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An eigenchannel method for nonrelativistic quantum scattering from an arbitrary system of zero-range
potentials is presented. Eigenchannel vectors are defined as characteristic vectors of an auxiliary Hermitian
matrix spectral problem with a positive semidefinite weight; real eigenvalues to this problem are the negative
cotangents of eigenphase shifts. The eigenchannel vectors and the eigenphase shifts are used to construct
particular solutions, called eigenchannels, of the pertinent Schrödinger equation. Analysis of the asymptotics of
the eigenchannels in the far zone leads to a definition of eigenchannel harmonics, which for the problem at
hand play the role analogous to that played by spherical harmonics for scattering in a central field. Represen-
tations of a far-field amplitude(for scattering of particles emitted from a point source) as well as a scattering
amplitude, a scattering kernel, total, and total averaged cross sections(for scattering of a parallel beam of
projectiles) in terms of the eigenphase shifts and the eigenchannel harmonics are derived. As an illustrative
example, scattering of a plane wave from a system of four identical zero-range potentials, located in vertices
of a regular tetrahedron, is worked out in detail.
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I. INTRODUCTION

Since the very early days of quantum mechanics, a phase-
shift method has been used for solving a problem of nonrel-
ativistic potential scattering in a central field. In its original
form, due to Faxén and Holtsmark[1], the method bases
itself on the fact that the Schrödinger equation with a spheri-
cally symmetric potential is separable in spherical coordi-
nates. This allows one to build a total scattering wave func-
tion as a superposition of elementary solutions(partial
waves), being products of radial wave functions and angle-
dependent spherical harmonics. Coefficients in this superpo-
sition depend on so-called phase shifts, which are energy-
dependent and describe the influence of the potential on
phases of radial functions in the asymptotic region. A scat-
tering amplitude and a total cross section are superpositions
of contributions due to individual partial waves; again, these
contributions are expressible in terms of phase shifts and, in
the case of the scattering amplitude, also in terms of products
of spherical harmonics. An extension of the method to scat-
tering of Dirac particles in a central field is also known and
used[2].

The utility of the phase-shift method for scattering in
spherically symmetric fields is so great that it is natural to
ask whether this method may be extended to scattering in
potential fields lacking the spherical symmetry? Within the
framework of nonrelativistic quantum theory, Levitina and
Brändas[3] have shown that such an extension is feasible
provided a scattering potential is such that the corresponding
Schrödinger equation is separable in general ellipsoidal co-
ordinates. An alternative approach, of much wider applica-
bility, has been recently developed by one of us in Ref.[4].
Following ideas exposed in works of Garbacz[5] and Har-

rington and Mautz[6] on so-calledcharacteristic modesin
electromagnetic scattering, we have formulated aneigen-
channel method, which generalizes the phase-shift method to
quantum scattering, both nonrelativistic and relativistic, from
an arbitrary short-range(excluding, however, zero-range)
potential. This method exploits a less common formulation
of quantum mechanics in the language of integral equations.
Solving a particular weighted integral eigenvalue problem,
we have defined so-calledeigenphase shifts, eigenchannels,
andeigenchannel harmonics, generalizing phase shifts, par-
tial waves, and spherical harmonics, respectively. Then, we
have shown that a scattering amplitude and a total cross sec-
tion may be expressed in terms of the eigenphase shifts and
the eigenchannel harmonics in the way very much the same
as in the case of scattering in a spherically symmetric field.

Zero-range potentials, widely used in model consider-
ations in atomic physics[7–9], are not potentials in the com-
mon sense; rather, they are represented by limiting condi-
tions imposed on a wave function at the points where they
are located. Consequently, the mathematical formalism of
Ref. [4] is not directly applicable to this type of interactions.
It is the purpose of the present paper to extend the eigen-
channel method to the model of zero-range potentials. Some
results we present here, e.g., formulas for a scattering ampli-
tude and cross sections, may be already found in earlier
works of Demkovet al. [10]. Still, our presentation, which
logically follows that from Ref.[4], is more exhaustive.
Also, we mention that although our approach has points of
contact with one adopted in a recent work of Li and Heller
[11], there are technical differences between the two meth-
ods. They stem from the fact that while the auxiliary matrix
eigensystem exploited in the present work is weighted and
Hermitian, the one of Ref.[11] has the unit weight at the cost
of being non-Hermitian.

The structure of the paper is as follows. Section II is of a
preparatory character and presents these facts from the gen-
eral theory of scattering from zero-range potentials, which*Corresponding author. Email address: radek@mif.pg.gda.pl
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constitute a basis for later considerations. In particular, we
show that, on the mathematical side, the scattering problem
may be reduced to a problem of solving an inhomogeneous
algebraic system with a complex symmetric, but non-
Hermitian, matrix. In Sec. III we consider an auxiliary gen-
eralized Hermitian matrix spectral problem with a positive
semidefinite weight. Eigenvalues to this system serve to de-
fine eigenphase shifts, the former being the negative cotan-
gents of the latter. A totality of eigensolutions to this eigen-
system is used to define a set of particular solutions, called
eigenchannels, of a Schrödinger equation for a particle in the
presence of a system of zero-range potentials. Analyzing an
asymptotic behavior of the eigenchannels at large distances
from the target, we come acrosseigenchannel harmonics,
which are shown to form an orthonormal set on the unit
sphere. In Sec. IV we use eigensolutions to the auxiliary
matrix eigensystem discussed in Sec. III to solve the inho-
mogeneous algebraic system from Sec. II. The resulting so-
lution is then used to express various quantities characteriz-
ing the scattering process, such as far-field amplitudes, a
scattering kernel, total, and total averaged cross sections, in
terms of the eigenphase shifts and the eigenchannel harmon-
ics. Also, we split the total wave function into two parts: one
which undergoes scattering and a remainder, for which a
target is transparent. In Sec. V we provide an analytical ex-
ample, illustrating the utility of the method, and consider the
particular problem of scattering of a parallel beam of projec-
tiles from a system of four identical zero-range potentials
located in vertices of a regular tetrahedron. Prospective ap-
plications and planned extensions of the formalism are men-
tioned in Sec. VI. The paper ends with three Appendixes.

II. NONRELATIVISTIC SCATTERING
FROM ZERO-RANGE POTENTIALS

A. Neighboring source

Consider a system consisting ofNù1 spherically sym-
metric spin-less zero-range scatterers, located at pointshr nj
s1ønøNd and of a monoenergetic, spherically symmetric,
point source of particles, located atr 0. The source intensity
[i.e., number of particles emitted in the unit of time] is I0; the
energy of emitted particles isE.0. Impinging on the scat-
terers, the particles diffract and run away to infinity. It is our
first goal to find the angular distribution of the particles in
the far zone.

Within the model of spherically symmetric zero-range po-
tentials adopted here, everywhere except the pointshr nj the
time-independent wave functionCsE,r ,r 0d describing the
particles satisfies the inhomogeneous Schrödinger equation

F−
"2

2m
=2 − EGCsE,r ,r 0d =Îp"3I0

mk
ds3dsr − r 0d

sr Þ r n;1 ø n ø Nd s2.1d

and has the form

CsE,r ,r 0d = FsE,r ,r 0d + o
n=1

N

ansE,r 0dFsE,r ,r nd, s2.2d

where

FsE,r ,r 8d =Î mI0
4p"k

eikur−r8u

ur − r 8u
, s2.3d

with m denoting the particle mass and

k =Î2mE

"2 . s2.4d

The interaction between the particles and the zero-range scat-
terers is modeled by imposing the following limiting condi-
tions onCsE,r ,r 0d at the pointshr nj, where the scatterers
are located:

lim
r→r n

f1 + knsEdur − r nu + sr − r nd · =gCsE,r ,r 0d = 0

s1 ø n ø Nd. s2.5d

HereknsEd is a real, in general energy-dependent, parameter
characterizing thenth scatterer. Evidently, the wave function
CsE,r ,r 0d is simply proportional to the outgoing Green
function for the problem at hand.

Arranging the coefficientshansE,r 0dj, appearing in Eq.
(2.2), into an N-component column vectorasE,r 0d, from
Eqs.(2.2) and(2.5) we infer the inhomogeneous linear alge-
braic system

LsEdasE,r 0d = − bsE,r 0d, s2.6d

where LsEd is a squareN3N complex symmetric matrix
with elements

Lnn8sEd = fik + knsEdgdnn8 +
eikur n−r n8u

ur n − r n8u
s1 − dnn8d, s2.7d

while bsE,r 0d is anN-component vector with elements

bnsE,r 0d =
eikur n−r 0u

ur n − r 0u
. s2.8d

We shall present a particular method solving the system(2.6)
in Sec. IV A.

Once the system(2.6) is solved and the coefficients
hansE,r 0dj are known, from the well-known asymptotic for-
mula [with r 8 fixed]

eikur−r8u

ur − r 8u
,

r→`

e−iknr·r8
eikr

r
, s2.9d

wherenr =r / r, we have

CsE,r ,r 0d ,
r→`ÎmI0

"k
FsE,nr,r 0d

eikr

r
, s2.10d

with
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FsE,nr,r 0d =
1

Î4p
Fe−iknr·r 0 + o

n=1

N

ansE,r 0de−iknr·r nG .

s2.11d

The angular distribution of the particles in the far zone is
best characterized by their current through an infinitesimal
surface of arear2d2nr (with d2nr denoting the infinitesimal
solid angle in the directionnr) perpendicular tonr. This
quantity is given byIsE,nr ,r 0dd2nr, where

IsE,nr,r 0d = lim
r→`

r2 "

m
ImfC*sE,r ,r 0dnr · = CsE,r ,r 0dg

= I0uFsE,nr,r 0du2. s2.12d

B. Source at infinity: Scattering of a parallel beam

Consider now the case when the source is moved far away
from the scatterers, i.e., assume thatr0→`. Defining
csE,r ,n0d and cnsE,n0d, where n0=r 0/ r0, through the
asymptotic relations

CsE,r ,− r 0d ,
r0→`Î mI0

4p"k
csE,r ,n0d

eikr0

r0
s2.13d

and

ansE,− r 0d ,
r0→`

cnsE,n0d
eikr0

r0
, s2.14d

from Eqs.(2.2), (2.1), (2.5), (2.6), and(2.8) we deduce that
the functioncsE,r ,n0d is explicitly given by

csE,r ,n0d = eikn0·r + o
n=1

N

cnsE,n0d
eikur−r nu

ur − r nu
s2.15d

and satisfies

F−
"2

2m
=2 − EGcsE,r ,n0d = 0

sr Þ r n;1 ø n ø Nd, s2.16d

lim
r→r n

f1 + knsEdur − r nu + sr − r nd · =gcsE,r ,n0d = 0

s1 ø n ø Nd, s2.17d

while the vector csE,n0d, composed of the coefficients
hcnsE,n0dj, solves the system

LsEdcsE,n0d = − dsE,n0d, s2.18d

where the inhomogeneitydsE,n0d has components

dnsE,n0d = eikn0·r n. s2.19d

The function(2.15) has an obvious physical meaning: it rep-
resents a parallel beam of monochromatic particles propagat-
ing initially in the directionn0 and diffracting then on the
system of zero-range scatterers.

Asymptotically, the function(2.15) is of the form

csE,r ,n0d ,
r→`

asymp
r→`

eikn0·r + FsE,nr,n0d
eikr

r
, s2.20d

where

asymp
r→`

eikn0·r =
2pi

k
Fds2dsnr + n0d

e−ikr

r
− ds2dsnr − n0d

eikr

r
G ,

s2.21d

while

FsE,nr,n0d = o
n=1

N

cnsE,n0de−iknr·r n s2.22d

is the scattering amplitude. Equivalently, the asymptotic for-
mula (2.20) may be rewritten as

csE,r ,n0d ,
r→`2pi

k
Fds2dsnr + n0d

e−ikr

r
− SsE,nr,n0d

eikr

r
G ,

s2.23d

where

SsE,nr,n0d = ds2dsnr − n0d +
ik

2p
FsE,nr,n0d s2.24d

is a scattering kernel(i.e., a kernel of the scattering operator).
The angular distribution of scattered particles is usually

characterized by a differential cross section defined as

d2ssE,nr,n0d
d2nr

= lim
r→`

r2 jscatsE,r ,n0d
j incsE,r ,n0d

, s2.25d

where

jscatsE,r ,n0d =
"

m
Imfcscat

* sE,r ,n0dnr · = cscatsE,r ,n0dg,

s2.26d

with

cscatsE,r ,n0d = csE,r ,n0d − eikn0·r , s2.27d

is the radial current density in the scattered wave and

j incsE,r ,n0d =
"

m
Imfe−ikn0·rn0 · = eikn0·rg =

"k

m
s2.28d

is the current density in the incident plane wave. One finds

d2ssE,nr,n0d
d2nr

= uFsE,nr,n0du2. s2.29d

Two global quantities characterizing scattering are in use.
The first one is a total cross section for a fixed direction of
incidencen0, defined as

ssE,n0d =R
4p

d2nr
d2ssE,nr,n0d

d2nr
, s2.30d

while the second one is a total cross section averaged over all
directions of incidence:
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kssEdl =
1

4p
R

4p

d2n0ssE,n0d. s2.31d

The cross section(2.30) may be evaluated with no difficulty.
Indeed, exploiting Eqs.(2.22) and (2.29), one finds

ssE,n0d = o
n,n8=1

N

cn
*sE,n0dcn8sE,n0dR

4p

d2nre
iknr·sr n−r n8d.

s2.32d

The integral in Eq.(2.32) is

R
4p

d2nre
iknr·sr n−r n8d =

4p

k
fLAsEdgnn8, s2.33d

where

fLAsEdgnn8 = kdnn8 +
sinkur n − r n8u

ur n − r n8u
s1 − dnn8d, s2.34d

hence, it follows that

ssE,n0d =
4p

k
c†sE,n0dLAsEdcsE,n0d, s2.35d

with LAsEd denoting anN3N real symmetric(hence Hermit-
ian) matrix with elements(2.34). Interestingly, the matrix
LAsEd is an anti-Hermitian part of the matrixLsEd:

LAsEd =
1

2i
fLsEd − L†sEdg. s2.36d

In Appendix B we prove that the matrixLAsEd is at least
positive semidefinite.

III. EIGENCHANNELS FOR ZERO-RANGE POTENTIALS

The key role throughout the rest of our considerations will
be played by solutions to an auxiliary generalized(weighted)
algebraic eigenproblem

LHsEdxgsEd = lgsEdLAsEdxgsEd, s3.1d

in which the matrix

LHsEd =
1

2
fLsEd + L†sEdg, s3.2d

with elements

fLHsEdgnn8 = knsEddnn8 +
coskur n − r n8u

ur n − r n8u
s1 − dnn8d,

s3.3d

is a Hermitian part ofLsEd [observe thatLHsEd is not only
Hermitian, but, likeLAsEd, even real symmetric], the weight
matrix LAsEd is an anti-Hermitian part ofLsEd and has been
defined in Eq.(2.36), lgsEd is an eigenvalue andxgsEd, with
elementshxngsEdj, is an associated eigenvector. IfLAsEd is
positive definite, the system(3.1) has exactlyN pairs of
eigensolutions. It is then an elementary exercise to show that

all eigenvalueshlgsEdj are real and that eigenvectors associ-
ated with different eigenvalues satisfy the following
weighted orthogonality relation:

xg
†sEdLAsEdxg8sEd = 0 flgsEd Þ lg8sEdg. s3.4d

In what follows, we shall be assuming that eigenvectors as-
sociated with degenerate eigenvalues(if there are any) have
been also orthogonalized in the sense of Eq.(3.4) and that all
eigenvectors have been normalized according to

xg
†sEdLAsEdxgsEd = 1, s3.5d

so that for two arbitrary eigenvectors the following orthonor-
mality relation holds:

xg
†sEdLAsEdxg8sEd = dgg8. s3.6d

Similarly, one has

xg
†sEdLHsEdxg8sEd = lgsEddgg8. s3.7d

A weighted closure relation obeyed by the orthonormalized
eigenvectors is

o
g=1

N

xgsEdxg
†sEdLAsEd = LAsEdo

g=1

N

xgsEdxg
†sEd = I, s3.8d

whereI is theN3N unit matrix. The case ofLAsEd positive
semidefinite may be treated as a limit of the case ofLAsEd
positive definite.

Once eigensolutions to the system(3.1) have been found,
one may use them to constructN functions

XgsE,r d = −Î m

2p"2o
n=1

N Fcoskur − r nu
ur − r nu

− lgsEd
sinkur − r nu

ur − r nu GxngsEd, s3.9d

termedeigenchannels. (The seemingly superfluous factor in
front of the sum has been introduced for compatibility with
the notation of Ref.[4].) It is easy to verify that everywhere
except the pointshr nj the eigenchannels obey the source-free
Schrödinger equation

F−
"2

2m
=2 − EGXgsE,r d = 0 sr Þ r n;1 ø n ø Nd,

s3.10d

and that at the pointshr nj they satisfy the limiting conditions

lim
r→r n

f1 + knsEdur − r nu + sr − r nd · =gXgsE,r d = 0

s1 ø n ø Nd, s3.11d

identical with these in Eqs.(2.5) and (2.17).
At this stage, it is convenient to introduce so-called

eigenphase shiftshdgsEdj, related to the eigenvalueshlgsEdj
through
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lgsEd = − cotdgsEd. s3.12d

It follows from the reality of hlgsEdj that the eigenphase
shifts are also real. When at some energyE a particular ei-
genvaluelgsEd is infinite [this happens whenLAsEd is posi-
tive semidefinite], a corresponding eigenphase shift is an in-
teger multiple ofp. With the aid of the eigenphase shifts, the
definition (3.9) may be rewritten as

XgsE,r d = −Î m

2p"2

1

sindgsEd

3o
n=1

N
sin fkur − r nu + dgsEdg

ur − r nu
xngsEd. s3.13d

From Eq.(3.13) one deduces that asymptotically the eigen-
channels have the form

XgsE,r d ,
r→`Î m

2"2k

1

i sindgsEdFYgsE,− nrd
e−ikr−idgsEd

r

− YgsE,nrd
eikr+idgsEd

r
G , s3.14d

where the angular functions

YgsE,nrd =Î k

4p
o
n=1

N

xngsEde−iknr·r n s3.15d

are energy-dependenteigenchannel harmonics. In Appendix
C we prove that these harmonics form an orthonormal set on
the unit sphere:

R
4p

d2nrYg
* sE,nrdYg8sE,nrd = dgg8. s3.16d

Since both matricesLHsEd and LAsEd are real and since
the eigenvalueshlgsEdj are also real, it is possible(although
not necessary) to choose the eigenvectorshxgsEdj to be real.
If such a choice is made, this implies the reality of the eigen-
channels(3.10). Moreover, in this case the eigenchannel har-
monics(3.15) obey

YgsE,− nrd = Yg
* sE,nrd fxgsEd realg s3.17d

and one has

XgsE,r d ,
r→`

−Î2m

"2k

1

sindgsEd
sinfkr + wgsE,nrd + dgsEdg

r

3uYgsE,nrdu fxgsEd realg, s3.18d

where

wgsE,nrd = argYgsE,nrd. s3.19d

Concluding this section, we emphasize that the eigen-
channel vectorshxgsEdj, the eigenphase shiftshdgsEdj, and
the eigenchannelshXgsE,r dj are inherent to the system of
scatterers and are independent of any external sources.

IV. APPLICATIONS OF EIGENCHANNEL VECTORS,
EIGENCHANNEL HARMONICS, AND EIGENCHANNELS

IN SCATTERING PROBLEMS

In this section we shall show that, apart from being inter-
esting for themselves, various objects defined in the preced-
ing section appear to be useful for solving the scattering
problems posed in Sec. II.

A. Neighboring source

We begin with the problem of scattering of particles emit-
ted from the neighboring point source located atr 0. We shall
seek the solution to the linear system(2.6) in the form of a
linear combination of the eigenchannel vectorshxgsEdj:

asE,r 0d = o
g8=1

N

ag8sE,r 0dxg8sEd. s4.1d

To find the combination coefficientshagsE,r 0dj, we substi-
tute Eq.(4.1) into Eq. (2.6), decompose the system matrix
LsEd according to

LsEd = LHsEd + iLAsEd, s4.2d

and exploit the eigenvalue equation(3.1), obtaining

o
g8=1

N

ag8sE,r 0dflg8sEd + igLAsEdxg8sEd = − bsE,r 0d.

s4.3d

Then, operating on Eq.(4.3) from the left with xg
†sEd and

invoking the orthonormality relation(3.6), we arrive at

agsE,r 0d = − flgsEd + ig−1xg
†sEdbsE,r 0d. s4.4d

Hence, it follows that the solution to the system(2.6) is

asE,r 0d = − o
g=1

N

flgsEd + ig−1xgsEdxg
†sEdbsE,r 0d. s4.5d

Observe that Eqs.(2.6) and (4.5) imply that, in terms of
eigensolutions to the system(3.1), the generalized spectral
representation of the matrixL−1sEd is

L−1sEd = o
g=1

N

flgsEd + ig−1xgsEdxg
†sEd. s4.6d

In terms of the eigenphase shifts, Eq.(4.5) reads

asE,r 0d = o
g=1

N

eidgsEdsindgsEdxgsEdxg
†sEdbsE,r 0d. s4.7d

Substituting this into Eq.(2.2) yields the particle’s wave
function

CsE,r ,r 0d = FsE,r ,r 0d + o
g=1

N

FgsE,r ,r 0d s4.8d

expressed in terms of the radiation eigenmodes
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FgsE,r ,r 0d = eidgsEdsindgsEdxg
†sEdbsE,r 0d

3o
n=1

N

xngsEdFsE,r ,r nd. s4.9d

Similarly, exploiting Eq.(4.7) in Eq. (2.11) leads to the fol-
lowing expression for the far-field amplitude:

FsE,nr,r 0d =
1

Î4p
e−iknr·r 0 + o

g=1

N

FgsE,nr,r 0d, s4.10d

with

FgsE,nr,r 0d =
1
Îk

eidgsEdsindgsEdxg
†sEdbsE,r 0dYgsE,nrd.

s4.11d

B. Source at infinity: Scattering of a parallel beam

Next we turn to the problem of scattering of a parallel
beam of projectiles. Considerations analogous with these
which have led us to Eq.(4.7), followed by the use of the
definition (3.15), yield

csE,n0d =Î4p

k
o
g=1

N

eidgsEdsindgsEdYg
* sE,n0dxgsEd.

s4.12d

Combining this with Eq.(2.15) leads to the following repre-
sentation of the scattering wave function:

csE,r ,n0d = eikn0·r +Î4p

k
o
g=1

N

eidgsEdsindgsEdYg
* sE,n0d

3o
n=1

N

xngsEd
eikur−r nu

ur − r nu
. s4.13d

Let us define

cnintsE,r ,n0d =R
4p

d2nr8PsE,nr8,n0deiknr8·r , s4.14d

where the projecting kernelPsE,nr ,n0d is

PsE,nr,n0d = ds2dsnr − n0d − o
g=1

N

YgsE,nrdYg
* sE,n0d.

s4.15d

Exploiting the definition(3.15), after elementary operations
one arrives at

cnintsE,r ,n0d = eikn0·r −Î4p

k
o
g=1

N

Yg
* sE,n0d

3o
n=1

N
sinkur − r nu

ur − r nu
xngsEd. s4.16d

Asymptotically, the functioncnintsE,r ,n0d is of the form

cnintsE,r ,n0d ,
r→`2pi

k
FPsE,− nr,n0d

e−ikr

r
− PsE,nr,n0d

eikr

r
G .

s4.17d

The reason for introducing the functioncnintsE,r ,n0d lies in
the fact that it is possible to split the scattering wave function
(4.13) according to

csE,r ,n0d = cnintsE,r ,n0d + cintsE,r ,n0d, s4.18d

where the second term on the right-hand side has the eigen-
channel representation

cintsE,r ,n0d = −Î8p2"2

mk
o
g=1

N

eidgsEdsindgsEdYg
* sE,n0dXgsE,r d

s4.19d

and asymptotically behaves as

cintsE,r ,n0d ,
r→`2pi

k
Hfds2dsnr + n0d − PsE,− nr,n0dg

e−ikr

r

− SredsE,nr,n0d
eikr

r
J , s4.20d

with

SredsE,nr,n0d = o
g=1

N

e2idgsEdYgsE,nrdYg
* sE,n0d s4.21d

being thereducedscattering kernel. Evidently, the function
(4.16) satisfies the free-particle Schrödinger equationevery-
where in R3. In contrast, the function(4.19), being a linear
combination of the eigenchannelshXgsE,r dj, satisfies the
free-particle Schrödinger equation everywhereexcept the
pointshr nj, where it is subjected to the same limiting condi-
tions (2.17) as the total scattering functioncsE,r ,n0d [cf.
Eqs. (3.10) and (3.11)]. Consequently,cnintsE,r ,n0d is that
part of csE,r ,n0d for which the target is transparent, while
cintsE,r ,n0d essentially describes the scattering process.

With the aid of Eqs.(4.12) and (3.15), from Eq. (2.22)
one deduces the following representation of the scattering
amplitude in terms of the eigenphase shifts and the eigen-
channel harmonics:

FsE,nr,n0d =
4p

k
o
g=1

N

eidgsEdsindgsEdYgsE,nrdYg
* sE,n0d.

s4.22d

Hence, after combining Eq.(4.22) with the relation(2.24),
one obtains the scattering kernel in the form

SsE,nr,n0d = ds2dsnr − n0d + o
g=1

N

fe2idgsEd − 1g

3YgsE,nrdYg
* sE,n0d

= PsE,nr,n0d + SredsE,nr,n0d. s4.23d

It is evident from the representations(4.22) and (4.23) and
from the orthonormality relation(3.16) that it holds:
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R
4p

d2n0FsE,nr,n0dYgsE,n0d =
4p

k
eidgsEdsindgsEdYgsE,nrd

s4.24d

and

R
4p

d2n0SsE,nr,n0dYgsE,n0d = e2idgsEdYgsE,nrd,

s4.25d

i.e., the eigenchannel harmonicshYgsE,n0dj are eigenfunc-
tions of the integral operators represented by the kernels
FsE,nr ,n0d and SsE,nr ,n0d, with the eigenvalues
h4pk−1expfidgsEdgsindgsEdj and hexpf2idgsEdgj, respec-
tively. The relation analogous to Eq.(4.25) holds also for the
reduced scattering kernel(4.21).

Various properties of the scattering amplitude and the
scattering kernel may be straightforwardly deduced from the
representations(4.22) and(4.23). For instance, exploiting the
fact that the eigenchannel harmonicsmay be chosen to sat-
isfy the relation(3.17), one infers the time-reversal reciproc-
ity relations

FsE,− nr,− n0d = FsE,n0,nrd s4.26d

and

SsE,− nr,− n0d = SsE,n0,nrd. s4.27d

Also, with no difficulty one proves the generalized optical
relations

R
4p

d2nrF
*sE,nr,n0dFsE,nr,n08d

=
2pi

k
fF*sE,n08,n0d − FsE,n0,n08dg, s4.28d

R
4p

d2nrFsE,n0,nrdF*sE,n08,nrd

=
2pi

k
fF*sE,n08,n0d − FsE,n0,n08dg, s4.29d

and the unitarity relations

R
4p

d2nrS
*sE,nr,n0dSsE,nr,n08d = ds2dsn0 − n08d,

s4.30d

R
4p

d2nrSsE,n0,nrdS*sE,n08,nrd = ds2dsn0 − n08d.

s4.31d

It remains to consider cross sections. Combining Eqs.
(2.30) and(2.29) with the expansion(4.22), and making use
of the orthonormality relation(3.16), yields the total cross
section in the form

ssE,n0d =
16p2

k2 o
g=1

N

sin2dgsEduYgsE,n0du2. s4.32d

From this and from Eq.(4.22) one infers the optical relation

ssE,n0d =
4p

k
Im FsE,n0,n0d, s4.33d

which follows also from Eqs.(2.30) and (2.29) and from
either of Eqs.(4.28) or (4.29) considered atn08=n0. Finally,
averaging the total cross section(4.32) over all directions of
incidencen0, we obtain, again with the aid of Eq.(3.16):

kssEdl =
4p

k2 o
g=1

N

sin2dgsEd. s4.34d

V. EXAMPLE: PARALLEL BEAM SCATTERING
FROM AN X4 STRUCTURE WITH TETRAEDRIC

SYMMETRY

As an analytical example illustrating the general theory
presented above, we shall consider scattering of a parallel
beam from a system of four identical zero-range potentials
located at the points

r 1 =
r

2Î2
snx + ny + nzd, s5.1ad

r 2 =
r

2Î2
s− nx − ny + nzd, s5.1bd

r 3 =
r

2Î2
snx − ny − nzd, s5.1cd

r 4 =
r

2Î2
s− nx + ny − nzd s5.1dd

(nx is the unit vector along the OX axis of the Cartesian
coordinate system;ny andnz are defined analogously), i.e., in
vertices of a regular tetrahedron of edge lengthr. The sym-
metry of the resultingX4 structure is that of theT-group[13].

In the problem at hand, the matricesLHsEd and LAsEd
have elements

fLHsEdgnn8 = ksEddnn8 +
coskr

r
s1 − dnn8d s5.2d

and

fLAsEdgnn8 = kdnn8 +
sinkr

r
s1 − dnn8d, s5.3d

respectively. With no difficulty, one finds that the generalized
eigenproblem(3.1) has only two distinct eigenvalues: a non-
degenerate eigenvalue

lasEd ; − cotdasEd =
ksEdr + 3 coskr

kr + 3 sinkr
s5.4d

and a triply degenerate eigenvalue
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ltsEd ; − cotdtsEd =
ksEdr − coskr

kr − sinkr
s5.5d

(the meaning of the indices will become clear shortly). An
eigenvector associated with the eigenvalue(5.4), normalized
according to Eq.(3.5), is

xasEd =
1

Î4kf1 + 3ssinkrd/krg
s+ 1 + 1 + 1 + 1dT. s5.6d

Since the eigenvalue(5.5) is degenerate, there is some free-
dom in choosing linearly independent eigenvectors in its as-
sociated eigenspace. A convenient choice, preserving the or-
thonormality constraint(3.6) and adopted hereafter, is

xt,xsEd =
i

Î4kf1 − ssinkrd/krg
s+ 1 − 1 + 1 − 1dT,

s5.7ad

xt,ysEd =
i

Î4kf1 − ssinkrd/krg
s+ 1 − 1 − 1 + 1dT,

s5.7bd

xt,zsEd =
i

Î4kf1 − ssinkrd/krg
s+ 1 + 1 − 1 − 1dT.

s5.7cd

Once the orthonormal[in the sense of Eq.(3.6)] eigen-
vectors have been found, from the definition(3.15) one ob-
tains the corresponding eigenchannel harmonics

YasE,nrd =
1

Î16pf1 + 3ssinkrd/krg
fe−iknr·r 1 + e−iknr·r 2

+ e−iknr·r 3 + e−iknr·r 4g, s5.8d

Yt,xsE,nrd =
i

Î16pf1 − ssinkrd/krg
fe−iknr·r 1 − e−iknr·r 2

+ e−iknr·r 3 − e−iknr·r 4g, s5.9ad

Yt,ysE,nrd =
i

Î16pf1 − ssinkrd/krg
fe−iknr·r 1 − e−iknr·r 2

− e−iknr·r 3 + e−iknr·r 4g, s5.9bd

Yt,zsE,nrd =
i

Î16pf1 − ssinkrd/krg
fe−iknr·r 1 + e−iknr·r 2

− e−iknr·r 3 − e−iknr·r 4g, s5.9cd

orthonormal in the sense of Eq.(3.16). The harmonic(5.8)
forms a basis for a one-dimensional irreducible representa-
tion a of the T symmetry group, while the harmonics(5.9a),
(5.9b), and (5.9c) form a basis for a three-dimensional rep-
resentationt of this group. In the limitkr→0, approached
either at low energies or for closely grouped scatterers, thea
harmonic tends to thel =0 spherical harmonic:

YasE,nrd →
kr→0 1

Î4p
= Y0,0snrd, s5.10d

while the threet harmonics go over into particular linear
combinations of the threel =1 spherical harmonics:

Yt,xsE,nrd →
kr→0Î 3

4p
nx ·nr = −

1
Î2

Y1,+1snrd +
1
Î2

Y1,−1snrd,

s5.11ad

Yt,ysE,nrd →
kr→0Î 3

4p
ny ·nr =

i
Î2

Y1,+1snrd +
i

Î2
Y1,−1snrd,

s5.11bd

Yt,zsE,nrd →
kr→0Î 3

4p
nz ·nr = Y1,0snrd s5.11cd

[the reason for choosing the threet eigenvectors(5.7a),
(5.7b), and(5.7c) purely imaginary has been to enforce that
in the limit kr→0 the corresponding eigenchannel harmon-
ics become real].

From Eqs.(4.34), (5.4), and(5.5) we obtain the total av-
eraged cross section in the form

kssEdl = ksasEdl + 3kstsEdl, s5.12d

with the partial contributions

ksasEdl ;
4p

k2 sin2dasEd

=
4p

k2

fkr + 3 sinkrg2

fksEdr + 3 coskrg2 + fkr + 3 sinkrg2 ,

s5.13d

kstsEdl ;
4p

k2 sin2dtsEd

=
4p

k2

fkr − sinkrg2

fksEdr − coskrg2 + fkr − sinkrg2 .

s5.14d

The results presented above coincide with those of Ref.[14],
where a different approach has been used.

VI. CONCLUDING REMARKS

There are several directions in which we plan to continue
this work in the nearest future. First, it is certainly worth to
extend the formalism to elastic scattering of Dirac particles.
We are currently working on this problem(which is by no
means trivial and has required from us a prior formulation of
the method of zero-range potentials for the Dirac equation)
and we expect to present our results very soon. Second, it
would be interesting to apply the eigenchannel method, both
for the Schrödinger and Dirac equations, to scattering from
complex absorbing zero-range potentials, as well as from
zero-range targets with an internal energetic structure. Fi-
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nally, we shall look for practical applications of the formal-
ism in actual problems of atomic physics.

Concluding, we point out that although in this paper we
have constrained ourselves to the context of quantum scat-
tering, the applicability of the formalism presented above is
much broader. Indeed, it should be evident that after redefin-
ing the meaning of constants, the method is immediately
applicable, as it stands, to scattering ofany time-harmonic
scalar Helmholtz wave from a system of isotropic point tar-
gets. We shall exploit this fact and in a separate publication
we shall present an application of the method to a specific
problem in theoretical acoustics.
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APPENDIX A: EQUIVALENCE OF THE MODEL
OF REF. [11] WITH THE MODEL
OF ZERO-RANGE POTENTIALS

Li and Heller[11] adopted Foldy’s model[12], in which a
wave function describing scattering of a monochromatic
plane wave from a system ofN point-like targets, located at
hr nj, is

cLHsE,r ,n0d = eikn0·r + o
n=1

N

fnsE,n0dfnsEd
eikur−r nu

ur − r nu
, sA1d

where the coefficientshfnsE,n0dj are solutions to the alge-
braic system

fnsE,n0d = eikn0·r n + o
n8=1

sn8Þnd

N

fn8sE,n0dfn8sEd
eikur n−r n8u

ur n − r n8u

s1 ø n ø Nd. sA2d

The known coefficientshfnsEdj characterize individually the
targets and are expressible in terms of real, in general
energy-dependent, parametershhnsEdj according to

fnsEd =
1

k

1

cothnsEd − i
. sA3d

If we define

cnsE,n0d = fnsE,n0dfnsEd sA4d

and

knsEd = − k cothnsEd, sA5d

it becomes evident that the system(A2) is identical with the
system(2.18) and the wave function(A1) is identical with
the wave function in Eq.(2.15). Thus, Foldy’s model is com-
pletely equivalent with the model of zero-range potentials.

A matrix eigenvalue system underlying the reasoning pre-
sented in Ref.[11] is, in our notation,

f− LA
−1sEdLHsEd − iIg−1xgsEd = − flgsEd + ig−1xgsEd

sA6d

or, equivalently,

f− LA
−1sEdLHsEd − iIg−1xgsEd = eidgsEdsindgsEdxgsEd.

sA7d

The system matrix in Eq.(A6) is evidently non-Hermitian.
Consequently, unless the system(A6) is transformed to the
Hermitian form (3.1) (and this hasnot been done in Ref.
[11]), it is difficult to infer thathlgsEdj, hence alsohdgsEdj,
are real and that the eigenvectorshxgsEdj are orthogonal in
the sense of Eq.(3.4).

APPENDIX B: POSITIVE SEMIDEFINITENESS
OF THE MATRIX LA„E…

Let z be an arbitraryN-component vector with elements
hznj. Consider the expressionz†LAsEdz. Invoking Eq.(2.33),
one has

z†LAsEdz =
k

4p
o

n,n8=1

N

zn
*zn8R

4p

d2nre
iknr·sr n−r n8d. sB1d

After elementary manipulations, Eq.(B1) may be rewritten
as

z†LAsEdz =
k

4p
R

4p

d2nrUo
n=1

N

zne
−iknr·r nU2

ù 0. sB2d

Hence, it follows that the matrixLAsEd is at least positive
semidefinite.

APPENDIX C: ORTHONORMALITY OF EIGENCHANNEL
HARMONICS

Consider the integral

Igg8sEd =R
4p

d2nrYg
* sE,nrdYg8sE,nrd. sC1d

Exploiting the definition(3.15) transforms Eq.(C1) into

Igg8sEd =
k

4p
o

n,n8=1

N

xng
* sEdxn8g8sEdR

4p

d2nre
iknr·sr n−r n8d.

sC2d

Next, application of Eq.(2.33) leads to

Igg8sEd = xg
†sEdLAsEdxg8sEd. sC3d

Comparison of Eq.(C3) with Eq. (3.6) yields

Igg8sEd = dgg8, sC4d

i.e., the eigenchannel harmonics form an orthonormal set on
the unit sphere.
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