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An eigenchannel method for nonrelativistic quantum scattering from an arbitrary system of zero-range
potentials is presented. Eigenchannel vectors are defined as characteristic vectors of an auxiliary Hermitian
matrix spectral problem with a positive semidefinite weight; real eigenvalues to this problem are the negative
cotangents of eigenphase shifts. The eigenchannel vectors and the eigenphase shifts are used to construct
particular solutions, called eigenchannels, of the pertinent Schrdodinger equation. Analysis of the asymptotics of
the eigenchannels in the far zone leads to a definition of eigenchannel harmonics, which for the problem at
hand play the role analogous to that played by spherical harmonics for scattering in a central field. Represen-
tations of a far-field amplitud€for scattering of particles emitted from a point soyras well as a scattering
amplitude, a scattering kernel, total, and total averaged cross se¢fwnscattering of a parallel beam of
projectileg in terms of the eigenphase shifts and the eigenchannel harmonics are derived. As an illustrative
example, scattering of a plane wave from a system of four identical zero-range potentials, located in vertices
of a regular tetrahedron, is worked out in detail.
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[. INTRODUCTION rington and MautZ6] on so-calledcharacteristic mode
) _ electromagnetic scattering, we have formulated edgen-

Since the very early days of quantum mechanics, a phasghannel methadwvhich generalizes the phase-shift method to
shift method has been used for solving a problem of nonrelquantum scattering, both nonrelativistic and relativistic, from
ativistic potential scattering in a central field. In its original an arbitrary short-range(excluding, however, zero-range
form, due to Faxén and Holtsmafl], the method bases potential. This method exploits a less common formulation
itself on the fact that the Schrédinger equation with a spheriof quantum mechanics in the language of integral equations.
cally symmetric potential is separable in spherical coordi-Solving a particular weighted integral eigenvalue problem,
nates. This allows one to build a total scattering wave funcwe have defined so-calleglgenphase shift®igenchannels
tion as a superposition of elementary solutiofgartial — andeigenchannel harmonicgeneralizing phase shifts, par-
waves, being products of radial wave functions and angle-tial waves, and spherical harmonics, respectively. Then, we
dependent spherical harmonics. Coefficients in this superpdiave shown that a scattering amplitude and a total cross sec-
sition depend on so-called phase shifts, which are energyion may be expressed in terms of the eigenphase shifts and
dependent and describe the influence of the potential o€ eigenchannel harmonics in the way very much the same
phases of radial functions in the asymptotic region. A scat®S in the case of scattering in a spherically symmetric field.
tering amplitude and a total cross section are superpositions, 2€r0-range potentials, widely used in model consider-

of contributions due to individual partial waves: again, these?tioNs in atomic physicgr—9), are not potentials in the com-
on sense; rather, they are represented by limiting condi-

contributions are expressible in terms of phase shifts and, i ; . 4
lons imposed on a wave function at the points where they

the case of the scattering amphtudg, also in terms of productgre located. Consequently, the mathematical formalism of
of spherical harmonics. An extension of the method to scat

tering of Dirac particles in a central field is also known and :??; [tﬁ]elspzfgéj;;etg;ytﬁg prljlrceasbelﬁttg;gfrt)t/g eeg;‘elgéeﬁ;uzingse.n_

used2]. channel method to the model of zero-range potentials. Some

Th_e utility of the_ phase-s_hlft method for_spattermg N results we present here, e.g., formulas for a scattering ampli-
spherically symmetric fields is so great that it is natural to,

. & "tude and cross sections, may be already found in earlier
ask whether this method may be extended to scattering i, .5 of pemkovet al. [10]. Still, our presentation, which

potential fields lacking the spherical symmetry? Within thelogically follows that from Ref.[4], is more exhaustive.

framework of nonrelativistic quantum theory, Levitina apd Also, we mention that although our approach has points of

€ontact with one adopted in a recent work of Li and Heller

provided a scattering potential is such that the correspondinpll]' there are technical differences between the two meth-

Schr('jdlnger equation Is separable in general e.”'pso'da'. C%ds. They stem from the fact that while the auxiliary matrix
ordinates. An alternative approach, of much wider applica

he loited in th Ki oh
bility, has been recently developed by one of us in ReJ. eigensystem exploited in the present work is weighted and

o ) Hermitian, the one of Ref11] has the unit weight at the cost
Following ideas exposed in works of Garbd& and Har- ¢ being non-Hermitian.

The structure of the paper is as follows. Section Il is of a
preparatory character and presents these facts from the gen-
*Corresponding author. Email address: radek@mif.pg.gda.pl  eral theory of scattering from zero-range potentials, which
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constitute a basis for later considerations. In particular, we N
show that, on the mathematical side, the scattering problem W(E,r,rg) =®(E,r,rg) + > a,(E,ro)®(E,r,ry), (2.2
may be reduced to a problem of solving an inhomogeneous n=1

algebraic system with a complex symmetric, but non-
Hermitian, matrix. In Sec. lll we consider an auxiliary gen-

eralized Hermitian matrix spectral problem with a positive mi oklr=r’|
D(E,r,r')= ik

where

semidefinite weight. Eigenvalues to this system serve to de- —, (2.3
fine eigenphase shiftgshe former being the negative cotan- ahk|r = r'|

gents of_ the latter. A t(_)tality of eigensqlutions to t_his eigen-\élvith m denoting the particle mass and

system is used to define a set of particular solutions, calle

eigenchannelf a Schrddinger equation for a particle in the [omE

presence of a system of zero-range potentials. Analyzing an k= T2 (2.4

asymptotic behavior of the eigenchannels at large distances
from the target, we come acrossgenchannel harmonics The interaction between the particles and the zero-range scat-
which are shown to form an orthonormal set on the unitierers is modeled by imposing the following limiting condi-

sphe_re. _In Sec. IV we use eigensolutions to the aux_iliary(iOns onW(E,r,r,) at the points{r,}, where the scatterers
matrix eigensystem discussed in Sec. lll to solve the inhox e |ocated:

mogeneous algebraic system from Sec. Il. The resulting so-

lution is then used to express various quantities characteriz-  lim [1 + k,(E)|[r =r,|+(r =r,) - VI¥(E,r,rg) =0

ing the scattering process, such as far-field amplitudes, a "'

scattering kernel, total, and total averaged cross sections, in

terms of the eigenphase shifts and the eigenchannel harmon- (I=sn=<N). (2.5

ics. Also, we split the total wave function into two parts: one ) )
which undergoes scattering and a remainder, for which &lere«n(E) is a real, in general energy-dependent, parameter

target is transparent. In Sec. V we provide an analytical excharacterizing theth scatterer. Evidently, the wave function
ample, illustrating the utility of the method, and consider theW(E.r,ro) is simply proportional to the outgoing Green
particular problem of scattering of a parallel beam of projecfunction for the problem at hand.

tiles from a system of four identical zero-range potentials Arranging the coefficientda,(E,rq)}, appearing in Eq.
located in vertices of a regular tetrahedron. Prospective ag2.2), into an N-component column vectoa(E,r), from
plications and planned extensions of the formalism are menkEgs.(2.2) and(2.5) we infer the inhomogeneous linear alge-
tioned in Sec. VI. The paper ends with three Appendixes. braic system

L(E)a(E,rg) = = b(E,ro), (2.6)
Il. NONRELATIVISTIC SCATTERING

FROM ZERO-RANGE POTENTIALS where L(E) is a squareN X N complex symmetric matrix

with elements

A. Neighboring source ,
iKIra=r o

Consider a system consisting bf=1 spherically sym- Lo (B) =[ik + ky(E) ] 6y + m(l =), (2.7)
metric spin-less zero-range scatterers, located at p{ipts noon
(1=n=<N) and of a monoenergetic, spherically symmetric,while b(E,r) is anN-component vector with elements
point source of particles, located gt The source intensity
[i.e., number of particles emitted in the unit of tifig |, the gklrnral
energy of emitted particles E>0. Impinging on the scat- br(E,ro) = Irn=ro
terers, the particles diffract and run away to infinity. It is our oo
first goal to find the angular distribution of the particles in We shall present a particular method solving the syg@6)
the far zone. in Sec. IV A.

Within the model of spherically symmetric zero-range po- Once the systen(2.6) is solved and the coefficients
tentials adopted here, everywhere except the pdmisthe  {a,(E,r,)} are known, from the well-known asymptotic for-
time-independent wave functiow(E,r,rq) describing the mula[with r’ fixed]
particles satisfies the inhomogeneous Schrodinger equation

(2.9

iKlr=r'] r—o jkr
e ikn.r €
~ gt =—, (2.9

52 [mh3 r=r’| r
[— %Vz— E]‘I’(E,r,ro) = m—koé@(r -ro)

wheren,=r/r, we have

r—o m|0 eikr
(r#rp;l<n<N) (2.7 W(E,r,rq) ~ ﬁ}"(E,nr,ro)T, (2.10
and has the form with
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1 A N A Asymptotically, the function2.15 is of the form
FENTo) == e N0+ > an(E,ro)e ¥ n || i g
vam n=1 Y(E,r,ng) ~ asympe ™o’ + F(E,n,,ng)—, (2.20
(2.11) e r

The angular distribution of the particles in the far zone iswhere

best characterized by their current through an infinitesimal ikr jkr

surface of area?d?n, (with dn, denoting the infinitesimal ~ asympeno” = 2m 8(n, + no)e— -8, - no)e— :
solid angle in the directiom,) perpendicular ton,. This r—e K r r
quantity is given byl(E,n,,ro)d?n,, where (2.2)
. oh x while
I(E,n,,rg) = limre—Im[W" (E,r,ro)n, - VW(E,r,ro)] "
r—oo
= 1o/ FE.n,.ro)]2 (2.12 F(E,N;,Ng) = 2 Co(E,ng)e ™M™ (2.22
n=1
is the scattering amplitude. Equivalently, the asymptotic for-
B. Source at infinity: Scattering of a parallel beam mula (2.20 may be rewritten as
Consider now the case when the source is moved far away 2w ) e e'_"r
from the scatterers, i.e., assume that—o. Defining HET.No) Kk 32(n; +no) r S(E.nr.o) rol’
W(E,r,ng) and c,(E,ng), where ng=rq/ro, through the (2.23

asymptotic relations

) where
rg—o ml, ekro
W(E,r,—rq) ~ #Er,ng—  (2.13 ) ik
4k o S(Enp.ng) = 82(n, —ng) + —F(E:npng)  (2.29
v

and
, o is a scattering kernéi.e., a kernel of the scattering opergtor
_ O:x € The angular distribution of scattered particles is usually
%(E.~To) ~ c(ENo) ro 2.14 characterized by a differential cross section defined as

from Egs.(2.2), (2.1), (2.5, (2.6), and(2.8) we deduce that d?o(E,n,,No) _ Iimrzjsca&E'r'nO) (2.25
the functiony(E,r ,np) is explicitly given by dn, e Jinc(EFuNg) .

N .

: gklr=ral where
Y(E,r,ng) = eXno” + > Cn(E,no)m (2.195
n=1 “In

. ﬁ *
Lo Jscal(EvrvnO) = _Im[‘psca{E’r’nO)nr Y wscat(EaranO)]r
and satisfies m

|:_%1V2_E:| l,b(E,r,no):O W|th
Yscal E,T,No) = Y(E, T, ng) — ekNo™ | (2.27
(r#r;;1sn<N), (2.16 i , o
is the radial current density in the scattered wave and
IMm[1+k(E)r—r,+(—r,) - V]HEr,ng =0 h . _ hk
Hrn[ Bl = ol + (= 1o) - VIUET o) jinc(E.r,ng) = —Im[e Mo,y . vV ko] = — (2,28
m m
(Is=sn<N), (2.17  is the current density in the incident plane wave. One finds
while the vectorc(E,ngy), composed of the coefficients d?o(E,n,,No) )
{c,(E,np)}, solves the system &n, =[F(E,n;,ng)|*. (2.29
L(E)c(E,ng) = —d(E,ny), (2.189 Two global quantities characterizing scattering are in use.
where the inhomogeneity(E,n,) has components Th(_a first one is a total cross section for a fixed direction of
incidencen, defined as
— alkngry
d.(E,ng) =€ . (2.19 . ) &o(E.ne.no)
The function(2.15) has an obvious physical meaning: it rep- o(E,ng) = y dn, d?n, ' (2.30

resents a parallel beam of monochromatic particles propagat-
ing initially in the directionny and diffracting then on the while the second one is a total cross section averaged over all
system of zero-range scatterers. directions of incidence:
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1
(o(E) = Eﬂg

4ar

dznoo'(E, no) .

(2.3

The cross sectio2.30 may be evaluated with no difficulty.
Indeed, exploiting Eqg2.22 and(2.29), one finds

N
O-(E!nO): E C;(Ean)Cn’(E!nO)

nn’'=1 Am

d2nreiknr-(rn—rnr) )

(2.32
The integral in Eq(2.32 is

: 4
jg d’n, e o) = f[LA(E)]mr. (2.33
A
where
sinkjr,=ry|
[LA(E)]nn’ = k5nn’ + | _ | (1 - 5nn’)- (2-34)
n n’
hence, it follows that
4 T
O-(Eano) = TC (EvnO)LA(E)C(EInO)v (235)

with LA(E) denoting arN X N real symmetri¢hence Hermit-
ian) matrix with elementg2.34). Interestingly, the matrix
LA(E) is an anti-Hermitian part of the matrix(E):

1
La(E) = E[L(E) -L'(B)]. (2.36

In Appendix B we prove that the matrik,(E) is at least
positive semidefinite.

Ill. EIGENCHANNELS FOR ZERO-RANGE POTENTIALS

The key role throughout the rest of our considerations will

be played by solutions to an auxiliary generalizegighted
algebraic eigenproblem

Lu(E)X,(E) =\ (E)LA(E)X,(E), (3.1)

in which the matrix

1
Lu(BE) = E[L(E) +LY(B)], (3.2
with elements
cosk|r,=r.|
[LH(E)]nn’ = Kn(E)énn’ + ﬁ(l - 5nn’),

(3.3

is a Hermitian part oL.(E) [observe that,(E) is not only
Hermitian, but, likeL,(E), even real symmetrjcthe weight
matrix LA(E) is an anti-Hermitian part of (E) and has been
defined in Eq(2.36), \,(E) is an eigenvalue antl(E), with
elements{x,,(E)}, is an associated eigenvector.U£(E) is
positive definite, the systenB.1) has exactlyN pairs of

PHYSICAL REVIEW A70, 062719(2004

all eigenvalueg\ (E)} are real and that eigenvectors associ-
ated with different eigenvalues satisfy the following
weighted orthogonality relation:

XUE)LAB)X,(E)=0 [N\(E)#\,(B)]. (3.9

In what follows, we shall be assuming that eigenvectors as-
sociated with degenerate eigenval@éshere are anyhave
been also orthogonalized in the sense of Bgd) and that all
eigenvectors have been normalized according to
X (E)LA(E)X,(E) =1, (3.5

so that for two arbitrary eigenvectors the following orthonor-
mality relation holds:

XUE)LAE)X(E) = 5, (3.6
Similarly, one has
X(E)Ly(E)X, (E) = A (E) 8,/ (3.7

A weighted closure relation obeyed by the orthonormalized
eigenvectors is

N N
2 XEXNE)LAE) = LA(B) 2 x(E)XI(E) =1, (3.9)
y=1 =1

wherel is theN X N unit matrix. The case df,(E) positive
semdefinite may be treated as a limit of the caselgfE)
positive definite.

Once eigensolutions to the systg¢gl) have been found,
one may use them to construdtfunctions

N
m cosk|r —r,|
en=- oS | T

n=1

sinkjr —r,|

=) }Xny(E), (3.9

| - n|
termedeigenchannelgThe seemingly superfluous factor in
front of the sum has been introduced for compatibility with
the notation of Ref[4].) It is easy to verify that everywhere
except the point¢r,,} the eigenchannels obey the source-free
Schrédinger equation

ﬁ2
{—%VZ—E}XV(EJ) =0 (r#ryul<n<N),
(3.10

and that at the point§ ,} they satisfy the limiting conditions
im[1+ky(E)[r —rp[+(r—ry) - VIX(E,r)=0

r—rp

(I=sn<N), (3.1

identical with these in Eqg2.5) and(2.17).
At this stage, it is convenient to introduce so-called
eigenphase shiftss,(E)}, related to the eigenvalugs (E)}

eigensolutions. It is then an elementary exercise to show thdlrough
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\,(E) = - cots (E). (3.12 IV. APPLICATIONS OF EIGENCHANNEL VECTORS,
EIGENCHANNEL HARMONICS, AND EIGENCHANNELS
It follows from the reality of{\ (E)} that the eigenphase IN SCATTERING PROBLEMS

shifts are also real. When at some enekgg particular ei-
genvalue\ (E) is infinite [this happens wheh,(E) is posi-
tive semdefinitg], a corresponding eigenphase shift is an in-
teger multiple ofmr. With the aid of the eigenphase shifts, the
definition (3.9) may be rewritten as

In this section we shall show that, apart from being inter-
esting for themselves, various objects defined in the preced-
ing section appear to be useful for solving the scattering
problems posed in Sec. Il.

X (E.r) [ m 1 A. Neighboring source
1r == . . . . . .
L4 27h? sind,(E) We begin with the problem of scattering of particles emit-

N ted from the neighboring point source located atWe shall

> sinfkr —r[ + 57(E)]X (E). (3.13  seek the solution to the linear syst¢m6) in the form of a
1 Ir=r| " linear combination of the eigenchannel vectors(E)}:
From Eq.(3.13 one deduces that asymptotically the eigen- N
channels have the form a(E,rg)= 2 a,(Ergx,(E). (4.1
y'=1
F—00 m 1 aikr=i6,() i — . .
XAE ) ~ \| =5 ———| V(E,~n,)——— To find the combination coefficientsy,(E,ro)}, we substi-
7 2h2Kki sins,(E) |~ r tute Eq.(4.1) into Eq. (2.6), decompose the system matrix
gkr+i6,(E) L(E) according to
- Y,(E,ny) } : (3.19 ,
L(E) =Ln(E) +iLa(E), (4.2)
where the angular functions and exploit the eigenvalue equati@® 1), obtaining
N N
k —ikn,r i -
YE,n,)= 4—2 Xn(E)€ K Tn (3.15 2 ay (Erg\,(E) +ilLa(E)X,(E) = = b(E,ro).
T n=1 y'=1
are energy-dependeatgenchannel harmonicén Appendix 4.3

C we prove that these harmonics form an orthonormal set o

. .
the unit sphere: ?‘hen, operating on Eq4.3) from the left with xy(E) and

invoking the orthonormality relatio(3.6), we arrive at

5{) dany*y(E,nr)yy,(E,nr) =58, (3.16) a(Ero)=—[N/(E) + i]‘lx;(E)b(E,rO). (4.4
A

Hence, it follows that the solution to the syst¢gb) is
Since both matricet(E) and LA(E) are real and since
the eigenvalue$\ (E)} are also real, it is possibl@lthough
not necessapyto choose the eigenvectops,(E)} to be real.
If such a choice is made, this implies the reality of the eigen-
channelg3.10. Moreover, in this case the eigenchannel har-Observe that Eqs(2.6) and (4.5 imply that, in terms of
monics(3.15 obey eigensolutions to the syste(B.1), the generalized spectral
representation of the matrix X(E) is

N
a(E,rg) == 2 [AJ(E) +iT X, (EXX(E)b(E,ro). (4.5
y=1

VYE-n)=V,En) [x,(E)real  (3.17

N
and one has L™E) = 2 [N E) +i] X (E)X(E). (4.6)
y=1
X.(E r)rix _/2m 1 sinfkr+¢/(En,) + 5/(E)] In terms of the eigenphase shifts, £4.5) reads
e hksind,(E) r N
X|YAEn)|  [x,(E) real, (3.189 a(E,rg) = > &%Fsins (E)x (E)X(E)b(E,ro). (4.7
y=1
where

Substituting this into Eq(2.2) yields the particle’s wave

¢,(E,n,) =argV(En,). (3.19  function
N

Concluding this section, we emphasize that the eigen- \P(E,r,ro):CD(E,r,ro)+E ®(E 110 4.9
y=1

channel vectorgx,(E)}, the eigenphase shiftss,(E)}, and
the eigenchannel§X (E,r)} are inherent to the system of
scatterers and are independent of any external sources. expressed in terms of the radiation eigenmodes
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®(E.r,ro) =€Fsins (E)x(E)b(E, o)
N
X2 X E)D(E,T,r ).

n=1

(4.9

Similarly, exploiting Eq.(4.7) in Eq. (2.11) leads to the fol-
lowing expression for the far-field amplitude:

N
1
F(E,n;,ro) = —=—=€KTo+ > F (E,n,,rg), (4.10
VAT y=1

with
1 . )
FSE,n,ro) = VTI—(éév(E)S|n5y(E)x7;(E)b(E,ro)yy(E,nr).

(4.11

B. Source at infinity: Scattering of a parallel beam

Next we turn to the problem of scattering of a parallel
beam of projectiles. Considerations analogous with these 'kr}

which have led us to Eq4.7), followed by the use of the
definition (3.15), yield

N
4 H - x
c(E,no) = 4/ 7772’1 &%Esing (E)Y(E,no)x,(E).

(4.12

Combining this with Eq(2.15) leads to the following repre-
sentation of the scattering wave function:

N
4 . ,
\ 7 2 €%Fsing,(E)V(E.ng
y=1

ME,r,ng) = kMo’ +
N

iklr=r |
X 2 X E) . (4.13
n=1 |I‘ - rn|
Let us define
Unint(E,T,Ng) = dznr’P(E,nr’,no)eik”r'", (4.19

A7

where the projecting kerné&(E,n,,np) is

N
P(E,n;,No) = 82(n; = o) = 2 V(E,n) V(E,no).
y=1

(4.15

Exploiting the definition(3.15, after elementary operations
one arrives at

N
: 4ar .
Unin(Er ng) = €707 — \[= 3 31 (Eing)
=1

N

X2

n=1

sinklr =r |

r-r

(4.1

Asymptotically, the functionf,(E,r,ng) is of the form

PHYSICAL REVIEW A70, 062719(2004

r—oo

i —ikr ikr
wnint(E!r!nO) -~ T P(Er_nr;no)

- P(E,n,,no)T .
(4.17

The reason for introducing the functiah,«(E,r ,ng) lies in
the fact that it is possible to split the scattering wave function
(4.13 according to

lﬂ(E:r an) = ¢nint(E1r!nO) + lﬂint(E!r!nO)i (418)

where the second term on the right-hand side has the eigen-
channel representation

r

[P s .
Yint(E,T,Ng) = — oy 21e "Elsing,(E)V(E,ng)X,(E,r)
Y=
(4.19
and asymptotically behaves as

r~>002,n_i —ikr

‘//int(Exr,nO) - T{[é(Z)(nr + nO) - P(E!_ nr:nO)]T
- S(ed(E!nrvnO)T (420)

with

N
Sfed(E!nrrnO) = E ezmy(E)yy(E!nr)y;(EvnO) (421)
y=1
being thereducedscattering kernel. Evidently, the function
(4.16 satisfies the free-particle Schrédinger equagoery-
wherein R3. In contrast, the functio4.19), being a linear
combination of the eigenchanne{X,(E,r)}, satisfies the
free-particle Schrédinger equation everywhereceptthe
points{r,}, where it is subjected to the same limiting condi-
tions (2.17) as the total scattering functio#(E,r,ng) [cf.
Egs. (3.10 and (3.11)]. Consequentlyiin(E,r,ng) is that
part of J(E,r,ng) for which the target is transparent, while
Uint(E, 1 ,ng) essentially describes the scattering process.
With the aid of Eqs.(4.12 and (3.15, from Eq.(2.22
one deduces the following representation of the scattering
amplitude in terms of the eigenphase shifts and the eigen-
channel harmonics:

N
4 H . x
F(E.n;,no) = 7”21 55 (E) Y, (E,n) V,(E,no).
Y=

(4.22

Hence, after combining Eq4.22) with the relation(2.24),
one obtains the scattering kernel in the form

N
SE,n,.ng) = §2(n, - ng) + D [e2HE - 1]
y=1

X V,(E.n)V(E,no)
= P(E:nran) +Sred(E:nr1nO)' (423)

It is evident from the representatio4.22) and (4.23) and
from the orthonormality relatio3.16) that it holds:
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A o
%4 dznOF(Evnr!nO)y'y(EvnO) = %eléy(E)SIng'y(E)y'y(Evnr)

(4.24

and

é dznOS(E: nl‘i nO)yy(Ev nO) = e2i 57(E)yy(E, nr) ’
A

(4.25

i.e., the eigenchannel harmoni¥,(E,no)} are eigenfunc-

PHYSICAL REVIEW A 70, 062719(2004)

1672
o(E,ng) = ?E sits,(E)|[V(E.ng)l?.  (4.32
y=1
From this and from Eq4.22) one infers the optical relation

4
o(E,no) = f|m F(E,no,No). (4.33

which follows also from Eqs(2.30) and (2.29 and from
either of Eqs(4.28) or (4.29 considered ahy=n,. Finally,

averaging the total cross sectigh32 over all directions of
incidencen,, we obtain, again with the aid of E¢3.16):

tions of the integral operators represented by the kernels N

F(E,n,,ng) and S(E,n,,nyg, with the eigenvalues
{47-rk‘1ex;{i57(E)]sin67(E)} and {exd2is,(E)]}, respec-
tively. The relation analogous to E@t.25 holds also for the
reduced scattering kerngt.21).

4
(0(E)) =5 2 Sirf5,(E). (4.34)

=1

V. EXAMPLE: PARALLEL BEAM SCATTERING

Various properties of the scattering amplitude and the rrom AN X, STRUCTURE WITH TETRAEDRIC
scattering kernel may be straightforwardly deduced from the SYMMETRY

representationgl.22) and(4.23. For instance, exploiting the _ _ _
fact that the eigenchannel harmoniosy be chosen to sat- As an analytical example illustrating the general theory
isfy the relation(3.17), one infers the time-reversal reciproc- presented above, we shall consider scattering of a parallel

ity relations beam from a system of four identical zero-range potentials
located at the points
F(E!_nl’i_no) = F(EinOlnr) (426)
p
and r1:7(nx+ny+nz)- (5.1a
2\2
aEa_nra_nO) :gEvn@nr)' (427)
Also, with no difficulty one proves the generalized optical rp= %(— Ny—nNy+n,), (5.1b
relations 2\2
35 &n,F*(E,n,.ng)F(E,n,,n}) rs= =(ny=n,—n,), (5.19
A 2\“’2
—Z—m[F*(E ng,Ng) — F(E,no,ny)] (4.28
= K EARIOLRRI0) 21010/ . r4:%(—nx+ny—nz) (Sld)
AY

% dn,F(E,ny,n)F (E,ng,n,)
41

= Z—;ﬂ[F*(E,n(’),no) -F(E,ng,np],  (4.29
and the unitarity relations
354 dn,S (E,n,,ng)S(E,n,,ng) = 82 (ng—ny),
(4.30
3€ dn,S(E,ng,n,)S (E,ng,n,) = 82 (ng—ny).
A
(4.3)

It remains to consider cross sections. Combining Egs.

(2.30 and(2.29 with the expansiori4.22), and making use
of the orthonormality relatior{3.16), yields the total cross
section in the form

(ny is the unit vector along the OX axis of the Cartesian
coordinate systenm, andn, are defined analogouslyi.e., in
vertices of a regular tetrahedron of edge lengtifhe sym-
metry of the resulting{, structure is that of th&-group[13].

In the problem at hand, the matricés(E) and LA(E)
have elements

coskp

[Lu(E) Jn = k(E) 6o + (1-6n) (5.2

and

sink
[LA(E)]nn/ = k5nn’ + P

(1 - 5nn/)a (53)

respectively. With no difficulty, one finds that the generalized
eigenprobleni3.1) has only two distinct eigenvalues: a non-
degenerate eigenvalue

«(E)p + 3 coskp

Na(E) = — cotS,(E) = kp+ 3 sinkp

(5.4)

and a triply degenerate eigenvalue

062719-7
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«(E)p — coskp

M(E) =~ coty(E) = kp — sinkp

(5.5
(the meaning of the indices will become clear shorthn
eigenvector associated with the eigenvalbi&), normalized
according to Eq(3.5), is

1

- T
" J4K[1 + 3(sin kp)/kp](+ 1+1+1+3. 9

Xa(E)

Since the eigenvalug.5) is degenerate, there is some free-
dom in choosing linearly independent eigenvectors in its as-

PHYSICAL REVIEW A70, 062719(2004

kp—0
ya(Eanr) - T :YO,O(nr)u (510)
VA
while the threet harmonics go over into particular linear
combinations of the threle=1 spherical harmonics:

kp—0 1 1
yt,x(Eanr) - NN =- _/—Y1,+1(nr) + ?Yl,—l(nr)a
4 V2 V2
(5.113
kp—0

i i
sociated eigenspace. A convenient choice, preserving the or- Yiy(E,n;) — 2.y = V_EY1’+1(nr) + EYl,—l(nr)!

thonormality constraing3.6) and adopted hereatfter, is

— _ _ 1T

%x(B)= VaK[1 - (sinkp)/kp] (+1-1+1-9%
(5.7a

_ i 14T

%u(B)= VAK[1 — (sin kp)/kp](+ Lot
(5.7b

_ | _1_aT

%dB) = VAK[1 - (sinkp)/kp] (+1+1-1-3-
(5.70

Once the orthonormdiin the sense of Eq3.6)] eigen-
vectors have been found, from the definitic@15 one ob-
tains the corresponding eigenchannel harmonics

Va(E,ny) = : e kN1 4 grikneT
V16a]1 + 3(sinkp)/kp]
+ g knrTs 4 griknera], (5.8
ViENy) = _ i1 — g2
W) = G~ (Sinkp )
+grikners _ griknerg), (5.99
Viy(Eny) = _ Tikne Ty — grikne T
T 16a{1 - (sinkp)/kp]
— gikneTa 4 griknera], (5.9b
ViAEN,) = ! g ke 4 griknera

V16a[1 - (sinkp)/kp]
_ e—iknr-r3 _ e—ikn,-r4], (5.90)

orthonormal in the sense of E(B.16. The harmoniq5.8)

(5.110

kp—0

yt,z(Evnr) - 4_nz N = Yl,O(nr) (5.119
T
[the reason for choosing the thréeeigenvectors(5.79,
(5.7b), and(5.79 purely imaginary has been to enforce that
in the limit ko— O the corresponding eigenchannel harmon-
ics become redl
From Eqs.(4.34), (5.4), and(5.5 we obtain the total av-

eraged cross section in the form

(0(E)) =(0a(E)) + Xor(E)),
with the partial contributions

(5.12

4ar
<Ua(E)> = ?Sinz‘sa(E)

_A4m [kp + 3 sinkp]?
" K2 [k(E)p + 3 coskp]? + [kp + 3 sinkp]?’
(5.13

((E)) = J35iP(E)

_Am [kp — sinkp]?
" K2 [k(E)p — coskp]? +[kp — sinkp]?"
(5.19

The results presented above coincide with those of R€f,
where a different approach has been used.

VI. CONCLUDING REMARKS

There are several directions in which we plan to continue
this work in the nearest future. First, it is certainly worth to
extend the formalism to elastic scattering of Dirac particles.
We are currently working on this problefwhich is by no
means trivial and has required from us a prior formulation of

forms a basis for a one-dimensional irreducible representadhe method of zero-range potentials for the Dirac equation

tion a of the T symmetry group, while the harmoni¢s.93, and we expect to present our results very soon. Second, it
(5.9b), and(5.9¢ form a basis for a three-dimensional rep- would be interesting to apply the eigenchannel method, both
resentatiort of this group. In the limitkp— O, approached for the Schrddinger and Dirac equations, to scattering from
either at low energies or for closely grouped scatterersathe complex absorbing zero-range potentials, as well as from
harmonic tends to the=0 spherical harmonic: zero-range targets with an internal energetic structure. Fi-
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nally, we shall look for practical applications of the formal-
ism in actual problems of atomic physics.

Concluding, we point out that although in this paper we
have constrained ourselves to the context of quantum scagr, equivalently,
tering, the applicability of the formalism presented above is
much broader. Indeed, it should be evident that after redefin-
ing the meaning of constants, the method is immediately
applicable, as it stands, to scatteringasfy time-harmonic
scalar Helmholtz wave from a system of isotropic point tar-The system matrix in EqUA6) is evidently non-Hermitian.
gets. We shall exploit this fact and in a separate publicatiortonsequently, unless the systéAB) is transformed to the
we shall present an application of the method to a specifi¢iermitian form (3.1) (and this hasnot been done in Ref.

[~ LA E)L(B) =il %,(B) = = [M(B) +117%,(E)
(A6)

[- LAAE)Lu(E) = il x(E) = €°"®sins,(E)x,(E).
(A7)

problem in theoretical acoustics.
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APPENDIX A: EQUIVALENCE OF THE MODEL

OF REF. [11] WITH THE MODEL
OF ZERO-RANGE POTENTIALS

Li and Heller[11] adopted Foldy’s moddlL2], in which a

wave function describing scattering of a monochromatic

plane wave from a system of point-like targets, located at

{rat, is

N iklr=rp|

din(E,r,ng) =eknor + > ¢n(E,n0)fn(E)|er_—r|, (A1)
n=1 n

where the coefficient$s,(E,np)} are solutions to the alge-
braic system

N

) eik|rn_rn’|
du(Eng) =0+ 2y (Bl (B)y —
n'=1 n n’
(n' #n)
(Isn<N). (A2)

The known coefficient$f,(E)} characterize individually the

targets and are expressible in terms of real, in general

energy-dependent, parametérg(E)} according to
1

fo(E) = Koty (B) =1 (A3)
If we define
Cn(EiNo) = ¢r(Eng)fr(E) (A4)
and
kn(E) = =k coty,(E), (A5)

it becomes evident that the systéAR) is identical with the
system(2.18 and the wave functioffAl) is identical with
the wave function in Eq2.15. Thus, Foldy’'s model is com-

pletely equivalent with the model of zero-range potentials.
A matrix eigenvalue system underlying the reasoning pret.e., the eigenchannel harmonics form an orthonormal set on

sented in Ref[11] is, in our notation,

[11]), it is difficult to infer that{\ (E)}, hence alsd5,(E)},
are real and that the eigenvectdxs(E)} are orthogonal in
the sense of Eq3.4).

APPENDIX B: POSITIVE SEMIDEFINITENESS
OF THE MATRIX LA(E)

Let z be an arbitraryN-component vector with elements
{z.}. Consider the expressiaiL(E)z. Invoking Eq.(2.33,
one has

N
k . )
zTLA(E)z:4— > znzné d?n, o) (B1)
47

n,n’=1

After elementary manipulations, E¢B1) may be rewritten
as

2

N
E Zne—iknr-rn =0.

n=1

d’n, (B2)

k
t A
Z'LA(E)z 4775[;

41

Hence, it follows that the matrix A(E) is at least positive

semidefinite.

APPENDIX C: ORTHONORMALITY OF EIGENCHANNEL
HARMONICS

Consider the integral
Ly(E) =9 d®nY,(En)Y,(En,). (Cy
41

Exploiting the definition(3.15 transforms Eq(C1) into

N

k * i —
IW’(E):ZT 2 Xny(E)Xn’y’(E)ﬂg dznrelknr.(rn )
n,n'=1 Am
(C2
Next, application of Eq(2.33) leads to
L (E) =X (E)La(E)X, (E). (C3)
Comparison of Eq(C3) with Eq. (3.6) yields
| ,y,y/(E) = 5,},,}/, (C4)

the unit sphere.
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