the accurate QM solution; the adia-
batic basis in this case merely has an advantage of faster
convergence.

Our leading order approximation is based on the primitive
SC solutions(44). As can be seen from Eqs.(46), the nona-
diabatic correction(34) adds to the adiabatic potentialVnsRd
a termOsh2d. There is another contribution of the same order
that has not been taken into account above—the so-called
Langer correction[33] arising from the fact thatVnsRd di-
verges~1/R2 as R→0. In the leading order approximation
both corrections must be neglected because their effect on
the wave function is of the same order as Eq.(42). This
means that in the leading order approximation the adiabatic
potentialsVnsRd are effectively defined with an intrinsic error
Osh2d, which leads to a similar errorOsh2d in the energies of
bound and resonance states and to an errorOshd in the elastic
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phase shifts. However, in calculatingVnsRd by solving Eq.
(31) one should use the full effective charge(20), not the first
term of its expansion inh (25). Even though the difference is
of the same orderOsh2d, it cannot be neglected because this
may modify the asymptotic values ofVnsRd for R→`, which
must coincide with the threshold energies(21). But this does
not happen for systems under present consideration: both
formulas(27) are consistent with Eq.(28).

C. Transition points

The points where the leading order approximation breaks
down are called the transition points. There are two types of
transition points in our problem: turning pointsRt

n, where
KnsRd=0 and the primitive SC solutions(44) diverge, and
crossing pointsRc

nm, whereVnsRd=VmsRd and the first order
corrections(42) diverge. Here we discuss the distribution of
transition points in the complexR plane needed for con-
structing a global SC solution.

1. Crossing points

Equation(31) for our problem explicitly reads

F−
1

2

d2

df2 + RCsfd − UGFsfd = 0. s47ad

The primitive SC solutions(44) must satisfy Eqs.(11)
(whereg3 should be replaced byp /2, because of scaling),
which leads to the boundary conditions

Fs0d = Fsp/2d = 0. s47bd

The solutions to this eigenvalue problemUsRd andFsf ;Rd
are multivalued analytic functions ofR. The different
branches of these functions obtained by the analytic continu-
ation from the real axis perpendicular to it will be denoted by
UnsRd andFnsf ;Rd, as in Eq.(31). The crossing pointsRc

nm

are defined by the conditionUnsRd=UmsRd and are generally
branch points of the functionsUsRd and Fsf ;Rd. Because
the eigenvalues of Eqs.(47) cannot coincide for real values
of R, all the crossing points have nonzero imaginary parts
and appear in complex conjugate pairs. Our definition of
UnsRd andFnsf ;Rd assumes that branch cuts are made per-
pendicular to the real axis upwards(downwards) from the
branch points located in the upper(lower) half of the com-
plex plane. A complex plane with cuts appropriate for the
givenn will be called the sheetn. Gluing all the sheets along
the corresponding cuts, one obtains a Riemann surface upon
which UsRd [but notFsf ;Rd, see the discussion below] be-
comes single valued. This surface provides a natural arena
for studying dynamics in the SC approximation[34].

A practical way to solve Eqs.(47a) and (47b) for real as
well as complex values ofR is to reduce the problem to an
algebraic form. Given a suitable orthonormal basispisfd, i
=1,2, . . . ,N, that becomes complete in the interval 0øf
øp /2 as N→` and satisfiespis0d=pisp /2d=0, the solu-
tions to Eqs.(47a) and (47b) can be sought in the form

Fsfd = o
i=1

N

cipisfd. s48d

Substituting this expansion into Eqs.(47a) and (47b), one
obtains an algebraic eigenvalue problem,

F1

2
L2 + RC − UIGc = 0, s49d

where matricesL2 and C represent the grand angular mo-
mentum operator squaredL2=−d2/df2 and the effective
chargeCsfd, c is the vector of coefficients in Eq.(48), andI
is a unit matrix. Equation(49) can be solved using standard
linear algebra routines. The region of convergence of the
results in the complexR plane depends on the basis. In the
present calculations we use the same discrete variable repre-
sentation basis constructed from the Jacobi polynomials
Pn

s1,1dsxd as in the programCTBC, for more details see Ref.
[19]. This basis is well adapted to the Coulomb singularities
of Csfd at f=0 andp /2 and provides a high rate of conver-
gence asN grows. Besides, it permits one to easily imple-
ment the symmetry boundary conditions(12) (where, again,
g3 should be changed top /2) in the symmetric case, so the
different permutation symmetriess=± in case A can be
treated separately. The matricesL2 and C in this basis are
real and symmetric, therefore for any complexR the eigen-
vectors corresponding to different eigenvaluesUn andUm are
orthogonal,cn

Tcm=0, without complex conjugation.
The eigenvalues of Eq.(49) are algebraic functions ofR.

It is natural to expect that in the general case all their branch
points are of square root type. LetRc be a square root branch
point, i.e., matrixUsRcd= 1

2L2+RcC has a pair of equal ei-
genvaluesUc. By an orthogonal transformation of the basis
this matrix can be reduced to the diagonal form except for a
232 block corresponding to the degenerate subspace. Let
vectorse1 ande2, ei

Tej =di j , form an orthonormal basis in the
degenerate subspace. In any such basis, the nondiagonal
block of UsRcd is symmetric and has the form

SUc + u iu

iu Uc − u
D . s50d

This matrix has two equal eigenvaluesUc, but only one ei-
genvectors1,idT with zero norm. Introducing a new basis
«1=u1/2se1+ ie2d, «2=u−1/2se1− ie2d /2 with rather unusual or-
thogonality properties«1

T«1=«2
T«2=0 and «1

T«2=1, matrix
(50) can be transformed to the normal Jordan form, however,
in practical calculations it is more convenient to work with
an orthonormal basis. For anyRÞRc in the vicinity of the
branch point, Eq.(49) hasN different eigenvaluesUnsRd and
corresponding orthogonal eigenvectorscnsRd that can be nor-
malized bycn

TsRdcmsRd=dnm. As R→Rc, the pair of solutions
that become degenerate atR=Rc behave as

U±sRd = Uc ± vz1/2 + Oszd, s51ad

QUANTUM-MECHANICAL AND SEMICLASSICAL STUDY… PHYSICAL REVIEW A 70, 062721(2004)

062721-7



c±sRd =
s±

Î2
fz̃−1/4se1 + ie2d ± z̃1/4e1 + Osz3/4dg, s51bd

wherez=R−Rc, z̃=zv2/u2, s+=1, s−= i, andv is another pa-
rameter characterizing the branch point. The other solutions
stay constant within the specified accuracy. As can be seen
from Eqs.(51), whenR circles four times aroundRc coun-
terclockwise, the solutionssU± ,c±d transform into each other
according to

sU±,c±d → sU7, 7 c7d → sU±,− c±d → sU7, ± c7d

→ sU±,c±d. s52d

Thus Fsf ;Rd is a double valued function on the Riemann
surface ofUsRd [35]. Using Eq.(51b), from Eqs.(33) we
obtain

P+−sRd = − P−+sRd =
− i

4z
+ Osz−1/2d, s53ad

Q++sRd = Q−−sRd =
1

16z2 + Osz−3/2d, s53bd

Q+−sRd = − Q−+sRd =
i

4z2 + Osz−3/2d. s53cd

The divergence of nonadiabatic couplings at crossing points
again indicates that the primitive SC solutions(44) become
invalid there.

The numerical procedure of finding branch points is a
technical issue, however, this issue is very important for
implementing the SC theory. We are not aware of anystan-
dard approach to this problem, so let us describe briefly our
own one. In principle, branch points could be found covering
the region of interest in the complexR plane by a sufficiently
dense mesh and then making the mesh finer near the points
where a pair of eigenvalues seems to coalesce. However,
besides being very time consuming such a straightforward
approach does not guarantee that the results are really branch
points and that all the branch points in the region are found.
Our approach is much more efficient and reliable. It is based
on three major elements. The first and the most important
one is the procedure of numerical “analytic continuation.”
Given the solutions to Eq.(49) at two points,{UnsRd, cnsRd}
and{UnsR+DRd, cnsR+DRd}, n=1, . . . ,N, how to establish
the correspondence between the two sets dictated by the ana-
lyticity of their dependence onR? We found that the eigen-
vectors provide a more sensitive criterion than the eigenval-
ues. For each solution atR, we look for a solution atR
+DR satisfying the condition ucn

TsRdcmsR+DRd−1u,e,
where e is a given small number typically of the order of
10−3. If there is no such solution or there is more than one—
the intervalDR is divided into two parts, and the procedure is
repeated. In this way the solutions of Eq.(49) can be “ana-
lytically continued” along any path in the complexR plane.
The second element permits one to determine whether there
are branch points in the given region. To this end, the solu-
tions are analytically continued around the region along its
boundary, and after returning to the initial point the new

eigenvalues are compared with the old ones. A difference in
the orders of the two sets indicates the presence of branch
points. Of course, it is possible that there are branch points
(and in this case more than one) even if the two sets coin-
cide. To minimize the risk of missing something, in our cal-
culations we divide the whole region of interest into a num-
ber of rectangles and apply the above procedure to each of
them. The third element is finding a branch point connecting
the given pair of solutions and located in the given rectangle.
This can be done iteratively using Eq.(51a). The procedure
usually converges in a few iterations; if it does not, the rect-
angle is divided into four parts, and each of them is consid-
ered again. This approach is rather universal and can be ap-
plied to any eigenvalue problem of the type(49). The only
parameter one has to choose based on thea priori informa-
tion is the initial size of the rectangles, and this can be easily
done having a little experience in the problem.

The results of our calculations forCsfd given by Eq.
(27a) are presented in Figs. 3 and 4, see also Table I. Only
crossing points located in the first quadrant are shown; it
should be remembered that their complex conjugate partners

FIG. 3. The distribution of crossing points for two extreme val-
ues ofh and two permutation symmetriess=± in case A. Some of
the crossing points connecting low-lying statesn andm are labeled
by sn ,md; for more details on their classification see the text.

FIG. 4. Same as in Fig. 3, but for three representative values of
h in case B.
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lie in the fourth quadrant. We found that in both cases A and
B there are crossing points only of the square root type. They
form a regular two-dimensional pattern that can be roughly
described as a deformed rectangular lattice. The lowest row
of the lattice will be called the main series, the higher rows
will be called the secondary series. The crossing points of the
main series have the same classification in cases A and B,
namely, they connect consecutively statesn andn+1, start-
ing with n=1 for the leftmost point. The vertical columns of
the lattice have slight positive(negative) slopes in case A
(B), which causes an essential difference in the classification
of the other crossing points. Ifn=1,2, . . . enumerates col-
umns andn=0,1, . . .enumerates rows of the lattice, then the
crossing point with the given values ofn andn in case A(B)
connects statesnsn+nd andn+n+1. This means that in case
A any pair of statesn andm are connected by a single cross-
ing point, while in case B only neighboring statesn and n
+1 are connected and there aren crossing points joining
them. In both cases, the Riemann surface of the adiabatic
eigenvalueUsRd is singly connected. Note that in case A
crossing points for the different permutation symmetriess
=± actually form a single regular pattern. This is not surpris-
ing because although the Riemann surfaces for the two sym-
metries are disconnected, they correspond to eigenvalues of
the same adiabatic Hamiltonian. Figures 3 and 4 also illus-
trate the dependence of the distribution of crossing points on

the asymptotic parameterh caused by the dependence onh
of the effective charge(27a). As one could expect from Fig.
2, this dependence is rather weak. More specifically, the po-
sitions of crossing points in columns with lown depend onh
more weakly than in columns with highern, and this depen-
dence in case B is more pronounced than in case A.

It is instructive to see how crossing points reveal them-
selves in the adiabatic eigenvaluesUnsRd and matrix ele-
ments of nonadiabatic couplingsPnmsRd on the real axis.
This is illustrated in Figs. 5 and 6 for an intermediate value
of h=2/3; thedependence onh is weak, so the situation for
other values ofh is similar. As follows from Eqs.(27a) and
(47a) and (47b),

UnsR= 0d = 52s2n − 1d2, case A,s = + ,

8n2, case A,s = − ,

2n2, case B,
6 s54d

and in all the cases

UnsR→ `d = EnR
2, s55d

thusUnsRd change sign asR grows from 0 tò . The middle
panels in the figures show the eigenvaluesUnsRd in the do-
main where they are positive. In the domain whereUnsRd are
negative, it is more convenient to consider the effective
quantum numbers(32b) shown in the lower panels. The up-

TABLE I. Hidden crossings of the main series in systems withh=2/3. QM, thequantum-mechanical results discussed in Sec. IV C 1;
USC, the uniform semiclassical results obtained from Eqs.(81) and(82) by solving Eqs.(88a) and(88b); and AS, the asymptotic results for
n→` obtained from Eqs.(89) and (95).

n

Rc
n,n+1 Uc

n,n+1

QM USC AS QM USC AS

Case A,s=+

1 (5.10223, 2.99735) (5.18811, 2.99883) s−7.36633,−12.7779d s−7.87989,−13.0372d
2 (16.7825, 6.52054) (16.8699, 6.52138) (17.77, 3.257) s−30.6647,−23.6962d s−31.1727,−23.8313d s−30.52,−33.90d
3 (34.8879, 10.3552) (34.9757, 10.3557) (35.85, 6.891) s−66.8193,−35.1010d s−67.3198,−35.1889d s−66.56,−40.53d
4 (59.3827, 14.4058) (59.4707, 14.4062) (60.33, 10.60) s−115.764,−46.8609d s−116.263,−46.9289d s−115.5,−50.43d
5 (90.2525, 18.6211) (90.3405, 18.6214) (91.20, 14.44) s−177.466,−58.8979d s−177.960,−58.9555d s−177.3,−61.34d
10 (340.054, 41.3333) (340.142, 41.3334) (341.0, 35.26) s−676.935,−121.801d s−677.429,−121.943d s−676.7,−121.1d

Case A,s=−

1 (5.71804, 5.43126) (5.80487, 5.43292) s−0.23921,−27.1943d s−0.80527,−27.7132d
2 (18.3467, 11.8710) (18.4347, 11.8723) (21.03, 8.635) s−24.7948,−49.5047d s−25.3279,−49.7767d s−21.91,−66.39d
3 (37.5563, 18.9655) (37.6444, 18.9665) (40.24, 15.84) s−62.6801,−72.8404d s−63.1891,−73.0321d s−60.27,−82.98d
4 (63.2459, 26.5367) (63.3341, 26.5375) (65.94, 23.32) s−113.637,−96.9847d s−114.144,−97.1352d s−111.3,−104.8d
5 (95.3708, 34.4822) (95.4590, 34.4828) (98.09, 31.11) s−177.536,−121.785d s−178.039,−121.905d s−175.2,−128.3d
10 (351.928, 78.0507) (352.016, 78.0510) (354.8, 73.78) s−689.443,−252.559d s−689.977,−252.789d s−686.9,−256.5d

Case B

1 (1.72506, 3.86073) (1.69882, 3.84472) s6.86464,−5.74570d s6.80768,−5.69015d
2 (6.02587, 11.2914) (6.00036, 11.2708) (8.241, 10.30) s14.4291,−15.9494d s14.3763,−15.8970d s19.82,−21.90d
3 (13.0900, 22.0908) (13.0647, 22.0682) (15.44, 21.10) s24.1484,−31.3548d s24.0940,−31.3030d s27.65,−35.82d
4 (22.9877, 36.2251) (22.9626, 36.2015) (25.55, 35.15) s35.9816,−52.0207d s35.9267,−51.9683d s38.78,−56.21d
5 (35.7397, 53.6699) (35.7147, 53.6458) (38.52, 52.50) s49.8953,−77.9415d s49.8401,−77.8905d s52.29,−82.14d
10 (142.668, 190.122) (142.644, 190.097) (146.6, 188.4) s150.119,−286.438d s150.025,−286.446d s151.5,−291.5d
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per panels show the nonadiabatic couplings(33a) between
neighboring states. The projections of crossing points of the
main series on the plane of realR andU or N are also shown.
The first feature to be noticed from these results is that in
case A crossing points of the main series lie in the negativeU
domain, while in case B they lie in the positiveU domain,
see also Table I. Second, in case A curvesNnsRd exhibit a
clear creaselike structure along the main series of crossing
points, while in case B there is not any visible structure in
the adiabatic eigenvalues and in this sense crossing points lie
in quite unexpected places. The third feature concerns the
nonadiabatic couplings. As can be seen from Eq.(53a),
PnmsRd diverge at crossing points. Each pair of complex con-
jugate crossing pointsRc andRc

* produces a bell-shaped con-
tribution to the corresponding curvePnmsRd on the real axis
with the maximum nearR=ReRc. In case A, there is only

one such pair connecting statesn andn+1, and the absolute
values ofPnn+1sRd indeed have maxima at the expected po-
sitions, see Fig. 5. In case B, there aren crossing points
connecting statesn and n+1. Their joint contributions pro-
duce a shoulder in the curvePnn+1sRd that extends fromR
=0 to the rightmost crossing point for the givenn, which is
the one belonging to the main series, see Fig. 6.

2. Turning points

The turning pointsRt
n are defined by the condition

KnsRd=0, i.e., UnsRd=ER2. The problem of finding turning
points can be reduced to an eigenvalue problem. Indeed, sub-
stitutingU=ER2 into Eq.(47a), in the algebraic form similar
to Eq. (49), one obtains

F1

2
L2 + RC − ER2IGc = 0. s56d

This is a quadratic eigenvalue problem inR. It can be linear-
ized by doubling its dimension(a similar technique is used in
the theory of Siegert states[36]),

FIG. 5. The adiabatic eigenvalues(shown in two different for-
mats in the middle and lower panels) and nonadiabatic couplings
(33a) between neighboring states(in the upper panel) for h=2/3
and two permutation symmetriess=± in case A. The signs of
Pnn+1sRd are changed to make these functions positive(negative)
for s=+ ss=−d. Circles show the projections of crossing points of
the main series. Vertical dotted lines with small squares at the ends
indicate states connected by the crossing points with the same
abscissas.

FIG. 6. Same as in Fig. 5, but in case B. Note that in this case
the projections of crossing points lie higher than the eigenvalues for
states connected by them taken on the real axis.
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31 0 I

1

2
L2 C 2 − RS I 0

0 EI
D4Sc

c̃
D = 0, s57d

wherec̃=Rc, and then solved by standard routines. Turning
points are given by the eigenvalues to this equation for a
sufficiently large basis. Note that the possibility to linearize
Eq. (56) rests on a very simple(linear) dependence of the
adiabatic Hamiltonian(30) on R, which is a common prop-
erty for Coulomb systems treated in hyperspherical coordi-
nates.

In contrast to crossing points that are completely deter-
mined by the adiabatic Hamiltonian, turning points depend
also on the energyE. They can be divided into two groups,
real and complex; the latter appear in complex conjugate
pairs. The number and positions of real turning pointsRt

n for
the givenn are determined by the behavior of the adiabatic
potentialsVnsRd on the real axis. As follows from Eqs.(32a),
(54), and(55), functionsVnsRd diverge~R−2 with a positive
coefficient asR→0 and asymptotically approach the nega-
tive valuesEn asR→`. For the systems under consideration,
they have one minimum for both permutation symmetries
s=± in case A and are monotonic in case B. Let

Vn
min = minfVnsRdg, s58d

so thatVn
min,En in case A andVn

min=En in case B. Then
there are two(one) real turning points for the givenn in the
energy intervalVn

min,E,En sEn,Ed. The positions of com-
plex turning points are less intuitive. AsE varies, they move
along certain trajectories in the complex plane that can be
calculated by solving Eq.(57). We found that there are no
complex turning points in the domain ReR.0 for E.0.
The trajectories of complex turning points forE,0 are
shown in Figs. 7 and 8. On each sheetn of the Riemann
surface ofUsRd, there is one trajectory starting fromR=0 for
E=−` tangentially to the imaginary axis. Its further behavior
in cases A and B is different. In case A, the corresponding
turning point moves along an arc asE grows, temporarily
leaving sheetn to make a pirouette around crossing points it
encounters, and returns to the real axis on the same sheetn at
the point whereVnsRd has the minimum. Here, it and its
complex conjugate partner coalesce and turn into a pair of
real turning points asE grows further. In case B, the trajec-
tory never returns to the real axis and goes to complex infin-
ity asE→−0. The trajectories of complex turning points can
be viewed also from a different side—they show the lines in
the complexR plane along which the adiabatic potentials
VnsRd are pure real.

D. Connection formulas

In the leading order approximation, a general solution to
Eq. (36) is given by a linear combination of the primitive SC
solutions(44),

c = o
n

san
+cn

+ + an
−cn

−d. s59d

However, because of the Stokes phenomenon this represen-
tation is valid only locally. Namely, if Eq.(59) gives a solu-

tion to Eq. (36) in one region of complexR plane bounded
by the Stokes lines emanating from transition(crossing and
turning) points, then in another region the same solution is
given by Eq.(59) with a generally different set of coeffi-
cientsan

±. To construct a global solution one needs to know a
relation between the coefficients, which is called the connec-
tion formulas. In the leading order approximation it is as-
sumed that all actions for the motion inR involved in the
formulation become infinitely large in the limith→0, i.e.,
there are no coalescing transition points. Then the connection
formulas can be easily derived using the method of Zwaan
[37]. An introduction to this method can be found in[38], its
recent developments are discussed in[39]. Stueckelberg[21]
was the first who applied it to the problem of nonadiabatic
transitions and obtained the key result to be used below;
some inaccuracies of Stueckelberg’s analysis were clarified
by Crothers[40], see also Appendix A in[3]. More rigorous
discussion of connection formulas can be found in[41,42].
Because all these issues are well documented in the litera-
ture, here we only give some details specific to our problem
and summarize the final formulas used in the calculations.

We call the solutionscn
± whose coefficientsan

± in Eq. (59)
may experience a discontinuity on crossing the given Stokes
line coupled by the corresponding transition point. Each tran-

FIG. 7. Trajectories of complex turning points forh=2/3 in
case A. Small circles, turning points forE,0; large circles, cross-
ing points, see Fig. 3; triangles, turning points forE=En, see Eq.
(15). Closed(open) symbols correspond tos=+ ss=−d.

FIG. 8. Same as in Fig. 7, but in case B. See also Fig. 4.
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sition point couples a pair of solutions that can be obtained
from each other by the analytic continuation around it. Turn-
ing pointsRt

n couple cn
+ and cn

−, which leads to reflection.
The reflection coefficient at real turning points for waves
propagating along the real axis isOsh0d, so they surely must
be taken into account in constructing a global solution. Com-
plex turning points cause reflection with an exponentially
small coefficient, similarly to the above-barrier reflection; in
the leading order approximation their effect should be ne-
glected because we have already neglected much larger con-
tributionsOshd to the phase in Eq.(44). Crossing pointsRc

nm

couple each ofcn
± with one of cm

±, which leads to nonadia-
batic transitions. Which one of these solutions is coupled
with which depends on whetherKnsRd=KmsRd or KnsRd=
−KmsRd at R=Rc

nm and is determined by the branch ofKnsRd
chosen and its behavior under the analytic continuation
aroundRc

nm. Let us discuss this issue.
A channeln is called open(closed) for the given energy if

E.En sE,End; it will be called active if E.Vn
min. Only

active channels should be considered in the leading order
approximation. The adiabatic momentumKnsRd is a double
valued function on sheetn. To make it single valued, we cut
each sheetn from the left-hand(right-hand) real turning
pointsRt

n located on it downwards(upwards), see Fig. 9; one
should also add appropriate cuts starting at complex turning
points, but they are immaterial for the following discussion.
We choose the branch in Eq.(32c) such thatKnsRd is positive
real (imaginary) in classically allowed(forbidden) intervals
of the real axis. Thencn

+ scn
−d represent waves going to the

right (left) in the allowed intervals and exponentially decay-
ing (growing) in the forbidden ones. LetRc

nm be a crossing
point connecting two active channels(we shall always as-
sume in this notation thatn,m), andRx be a real point lying
near ResRc

nmd. Suppose bothKnsRxd andKmsRxd are real, see
Fig. 9(b). Consider the analytic continuation ofKnsRd along
a path on the Riemann surface ofUsRd starting atRx on sheet
n, going upwards, aroundRc

nm, and returning to the real axis
at Rx on sheetm. As a result we can obtain eitherKmsRxd or
−KmsRxd, depending on whether RefKnsRdg changes its sign
on the way, which occurs if the path crosses a line where
VnsRd is pure real and larger thanE. But as follows from the
results of Sec. IV C 2, see Figs. 7 and 8, this never happens

for active channels. Thus the result isKmsRxd, which means
that KnsRc

nmd=KmsRc
nmd, i.e., the crossing pointRc

nm couples
cn

+ with cm
+ and cn

− with cm
−. A similar consideration in the

case ifKmsRxd is imaginary shows that this point(a) couples
the same pairs of solutions in the presence of a left-hand
turning point Rt

m, see Fig. 9(a), because in this case again
KnsRc

nmd=KmsRc
nmd; (b) couples the opposite pairs, i.e.,cn

+

with cm
− and cn

− with cm
+, in the presence of a right-hand

turning point Rt
m, see Fig. 9(c), because in this case

KnsRc
nmd=−KmsRc

nmd. It can be also shown that the complex
conjugate crossing pointsRc

nmd* couples the same pairs of
solutions asRc

nm if KmsRxd is real, and the opposite pairs if
KmsRxd is imaginary. We wish to emphasize that the simplic-
ity of this coupling scheme results from the fact that it is not
affected by complex turning points, which is a property of
our problem.

Let us introduce some notation. The action for the motion
in R in staten is

SnfR8,R9g = h−1E
R8

R9
KnsRddR. s60d

The Stokes lines emanating fromRc
nm are defined by

ResSnfRc
nm,Rg − SmfRc

nm,Rgd = 0. s61d

There are three such lines, but only one of them crosses the
real axis(we take this as an assumption that must be con-
firmed by the calculations). Let Rx

nm be the point where this
happens; usually it lies close to ResRc

nmd. It can be easily seen
that the lower channeln must be locally open at this point,
i.e.,KnsRx

nmd must be real(that is why only this case has been
considered in the above discussion). Moreover, if both chan-
nels are locally open atRx

nm, then the Stokes line crosses the
real axis under the right angle and connectsRc

nm with sRc
nmd*;

otherwise the angle can be arbitrary, depending on the rela-
tion between the absolute values ofKnsRx

nmd and KmsRx
nmd,

and the Stokes lines emanating fromRc
nm and sRc

nmd* do not
coincide, see Fig. 9. The Stueckelberg exponent is

ec
nm = exps− Dc

nmd,

Dc
nm = isSnfRc

nm,Rx
nmg − SmfRc

nm,Rx
nmgd, s62d

where Dc
nm is real positive(recall thatn,m). It has been

assumed in Eqs.(61) and(62) thatKnsRc
nmd=KmsRc

nmd; in the
case ifKnsRc

nmd=−KmsRc
nmd the sign of theSm term should be

changed. The Stokes lines emanating from a real turning
point Rt

n are defined by

ResSnfRt
n,Rgd = 0. s63d

One of them lies on the real axis to the left(right) of Rt
n in

the case of a left-hand(right-hand) turning point, see Fig. 9.
The tunneling exponent is

et
nm = exps− uDt

nmud, Dt
nm = SmfRt

m,Rx
nmg, s64d

where Dt
nm is imaginary negative(positive) for a left-hand

(right-hand) turning point. Stueckelberg’s connection matrix
is given by

FIG. 9. Schematic representation of the Stokes lines(solid lines)
and branch cuts(thick dashed lines) near a pair of complex conju-
gate crossing pointsRc and Rc

* . The adiabatic momentum in the
upper of the two crossing states at the pointRx is real (b) and
imaginary in the presence of a left-hand(a) and right-hand(c) turn-
ing point Rt.

O. I. TOLSTIKHIN AND C. NAMBA PHYSICAL REVIEW A 70, 062721(2004)

062721-12



Nsed = SÎ1 − e2 e

− e Î1 − e2D , s65d

where e is the amplitude of nonadiabatic transition for a
single passage across the Stokes line. The difference in signs
of the off-diagonal elements arises from a difference in the
behavior of the adiabatic basis functions under the analytic
continuation around a crossing point[35], see Eqs.(52). We
have neglected the so-called dynamic phase[2,3], which is
Oshd, as well as higher order corrections[5] to the off diag-
onal elements because they are beyond the leading order ap-
proximation, but retained exponentially small terms in the
diagonal elements. Strictly speaking, this is not quite consis-
tent with the leading order approximation, but such an ap-
proach preserves unitarity of the scattering matrix.

The strategy of our SC calculations consists of the follow-
ing. LetRmin, ¯ ,Rk, ¯ ,Rmax denote the ordered set of
all Rt

n and Rx
nm for all active channels. For eachn

=1, . . . ,Nact, we construct a global SC solutionc̄n to Eq.(36)
satisfying

uc̄nuR,Rmin
= eip/4cn

−sRmind, s66d

where the argument ofcn
− indicates the reference point, i.e.,

the lower limit of integration in Eq.(44). This is done by
propagating a matrixA of coefficients in Eq.(59) from Rmin

to Rmax, as described below. Solutionsc̄n are real and satisfy
the regularity boundary conditions atR→0. HavingNact so-

lutions c̄n, we constructNopøNact, their linear combinations
cn satisfying the physical asymptotic boundary conditions

ucnuR.Rmax
= cn

−sRmaxd − o
m=1

Nact

S̄mncm
+sRmaxd, s67d

whereNop is the number of open channels. The reduced scat-

tering matrixS̄ differs from S by phase factors that are im-
material for calculating inelastic transition probabilities, see

Eq. (100) below. S̄ is given in terms ofA by

S̄= iAsA * d−1. s68d

The amplitude matrixA is calculated using the following
procedure.

(1) At the initial point R=Rmin, set A equal to a unit
matrix of the dimensionNact.

(2) Propagation fromRk to Rk+1:

AsRk+1d = EsRk,Rk+1dAsRkd, s69d

where EsRk,Rk+1d is a diagonal matrix with the elements
expsiSnfRk,Rk+1gd and 1 for channels that are locally open
and closed in the intervalRk,R,Rk+1, respectively. This
corresponds to changing the reference point for locally
open channels.

(3) Nonadiabatic transition atRx
nm if the upper channelm

is locally open:

AsRx
nm + 0d = NnmsedAsRx

nm − 0d, s70d

whereNnmsed is a matrix that acts asNsed on channelsn and
m and as a unit matrix on all the other channels, ande=ec

nm.

(4) Nonadiabatic transition atRx
nm if the upper channelm

is locally closed andRx
nm,Rt

m (left-hand turning point): ap-
ply Eq. (70) with e=ec

nmet
nm.

(5) Nonadiabatic transition atRx
nm if the upper channelm

is locally closed andRt
m,Rx

nm (right-hand turning point): to
each columnm8Þm of A add columnm multiplied by
e ResAnm8d /ResAmmd and then apply Eq.(70), where e
=ec

nmet
nm.

(6) Closing a channeln at the right-hand turning point
Rt

n: from each columnn8Þn of A subtract columnn multi-
plied by ResAnn8d /ResAnnd.

(7) At the final point R=Rmax, delete all rows and col-
umns ofA that correspond to closed channels. The result is a
square matrix of the dimensionNop. It should be substituted
into Eq. (68) to obtain the reduced scattering matrix.

To implement this procedure, one needs to find the Stokes
lines (61). This can be easily done using the procedure of
numerical analytic continuation described in Sec. IV C 1.
The connection(70) could be applied, e.g., at ResRc

nmd in-
stead ofRx

nm, which would make finding the Stokes lines not
necessary. However, the calculations are very easy, so we
prefer to act as described above to keep the whole situation
including the positions of Stokes lines under control. It can
be easily seen thatNnm

−1sed=Nnm
T sed and E−1sRk,Rk+1d

=E* sRk,Rk+1d, which guarantees thatS̄ obtained from Eq.
(68) is unitary.

E. Analysis of hidden crossings

From the mathematical viewpoint, the results of Landau
[20], who showed that in the SC approximation inelastic
transitions occur via branch points of the adiabatic potentials,
and Stueckelberg[21], who solved the problem of connec-
tion of the SC solutions across the Stokes lines emanating
from such a branch point, are self-sufficient in the sense that
they enable one to calculate transition probabilities. How-
ever, in physics one tries to look deeper and asks what is the
cause of the appearance of branch points, when and where
one should expect them to appear, and eventually what are
the physical mechanisms of the transitions. These questions
were first raised in the context of the theory of slow ion-atom
collisions by Solov’ev, which has led him to the discovery of
hidden crossings[22]. In this section we show that in our
problem the branch points in case A are hidden crossings of
the well-knownT series, and those in case B present a gen-
eralization that will be called the complexT series.

Before proceeding, let us comment on the terminology
used in this field, which is rather confusing. The “branch
point” is a clear mathematical term, but it lacks physical
contents. In the physical literature on nonadiabatic transi-
tions one can often meet a more vague term “crossing point”
that emphasizes the fact that two adiabatic potentials cross,
i.e., have the same value at some point. However, it is well-
known that usually they cannot cross on the real axis. This
circumstance is taken into account by the probably most fre-
quently used term “avoided crossing”; in many papers and
books the very concept of nonadiabatic transition is illus-
trated by the Landau-Zener type avoided crossing of poten-
tial curves. The term “hidden crossing” was originally used
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in the narrow sense of the word to distinguish branch points
that lie deeper in the complex plane and do not reveal them-
selves as typical avoided crossings on the real axis. However,
later on it was realized from studies of the two-center Cou-
lomb problem[22,43–49] that there is an essential difference
between hidden crossings and isolated branch points,
namely, hidden crossings appear in well-organized series
with a common mechanism, and this term has acquired a
broader sense designating the physical phenomenon itself re-
sponsible for their appearance. The purpose of this section is
to clarify the mechanism of nonadiabatic transitions in our
problem by showing that crossing points discussed above are
hidden crossings in the latter sense of the word.

To analyze the origin of branch points of the eigenvalue
UsRd of Eqs.(47a) and (47b) in the situation when the ana-
lytic solution is not available there is no better tool than the
asymptotic theory. Let us rewrite Eq.(47a) as

F d2

df2 + lFsfdGFsfd = 0, s71d

where

Fsfd = 2fU − RCsfdg. s72d

We have introduced here a formal asymptotic parameterl
=1 and are going to discuss the asymptotic solutions of Eq.
(71) for l→`; keeping this in mind, we omitl from the
equations below. We shall treatR andU as independent com-
plex parameters until a quantization condition defining the
function UsRd is obtained. The structure of the asymptotic
solution is determined by the analytical properties ofFsfd as
a function of complexf in the region near the interval 0
øføp /2. It can be seen from Eqs.(27) that Fsfd has two
simple zeros atf1 andf2 and two simple poles atf3=0 and
f4=p /2, see Fig. 10; thus we deal with a four transition
point problem. Besides, functionFsfd has an extremum at
f0, whereC8sf0d=0. The polesf3 and f4 have the same
positions for all systems; the extremumf0 is a property of
the effective chargeCsfd, so its position depends only on the
system; the zerosf1 and f2 depend in addition on the pa-
rametersR andU, so they are movable. Hidden crossings of
the type we are going to discuss are characterized by the
condition

U < RCsf0d, s73d

i.e., the eigenvalueU must be close to the value of the po-
tential energyRCsfd at its extremum. The validity of this
condition is illustrated for crossing points of the main series
in systems withh=2/3 in Table II; the situation for other
values ofh is similar. In case A, the extremum ofCsfd lies
on the real axis at the pointf0 where the potential barrier
separating two Coulomb wells reaches its maximum, see Fig.
2. This corresponds to the well-known situation giving rise to
the T (the name comes from thetop of the potential barrier)
series of hidden crossings[6]. In case B, there is no potential
barrier on the real axis, see Fig. 2, butCsfd still has an
extremum, now at a complex pointf0. Although this situa-
tion is formally similar to that in case A, it introduces new
features and, as we shall see below, leads to a qualitatively

different distribution of crossing points in the complexR
plane; hidden crossings in this case will be called the com-
plex T series. In fact, in case B functionCsfd has another
extremum near the interval 0øføp /2 at the complex con-
jugate pointf0

* . As can be seen from Eq.(73), this extremum
is associated with hidden crossings having complex conju-
gate values ofR andU, so it is sufficient to consider only the
one atf0.

Condition(73) means that zerosf1 andf2 lie close to the
extremumf0, and hence to each other. Thus we need an
asymptotic solution of Eq.(71) that is uniform in the dis-
tance betweenf1 andf2. Such a solution can be constructed
using the comparison equation method; see, e.g.,[50–52].
Let us introduce the action for the motion inf,

sff8,f9g =E
f8

f9 ÎFsfddf, s74d

and actions between pairs of transition pointsfi, i =1, . . . ,4,

TABLE II. The validity of Eq. (73) for hidden crossings of the
main series in systems withh=2/3. Thevalues ofRc

n,n+1 andUc
n,n+1

correspond to the QM results from Table I.

n

Uc
n,n+1/ fRc

n,n+1Csf0dg

Case A,s=+ Case A,s=− Case B

1 (1.084, 0.616) (1.198, 1.240) (1.602, 0.329)

2 (1.032, 0.305) (1.092, 0.643) (1.286, 0.174)

3 (1.017, 0.201) (1.055, 0.437) (1.185, 0.119)

4 (1.011, 0.149) (1.037, 0.331) (1.135, 0.090)

5 (1.008, 0.118) (1.027, 0.267) (1.106, 0.073)

10 (1.002, 0.057) (1.009, 0.135) (1.050, 0.037)

FIG. 10. The analytical structure of function(72) in complexf
plane. Stars, the extremum; open circles, simple zeros; closed
circles, simple poles; solid lines, Stokes lines defined by Eq.(76);
dotted lines, branch cuts; and dashed lines, approximate boundaries
of the regions where different comparison equations were used. The
figures show actual positions of the Stokes lines forh=2/3 and the
values ofR andU corresponding to the tenth hidden crossing from
the main series, see Table I; this situation is typical.
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I ij = sffi,f jg. s75d

The branch of the square root function in Eq.(74) is deter-
mined by the condition that it takes real positive values for
realR.0, U, andf→ +0, and by the cuts shown in Fig. 10.
Note that only three of six quantitiesI ij are independent, e.g.,
I34= I31+ I12+ I24; in the symmetric caseI31= I24, and only two
of them remain independent. The structure of the Stokes
lines emanating from the zerosf1 andf2 and defined by

Ressff1,2,fgd = 0 s76d

is illustrated in Fig. 10. The asymptotic solutions in regions I
and II near the poles satisfying boundary conditions(47b)
can be expressed in terms of the Bessel functionJ1szd,

FI,IIsfd = S sI,II
2

Fsfd
D1/4

J1ssI,IId, s77ad

where the local variablessI andsII are

sI = sff3,fg, sII = sff,f4g. s77bd

An asymptotic solution in region III including two zeros and
the extremum ofFsfd can be expressed in terms of Kum-
mer’s functionMsa,b,zd,

FIII sfd = SsIII
2 + a

Fsfd
D1/4

fA+y+ssIII d + A−y−ssIII dg, s78ad

whereA± are arbitrary constants, functionsy±ssd are defined
by

y±ssd = ss171d/2 expS−
is2

2
DMF2 7 1 + ia

4
,
2 7 1

2
,is2G

s78bd

and satisfyy±s−sd= ±y±ssd, the local variablesIII is defined
implicitly by

E
−iÎa

sIII Îs2 + ads= sff1,fg, s78cd

and a is the key parameter characterizing the distance be-
tween the zerosf1 andf2,

a = −
2i

p
I12. s79d

The global solution can be now obtained by matching the
above local solutions in the overlapping parts of the regions
I, II, and III. We note that different asymptotics of Kummer’s
function must be used for matching the solutionsFIIsfd and
FIII sfd in cases A and B because of the difference in the
position of the corresponding matching region with respect
to the Stokes lines, see Fig. 10. Applying matching we find
that the global solution exists only ifR andU satisfy certain
quantization condition. In case A, this condition reads

cosfI31 + I24 − wsadg =
cossI31 − I24d
Î1 + expspad

, s80d

which in the symmetric case for the permutation symmetry
s=± reduces to

sinFI31 − wssad +
sp

8
G = 0, s81d

and in case B we obtain

e2iI 31 + e−2iI 14 = eiwsadÎ1 + expspad, s82d

wherewssad andwsad are dynamic phases for the parabolic
barrier,

wssad =
i

2
lnSG„s2 − s − iad/4…

G„s2 − s + iad/4…D −
a

4
Sln

a

4
− 1 + ipD ,

s83ad

wsad = w+sad + w−sad =
i

2
lnSG„s1 − iad/2…

G„s1 + iad/2…D
−

a

2
Sln

a

2
− 1 + ipD . s83bd

Equations(80)–(82) present uniform semiclassical(USC)
quantization conditions defining the eigenvalues of Eq.(71)
for any value ofa. Let us show that for realR andU in the
limit uau→` they turn into the usual(leading order) Bohr-
Sommerfeld(BS) quantization conditions on the real axis.
Indeed, the dynamic phases foruau→` behave as

wssad

=5
sp

8
+

1

24a
+ Osa−2d, −

3p

2
, arga , −

p

2
,

−
ipa

4
−

sp

8
+

1

24a
+ Osa−2d, −

p

2
, arga ,

p

2
.6
s84d

In case A,a is real and its sign depends on whetherU lies
below or above the maximum of the potential barrier. For
U,RCsf0d we havea→−`, and Eq.(80) reduces to

sinsI31dsinsI24d = 0. s85d

This yields the BS quantization conditions separately for
each of the two potential wells(it should be taken into ac-
count that there is a simple pole on one end of the intervals
of quantization 0,f,f1 and f2,f,p /2). For U
.RCsf0d we havea→ +`, and Eq.(80) takes the form

cossI34d = 0. s86d

This coincides with the BS quantization condition for the
whole interval 0,f,p /2 between the two poles. In case B,
the parametera is complex with a negative real part,I14 is
imaginary negative, and we obtain from Eq.(82)

e2iI 31 = 1. s87d

This coincides with the BS quantization condition for the
interval 0,f,f1 in the single potential well available in
this case.

The quantization conditions(80)–(82) can be presented in
the form
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QsR,Ud = 0, s88ad

which defines a multivalued analytic functionUsRd. The
branch points ofUsRd simultaneously satisfy Eq.(88a) and

]QsR,Ud
]U

= 0. s88bd

In general, it is a rather difficult computational task to find
the solutions to these equations because of the multivalued-
ness of the dynamic phases(83); the only known to us cal-
culation of this type was reported in[53]. However, in our
case a very good initial guess is available which is provided
by the QM results, so the root finding procedure converges in
a few iterations. The results of our calculations for the main
series of hidden crossings in systems withh=2/3 arepre-
sented in Table I. The agreement between the QM and USC
results is impressive; it becomes better for higher members
of the series, but is not bad even for the lowest one. The
agreement for secondary series and other values ofh is simi-
lar.

Having confirmed that the USC quantization conditions
(80)–(82) nicely reproduce the positions of hidden crossings,
we can use them to investigate the dependence ofRc

nm and
Uc

nm on the quantum numbersn,m. To this end, let us dis-
cuss the asymptotic solutions of Eqs.(88a) and (88b) for n
→`. It is convenient to introduce instead ofR, U, andFsfd
new parameters

r = Î2RC2, « =
U − RC0

RC2
, s89d

and a new function

fsfd =ÎC0 − Csfd
C2

= sf0 − fdf1 + Osf0 − fdg, s90d

whereC0=Csf0d andC2=−1
2C9sf0d. Then Eq.(72) takes the

form

Fsfd = r2f« + f2sfdg. s91d

The solutions of Eqs.(88a) and(88b), i.e., the hidden cross-
ings, can be labeled by two integers,n=1,2,3, . . . andn
=0,1,2, . . .,that enumerate, respectively, columns and rows
in Figs. 3 and 4. We are interested in the solutions satisfying

n → `, n = Osn0d, r = Osnd, « = Osn−1d. s92d

They can be obtained using the expansions(we consider only
the symmetric case in case A, so it is assumed thatI31= I24)

I31 = rfp0 + p1« ln « + p2« + Os«2 ln «dg,

a = r«f1 + Os«dg, s93d

where

p0 =E
0

f0

fsfddf, p1 = −
1

4
,

p2 =
1

2
E

0

f0 S 1

fsfd
−

1

f0 − f
Ddf +

1

2
ln 2f0 +

1 − ip

4
.

s94d

Omitting the details(an example of the derivation can be
found in [54]), the result reads

rnn =
p

p0
n −

an

4p0
ln n +

i

2p0
ln ln n

+
1

2p0
San

2
ln

anp0

p
− 2anp2 +

p

2
+ ibnD + OS 1

ln n
D ,

«nn =
anp0

p

1

n
−

2ip0

p

1

n ln n
+ OS 1

n ln2 n
D , s95d

where in case A for the permutation symmetrys

an = − is2 − s + 4nd,

bn = 1 − lnfn!Gs1 − s/2 + nd/2g

+ s1 − s/2 + 2ndflns1/2 −s/4 + nd − 1g, s96d

and in case B

an = − is1 + 2nd,

bn = 1 − lnfÎ2pn!g + s1/2 +ndflns1/2 +nd − 1g. s97d

From Eqs.(93) and (95) we obtain

a = an −
2i

ln n
+ OS 1

ln2n
D , s98d

soa approachesan asn grows. Fora=an the argument of the
upper gamma function in Eqs.(83) is equal to a nonpositive
integer −n, thus hidden crossings described by Eqs.(95) lie
near its poles. Each pole gives rise to a series of hidden
crossings converging to it asn grows, withn numerating the
poles andn numerating the members of the series. This ex-
plains the meaning of the quantum numbersn and n. The
results of our calculations using Eqs.(89) and (95) are pre-
sented in Table I. The agreement between the asymptotic
(AS) and QM results is worse than in the case of the USC
results, but it becomes better asn grows, slowly because the
error terms in Eqs.(95) decay slowly. In the extreme limit
n→`, the positions of the hidden crossings of the main se-
ries sn=0d in case A are given by

Rc
n,n+1 =

p2

2C2p0
2Sn2 + i

2 − s

2p
n ln nD + Osn ln ln nd,

s99ad

and in case B by

Rc
n,n+1 =

p2n2

2C2p0
2 + Osn ln nd. s99bd

The difference of these formulas is explained by the fact that
in case A the coefficientsC2 andp0 are real, so two terms in
Eq. (99a) are needed to obtain both real and imaginary parts
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of Rc
n,n+1, while in case B they are complex, so it is sufficient

to leave only one term in Eq.(99b). This leads to an essential
difference in the distribution of hidden crossings in the two
cases, see Figs. 3 and 4. A relation between the real and
imaginary parts ofRc

n,n+1 dictated by Eq.(99a) is typical for
the T series of hidden crossings[6,52]; that following from
Eq. (99b) characterizes the complexT series.

V. SCATTERING CALCULATIONS

This section presents the results of scattering calculations.
The QM results reported below were obtained using the
CTBC program[19], and the SC results were obtained using
the procedure described in Sec. IV D. Inelastic processes
(13) will be characterized by their probabilities

pnm = uSnmu2, s100d

where the symmetrized scattering matrix(16) is used in case
A. We shall considerpnm as functions of the effective quan-
tum number

nsEd = s− 2Ed−1/2. s101d

As can be seen from Eqs.(15) and(28), the energy intervals
between thresholds of consecutive channelsEnøEøEn+1
correspond tonønsEdøn+1, sonsEd provides a more con-
venient energy scale below the three-body disintegration
thresholdE=0. The following results illustrate the conclu-
sions made on the basis of more extensive calculations for
different systems and processes in the energy range up to
nsEd=6.

The first feature to be observed is the dominant role of the
main series of hidden crossings in the SC calculations. The
same transition can occur via several different paths. For
example, the transition between states 1 and 3 in case A can
proceed in one step, via the pointRc

13, or in two steps, viaRc
12

andRc
23, see Fig. 3; in case B it can proceed in two steps via

Rc
12 and one of the two pointsRc

23, see Fig. 4. Each crossing
point Rc

nm is characterized by the amplitudee of the nonadia-
batic transition in Eq.(65), which is equal to Stueckelberg’s
exponent(62), if the upper channelm is locally open atRx

nm,
or to a product of that and the tunneling exponent(64), if it
is locally closed. The amplitude for a multistep path apart
from a phase factor is equal to the product of amplitudes for
each step. Our calculations show that the maximum ampli-
tude always corresponds to the path going via crossing points
only of the main series, which can be confirmed by the
asymptotic analysis of Sec. IV E. Strictly speaking, only the
maximum amplitude path for each transition should be taken
into account in the leading order approximation, which
means that the SC results are subject to an error arising from
the effect of crossing points of secondary series. This effect
is exponentially small compared to that of the main series.
However, now we are not satisfied with such an asymptotic
estimate of the error and wish to know its actual numerical
magnitude. Our calculations show that the effect of second-
ary series is always negligible, it cannot be even seen in the
scale of a typical figure. So in the calculations below only
hidden crossings of the main series are included, in accord

with the prescription of the leading order approximation.
Our main goal is to demonstrate how the SC and QM

results converge as the asymptotic parameterh tends to zero.
To this end, we consider the transition between states 1 and 2
in the energy interval 2ønsEdø3, where only this inelastic
transition is possible, and compare the SC and QM results
for p12 for several systems with decreasing values ofh. The
results for case A,s=+, are shown in Fig. 11. Forh=1,
which corresponds to the least favorable situation for the SC
approximation, the agreement between the SC and QM re-
sults is rather qualitative than quantitative. The energy de-
pendence ofp12 in this case is dominated by resonances. In
the SC calculations, resonances result from the interaction
with closed active channels(channel 3 in the present case) in
the energy intervalVn

min,E,En. Although the SC results
fairly well reproduce the shape of resonances, their positions
are essentially shifted. On average, the SC results overesti-
mate the QM results by about a factor of 2. Forh=1/2, the
agreement becomes much better. Resonances, whose widths
exponentially decay withh, still play an important role, but
do not dominate the behavior ofp12 anymore. The shift be-
tween their positions in the SC and QM results decreases as
Osh2d, so it became smaller. On average, the difference be-
tween the SC and QM results is less than 20%, but now the
former are lower. Forh=1/4, resonances are very narrow
and are not resolved in the figure. The agreement is almost
perfect, the difference is only 3%. This seems to demonstrate
the expected convergence. However, its nonmonotonic char-
acter prompts us to consider smaller variations ofh. Whenh
is decreased further by a small amount to the valueh
<0.23, which corresponds to the mass-ratioM =14, the SC
and QM results diverge violently. An explanation for such a
behavior lies in Stueckelberg’s oscillations. To illustrate this,
let us considerp12 as a function ofh for a fixed value ofE.
We chose the pointnsEd=2.3 that lies below the region of
resonances. Only two channels(1 and 2) are active at this
energy, only one crossing pointsRc

12d is operative, and for all
values ofh channel 2 is locally open atRx

12. In this case, the
procedure described in Sec. IV D yields the original Stueck-
elberg’s result[21] for the transition probability

p12 = 4ps1 − pdsin2 d, s102d

where

p = exps− 2Dc
12d, d = S1fRt

1,Rx
12g − S2fRt

2,Rx
12g. s103d

The oscillating factor sin2 d in Eq. (102) describes the inter-
ference of two paths of the nonadiabatic transition that can
occur on the way in(decreasingR), or out (increasingR).
The parametersDc

12 and d depend onh. The main depen-
dence comes from the factorh−1 in Eq. (60), but there is also
a weak dependence caused by the dependence onh of the
effective charge. Taking into account Eqs.(27), they can be
expanded as

Dc
12 =

D0

h
+ Oshd, d =

d0

h
+ Oshd, s104d

where the coefficientsD0 andd0 for the given energy can be
calculated numerically. Figure 12 illustrates how the SC and
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QM results converge. In the interval ofh shown, the value of
p in Eq. (102) decreases by four orders of magnitude. To
eliminate this strong exponential dependence, we divided the
SC and QM results forp12 by 4ps1−pd, wherep was calcu-
lated using Eqs.(103) and(104). In the limit h→0 the ratio
should coincide with sin2 d, whered is given by Eq.(104).
As can be seen from the figure, this function indeed nicely
reproduces the oscillatory behavior of the results, and the
agreement becomes better as 1/h grows. The agreement be-
tween the SC and QM results is generally very good, but
there is a smallOshd phase shift in their oscillations, which is
consistent with the leading order approximation. As a conse-
quence, the absolute error of the SC results oscillates with
the same period and the amplitude decaying asOshd, see the
upper panel in Fig. 12. The relative error strongly depends on
the phase of the oscillations, and there are unfavorable inter-
vals of h near the minima of sin2 d, which corresponds to a
destructive interference, where the relative error may become
very large even for very small values ofh. These results add
a new dimension to the situation shown in Fig. 11. Now it
becomes clear that the nonmonotonic character of conver-

gence of the SC and QM results is a manifestation of
Stueckelberg’s oscillations, and a big difference between
them forh<0.23 is explained by the fact that this value ofh
happened to lie very close to a minimum of the oscillating
factor in Eq. (102). The results of similar calculations for
case A,s=−, and case B are shown in Figs. 13 and 14.
Again it can be seen that the agreement between the SC and
QM results depends stronger on the phase of the oscillations
in h rather than on the value ofh itself. Indeed, the difference
can be small even for not very small values of the asymptotic
parameter, e.g., it is less than 15% in both cases forh=2/3,
but it becomes large in the unfavorable intervals ofh where
destructive interference occurs, as in case B forh=1 and
1/2. Thus Stueckelberg’s oscillations play a crucial role in
the understanding of convergence of the SC and QM results.

Let us now demonstrate the agreement between the SC
and QM results in a wider energy interval and for other pro-
cesses. The results of calculations for systems with an inter-
mediate value of the asymptotic parameterh=2/3 in each of
the three cases are shown in Figs. 15–17. In case A,s=+, we
present the results only up tonsEd=5; because of the reso-
nances, at higher energies it becomes difficult to distinguish
different processes if they are plotted in the same figure. The
results in case A,s=−, and case B continue those forp12
shown in the middle panels of Figs. 13 and 14. The overall
agreement can be characterized as very good, especially tak-
ing into account that probabilities of the different processes
differ by many orders of magnitude. The SC results nicely
reproduce this difference, as well as the shape of the energy
dependence of the probabilities. We note that the rapid(ex-
ponential) growth of the probabilities just above the thresh-
olds in case B comes from the energy dependence of tunnel-
ing exponents(64) and reflects their dependence on the
position of turning pointsRt

m. The SC calculations do well
even in cases when the probabilities are too small(less than

FIG. 11. The probability(100) of transition between states 1 and
2 as a function of the effective quantum number(101) for several
values ofh in case A,s=+. The asymptotic parameterh and the
mass ratioM are related by Eqs.(26). For h=1/4 and0.23 reso-
nances are too narrow and are not resolved in the figure.

FIG. 12. The probabilityp12 as a function of 1/h for a fixed
value of nsEd=2.3 in case A,s=+. The SC and QM results are
divided by 4ps1−pd and compared with sin2 d, see Eq.(102), where
p and d were calculated using Eqs.(104) with D0<1.288 andd0

<5.136. The circles show the results for integer values of the mass
ratio M =0,1, . . . ,15.
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10−10) and our double precision QM calculations fail to con-
verge because of the roundoff errors, see Fig. 17. This situ-
ation is typical for other values ofh.

VI. CONCLUSIONS

The main goal of this work was to investigatehow the SC
and QM results converge for the given class of systems when
the asymptotic parameterh tends to zero. The main conclu-
sion is that this convergence is strongly affected by Stueck-
elberg’s oscillations, i.e., by the interference effects. It is
shown that the overall agreement between the SC and QM
results for a wide spectrum of systems and processes in a
wide energy range is surprisingly good even forh,1. How-
ever, because of the oscillations the convergence is not
monotonic, and in each particular case, i.e., for a given sys-
tem and process, the SC results may be grossly in error even
for small values ofh in some unfavorable situations where a
destructive interference occurs. The main source of the dis-
crepancy is a smallOshd error in the interference phases,
which is intrinsic to the leading order approximation. We
stress that this error cannot be eliminated by simply includ-
ing the so-called dynamic phase[2,3] into Stueckelberg’s
connection matrix(65), let alone higher order corrections
that follow from the solution of the two-state linear model

FIG. 13. Same as in Fig. 11, but in case A,s=−. Forh=2/3 and
1/2 resonances are not resolved.

FIG. 14. Same as in Fig. 11, but in case B. There are no reso-
nances in this case.

FIG. 15. The probabilities of various transitions forh=2/3 in
case A, s=+. All inelastic transitions in this energy range are
shown. Vertical dotted lines indicate threshold energiesE=En.

FIG. 16. Same as in Fig. 15, but in case A,s=−. Resonances are
too narrow, not resolved.
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[5], because there are other terms of the same order repre-
sented by the first order correction(42) to the primitive SC
solutions(44). Of course, this conclusion is not a surprise.
We have discussed oscillations inh, but similar oscillations
exist in the dependence of transition probabilities on the im-
pact parameter in time-dependent approaches, or on the total
angular momentum in time-independent approaches. These
oscillations are averaged out if one is interested only in total
cross sections, but it is well-known that they strongly affect
more detailed characteristics, such as partial cross sections.
The interference effects similar to those discussed in this
work have been detected earlier in three-body Coulomb sys-
tems in three dimensions[15]. It was shown that the widths
of resonances oscillate as functions of the mass ratioM, and
without these oscillations it is impossible to understand, e.g.,
the isotope dependence of the resonance widths in muonic

moleculesppm, ddm, and ttm. This example suggests that
our conclusion should remain valid also for the three-
dimensional case.

Our second result consists in the analysis of hidden cross-
ings in the collinear three-body Coulomb problem and, in
particular, in finding the complexT series. Even though the
mechanism of the complexT series is formally similar to that
of the usualT series[6], namely, in both cases the nonadia-
batic transitions occur near the extremum of the potential
energy defining the motion in a “quantal”(“fast”) variable, in
the complex case there is no potential barrier on the real axis,
which leads to a qualitatively different distribution of hidden
crossings in the complex plane of the “classical”(“slow” )
variable, and hence to a different behavior of the transition
probabilities. Whether the effects of the complexT series can
be found in the dynamics of physical systems in three dimen-
sions remains an open question.

Finally, let us mention some directions in which we hope
to continue these efforts. This work is intended to be the first
part of a series. In the subsequent parts we plan to consider
resonances[55] and fragmentation processes. This will com-
plete the quantum mechanical and semiclassical study of the
collinear three-body Coulomb problem. A similar study in
the three-dimensional case should start with the analysis of
hidden crossings. The first step in that direction has been
made recently[56].
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