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Quantum-mechanical and semiclassical study of the collinear three-body Coulomb problem:
Inelastic collisions below the three-body disintegration threshold

Oleg I. Tolstikhin
Russian Research Center “Kurchatov Institute,” Kurchatov Square 1, Moscow 123182, Russia

Chusei Namba
National Institute for Fusion Science, Toki 509-5292, Japan
(Received 26 June 2004; published 28 December 004

A quantum-mechanicalQM) and semiclassicalSC) study of inelastic collisions in collinear three-body
Coulomb systems below the three-body disintegration threshold is presented. The QM results are obtained by
solving the stationary Schrddinger equation in hyperspherical coordinates using the slow/smooth variable
discretization method. After appropriate rescaling of the hyperspherical coordinates, an asymptotic parameter
0=<h=1 that depends only on the masses of particles and has the meaning of an effective Planck’s constant for
the motion in hyperradius emerges. The SC results are obtained in the leading order approximation of the
asymptotic expansion in. The main attention is paid to investigatihgwthe SC and QM results converge as
h— 0. It is shown that the overall agreement for a wide spectrum of systems and processes is surprisingly good
even forh~ 1. However, because of interference effects the convergence is not monotonic, and the SC results
may be grossly in error in the situations where a destructive interference occurs. The analysis of hidden
crossings clarifies mechanisms of the nonadiabatic transitions. It is shown that if the oppositely charged
particle is located between the two others, the nonadiabatic transitions occur near the top of the potential
barrier via the well-knowrT series of hidden crossings. If it is located on one end of the system, then there is
no potential barrier for real values of the angular variable, but there still exists an extremum in the complex
plane; the mechanism of nonadiabatic transitions in this case is called the conggers of hidden crossings.

DOI: 10.1103/PhysRevA.70.062721 PACS nuniber34.10:+x, 31.15.Ja, 31.15.Gy

[. INTRODUCTION concerning the probability of nonadiabatic transitiqise
adiabatic theorem We consider the termsemiclassicabnd
Systems in which one degree of freedom can be treated aaliabatic in the above context essentially as synonyms
“classical” (or “slow”) while the others remain “quantafbr ~ whose exact meaning ssymptotic Because our analysis is
“fast”) are of great interest for further development of quan-based on the stationary Schrddinger equation, we adopt the
tum theory and its applications. The selected degree of fredime-independent terminology.
dom is characterized by higher rate of the accumulation of The main virtue of the semiclassia@C) theory is that it
action, which can be explained by the presence of a smafiot only enables one to obtain an approximate quantitative
parameteh having the meaning of an effective Planck’s con- description of the dynamics in the situations where an accu-
stant for the motion in the corresponding variable. Thereforgate quantum-mechanicgQM) solution is not accessible,
an adequate theoretical approach to such systems is tiipit also clarifies its physical mechanisms. However, SC re-
asymptotic solution of the problem fér— 0, i.e., the semi- sults have limited accuracy and usually cannot be improved.
classical approximation. In this approach, “quantal” degree§rom the pragmatic viewpoint, accuracy is eventually the
of freedom are eliminated by the expansion in the adiabatikey factor that determines whether such results are meaning-
basis and the resulting set of ordinary differential equationgul and useful or not. An asymptotic estimate of the error is
describing the motion in the “classical” variable is solved byusually available, e.gQ(h), which, however, tells nothing
asymptotic methods. Historically, the first application of suchabout its actual numerical magnitude. In order to appreciate
an approach was the treatment of the rotational and vibrahow smallO(h) is for the given class of problems it is de-
tional spectra of diatomic molecules by Born and Oppersirable to study some simplified but still realistic model for
heimer[1]; the selected variable here is the internuclear diswhich a reliable QM solution can be obtained and simulta-
tance and the small parameter is provided by the electron-tareously an SC solution is expected to be valid and to analyze
nucleus mass ratio. The tersemiclassicalor quasiclassi- how these two solutions converge with each other as the
cal, in Russian traditionis commonly used for this kind of asymptotic parametdr tends to zero. A study of this type is
approximation in time-independent formulatiofi2-5]. A presented in this paper.
similar theoretical scheme in time-dependent problems, in The class of problems we have in mind, towards which
which case the selected variable is time and the small paranour analysis is directed, is low energy collisions in three-
eter is the characteristic velocity of “slow” subsystem or thebody Coulomb systems. The model we chose to consider is
rate of variation of external conditions, is usually called thethe collinear three-body Coulomb problem. The stationary
adiabatic approach[6]. It has been pioneered by Born and Schrédinger equation describing this model allows a very
Fock[7] who derived the first definite, albeit negative, resultaccurate numerical solution in hyperspherical coordinates. At
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the same time, after appropriate rescaling of the hyperspheri- 1 5 (a)

cal coordinates, the Schrédinger equation can be presented in
such a form that an effective Planck’s consténfor the

motion in hyperradius emerges. The paramétedepends

only on the masses of particles, is dimensionless, and varies (®)
in the interval Gsh=<1. The SC solution becomes exact for case A

h— 0, so by varyingh one can observe how the SC and QM ——OO—0—
results converge. To analyze this convergence is one of the

goals of this study. We believe that the conclusions made in case B

this respect should remain valid also for three-dimensional ——O——0—

systems for which, however, such an analysis would be much
more laborious. The other goal is to discuss mechanisms of FIG. 1. Three particles on a linga) The convention for their
the collinear dynamics. These results cannot be transferretimbers; this order does not change during the motibonTwo
directly to the three-dimensional case, but present a neceghysically different variants of their relative position; open and
sary first step in that direction. closed circles symbolize oppositely charged particles.

There exists a great number of studies devoted to the
comparison of SC and QM results for various physical Systhat in the SC approximation probabilities of nonadiabatic
tems, especially in the field of slow atomic and molecularyansitions are determined by crossing points of the adiabatic
collisions, se¢2-5] and references therein. In this situation, hotentials and are typically exponentially small, and Stueck-
it is natural to ask what is the reason for undertaking yef|perg[21], who in the same year published a solution to the
another study of this type. We answer this question by éMgyeneric two-state problem. An answer to the second question
phasizing some features of the collinear three-body CoulomBpouid be sought in the properties of the adiabatic basis,
problem that distinguish it from the majority of other models namely, in the phenomenon of hidden crossings discovered
considered earlier. First, it reproduces all the spectrum OBy Soloviev[22], see alsd6,23 and references therein. Ac-
states and processes possible in three-body Coulomb syste@srdingly, our SC treatment consists of two parts: a descrip-
in three dimensions—this is what was meant above by §gn of the procedure used to obtain the SC res(fiscs.
realistic model. Second, it has two degrees of freedtinis |\ o_|v D ) and the analysis of hidden crossirgec. IV B.

is the minimum number of degrees of freedom for a model tosection Vv presents the results of scattering calculations. Sec-
be realisti¢ which, in contrast to various two-state and mul- 5y /| concludes the paper.

tistate modelq8-10, will be treated explicitly. Finally, it
contains a continuously changeable small parantetdihe

existence of an explicit small parameter is not that important Il. THE COLLINEAR THREE-BODY COULOMB

for obtaining an SC solution for one particular system, but it PROBLEM

is essential for understanding how the SC and QM results

converge. We consider a system of three particles with masses

The paper is organized as follows. Basic equations deand chargese, i=1,2,3, constrained to move along a
scribing the collinear three-body Coulomb problem are for-straight line and interacting via the Coulomb forces. Particles
mulated in Sec. Il. The problem contains four parameterswill be called by their numbers, and pairs of particles, by the
two mass ratios and two charge ratios; in addition, twonumber of the remaining particle. It should be assumed that
physically different arrangements of three particles on a lingarticles cannot penetrate through each other in collisions
are possible, depending on where the oppositely charged paisee the discussion of boundary conditions bejao they
ticle is located. In this paper, we restrict our consideration tqpreserve their order on the line. We enumerate them as
two particular families of systems, one for each of the twoshown in Fig. 1a). Only the case when one of the particles is
arrangements, whose members differ only by the value of charged oppositely to the others will be considered. By con-
Our QM treatment is based on the slow/smooth variable disvention we assume thaje; <0, i.e., the interaction in pair 1
cretization (SVD) method[11]. The SVD suggests a very is attractive. Then there are two possibilities, eitbgr <0
efficient approach to the numerical solution of theor e;e;>0, which will be referred to as cases A and B, re-
Schrodinger equation for systems with one “classical” degregpectively, see Fig.(b). In case A, the system can disinte-
of freedom, as is confirmed by the growing number of itsgrate into a free particle and a bound pair in two ways,
applications in hyperspherical studies of tWd2] and three-  (23)+1 and 2431), which will be called arrangements 1 and
[13] electron atoms, ion-atom collisiong4], three-body 2, while in case B such disintegration can occur only in
Coulomb systems involving exotic particlg45,16, and  arrangement 1. Case A under the condition that particles 1
chemical reactionfl7,18. Because a detailed description of and 2 are identical, i.em,=m, ande, =e,, will be called the
the program used to obtain the QM results has been pulymmetric case.
lished recently{19], we only briefly outline its structure in  The stationary Schrédinger equation for this system reads
Sec. lll. On the contrary, our SC treatment is discussed rather
in detail in Sec. IV. There are two basic questions that should
be answered by the theory: how to calculate the probabilities
of transitions and what are their mechanisms. An answer to
the first question was given by Land&R0], who showed whereT is the kinetic energy,

(T+V-B)¥ =0, (1)
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V is the Coulomb potential energy,

V= €36 €163 &€ _a 2
Xz=Xy Xi=Xg X1=X; y; X Sinyz—y;C0Sy;3
+ - 23 = - Zl + é
Xy SNy, +Yy;COSy, X;SINYy3—Y,CO0Sy3 V>
z _C
. 3 () .
Xo Siny; +Ys COS'yl R
C(¢) is the effective charge,
% Z3
C(¢) = + : (4)
sin d> Sln(73 @) sin(y+ @)

andE is the total energy measured from the three-body dis-
integration threshold. The different sets of coordinates use
here are defined as followX; are the coordinates of particles

on the line with the origin at the center of mass, timus;

+myX,+meX3=0. x, andy,, a=1,2, are twosets of the

mass-scaled Jacobi coordinates,

['m
X, = 1Mot X,,
m, + My

m>,Mm
Y= —23 (X3 Xo), (5a)
m, +
and
m2mtot
Xo == | 2 Xy,
2 m, +m, 2
m;m
e —L5 (><1 X), (5b)
m, +

related to each other by the kinematic rotat[@d]
<x2> _ <c95y3 siny; )(xl>. ®
Y2 SInys —COSy3/\Y1
Finally, R and ¢ are the hyperspherical coordinates,
R=\+y2= 0 +y3,
¢ = arctarty,/x;) = y5 — arctary.,/x,). (7)
In these equationg; are the pair charges,

_ [ M1 Miyp
Z| - Q+1Q+2 m’+1+ mi+2, (8)

v; are the angles of kinematic rotations,

M Mot
. =arctany/ ——>, 0<y <2, (9)
7 Mi+1Mys2 7

where (i,i+1,i+2) is a cyclic permutation of1,2,3, and

Mt=M +mMy+Mmz. The volume element in configuration

space igdV=dx,dy,=RdRdp.
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Let us discuss the boundary conditions. Equat{dn
should be considered in the regione <X,<Xz<X;<o
that in hyperspherical coordinates is represented by the sec-
tor

0=R<w, 0=<¢<=<ys;. (10)

Its boundaries correspond to binary collisions in pairgpl
=0) and 2(¢=173), and its apeXR=0) represents the point
of triple collision. In order that matrix elements of the poten-
tial energy(3) be finite, the solutions of Eq1) must vanish

at the points of interparticle collisions. Therefore one should
require

V(R ¢)|4=0= V(R ¢)|¢:73 =0.

This boundary condition justifies our assumption that par-
ticles cannot penetrate through each other; it is specific to
one-dimensional Coulomb problems, the situation in spaces

f higher dimension is different. In the symmetric case, the

olutions of Eq.(1) are either everfo=+) or odd (o=-)
under the permutation of identical particles 1 and 2, so it is
sufficient to consider only a half of the sectd0) with the
additional boundary condition

d¥ (R, $)
9P | g=yy2

(11

=0 for o=+,

\I,(R, ¢)|¢:.},3/2 =0 for o=-. (12)

The boundary conditions in the asymptotic region- o de-

pend on the energl. In this paper we consider only inelas-
tic collisions below the three-body disintegration threshold.
In case A, there are three types of such processes: excitation
in arrangementy,

(23),+1+(23),+1, a=1, (133
2+(31),-2+(3),, a=2, (13b

and rearrangement,
(23),+ 1+ 2+(31,, (139

where indices and u identify states of the bound pair in the
initial and final states of the system. Threshold energies for
various scattering channels are given by

(a) thlEV
E, —?, a=1,2, v=1,2,..., (14)
whereE, denotes the hydrogenic spectrum
1
E,=—-—. 15
V=52 (15

By convention we assume thig|=|z,|, henceE'" <E?,
which is always possible to achieve by interchanging simi-
larly charged particles 1 and 2. The asymptotic boundary
conditions for processed.3) in the energy rang&<0 can

be formulated in a standard way; we do not reproduce them
here, for details see Rdfl9]. The scattering matri$ can be
divided into four blocksS'“? with eIementSp‘;ﬁ), where the
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upper indices refer to arrangements and the lower ones to 2y,

states. In the symmetric cas8V=522 andS12=52Y and h= o 0s h<1. (18)

it is more convenient to consider a symmetrized scattering

matrix S defined by After scaling, all the quantities under consideration become
dimensionless with the units of hyperradius and energy given

S® =g+ 512 (16) by
In case B, only process€$3g) in arrangementr=1 are pos- - ﬁ_z E.= ﬁ (19)
sible, soS=S1?. hiz]" ° 42

These units characterize pair Ry estimates the value of
1. QUANTUM-MECHANICAL TREATMENT hyperradius on the boundary between the regions of conden-
sation(all particles are so close together that the kinetic en-
ergy dominates over the potential gresd fragmentation in
arrangement Ipair 1 in the ground state and particle 1 are

such a solution is quite feasible, although for obtainiel . . , ;
. . separateyj andE, defines the energies of bound states in pair
able results the experience of the researcher still matteri Similar units could be defined in case A for pair 2, but in

more than the power of the computer. Recently we have . : .
case B there are no bound states in pair 2, so such units
developed a programTBC that enables one to solve the col-

linear three-body Coulomb problem for a wide spectrum ofWOUld lose their meaning. Thug, and &, are natural units

systems and processes in the energy range below the thr for the problem. Only scaled quantities will be considered in

body disintegration threshold 9]. Because major computa- %tﬁ/?s fggg\r’\ng?é iz\zoemx klli?:irtlle onivvgﬁ gm't the tilde. The effec-
tional technologies used iTrsc have already been described 9 plicitly 9 y

The QM description of processé€b3) can be obtained by
solving the Schrodinger equatioh) numerically. These days

in the literature, here we only briefly outline its general struc- (&) h hz, hz

ture. In the internal regioR<R,,, Eq.(1) is solved in terms =- sinh + Sinh(m/2 - + S T hol’

of hyperspherical coordinates using the SVD metfi in the] (w2 = ¢)] "y, +he]
combination with theR-matrix propagation techniqug5]. (20

In the external regiofR= Ry, Eq. (1) is solved separately in  the threshold energies are

each attractive Coulomb valley extending along the direc-

tionsy,=0 in terms of the appropriate set of Jacobi coordi- EV=E, E?=ZE, (21)
nates using the asymptotic expansions developd@6r27]
and implemented if28]. Internal and external solutions are
then matched along the aR=R,, to construct a global so- e, [my(my+my) e [my(my+my)
lution from which the scattering matrix is obtained. More 22=—e_ m 23=—e_ m
details on the program and results of illustrative calculations 2 Y MMy + M 3 Y MMy + My

for a number of systems and processes can be foufitRin (22

We wlsh to emphgsae thqt in spite of swift brevity of this According to our conventions, <4z,<0 in case A and,
section the numerical solution of E() by no means should - 4 i, case Biz; may have arbitrary value, but its sign is
be considered as something of secondary importance in thi?pposite to that of,.
work. On the contrary, it is availability of accurate QM re- " One reason for scalingl7a—(170) is to bring systems
sults that makes the present attempt to appreciate the qualifyi, yastly different masses and/or charges of particles as far
of the SC solution possible. as possible to a common scale in configuration and energy
spaces. But there is also a deeper goal: scaling reveals the
IV. SEMICLASSICAL TREATMENT asymptotic parametdr essential for the SC treatment of the
problem. A resemblance of this notation to Planck’s constant

and the pair charges afeote that after scaling;=-1)

A. Scaling is not accidental. Indeed, in scaled hyperspherical coordi-
Let us introduce scaled hyperspherical coordinates, nates the Schrodinger equati@h) reads
~ - h>9 0 1 & C(¢)
= h#, 2 =ht -——R—--—=—+—-E|¥(R ¢ =0,
scaled energies, (23
=~ o 1o @ thush has the meaning of an effective Planck’s constant for
(E.E)") =1%z| *(E,E)"), (17b)  the motion inR. The configuration spagd0) is now defined
by
and scaled charges,
0sR<®, 0<d¢=<mnl2, (29
C=hlz]'c, 7=lz|"z, (170  soits boundaries do not depend anymorehofihe effective
charge(20) does depend oh, explicitly and via its depen-
where dence on the masses of particles that can be converted into a
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dependence oh and the ratiom,/m,. However, this depen- NMease A lcase B
dence does not modify the asymptotic structure of the prob- L
lem because for any fixed value of,/m,

1 € 2e,
c =-—-———-—+0(h). (25 =
o=~ T g " e, O (29 s.|
Thus in the limith— 0 the parameten enters Eq(23) only 5|

in the form of an effective Planck’s constant for the motion
in R, which renders this equation amenable to the analysis by
asymptotic methods. As follows from Eq&®) and (18), h
depends only on the masses of particles ardll corre- 0
sponds tomz<<min(my,m,), therefore our SC treatment is
expected to yield exact results in the limit of heavy-light-  FIG. 2. The effective charge27a for two extreme values df
heavy systems. in cases A and B. The solid curves correspond to (2gby).

As can be seen from Eq&20) and(22), besidesh there
are three more parameters in the problem, one mass ratg&ons, without complicating the analysis in this section in-
my/m, and two charge ratios;/e, and e;/e;. To keep the stead of Eq(23) we consider a more general equation,
length of the paper finite, we consider two particular families

o o /2

of systems, one for each of the two cases A and B. Systems | _ h* iRd—li ¥ A_2 + c) E|¥(RQ) =0.
in these families differ only by the value bf while the other 2R"TR R 2RP R '
parameters are fixed by the conditions-e,=—e; in case A, (29)
e,=—e,=e; in case B, and in both cases,=m,=Mm;,
where the mass ratibl is related toh by This equation describes a few-body Coulomb system with
’ d-dimensional configuration space parameterized by hyper-
_ cog7h/2) h= 2 V1+2M spherical coordinate@R, ()), where() denotes a set al—1
" 1-cogwh/2)’ T arctan M (26) angular variables and is the grand angular momentum op-

) o erator[29]. A relation with the notation above is established
Three representative combinations of the masses With py =2 (=g, andA2=-32/J¢2 It will be assumed that the

= (heavy-light-heavy, e.gpepin case A ancbepin case  effective chargeC((2) does not depend on the asymptotic
B), M=1 (equal masses, e.@¢'e in case A and’eein case parametenh.
B), andM =0 (light-heavy-light, e.g.epein case A andepe’ Let us introduce some notation related to the adiabatic

in case B correspond th=0, 2/3, and 1, respectively. The p5sis. The adiabatic Hamiltonian for EQ9) is
effective charge20) for these families takes the form

1

h h UR)==A?+ROQ). (30
C(¢)=— N + — 2

sinhg]  siNh(#/2 - ¢)]
h Its eigenfunctions defined by
2 sin(7rh/4)cogh(¢ — m/4)] 273 [UR-U,R]®,(Q;R=0, »=1,2,..., (3]
and satisfying the regularity boundary conditions on the hy-
_ 1 - 1 + 2 +o(h?) (27 persphere constitute the adiabatic basis. We normalize them
¢ w2-¢ ' by (®,(Q;R)|®,(Q;R))=46,,, where(---) denotes integra-

tion over(). Along with the adiabatic eigenvalugk(R), it is
convenient to introduce the adiabatic potentdJ6R), effec-
tive quantum numberhl,(R), and moment& (R),

where the uppeflower) signs stand for case @). It has an
attractive singularity atp=0 and another attractiveepul-
sive) singularity in case AB) at ¢=7/2 that originate from

the Coulomb interactions in pairs 1 and 2, respectively, see V,(R) =U,(R/R?, (329
Fig. 2. Function(27g only weakly depends oh being very
close to its limiting form(27b) for all values ofh in the N(R) = [- 2V,(R) ]2 (32b)

interval (18). For these system|g,|=1, so the threshold en-
ergies(21) are simply given by the hydrogenic spectrum,

K,(R) ={2[E - V,(R]}*. (329
(1) =2 =
E=E"=E. (28) The matrices of nonadiabatic couplings are given by
Note that the systems in case A are symmetric; we shall P,,,L(R)=<<I)V(Q;R)|ﬁ/&R|®M(Q;R)>, (333

consider two permutation symmetries-+ separately.

B. Primitive semiclassical solutions Q,u(R) =(D,(Q;R)| IR D, (Q;R)), (33b)

Keeping in mind possible applications of the present apand the nonadiabatic corrections to the adiabatic potentials
proach to the three-body Coulomb problem in three dimenare
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D 1 (d-1)(d-3)
R==--Q,R, D=—"———. 4
v,(R) = 2QW( ), 3 (34)

Let us introduce a new function,
R Q) =ROYV2Y(R (), (35)
and rewrite Eq(29) as
h2 & UR)+h’D

2 (9R2 + R2 E I,Zf(R,Q) - 0 (36)

The asymptotic solutions to this equation for-0 can be

PHYSICAL REVIEW A 70, 062721(2004

R 12 " 2
3K K v K,P
c(R) = v __V__V_z v vp dR.
R {SK‘E 4K2 K, Z,V,-V }

(43

This process could be continued to obtain higher terms in Eq.
(37b). Summarizing the results, the primitive SC solutions of
Eq. (36) are given by

exp<+|h f K(R)dR)

K1/2(R)

Y (RQ) = AQ:R),  (44)

sought in many different forms. Being interested only in thewhile Egs.(42) and(43) give an estimate of the error term.

leading order terms, we adopt the following simplessatz

H(R Q) =exfdih SR +iS|(RJe(RQ), (373
where

¢=¢o+hes + (370
and functionss,, S;, and all theg, do not depend oh. It is
clear that the tern$, could be removed from the exponent in
Eq. (379 by absorbing it into thep. To eliminate this ambi-
guity we require{gg|¢py=1. Substituting Eqs(373 and
(37b) into EqQ.(36) and collecting terms of the same order in
h, in the zeroth order we have

}Po 0,

|

where the prime denotes differentiation Ry Thus ¢, must
be an eigenfunction adi/(R), and thenS, is determined by
the corresponding eigenvalue. Consider the solution

UR
R?

1 72
— +
2&)

(38)

R

S==% | K(RAR ¢u=P,(Q;R). (39
In the first order we obtain
VR R [ 2, UR) E] o
ISy + S~ 5 @0+ 2 ~E[e:=0.
(40)
From this we find
:IEInS{) (41)

and

¢1= +icRPQR +IK, R 2 (R) V,(R)

MFV
(42)

It is useful to take a look at these results from a different
side. The solutions of Eq36) can be expanded in the adia-
batic basis as

HRO) =D F(RD,(Q;R). (45)

Substituting this into Eq(36), one obtains a set of ordinary
differential equations foF (R),

h? d?
YT +V,(R) - E} F.(R
:—hZUV(R)FV(R)+h22 |: (R) d + QV,U,(R) F (R)
nFEV

(46)

In the hyperspherical approach proposed by Mgd&&k one
seeks accurate numerical solutions to these equations. This
approach has proven to be very efficient and is currently
widely used for solving various few-body problems in
atomic[31] and moleculaf32] physics. It is easy to see that
the primitive SC solution&44) can be obtained by neglecting
the right-hand sides of Eq$46) and solving the resulting
decoupled equations using the SC approximation. The pur-
pose of an alternative derivation discussed above was to em-
phasize an intimate relation between the SC approximation
and the adiabatic basid]. Indeed, we have seen that the
asymptotic expansiof37g and (37h) singles out the adia-
batic basis. On the other hand, any complete angular basis
can be used to expand the accurate QM solution; the adia-
batic basis in this case merely has an advantage of faster
convergence.

Our leading order approximation is based on the primitive
SC solutiong44). As can be seen from Eqggl6), the nona-
diabatic correctior34) adds to the adiabatic potentid](R)

a termO(h?). There is another contribution of the same order
that has not been taken into account above—the so-called
Langer correctior{33] arising from the fact thaV (R) di-
vergesx1/R? asR— 0. In the leading order approximation
both corrections must be neglected because their effect on
the wave function is of the same order as E4R). This
means that in the leading order approximation the adiabatic

The coefficient(R) here remains undefined. It is determined potentialsV,(R) are effectively defined with an intrinsic error
by the equation arising in the second order of the expansiorQ(h?), which leads to a similar err@®(h?) in the energies of

which yields

bound and resonance states and to an €¢by in the elastic
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phase shifts. However, in calculating,(R) by solving Eq. N

(31) one should use the full effective char@), not the first D(p) = > cimi(). (48)
term of its expansion ih (25). Even though the difference is i=1

of the same orde®(h?), it cannot be neglected because this

may modify the asymptotic values Wf(R) for R— o0, which ~ Substituting this expansion into Eg&l78 and (47b), one
must coincide with the threshold energi@4). But this does  obtains an algebraic eigenvalue problem,

not happen for systems under present consideration: both
formulas(27) are consistent with Eq28). 1

{5A2+RC—UI]C:O, (49)

C. Transition points

The points where the leading order approximation breakgvhere matrices\® and C represent the grand angular mo-
down are called the transition points. There are two types ofentum operator squared®=-d?/d¢? and the effective
transition points in our problem: turning poin&, where  chargeC(¢), cis the vector of coefficients in E¢48), and|
K,(R)=0 and the primitive SC solution&}4) diverge, and i_s a unit matrix. quatiom49) can pe solved using standard
crossing pointRe*, whereV,(R)=V,(R) and the first order linear qlgebra routines. The region of convergence of the
corrections(42) diverge. Here we discuss the distribution of results in the compler plane depends on the basis. In the

transition points in the compleR plane needed for con- Present calculations we use the same discrete variable repre-
structing a global SC solution. sentation basis constructed from the Jacobi polynomials

PY(x) as in the prograncTec, for more details see Ref.
[19]. This basis is well adapted to the Coulomb singularities
of C(¢) at »=0 and=/2 and provides a high rate of conver-
Equation(31) for our problem explicitly reads gence asN grows. Besides, it permits one to easily imple-
ment the symmetry boundary conditiofi) (where, again,
B v3 should be changed ta/2) in the symmetric case, so the
—§d7)2+RC(¢) —U2(¢) =0. (478 different permutation symmetries=+ in case A can be
treated separately. The matricAg and C in this basis are

The primitive SC solutions(44) must satisfy Eqgs.(11) real and symmetric_, therefpre for any compRihe eigen-
(where y; should be replaced by/2, because of scaling vectors corresponding to different eigenvaligsandU , are

which leads to the boundary conditions orthogonal,cIcM:O, without complex conjugation.
The eigenvalues of Eq49) are algebraic functions dR.

It is natural to expect that in the general case all their branch
points are of square rootltype. LRt be a square root branch
The solutions to this eigenvalue probldniR) and ®(¢;R) point, 1.e., matrlxu(RC):5A2+RcC has a pair of equal e
are multivalued analytic functions oR. The different ge_nvalue_suc. By an orthogonal transformatlon of the basis
branches of these functions obtained by the analytic contin his matrix can be redu_ced to the diagonal form except for a
ation from the real axis perpendicular to it will be denoted by o corresTpoiwdlng to the degenerate sub;p_ace. Let
U,(R) and®,(#:R), as in Eq(31). The crossing point&’* vectorse, ande,, € g=4;, form an orthonor'mal basis in 'the
are defined by the conditiot,(R)=U (R) and are generally degenerate sqbspace. Ir_1 any such basis, the nondiagonal
branch points of the functiond(R) and ®(¢;R). Because block of #(R) is symmetric and has the form
the eigenvalues of Eq$47) cannot coincide for real values

of R, all the crossing points have nonzero imaginary parts Uc+u iu

and appear in complex conjugate pairs. Our definition of iu  U.-u/’

U,(R) and® (¢;R) assumes that branch cuts are made per-

pendicular to the real axis upwargdownward$ from the
branch points located in the uppgower) half of the com-
plex plane. A complex plane with cuts appropriate for the
given v will be called the sheet. Gluing all the sheets along

the corresponding cuts, one obtains a Riemann surface upégogonahty propertieseie; =2;£,=0 and eje,=1, matrix
which U(R) [but not®(¢;R), see the discussion belpe- (50) can be transformed to the normal Jordan form, however,
comes single valued. This surface provides a natural arena practical calculatlpns It is more convenient to work with
for studying dynamics in the SC approximatifs¥]. an orthonprmal basis. For grﬂaﬁ R. in the vicinity of the

A practical way to solve Eqg4738 and (47b) for real as branch p0|r!t, Eqa9) hasN d'lfferent eigenvaluet,(R) and
well as complex values dR is to reduce the problem to an corr'espondl?g orthogonal eigenvectoptR) thff‘t can be hor
algebraic form. Given a suitable orthonormal basjep), i~ malized byc,(Ric,(R)=6,,. AsR—R,, the pair of solutions
=1,2,... N, that becomes complete in the intervak@ thatbecome degenerateR&R. behave as
<7/2 asN—o and satisfiesr;(0)=m(7/2)=0, the solu-
tions to Eqs(47g and(47b) can be sought in the form U.(R) = U +vZ"?+ 0O(2), (519

1. Crossing points

2

®(0) =P(7/2) = 0. (47b

(50)

This matrix has two equal eigenvalu, but only one ei-
genvector(1,i)T with zero norm. Introducing a new basis
£,=U"?(e,+ie,), £,=UV%(e,~ie,)/2 with rather unusual or-
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%[2-1’4@1 +iey) + 7, + O(Z], (51b

A

c.(R) =

wherez=R-R,, Z=z?/u?, s,=1, s_=i, andv is another pa-

rameter characterizing the branch point. The other solutions
stay constant within the specified accuracy. As can be seen

from Egs.(51), whenR circles four times arouné. coun-
terclockwise, the solutiondJ,,c,) transform into each other

according to
(Us,cy) = (U, ¥ ¢5) — (Uy,—c) — (U, £c2)
- (Uiaci)- (52)

Thus ®(¢;R) is a double valued function on the Riemann
surface ofU(R) [35]. Using Eq.(51b), from Egs.(33) we
obtain

P, (RI=-P.(R=_+0z¥), (533
4z

Q.(R=Q.(R = é +oZ¥), (53D

Q-(R=-Q.R=,;+0E"). (530

PHYSICAL REVIEW A 70, 062721(2004)
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FIG. 3. The distribution of crossing points for two extreme val-
ues ofh and two permutation symmetries=+ in case A. Some of
the crossing points connecting low-lying staieand u are labeled
by (v,w); for more details on their classification see the text.

eigenvalues are compared with the old ones. A difference in
the orders of the two sets indicates the presence of branch
points. Of course, it is possible that there are branch points
(and in this case more than gneven if the two sets coin-
cide. To minimize the risk of missing something, in our cal-
culations we divide the whole region of interest into a num-

The divergence of nonadiabatic couplings at crossing pointber of rectangles and apply the above procedure to each of

again indicates that the primitive SC solutioi@el) become
invalid there.

them. The third element is finding a branch point connecting
the given pair of solutions and located in the given rectangle.

The numerical procedure of finding branch points is aThis can be done iteratively using E¢1g. The procedure
technical issue, however, this issue is very important fousually converges in a few iterations; if it does not, the rect-
implementing the SC theory. We are not aware of atan-  angle is divided into four parts, and each of them is consid-
dard approach to this problem, so let us describe briefly ouiered again. This approach is rather universal and can be ap-
own one. In principle, branch points could be found coveringplied to any eigenvalue problem of the typ&9). The only
the region of interest in the compl&plane by a sufficiently parameter one has to choose based oratpeori informa-
dense mesh and then making the mesh finer near the poirfion is the initial size of the rectangles, and this can be easily
where a pair of eigenvalues seems to coalesce. Howevetone having a little experience in the problem.
besides being very time consuming such a straightforward The results of our calculations fdC(¢) given by Eq.
approach does not guarantee that the results are really bran@vg are presented in Figs. 3 and 4, see also Table I. Only
points and that all the branch points in the region are foundcrossing points located in the first quadrant are shown; it
Our approach is much more efficient and reliable. It is baseghould be remembered that their complex conjugate partners
on three major elements. The first and the most important
one is the procedure of numerical “analytic continuation.”
Given the solutions to Eq49) at two points,{U(R), c,(R)}
and {U,(R+AR), c,(R+AR)}, v=1,... N, how to establish
the correspondence between the two sets dictated by the ana-
lyticity of their dependence oR? We found that the eigen-
vectors provide a more sensitive criterion than the eigenval-
ues. For each solution &, we look for a solution aR
+AR satisfying the condition |c](R)c,(R+AR)-1| <,
where € is a given small number typically of the order of

60 T

T T T
L]

o © (5,6)
50 |

Q)

a0t

ImR

1073, If there is no such solution or there is more than one—
the intervalAR is divided into two parts, and the procedure is
repeated. In this way the solutions of E49) can be “ana-
lytically continued” along any path in the compl&plane.

The second element permits one to determine whether there
are branch points in the given region. To this end, the solu-

tions are analytically continued around the region along its FIG. 4. Same as in Fig. 3, but for three representative values of

10

case B
o h=0
o h=2/3
o h=1

boundary, and after returning to the initial point the newh in case B.

062721-8

30

40



QUANTUM-MECHANICAL AND SEMICLASSICAL STUDY ... PHYSICAL REVIEW A 70, 062721(2004)

TABLE |. Hidden crossings of the main series in systems witf2/3. QM, thequantum-mechanical results discussed in Sec. IV C 1,
USC, the uniform semiclassical results obtained from E8F.and(82) by solving Eqs(88a and(88h); and AS, the asymptotic results for

v— o obtained from Eqs(89) and (95).

Rg,wl Ug,y+1
v QM UscC AS QM uscC AS
Case A,o=+

1 (5.10223, 2.99736 (5.18811, 2.99883 (-7.36633,-12.7779 (-7.87989,-13.0372

2  (16.7825, 6.52054 (16.8699, 6.52138 (17.77, 3.25Y (-30.6647,-23.6962 (-31.1727,-23.8313 (-30.52,-33.9D
3  (34.8879, 10.3552 (34.9757, 10.3557 (35.85, 6.891 (-66.8193,-35.1000 (-67.3198,-35.1889 (-66.56,-40.538
4  (59.3827, 14.4058 (59.4707, 14.4062 (60.33, 10.60 (-115.764,-46.8609 (-116.263,-46.9289 (-115.5,-50.43
5 (90.2525, 18.6211 (90.3405, 18.6214 (91.20, 14.4%4 (-177.466,-58.8979 (-177.960,-58.9555 (-177.3,-61.3%
10 (340.054, 41.3333 (340.142, 41.3334 (341.0, 35.26 (-676.935,-121.801 (-677.429,-121.943 (-676.7,-121.1

Case A,o=-

1 (5.71804, 5.43126 (5.80487, 5.43292 (-0.23921,-27.1943 (-0.80527,-27.7132

2  (18.3467, 11.8710 (18.4347,11.8723 (21.03, 8.63% (-24.7948,-49.5047 (-25.3279,-49.7767 (-21.91,-66.39
3  (37.5563, 18.9655 (37.6444, 18.9666 (40.24, 15.84 (-62.6801,-72.8404 (-63.1891,-73.0321 (-60.27,-82.98
4 (63.2459, 26.5367 (63.3341, 26.5376 (65.94, 23.32 (-113.637,-96.9847 (-114.144,-97.1352 (-111.3,-104.8
5 (95.3708, 34.4822 (95.4590, 34.4828 (98.09, 31.11 (-177.536,-121.785 (-178.039,-121.905 (-175.2,-128.3
10 (351.928, 78.0507 (352.016, 78.0510 (354.8, 73.78 (-689.443,-252.559 (-689.977,-252.789 (-686.9,-256.5

Case B

1 (1.72506, 3.86073 (1.69882, 3.84472 (6.86464,-5.74570  (6.80768,-5.6901)5

2  (6.02587, 11.2914 (6.00036, 11.2708 (8.241, 10.3p  (14.4291,-15.9494  (14.3763,-15.8970 (19.82,-21.9D
3 (13.0900, 22.0908 (13.0647, 22.0682 (15.44, 21.19p (24.1484,-31.3548  (24.0940,-31.3030 (27.65,-35.82
4 (229877, 36.2251 (22.9626, 36.20165 (25.55, 35.15  (35.9816,-52.0207 (35.9267,-51.9683  (38.78,-56.21
5 (35.7397, 53.6699 (35.7147, 53.6458 (38.52, 52.50 (49.8953,-77.9415  (49.8401,-77.8905 (52.29,-82.14
10 (142.668, 190.122 (142.644, 190.097 (146.6, 188.4 (150.119,-286.438  (150.025,-286.4496  (151.5,-291.5

lie in the fourth quadrant. We found that in both cases A andhe asymptotic parametér caused by the dependence lon

B there are crossing points only of the square root type. Thepf the effective chargé27a. As one could expect from Fig.
form a regular two-dimensional pattern that can be roughly2, this dependence is rather weak. More specifically, the po-
described as a deformed rectangular lattice. The lowest rowitions of crossing points in columns with lomdepend orh

of the lattice will be called the main series, the higher rowsmore weakly than in columns with higher and this depen-
will be called the secondary series. The crossing points of thdence in case B is more pronounced than in case A.

main series have the same classification in cases A and B, It is instructive to see how crossing points reveal them-
namely, they connect consecutively stateand v+1, start- selves in the adiabatic eigenvalubls(R) and matrix ele-
ing with »=1 for the leftmost point. The vertical columns of ments of nonadiabatic coupling3,,(R) on the real axis.
the lattice have slight positivénegative slopes in case A This is illustrated in Figs. 5 and 6 for an intermediate value
(B), which causes an essential difference in the classificationf h=2/3; thedependence oh is weak, so the situation for

of the other crossing points. #=1,2,... enumerates col- other values oh is similar. As follows from Eqs(27a and
umns anch=0,1,...enumerates rows of the lattice, then the (473 and (47b),
crossing point with the given values ofandn in case A(B)

_1\2 —
connects states(v+n) and v+n+1. This means that in case 2(2v-1)°, case A=+,

A any pair of states’ andu are connected by a single cross- U,(R=0) =18/ case A,o=-—, (54
ing point, while in case B only neighboring statesand v 212, case B,

+1 are connected and there awecrossing points joining )

them. In both cases, the Riemann surface of the adiabat@nd in all the cases

eigenvalueU(R) is singly connected. Note that in case A U,(R— ) =E,R?, (55)

crossing points for the different permutation symmetiies

=+ actually form a single regular pattern. This is not surpris-thusU,(R) change sign aR grows from 0 to=. The middle
ing because although the Riemann surfaces for the two synpanels in the figures show the eigenvaliggR) in the do-
metries are disconnected, they correspond to eigenvalues ofain where they are positive. In the domain whergR) are
the same adiabatic Hamiltonian. Figures 3 and 4 also illusnegative, it is more convenient to consider the effective
trate the dependence of the distribution of crossing points oquantum number&32b) shown in the lower panels. The up-
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02 ——————————1——
V=1 case A, h=2/3

03 T T T T

Icaée B: h=é/3_

= 0.2 4

X

Yv+

N WO O N O

6 4
R'? R

FIG. 5. The adiabatic eigenvaluéshown in two different for- FIG. 6. Same as in Fig. 5, but in case B. Note that in this case
mats in the middle and lower pangland nonadiabatic couplings the projections of crossing points lie higher than the eigenvalues for
(339 between neighboring statém the upper panglfor h=2/3 states connected by them taken on the real axis.
and two permutation symmetrias=+ in case A. The signs of

P,,+1(R) are changed to make these functions positivegativé  one such pair connecting statesnd »+1, and the absolute
for o=+ (o':.—). Circl_es show the_ proje_ctions of crossing points of values ofP,,.,(R) indeed have maxima at the expected po-
Fhe_ main series. Vertical dotted lines wnh_small squares at the end§1tions see Fig. 5. In case B, there arecrossing points
|nd|c§te states connected by the crossing points with the Sam@onne(’:ting states and v+1. Th,eir joint contributions pro-
abscissas. duce a shoulder in the curve,,.;(R) that extends fronR
=0 to the rightmost crossing point for the givenwhich is

er panels show the nonadiabatic coupling3a between
pet p plingsa éhe one belonging to the main series, see Fig. 6.

neighboring states. The projections of crossing points of th
main series on the plane of reRlandU or N are also shown.
The first feature to be noticed from these results is that in
case A crossing points of the main series lie in the negative  The turning pointsR’ are defined by the condition
domain, while in case B they lie in the positiké domain, K (R)=0, i.e.,U,(R)=ER:. The problem of finding turning
see also Table I. Second, in case A curtggR) exhibit a  points can be reduced to an eigenvalue problem. Indeed, sub-
clear creaselike structure along the main series of crossingitutingU=ER? into Eq.(474), in the algebraic form similar
points, while in case B there is not any visible structure into Eq.(49), one obtains

the adiabatic eigenvalues and in this sense crossing points lie
in quite unexpected places. The third feature concerns the
nonadiabatic couplings. As can be seen from E9),
P,.(R) diverge at crossing points. Each pair of complex con-
jugate crossing pointR; andRZ produces a bell-shaped con- This is a quadratic eigenvalue problemRnlt can be linear-
tribution to the corresponding cun®,,(R) on the real axis ized by doubling its dimensiofa similar technique is used in
with the maximum neaR=ReR.. In case A, there is only the theory of Siegert stat¢36]),

2. Turning points

BA2+ RC—ERZI]C:O. (56)
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wheret=Rc, and then solved by standard routines. Turning
points are given by the eigenvalues to this equation for a
sufficiently large basis. Note that the possibility to linearize
Eq. (56) rests on a very simpldinearn dependence of the

adiabatic Hamiltoniarf30) on R, which is a common prop- case & hess ]

erty for Coulomb systems treated in hyperspherical coordi- a A EE

v v E-E,

nates. \ <3 e
In contrast to crossing points that are completely deter- 0 10 20 30 20

mined by the adiabatic Hamiltonian, turning points depend Re R

also on the energf. They can be divided into two groups,

real and complex; the latter appear in complex conjugate FIG. 7. Trajectories of complex turning points fb=2/3 in
pairs_ The number and positions of real turning powtgor case A. Small circles, turning points f&<0; Iarge circles, cross-
the givenv are determined by the behavior of the adiabatici"d Points, see Fig. 3; triangles, turning points #+E,, see Eq.
potentialsV,(R) on the real axis. As follows from Eqe32a, (19 Closed(open symbols correspond to=+ (o=-).

(54), and(55), functionsV,(R) divergexR2 with a positive , )

coefficient asR— 0 and asymptotically approach the nega-tion 10 Eq.(36) in one region of compleR plane bounded
tive valuesE, asR— . For the systems under consideration, PY the Stokes lines emanating from transiti@nossing and

they have one minimum for both permutation symmetriedU"MiNg points, then in another region the same solution is
o=+ in case A and are monotonic in case B. Let given tiy Eq.(59) with a generally different set of coeffi-
cientsa;,. To construct a global solution one needs to know a

VTin: minV,(R)], (58) relation between the coefficients, which is called the connec-
tion formulas. In the leading order approximation it is as-

min H min_ H
so thatV,"<E, in case A andV,"=E, in case B. Then ¢, naq that all actions for the motion R involved in the

there are twaone real turning points for the giveminthe ¢,y 1ation become infinitely large in the limi—o0, i.e.,

energy intervaV;""<E<E, (E,<E). The positions of com-  yhare are no coalescing transition points. Then the connection
plex turning points are less intuitive. ASvaries, they move  ¢5rmulas can be easily derived using the method of Zwaan
along certain traje.ctories in the complex plane that can bef37]_ An introduction to this method can be found[B8], its
calculated by solving EqS7). We found that there are no  rgcent developments are discusse3@l. Stueckelberg21]
complex turning points in the domain Re>0 for E>0. a5 the first who applied it to the problem of nonadiabatic
The trajectories of complex turning points f&@<0 are  yansjtions and obtained the key result to be used below:
shown in Figs. 7 and 8. On each sheeof the Riemann  gome inaccuracies of Stueckelberg’s analysis were clarified
surface ofU(R), there is one trajectory starting froR=0 for by Crothers[40], see also Appendix A ifi3]. More rigorous
E=-= tangentially to the imaginary axis. Its further behavior giscyssion of connection formulas can be found4a,42.

in cases A and B is different. In case A, the correspondingsecause all these issues are well documented in the litera-
turning point moves along an arc &grows, temporarily yyre, here we only give some details specific to our problem
leaving sheet to make a pirouette around crossing points itang summarize the final formulas used in the calculations.
encounters, and returns to the real axis on the same slatet We call the solutions/: whose coefficientst in Eq. (59)

the point whereV,(R) has the minimum. Here, it and its ay experience a discontinuity on crossing the given Stokes

complex conjugate partner coalesce and turn into a pair fne coupled by the corresponding transition point. Each tran-
real turning points a& grows further. In case B, the trajec-

tory never returns to the real axis and goes to complex infin- 25
ity asE— —0. The trajectories of complex turning points can

be viewed also from a different side—they show the lines in 20
the complexR plane along which the adiabatic potentials
V,(R) are pure real.

15

o
D. Connection formulas £
In the leading order approximation, a general solution to 10
Eq. (36) is given by a linear combination of the primitive SC
solutions(44), 5 caso B, h=2/3 |
A E=<E,
. o v E=E,
y=2 (@), +ay,). (59) 0 A :
N 0 2 4 6 8
. Re R
However, because of the Stokes phenomenon this represen-
tation is valid only locally. Namely, if Eq(59) gives a solu- FIG. 8. Same as in Fig. 7, but in case B. See also Fig. 4.
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(a) (b) (© for active channels. Thus the resultdg(R,), which means
that K,(R#) =K ,(R¢¥), i.e., the crossing poinR* couples
¢, with ¢, and ¢, with . A similar consideration in the
case ifK (R, is imaginary shows that this poig) couples
the same pairs of solutions in the presence of a left-hand
turning pointRY, see Fig. 8a), because in this case again
K, (R¥) =K, (Re*); (b) couples the opposite pairs, i.f;,
/"R\: with ¢, and ¢, with (ﬂ;, in the presence of a right-hand
turning point R¥, see Fig. ), because in this case
. . S KL(R¥)=-K,(R¥). It can be also shown that the complex
FIG. 9. Schemgtlc representatlon of the S_tokes lisebd Ilnes)_ conjugate crossing poirR”*)* couples the same pairs of
and branch cutgthick dashed linesnear a pair of complex conju- o) tions asR?” if K (R,) is real, and the opposite pairs if
gate crossing point®, and R.. The adiabatic momentum in the K.(R,) is imaginar l(Ne wish to emphasize that the simplic-
upper of the two crossing states at the pdiytis real (b) and N 9 . Y- P L P
imaginary in the presence of a left-hagal and right-handc) turn- ity of this coupling schemg resu[ts from Fhe fact that it is not
ing point R, affected by complex turning points, which is a property of
our problem.
sition point couples a pair of solutions that can be obtained Let us introduce some notation. The action for the motion
from each other by the analytic continuation around it. Turn-in R in statev is
ing pointsRY couple ¢, and ¢,, which leads to reflection.
The reflection coefficient at real turning points for waves S[R,R=h"1 f
propagating along the real axis@h°), so they surely must '
be taken into account in constructing a global solution. Com- . . ]
plex turning points cause reflection with an exponentially The Stokes lines emanating froR{" are defined by
small coefficient, similarly to the above-barrier reflection; in v o _ v _
the leading order approximation their effect should be ne- RESIRR] = S.[RRD =0. (61)
glected because we have already neglected much larger cohhere are three such lines, but only one of them crosses the
tributionsO(h) to the phase in Eq44). Crossing pointR?*  real axis(we take this as an assumption that must be con-
couple each ofy; with one of lp; which leads to nonadia- firmed by the calculationsLet R* be the point where this
batic transitions. Which one of these solutions is couplechappens; usually it lies close to @&&*). It can be easily seen
with which depends on whethe(,(R)=K ,(R) or K,(R)= that the lower channel must be locally open at this point,
-K,(R) at R=R* and is determined by the branch Kf(R) i.e., K, (R) must be realthat is why only this case has been
chosen and its behavior under the analytic continuatiorgonsidered in the above discussiolloreover, if both chan-
aroundR’*. Let us discuss this issue. nels are locally open &*, then the Stokes line crosses the
A channelv is called opericlosed for the given energy if  real axis under the right angle and conneRfs with (RZ*)*;
E>E, (E<E,); it will be called active ifE>V)". Only  otherwise the angle can be arbitrary, depending on the rela-
active channels should be considered in the leading orddion between the absolute values Kf(Ry*) and K ,(R/*),
approximation. The adiabatic momentuf)(R) is a double and the Stokes lines emanating fréf* and (R*)* do not
valued function on sheet To make it single valued, we cut coincide, see Fig. 9. The Stueckelberg exponent is
each sheetv from the left-hand(right-hand real turning

_————]e X _———

W!
K,(RdR. (60)
R/

pointsR located on it downwardgipwards, see Fig. 9; one e =exp— A,
should also add appropriate cuts starting at complex turning
points, but they are immaterial for the following discussion. A =i(S[R*, R¥] - S,[R¥, R, (62)

We choose the branch in E@2c) such thaK (R) is positive
real (imaginary in classically allowedforbidder) intervals
of the real axis. Then, (i) represent waves going to the
right (left) in the allowed intervals and exponentially decay-
ing (growing) in the forbidden ones. LeR:* be a crossing
point connecting two active channgiwe shall always as-
sume in this notation that< u), andR, be a real point lying Re(S,[R!,R]) = 0. (63)
near R¢R:*). Suppose botlK,(R) andK (R, are real, see

Fig. 9b). Consider the analytic continuation Kf,(R) along  One of them lies on the real axis to the léfight) of R}’ in
a path on the Riemann surfacelfR) starting aiR, on sheet the case of a left-han@ight-hand turning point, see Fig. 9.
v, going upwards, arounR?“, and returning to the real axis The tunneling exponent is

at R, on sheetu. As a result we can obtain eith&r,(R,) or v _ N v P

-K,(Ro, depending on whether R¢,(R)] changeg its sign e =exp- A, A =S,[RERY, (64)
on the way, which occurs if the path crosses a line wheravhere A/* is imaginary negativepositive) for a left-hand
V,(R) is pure real and larger thah But as follows from the (right-hand turning point. Stueckelberg’s connection matrix
results of Sec. IV C 2, see Figs. 7 and 8, this never happeris given by

where Al* is real positive(recall thatv<<pu). It has been
assumed in Eqg61) and(62) thatK,(R;*) =K ,(RZ¥); in the
case ifK (R*)=-K ,(R¥) the sign of theS, term should be
changed. The Stokes lines emanating from a real turning
point RY are defined by
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V1 - é € (4) Nonadiabatic transition &;* if the upper channel

N(e) = — (65 s locally closed andR“ <R (left-hand turning point ap-
me N1-€ ply Eq. (70) with e= e €™,

where € is the amplitude of nonadiabatic transition for a  (5) Nonadiabatic transition &* if the upper channelk

single passage across the Stokes line. The difference in sigigslocally closed and®* <R (right-hand turning point to

of the off-diagonal elements arises from a difference in theeach columnu’# u of A add columny multiplied by

behavior of the adiabatic basis functions under the analytie R&(A,,/)/Re(A,,) and then apply Eq.(70), where e

continuation around a crossing poii35], see Eqs(52). We =€ e*.

have neglected the so-called dynamic phgk8], which is (6) Closing a channeb at the right-hand turning point

O(h), as well as higher order correctiof§ to the off diag- R{: from each column/’ # v of A subtract columrn multi-

onal elements because they are beyond the leading order apied by ReéA,,)/ReA,,).

proximation, but retained exponentially small terms in the (7) At the final pointR=R,,, delete all rows and col-

diagonal elements. Strictly speaking, this is not quite consistmns ofA that correspond to closed channels. The result is a

tent with the leading order approximation, but such an apsquare matrix of the dimensidd,,. It should be substituted

proach preserves unitarity of the scattering matrix. into Eq.(68) to obtain the reduced scattering matrix.

The strategy of our SC calculations consists of the follow- To implement this procedure, one needs to find the Stokes
ing. LetRin< -+ <R< - <Rjadenote the ordered set of lines (61). This can be easily done using the procedure of
all RY and R}* for all active channels. For eackv  numerical analytic continuation described in Sec. IVC 1.
=1, ... Nao We construct a global SC solutiah, to Eq.(36) e connection70) could be applied, e.g., at R&") in-
satisfying stead ofR}*, which would make finding the Stokes lines not

_ _ necessary. However, the calculations are very easy, so we
¢V|R<Rmin =™y (Rnin) (66) prefer to act as described above to keep the whole situation
o o including the positions of Stokes lines under control. It can
where the argument af, indicates the reference point, i.e., pe easily seen thalN;}L(e)=NIM(e) and E"YR,Rey)

the lower limit of integration in Eq(44). This is done by _ _, . .
propagating a matrid of coefficients in Eq(59) from Ry, (_6?3) |(S,Rtjr|1:|{{(;£/ which guarantees tha obtained from Eq.

to Rnax @s described below. Solutiogs are real and satisfy
the regularity boundary conditions Bt—0. HavingNa; so-

lutions ¢,, we constructN,,=< N, their linear combinations

¥, satisfying the physical asymptotic boundary conditions _ From the mathematical viewpoint, the results of Landau
[20], who showed that in the SC approximation inelastic

_ . transitions occur via branch points of the adiabatic potentials,
l’bV|R>Rma><: ¥ (Rmax) = 2_‘4 Sut(Rmad, (67) and Stueckelber@21], who solved the problem of connec-

e tion of the SC solutions across the Stokes lines emanating

whereN,, is the number of open channels. The reduced scatrom such a branch point, are self-sufficient in the sense that

tering matrixS differs from S by phase factors that are im- they enable one to calculate transition probabilities. How-

material for calculating inelastic transition probabilities, see€Ver, in physics one tries to look deeper and asks what is the
Eq. (100) below, Sis given in terms ofA by cause of the appearance of branch points, when and where

one should expect them to appear, and eventually what are
S=iAA* )L, (68)  the physical mechanisms of the transitions. These questions

) o i i were first raised in the context of the theory of slow ion-atom

The amplitude matrixA is calculated using the following ¢ollisions by Solovev, which has led him to the discovery of

E. Analysis of hidden crossings

Nact

procedure. _ ~hidden crossing$22]. In this section we show that in our
(1) At the initial point R=Ry, setA equal to a unit proplem the branch points in case A are hidden crossings of
matrix of the dimensiom,; the well-knownT series, and those in case B present a gen-
(2) Propagation fronR, to Ry.1: eralization that will be called the compléxseries.
A(Re1) = E(RyRu)DA(RY, (69) Before proceeding, let us comment on the terminology

) ) o used in this field, which is rather confusing. The “branch
where E(Ry,Ry:1) is a diagonal matrix with the elements point” is a clear mathematical term, but it lacks physical
expliS,[Ry, Re+1]) and 1 for channels that are locally open contents. In the physical literature on nonadiabatic transi-
and closed in the intervd® <R<R, respectively. This tions one can often meet a more vague term “crossing point”
corresponds to changing the reference point for locallthat emphasizes the fact that two adiabatic potentials cross,

open channels. N _ i.e., have the same value at some point. However, it is well-
~ (3) Nonadiabatic transition & if the upper channek  known that usually they cannot cross on the real axis. This
is locally open: circumstance is taken into account by the probably most fre-

AR +0) =N, (AR~ 0), (70) quently used term “avoided crossing”; in many papers and

books the very concept of nonadiabatic transition is illus-
whereN,,(e) is a matrix that acts al(e) on channels’and  trated by the Landau-Zener type avoided crossing of poten-
w and as a unit matrix on all the other channels, ard?“.  tial curves. The term “hidden crossing” was originally used
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in the narrow sense of the word to distinguish branch pointe osp
that lie deeper in the complex plane and do not reveal therr
selves as typical avoided crossings on the real axis. Howeve
later on it was realized from studies of the two-center Cou-
lomb problem[22,43-49 that there is an essential difference o
between hidden crossings and isolated branch point€ °°
namely, hidden crossings appear in well-organized serie
with a common mechanism, and this term has acquired .| .
broader sense designating the physical phenomenon itself r
sponsible for their appearance. The purpose of this section
to clarify the mechanism of nonadiabatic transitions in our °io
problem by showing that crossing points discussed above al
hidden crossings in the latter sense of the word.

To analyze the origin of branch points of the eigenvalue FIG. 10. The analytical structure of 'functi(nﬁ_Z) in complex¢
U(R) of Egs.(47a and(47b) in the situation when the ana- plane. Stars, the extremum; open circles, simple zeros; closed

lytic solution is not available there is no better tool than theCI"les, simple poles; solid lines, Stokes lines defined by (@),
asymptotic theory. Let us rewrite EG7a as dotted lines, branch cuts; and dashed lines, approximate boundaries

of the regions where different comparison equations were used. The
figures show actual positions of the Stokes linestfe2/3 and the
values ofR andU corresponding to the tenth hidden crossing from
the main series, see Table I; this situation is typical.

03 &

d2
[d¢2 +>\F(¢)]<I>(¢) 0, (71)
where
- _ different distribution of crossing points in the compl&

F(¢)=2U-RAP] (72 plane; hidden crossings in this case will be called the com-
We have introduced here a formal asymptotic parameter plex T series. In fact, in case B functio@i(¢) has another
=1 and are going to discuss the asymptotic solutions of Egextremum near the intervalf¢ =< /2 at the complex con-
(71) for A—c°; keeping this in mind, we omik from the  jugate pointg,. As can be seen from E(iZ3), this extremum
equations below. We shall treBtandU as independent com- is associated with hidden crossings having complex conju-
plex parameters until a quantization condition defining thegate values oR andU, so it is sufficient to consider only the
function U(R) is obtained. The structure of the asymptotic one atdy.
solution is determined by the analytical propertie§6p) as Condition(73) means that zero$, and ¢, lie close to the
a function of complex¢ in the region near the interval 0 extremumd,, and hence to each other. Thus we need an
< ¢p</2. It can be seen from Eq&7) that F(¢) has two  asymptotic solution of Eq(71) that is uniform in the dis-
simple zeros aty; and ¢, and two simple poles ap;=0 and  tance betweerp; and ¢,. Such a solution can be constructed
¢,=ml2, see Fig. 10; thus we deal with a four transitionusing the comparison equation method; see, ¢5§;57.
point problem. Besides, functioR(¢) has an extremum at Let us introduce the action for the motion é)
¢o, WwhereC’(¢y)=0. The polesp; and ¢, have the same
positions for all systems; the extremudy is a property of
the effective charg€(¢), so its position depends only on the
system; the zerog, and ¢, depend in addition on the pa-
rameterskR andU, so they are movable. Hidden crossings of

the type we are going to discuss are characterized by the
condition and actions between pairs of transition poigfsi=1, ... ,4,

A
o8] = f F@ds, (72
¢’

U=~ R0, (73 TABLE Il. The validity of Eq. (73) for hidden crossings of the
i.e., the eigenvalu&) must be close to the value of the po- main series in systems wit=2/3. Thevalues ofR"** andUy**!
tential energyRC(¢) at its extremum. The validity of this correspond to the QM results from Table I.
condition is illustrated for crossing points of the main series

in systems withh=2/3 in Table II; the situation for other U H[REC(¢ho)]

values ofh is similar. In case A, the extremum @f(¢) lies

on the real axis at the poinh, where the potential barrier v Case A,o=+ Case A,o=- Case B
separating two Coulomb wells reaches its maximum, see Fig:

2. This corresponds to the well-known situation giving rise to 1 (1.084, 0.61% (1.198, 1.249 (1.602, 0.329
the T (the name comes from thep of the potential barrigr 2 (1.032, 0.30% (1.092, 0.643 (1.286, 0.174
series of hidden crossing]. In case B, there is no potential 3 (1.017, 0.201 (1.055, 0.43y (1.185, 0.119%
barrier on the real axis, see Fig. 2, bQ{¢) still has an 4 (1.011, 0.149 (1.037, 0.331 (1.135, 0.099
extremum, now at a complex poiit,. Although this situa- 5 (1.008, 0.118 (1.027, 0.26Y (1.106, 0.073
tion is formally similar to that in case A, it introduces new 1g (1.002, 0.057 (1.009, 0.135  (1.050, 0.037

features and, as we shall see below, leads to a qualitatively
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lij = L i, &1 (75)

The branch of the square root function in E@4) is deter-
mined by the condition that it takes real positive_ vallues forand in case B we obtain
realR>0, U, and¢— +0, and by the cuts shown in Fig. 10.

Note that only three of six quantiti¢g are independent, e.g., 2314 g2l = de@\1 + exfma), (82
[34=l31+115% 154 in the symmetric casky;=1,4 and only two

of them remain independent. The structure of the Stoke¥hereg,(a) and¢(a) are dynamic phases for the parabolic
lines emanating from the zeras, and ¢, and defined by barrier,

Re(d¢12¢]) =0 (76) i (F((Z—U—ia)/4)> a(l a )

¢o()=71In : -=|lIn=-1+i7
is illustrated in Fig. 10. The asymptotic solutions in regions | 2 \I'(2-o+ia)/4)/ 4\ 4

and Il near the poles satisfying boundary conditigagb) (839
can be expressed in terms of the Bessel funclidm),

sin{lgl—%(aﬂ%} =0, (81)

14 i (T({(1-ia)/2)
() = (%) s, (773 (@)= ¢, +¢-(a) =5 In(F((l +ia)/2))
where the local variables ands;, are - g(m g— 1 +i7-;>, (83h)
SI :id)?ﬂ(f)]v SII :i¢1¢4]- (77b)

Equationg80)—(82) present uniform semiclassicdl SC)
guantization conditions defining the eigenvalues of &4)
for any value ofa. Let us show that for redR andU in the
limit |a] — <o they turn into the usualleading order Bohr-

An asymptotic solution in region Il including two zeros and
the extremum ofF(¢) can be expressed in terms of Kum-
mer’s functionM(a,b, z),

S|2u +a\¥4 Sommerfeld(BS) quantization conditions on the real axis.
Dy (¢) = Fo) [Asys(si) +Ay-(si)], (788 Indeed, the dynamic phases faf— > behave as
whereA, are arbitrary constants, functiogs(s) are defined ¢o(@)
b 1 3
Y T = +0@?, - <aga<-—,
12 is? 2¥1+ia 251 _, _ 8 24a 2 2
yi(s)=s-"exp - — IM| ——, IS = :
2 4 2 ima om 1 - T T
—-— - —+-——+0@?, -;<arga< .
(78b) 4 8 24a 2 2
and satisfyy.(-s)=+y.(s), the local variables,, is defined (84)
implicitly by In case A,a is real and its sign depends on whethéties
i below or above the maximum of the potential barrier. For
J VS +ads= 9 ¢y, &), (780 U <RC(¢y) we havea— —x, and Eq.(80) reduces to
-iVa
sin(l3q)sin(l,4) = 0. 85
and a is the key parameter characterizing the distance be- (Issinlzd) (85)
tween the zerog); and ¢,, This yields the BS quantization conditions separately for
oi each of the two potential well§t should be taken into ac-
a=- —||12_ (79 count that there is a simple pole on one end of the intervals

of quantization G<¢p<¢p; and P,<p<w/2). For U

The global solution can be now obtained by matching the” RC(¢o) we havea— +e, and Eq.(80) takes the form
above local solutions in the overlapping parts of the regions cosls) =0 (86)

[, I, and Ill. We note that different asymptotics of Kummer's 3 '

function must be used for matching the solutighg(¢) and  This coincides with the BS quantization condition for the
®,(¢) in cases A and B because of the difference in thewhole interval 0< ¢ < 7/2 between the two poles. In case B,
position of the corresponding matching region with respecthe parametea is complex with a negative real pait, is

to the Stokes lines, see Fig. 10. Applying matching we findmaginary negative, and we obtain from E§2)

that the global solution exists only R andU satisfy certain

quantization condition. In case A, this condition reads efla=1. (87)
cogl31— 1,4 This coincides with the BS quantization condition for the
coglart 1oy e(@)] = T————, (800 interval 0< < ¢, in the single potential well available in
V1+expma) this case
which in the symmetric case for the permutation symmetry The quantization condition®0)—<82) can be presented in
o=+ reduces to the form
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= %o —
QRU=0, | o >d¢>+lln2¢o+1 il
which defines a multivalued analytic functidd(R). The 2)o \f(9) o~ ¢ 2 4
branch points ofJ(R) simultaneously satisfy Eq88a and (94)
MQ(R,V) Omitting the details(an example of the derivation can be
BT 0. (88b)  found in[54]), the result reads
In general, it is a rather difficult computational task to find p,,= - o Inv+ . Ininv
the solutions to these equations because of the multivalued- Po 4po 2po
ness of the dynamic phasé33); the only known to us cal- 1 (a, aypo T 1
culation of this type was reported {%3]. However, in our + 2—(_ In —— =2a,p,+ - +ib, | + O -— |,
L : : o . Po\ 2 T 2 Inv
case a very good initial guess is available which is provided
by the QM results, so the root finding procedure converges in )
a few iterations. The results of our calculations for the main e = 8ol _2ipg 1 + < 1 ) (95)
series of hidden crossings in systems with2/3 arepre- " wm v wovinw vin?y)’

sented in Table I. The agreement between the QM and US%

results is impressive; it becomes better for higher members here in case A for the permutation symmeiry

of the series, but is not bad even for the lowest one. The a,=—i(2-0o+4n),
agreement for secondary series and other valuésosimi-
lar. , o N by=1-InnIT(1 - 0/2 +n)/2]
Having confirmed that the USC quantization conditions
(80)—«82) nicely reproduce the positions of hidden crossings, +(1-0/2+2)[In(1/2-0l4+n)—-1], (96)

we can use them to investigate the dependencebfand 54 in case B
Ug# on the quantum numbens< u. To this end, let us dis-

cuss the asymptotic solutions of Eq888 and (88b) for v a,=—i(1+2n),
— oo, |t is convenient to introduce instead Bf U, andF(¢)
new parameters by=1-Inv2mn!]+ (/2 +n)[In(1/2+n) - 1]. (97
R U-RG From EQs.(93) and(95) we obtain
p=V2RG,, e= , (89)
RC, 2i 1
a=a,- —+0| —-|, (98)
and a new function Inv In“v
soa approaches,, asv grows. Fora=a, the argument of the
f(¢) = CO_—C(‘/’) = (¢o— H)[1+O0(dp— $)], (90) upper gamma function in Eq§83) is equgl toa nonposi.tive
C, integer , thus hidden crossings described by E&S) lie

1 near its poles. Each pole gives rise to a series of hidden
whereCo=Cl(¢o) andC,=-5C"(¢b). Then Eq(72) takes the  ¢rossings converging to it asgrows, withn numerating the
form poles andv numerating the members of the series. This ex-

_ plains the meaning of the quantum numbergand n. The
F(¢) = pe + ()] (91 results of our calculations using Eq&9) and (95) are pre-
The solutions of Eq4883 and(88b), i.e., the hidden cross- sented in Table I. Th_e agreement _between the asymptotic
ings, can be labeled by two integers=1,2,3,... andn (AS) and QM results is worse than in the case of the USC
=0,1,2,...that enumerate, respectively, columns and rowdesults, but it becomes better agrows, slowly because the

in Figs. 3 and 4. We are interested in the solutions satisfyin§'T0r t&rms in Eqs(95) decay slowly. In the extreme limit
v— oo, the positions of the hidden crossings of the main se-

v—oo, n=00%, p=0(r), £=0(r1). (92 ries (n=0) in case A are given by

They can be obtained using the expansigms consider only Ré’”"l: w (Vz +i 2 "TV In V) +O(vInin v)
the symmetric case in case A, so it is assumed Ithatl,,) zcng 2 '
|31: p[po + p18 |n e+ p28 + 0(82 |I’l 8)], (998)
and in case B by
a=pe[1+0(s)], (93 212
RV = ——+0(vIn ). (99b)
where 2C,po
bo 1 The difference of these formulas is explained by the fact that
Po= f f(p)dp, p=--=, in case A the coefficient§, andp, are real, so two terms in
0 4 Eqg. (999 are needed to obtain both real and imaginary parts
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of Rg’”l, while in case B they are complex, so it is sufficient with the prescription of the leading order approximation.
to leave only one term in E@99b). This leads to an essential Our main goal is to demonstrate how the SC and QM
difference in the distribution of hidden crossings in the tworesults converge as the asymptotic paramietends to zero.
cases, see Figs. 3 and 4. A relation between the real anib this end, we consider the transition between states 1 and 2
imaginary parts oR:**! dictated by Eq(999 is typical for  in the energy interval & n(E) <3, where only this inelastic
the T series of hidden crossing6,52); that following from  transition is possible, and compare the SC and QM results
Eq. (99b) characterizes the compléxseries. for p,, for several systems with decreasing value$.ofhe
results for case Ap=+, are shown in Fig. 11. Fon=1,
which corresponds to the least favorable situation for the SC
V. SCATTERING CALCULATIONS approximation, the agreement between the SC and QM re-
sults is rather qualitative than quantitative. The energy de-

. . endence op,, in this case is dominated by resonances. In
The QM results reported below were obtained using th he SC calculations, resonances result from the interaction

cTec program[19], and the SC results were obtained using, iy ciosed active channeishannel 3 in the present case

the pr%cedurﬁ descr!bed n ﬁep. IVD. !Pglastm Processege energy intervaVrV"‘”< E<E,. Although the SC results
(13) will be characterized by their probabilities fairly well reproduce the shape of resonances, their positions
P,.=|S,.% (1000  are essentially shifted. On average, the SC results overesti-
mate the QM results by about a factor of 2. Forl/2, the
where the symmetrized scattering ma{(26) is used in case agreement becomes much better. Resonances, whose widths
A. We shall considep,, as functions of the effective quan- exponentially decay witt, still play an important role, but
tum number do not dominate the behavior pf, anymore. The shift be-
n(E) = (- 2E)"1/2 (101) tween their positions in the SC and QM results decreases as
' 0O(h?), so it became smaller. On average, the difference be-
As can be seen from Eqgl5) and(28), the energy intervals tween the SC and QM results is less than 20%, but now the
between thresholds of consecutive chanrglssE<E,,; former are lower. Foh=1/4, resonances are very narrow
correspond tav<n(E) < v+1, son(E) provides a more con- and are not resolved in the figure. The agreement is almost
venient energy scale below the three-body disintegratioperfect, the difference is only 3%. This seems to demonstrate
thresholdE=0. The following results illustrate the conclu- the expected convergence. However, its nonmonotonic char-
sions made on the basis of more extensive calculations facter prompts us to consider smaller variation®.0Vhenh
different systems and processes in the energy range up t® decreased further by a small amount to the value
n(E)=6. ~0.23, which corresponds to the mass-raile=14, the SC
The first feature to be observed is the dominant role of thend QM results diverge violently. An explanation for such a
main series of hidden crossings in the SC calculations. Thbehavior lies in Stueckelberg’s oscillations. To illustrate this,
same transition can occur via several different paths. Folet us considep,, as a function oh for a fixed value ofE.
example, the transition between states 1 and 3 in case A calle chose the point(E)=2.3 that lies below the region of
proceed in one step, via the poﬁaf, or in two steps, vi&é2 resonances. Only two channégls and 3 are active at this
andR?® see Fig. 3; in case B it can proceed in two steps vienergy, only one crossing poifRR:?) is operative, and for all
R!? and one of the two pointB2®, see Fig. 4. Each crossing values ofh channel 2 is locally open &2 In this case, the
point R is characterized by the amplitudeof the nonadia- procedure described in Sec. IV D yields the original Stueck-
batic transition in Eq(65), which is equal to Stueckelberg’s elberg’s resul{21] for the transition probability
exponeni62), if the upper channek is locally open aR}*, )
or to a product of that and the tunneling exponeeﬁ),‘?fxit P12=4p(1 - p)sir? 5, (102
is locally closed. The amplitude for a multistep path apartyhere
from a phase factor is equal to the product of amplitudes for
each step. Our calculations show that the maximum ampli- p=exp-2A2), 8=S[RLR?-S[R.R]. (103
tuolle al;/vaLys cor(espor}ds to tﬁ.erf)ath going wafg:rossmg por|1nt§he oscillating factor sthé in Eq. (102 describes the inter-
only o t. € main series, which can be con |r.med by t Cterence of two paths of the nonadiabatic transition that can
asymptotic analysis of Sec. IV E. Strictly speaking, only the

maximum amplitude path for each transition should be takerﬁ)_ﬁceur :&r;h(; e";’g{;ggﬁg%ﬁ'gﬂ?’ 0?:1 Oflj_th(engﬁlggg%n_
into account in the leading order approximation, which b c b y P

dence comes from the factbr! in Eq. (60), but there is also

A Lt he SC estla e sublect o e e10r 2719 108 weak ceperdience caused by the dependendecihe
. . 9p y L . _effective charge. Taking into account E@R7), they can be
is exponentially small compared to that of the main Se”esexpanded as

However, now we are not satisfied with such an asymptotic
estimate of the error and wish to know its actual numerical 15 Ao &

magnitude. Our calculations show that the effect of second- A= Wt O(h), &= h O(h), (104

ary series is always negligible, it cannot be even seen in the

scale of a typical figure. So in the calculations below onlywhere the coefficientd, and &, for the given energy can be
hidden crossings of the main series are included, in accordalculated numerically. Figure 12 illustrates how the SC and

This section presents the results of scattering calculation
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1x10 divided by 4(1—-p) and compared with sfrs, see Eq(102), where
p and § were calculated using Eqé104) with Ag~1.288 andd,
0.0 —t—— ~5.136. The circles show the results for integer values of the mass
| h=0.23, M=14 ratioM=0,1,...,15.
2x10°F gence of the SC and QM results is a manifestation of
o Stueckelberg’s oscillations, and a big difference between
1x10° ] them forh=0.23 is explained by the fact that this valuelof
happened to lie very close to a minimum of the oscillating
) ] factor in Eq.(102). The results of similar calculations for
0.0l et i ! L

20 oo o4 26 o8 3.0 case A,o=-, and case B are shown in Figs. 13 and 14.
' ' T nE) ' ' Again it can be seen that the agreement between the SC and
QM results depends stronger on the phase of the oscillations
FIG. 11. The probability100) of transition between states 1 and in h rather than on the value bfitself. Indeed, the difference
2 as a function of the effective quantum numlig&01) for several  can be small even for not very small values of the asymptotic
values ofh in case A,o=+. The asymptotic parametérand the  parameter, e.g., it is less than 15% in both casehdt/3,
mass ratioM are related by Eqg26). For h=1/4 and0.23 reso-  put it becomes large in the unfavorable intervaldafhere
nances are too narrow and are not resolved in the figure. destructive interference occurs, as in case BHerl and
1/2. Thus Stueckelberg’s oscillations play a crucial role in
QM results converge. In the interval bfshown, the value of the understanding of convergence of the SC and QM results.
p in Eq. (102 decreases by four orders of magnitude. To Let us now demonstrate the agreement between the SC
eliminate this strong exponential dependence, we divided thand QM results in a wider energy interval and for other pro-
SC and QM results fop;, by 4p(1-p), wherep was calcu-  cesses. The results of calculations for systems with an inter-
lated using Eqs(103) and(104). In the limith— 0 the ratio = mediate value of the asymptotic paraméter2/3 ineach of
should coincide with sthé, where s is given by Eq.(104). the three cases are shown in Figs. 15-17. In case4;, we
As can be seen from the figure, this function indeed nicelypresent the results only up tdE)=5; because of the reso-
reproduces the oscillatory behavior of the results, and th@ances, at higher energies it becomes difficult to distinguish
agreement becomes better as hfows. The agreement be- different processes if they are plotted in the same figure. The
tween the SC and QM results is generally very good, butesults in case Ag=-, and case B continue those fpr,
there is a smalD(h) phase shift in their oscillations, which is  shown in the middle panels of Figs. 13 and 14. The overall
consistent with the leading order approximation. As a conseagreement can be characterized as very good, especially tak-
guence, the absolute error of the SC results oscillates withihg into account that probabilities of the different processes
the same period and the amplitude decayin@és, see the differ by many orders of magnitude. The SC results nicely
upper panel in Fig. 12. The relative error strongly depends omeproduce this difference, as well as the shape of the energy
the phase of the oscillations, and there are unfavorable intedependence of the probabilities. We note that the régid
vals of h near the minima of sis, which corresponds to a ponentia) growth of the probabilities just above the thresh-
destructive interference, where the relative error may becomelds in case B comes from the energy dependence of tunnel-
very large even for very small values lof These results add ing exponents(64) and reflects their dependence on the
a new dimension to the situation shown in Fig. 11. Now itposition of turning pointsR*. The SC calculations do well
becomes clear that the nonmonotonic character of conveeven in cases when the probabilities are too sighedls than
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FIG. 13. Same as in Fig. 11, but in caseds —. Forh=2/3 and

1/2 resonances are not resolved.

10719 and our double precision QM calculations fail to con-
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Fcase A, o:=+, h=2/3 ‘p
34

—am B wr*
------- sC
107 1 L
20 2.5 3.0 35 4.0 45 5.0

n(E)

FIG. 15. The probabilities of various transitions for2/3 in
case A, o=+. All inelastic transitions in this energy range are
shown. Vertical dotted lines indicate threshold ener@ieE,.

VI. CONCLUSIONS

The main goal of this work was to investigdiewthe SC
and QM results converge for the given class of systems when
the asymptotic parametértends to zero. The main conclu-
sion is that this convergence is strongly affected by Stueck-
elberg’s oscillations, i.e., by the interference effects. It is
shown that the overall agreement between the SC and QM
results for a wide spectrum of systems and processes in a
wide energy range is surprisingly good even lior 1. How-

verge because of the roundoff errors, see Fig. 17. This situsyer, because of the oscillations the convergence is not

ation is typical for other values df.

| h=1,M=0

2x10*

p12

1x10*F

0.0]

2x10%

p12

1x10°

0.0

4x10°

p12

2x10°8

n(E)

FIG. 14. Same as in Fig. 11, but in case B. There are no reso-

nances in this case.

monotonic, and in each particular case, i.e., for a given sys-
tem and process, the SC results may be grossly in error even
for small values oh in some unfavorable situations where a
destructive interference occurs. The main source of the dis-
crepancy is a smalD(h) error in the interference phases,
which is intrinsic to the leading order approximation. We
stress that this error cannot be eliminated by simply includ-
ing the so-called dynamic phage,3] into Stueckelberg’s
connection matrix(65), let alone higher order corrections
that follow from the solution of the two-state linear model

100 LA L B AL ML ML M
10 case A, o=, h=2/3 Pus
Pg,
10°} Py A em— E
"”,..»-‘"““‘"w Pss
10°F —
e
10°-P. p. ]
- 12 24
2
2 qo%k Pas
—QM e p
T4 S— T 15
10-10 MEPEETSET B PEEPEEPUIPIE PR ".--: i b
3.0 35 4.0 4.5 5.0 5.5 6.0

n(E)

FIG. 16. Same as in Fig. 15, but in cased’ —. Resonances are

too narrow, not resolved.
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moleculesppu, ddu, andttu. This example suggests that
our conclusion should remain valid also for the three-
dimensional case.

Our second result consists in the analysis of hidden cross-
ings in the collinear three-body Coulomb problem and, in
particular, in finding the compleX series. Even though the
mechanism of the complekseries is formally similar to that
of the usualT series[6], namely, in both cases the nonadia-
batic transitions occur near the extremum of the potential
energy defining the motion in a “quantdl'fast”) variable, in
the complex case there is no potential barrier on the real axis,
which leads to a qualitatively different distribution of hidden
‘ ; crossings in the complex plane of the “classicé&low”)

3.0 35 40 45 5.0 55 6.0 variable, and hence to a different behavior of the transition
n(E) probabilities. Whether the effects of the complegeries can

be found in the dynamics of physical systems in three dimen-

sions remains an open question.

Finally, let us mention some directions in which we hope

continue these efforts. This work is intended to be the first

part of a series. In the subsequent parts we plan to consider

[5], because there are other terms of the same order repre@sonancegs5] and fragmentation processes. This will com-

sented by the first order correctiga2) to the primitive SC  plete the quantum mechanical and semiclassical study of the

solutions(44). Of course, this conclusion is not a surprise. collinear three-body Coulomb problem. A similar study in

We have discussed oscillations lin but similar oscillations the three-dimensional case should start with the analysis of

exist in the dependence of transition probabilities on the imhidden crossings. The first step in that direction has been

pact parameter in time-dependent approaches, or on the totalade recently56].

angular momentum in time-independent approaches. These

oscillationg are aver_aged out if one is interested only in total ACKNOWLEDGMENTS

cross sections, but it is well-known that they strongly affect

more detailed characteristics, such as partial cross sections. O.1.T. thanks E. A. Solov'ev for introducing him to the

The interference effects similar to those discussed in thiphenomenon of hidden crossings and numerous discussions

work have been detected earlier in three-body Coulomb sysn the subject of this paper. This work was supported in part
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case B, h=2/3

FIG. 17. Same as in Fig. 15, but in case B. Only transitions
whose probabilities are larger than1®are shown. The zigzag
structures in the QM results indicate the lack of convergence causet%
by the roundoff errors. There are no resonances in this case.
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