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The properties of photoassociation(PA) spectra near the intercombination line(the weak transition between
1S0 and 3P1 states) of group II atoms are theoretically investigated. As an example, we have carried out a
calculation for calcium atoms colliding at ultralow temperatures of 1 mK, 1mK, and 1 nK. Unlike in most
current photoassociation spectroscopy, the Doppler effect can significantly affect the shape of the investigated
lines. Spectra are obtained using Ca-Ca and Ca-Ca* short-rangeab initio potentials and long-range van der
Waals and resonance dipole potentials. The similar van der Waals coefficients of ground1S0+1S0 and excited
1S0+3P1 states cause the PA to differ greatly from those of strong, allowed transitions with resonant dipole
interactions. The density of spectral lines is lower, the Condon points are at relatively short range, the reflection
approximation for the Franck-Condon factors is not applicable, and the spontaneous decay to bound ground-
state molecules is efficient. Finally, the possibility of efficient production of cold molecules is discussed.
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I. INTRODUCTION

There is a growing interest in the properties of cold
alkaline-earth-metal atoms. One of the main reasons for this
interest is a possible construction of optical clocks, whose
precision might exceed that of the current atomic standard of
time [1,2]. In particular, optical clocks based on an intercom-
bination transition of alkaline-earth-metal atoms are seen as
good candidates for the next time standard[3–5]. Increased
accuracy of time standards is, for example, desired for the
search for a time-dependent variation of fundamental con-
stants in atomic experiments, which thereby would verify
claims based on astrophysical data[6].

The recent observation of Bose-Einstein condensation
(BEC) in a Ytterbium gas[7] raises hopes for alkaline-earth-
metal atoms, which have similar electronic structure. Such
achievement would allow a study of cold gases over a wide
range of temperatures. Milli- and microkelvin temperatures
are reached by Doppler cooling on the1S0−1P1 resonance
and the 1S0−3P1 intercombination line, respectively.
Nanokelvin temperatures are typical for Bose condensates
and are reached by evaporative cooling.

Another important reason for the interest in alkaline-
earth-metal atoms is the absence of a nuclear spin in some
isotopes. This offers a unique opportunity towards a funda-
mental study of Doppler cooling. Moreover, isotopes with
zero and nonzero nuclear spin allow a comparison of Dop-
pler and sub-Doppler cooling[8,9]. The description of atom-
atom interactions is much simpler for a nuclear spinless sys-
tem. In fact, the basic theory of photoassociation in strong
laser fields[10,11] might be easier to confirm in alkaline-
earth-metal gases than in alkali-metal gases, where to date
most of the research has been done.

Scattering of atoms in ground and excited states leads to a
collisional frequency shift that contributes to the error budget
of an optical clock. A Bose condensate crucially depends on
atom-atom collisions. Photoassociative(PA) spectroscopy

[12–16] is one of the most powerful tools to characterize
these scattering processes. It was developed after the success
of laser cooling of neutral atoms in the 1980s[17].

We will focus our investigation on PA spectroscopy of
ultracold alkaline-earth-metal atoms. In the presence of laser
light, two colliding ground-state atoms, labeled by the scat-
tering state “g,” absorb a photon forming an excited molecu-
lar bound state “e” [16]. This process is called photoassocia-
tion. The excited state decays to product states “p” leading to
detectable loss of atoms from an atomic trap. The variation
of the atom loss as a function of laser frequency gives the
photoassociation spectrum. The shape of photoassociation
lines not only depends on the properties of the colliding at-
oms, but also on the temperature and other conditions in a
trap [18].

Phoatoassociation spectra close to the resonance of the
1S0−1P1 transition in alkaline-earth-metal atoms were theo-
retically analyzed by Machholmet al. [19,20] and others
[21,22]. Recently, Degenhardtet al. [23] measured the pho-
toassociation spectra of cold calcium atoms near this transi-
tion at mK temperatures. Takahashiet al. [24] used photoas-
sociation spectroscopy to determine the scattering length of
174Yb.

This paper analyzes properties of photoassociation spectra
near the intercombination line, i.e., laser frequencies close to
the 1S0−3P1 transition. A dipole transition between pure sin-
glet and triplet states is forbidden. However, alkaline-earth-
metal atom states labeled3P1 are not pure triplet states and
have a small singlet component. This component mostly
comes from mixing with the nearby1P1 state and gives rise
to a weak dipole transition between the1S0 and 3P1 state.
Consequently, the1S0−3P1 atomic line has a small natural
width. As an example, we have carried out calculations for
calcium.

We describe the shape of photoassociation lines with very
small natural width and weak laser radiation. The Doppler
effect as well as the photon recoil must be taken into ac-
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count. This is in sharp contrast with the usual treatment of
PA [18] in which these two effects are neglected. Secondly,
we discuss possible patterns of vibrational levels in photoas-
sociation spectra near the intercombination line. Close-
coupled rovibrational bound states are obtained using an in-
teraction Hamiltonian, which is based on our electronic-
structure potentials[25] and recently calculated dispersion
coefficients[26]. The Hamiltonian also includes coupling be-
tween1P1 and metastable3P0,1,2 states. The interatomic po-
tential between two ground-state calcium atoms is relatively
well known [27]. It is shown that when the interaction in the
ground and excited state is similar, the reflection approxima-
tion [10,14,28] cannot be applied to calculate the intensities
of photoassociation lines. This is unlike photoassociation
spectra near strongly allowed transitions, where the interac-
tion in the ground and excited states differs significantly and
the reflection approximation is well satisfied. Finally, we
show that efficient production of cold molecules in the
ground electronic state using photoassociation should be fea-
sible.

II. SHAPE OF THE PHOTOASSOCIATION LINE

The photoassociation process occurs in a thermal cloud of
cold atoms at temperatureT interacting with weak laser ra-
diation. After absorption of a photon of frequencyv, two
atoms form an excited molecular bound stateuel with energy
Ee. The photoassociation process according to standard de-
scriptions is most efficient when the photon energy and the
kinetic energy of the relative motion of colliding atoms,«r,
match the energy of the excited bound state, that is,"v+«r
=Ee.

A schematic of energies in the PA process is shown in Fig.
1. The binding energyDe of bound stateuel is given byDe
=Ee−EA, whereEA is the energy of an isolated atom in the
excited state and the zero energy corresponds to separated
atoms in the electronic ground state with zero kinetic energy.
Furthermore, the detuningD of the photon is defined byD
="v−EA, where "v is the photon energy. The resonance
condition for the PA process in terms of detunings readsD
+«r −De=0.

The description of photoassociation for very narrow lines
requires us to include two new effects. These effects are the
Doppler shift and the photon recoil. Figure 2 shows a sche-
matic of the collision before the PA process. In the laboratory
frame, the two colliding atoms, each with massm, have mo-
mentum pW1 and pW2, respectively. In the coordinate frame,
which moves along with the center of mass, the relative mo-
mentum of the colliding atoms ispW r and the kinetic energy of
relative motion«rspW rd=pr

2/2m, wherem=m/2 is the reduced
mass of the colliding atoms. The photon energy"v+«DspWcd
in the moving frame is shifted with respect to its energy"v
in the laboratory frame. To a good approximation, the Dop-
pler shift «DspWcd=−"kW las·pWc/M is proportional topc, where
pWc is the center-of-mass momentum of the two atoms in the
laboratory frame. The total mass of the system isM =2m, kW las
is the wave vector of the laser radiation with absolute value
klas=v /c, andc is the speed of light. After photoassociation,
the excited molecule gains the momentum"kW las of the ab-

sorbed photon and, therefore, has a translational kinetic en-
ergy of Erec,mol="2klas

2 / s2Md in the moving frame defined
before the absorbtion of the photon. Consequently, photoas-
sociation is most efficient when"v+«DspWcd+«rspW rd=Ee

+Erec,mol or in terms of detuningsD+«DspWcd+«rspW rd−De

−Erec,mol=0.
The excited molecular states created in the PA process

either decay back to the ground state or can be further ex-
cited to ionizing states. In the former case, the product states
escape from the trap and give rise to trap loss. Ions are de-
tected in the latter case. In this paper, we will only model
trap loss. The loss mechanisms are characterized by a rate

FIG. 1. Energy diagram of the photoassociation process. The
zero energy corresponds to separated atoms in the electronic ground
state with zero kinetic energy;EA is the energy of an isolated atom
in the excited state;Ee is the energy of the excited molecular bound
stateuel; "v is the photon energy;«r is the kinetic energy of the
relative motion of colliding atoms;De is the binding energy of the
bound stateuel; D is the detuning of the photon energy from the
isolated atom excitation energyEA.

FIG. 2. Schematic of the collision before the photoassociation
process in the laboratory frame and in the center-of-mass coordi-
nates.pW1 and pW2 are momenta of the colliding atoms;pW r is the
relative momentum of the colliding atoms;pWc is the center-of-mass
momentum of the two atoms in the laboratory frame;"v is the
photon energy in the laboratory coordinates;"v+«DspWcd is the Dop-
pler shifted photon energy in the moving frame of center-of-mass
coordinates.
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coefficient KsD ,Td, which describes the efficiency of the
process for a given laser detuning, intensityI, and atom tem-
perature. For clarity, we omitI as an argument in the rate
coefficient. The rate coefficientKsD ,Td is linear in the weak
laser field intensityI. For higher intensities, the center of the
PA line shifts linearly withI [10,29,30] and the width of the
line increases. The description of the PA line shape presented
in this work, for simplicity, omits this shift as it can be ne-
glected in the weak laser field regime. In our discussion we
omit the possible recapture by the trap of the hot atoms cre-
ated by the photoassociation process. This recapture can re-
duce the observable trap-loss, depending on the particular
atomic species and trap[67].

The photoassociation trap-loss rate coefficient involves a
thermal average of the rate coefficient for a given pair of
momentapW1 andpW2 in the laboratory frame. The momentum
distribution of both atoms is Maxwellian with temperatureT.
In practice, we average over the momentapWc andpW r, denoted
by k¯l. These momenta have a Maxwell-Boltzmann distri-
bution fMspWcd=sÎppMd−3 exps−pc

2/pM
2 d and fmspW rd

=sÎppmd−3 exps−pr
2/pm

2d with the most probable momentum
pM =Î2kBTM andpm=Î2kBTm, respectively, wherekB is the
Boltzmann constant. Then, we have

KsD,Td = kKsD,pWc,pW rdl

=E d3pWcfMspWcd E d3pW r fmspW rdKsD,pWc,pW rd, s1d

where KsD ,pWc,pW rd describes the trap loss from a collision
with momentapWc andpW r.

The trap-loss coefficient forpWc andpW r is equal to

KsD,pWc,pW rd = o
e,g

vr
p

kr
2uSpgsD,pWc,pW r ;edu2, s2d

where kr is the relative wave number defined by«r
="2kr

2/ s2md and vr ="kr /m is the relative speed of the col-
liding atoms. The quantityuSpgsD ,pWc,pW r ;edu2 is the transition
probability from an initial ground state,g, to all product
states,p,1 through an intermediate excited bound statee. The
indicesg ande, summed over in Eq.(2), represent quantum
numbers that describe the initial and intermediate state, re-
spectively. Since the ground state has no electronic or spin
degeneracy, each initial stateg is labeled only by the total
angular momentum quantum numberJg, its projection quan-
tum numberMg, and the total paritypg. The intermediate
rovibrational levelse are labeled by vibrational quantum
numberv, total angular momentumJe, projectionMe, parity
pe, and any other unspecified quantum numbers needed to
describe the electronic and spin symmetry of the state.

The transition probability from an initial state to the prod-
uct states can be described by a generalized resonance for-
mula [10,14,31]

uSpgsD,pWc,pW r ;edu2

=
GpeGegs«rd

fD + «DspWcd + «rspW rd − De − Erec,molg2 + sGe/2d2 ,

s3d

where the total width of the excited bound statee, Ge
=Ge,nat+Ge,dis+ogGegs«rd, is the sum of its natural radiative
width Ge,nat, the contributionGe,dis from predissociation, and
the stimulated widthsGegs«rd caused by the laser coupling
between the excited and ground states. The widthGpe de-
scribes the decay into product states and is assumed to be
equal to the sum of the natural radiative and predissociation
width of the bound state.

The stimulated width is proportional to the light intensity
and is calculated from Fermi’s golden rule[10,31],

Gegs«rd = 2pzkCesv,JeMepeduVlasuCg
+s«r,JgMgpgdlz2, s4d

where uCesv ,JeMepedl is the unit-normalized excited bound
state anduCg

+s«r ,JgMgpgdl is the energy normalized scatter-
ing ground state. The operatorVlas describes the coupling
between the ground and excited state by laser light. Details
of the close-coupled equations[32] that are solved to calcu-
late the bound and scattering states are described in Appen-
dix A. To describe the atom-photon interaction during a col-
lision, we adopt the treatment developed by Napolitanoet al.
[33]. The matrix elements ofVlas are given in Appendix B.

To highlight properties of the photoassociation lines, we
reduce the thermal average in Eq.(1) to the 2D integral

K "p

mkr
uSpgsD,pWc,pW r ;edu2L

=
kBT

hQT

2
Îp
E

−`

+`

dye−y2E
0

`

dx xe−x2 LsD,y,x2d, s5d

where y=−kW las·pWc/ sklaspMd and x=pr /pm are dimensionless
variables similar to those used in the description of pressure
and Doppler broadened spectral lines[34,35], QT
=s2pmkBT/h2d3/2, and

LsD,y,x2d =
GpeGegsx2DTd

sD + yDD + x2DT − De − Erec,mold2 + sGe/2d2 .

s6d

The quantitiesDT=kBT andDD="klas
Î2kBT/M are the ther-

mal and Doppler width, respectively.
Three limiting cases of the line shape, Eq.(5), are of

interest. The shape of the line is Lorentzian whenGe is much
bigger thanDD, DT, andGegs«rd. The denominator ofL can
then be pulled out of the integrals leading to a Lorentzian
profile with a full width at half maximum(FWHM) equal to
Ge. Such a line shape can be expected for strongly allowed
transitions at ultralow temperatures on the order of
nanokelvins, such as exist in Bose condensates[36,37].2

1It implies a sum over all product states.

2In a condensate, an extra factor of 1/2 appears in the rate coef-
ficient expression[38].

PHOTOASSOCIATION SPECTROSCOPY OF COLD… PHYSICAL REVIEW A 70, 062710(2004)

062710-3



In a second limiting case, the shape of the line is a “cutoff
exponential.” This profile can be obtained whenDT is much
larger thanDD andGe and the energy dependence ofGegs«rd
is neglected[compare the discussion in Ref.[18] where the
energy dependenceGegs«rd,«r

lg+1/2 describing the Wigner
threshold law behavior is considered]. The LorentzianL can
be replaced by ad-Dirac function with argumentD−De
−Erec,mol+x2DT and the integrals can be solved analytically.
In fact, the profile is proportional tous−DdexpsD /DTd, where
uszd is the Heaviside step function:uszd=1 for zù1 and
uszd=0 for z,1. The full width at 1/e of the exponential
line shape equals the thermal widthDT. This line shape is
most easily observed at magneto-optical trapping tempera-
tures on the order of a millikelvin.

Finally, for the unusual situation of extremely weak tran-
sitions at nanokelvin temperatures, one could try to achieve
conditions in whichDD is much bigger thanDT and Ge. In
such a case, the Lorentzian can again be replaced by ad
function but now with an argument that only depends ony
andD. The resulting line shape is a Gaussian with half-width
at 1/e of the maximum equal toDD.

In the usual treatment of the PA line shape, Doppler
broadening is neglected. To find conditions for which this
approximation breaks down, the relative importance of Dop-
pler and thermal effects must be determined. It is easy to
show that DD=DT at temperature T=TR, where TR
="2klas

2 / smkBd is the atomic recoil temperature. At tempera-
tures T.TR, thermal broadening dominates, while forT
,TR, Doppler broadening can determine the shape of the
line. In fact, this requirement is not sufficient. It is also nec-
essary to assume that the Doppler width is comparable to or
bigger thanGe.

The influence of the photon recoil on the PA spectra is to
a very good approximation described by a uniform shift,
Erec,mol, of all PA lines. It should be noted that the photon
recoil energy of the two-atom molecule is two times smaller
than the photon recoil energy of an isolated atomErec
="2klas

2 / s2md. This indicates that for molecular bound states
close to atomic levels, there should exist a transition region
from recoiling as a molecule to recoiling as an atom. Our
theory does not treat this effect and should only be applied to
molecular states with a binding energy that is much bigger
than the photon recoil energy.

III. INTERATOMIC HAMILTONIAN

Properties of photoassociation spectra are governed by the
interactions between colliding atoms. The interaction Hamil-
tonian is described in Appendix A and is similar to that dis-
cussed by Mieset al. [39] for the electronic structure and
spectroscopy of Hg2. This Hamiltonian includes nonrelativ-
istic Born-Oppenheimer potentials, the spin-orbit splitting of
the3P0,1,2 atomic states, relativistic coupling between1P and
3P states, and a term that incorporates the rotation of the two
atom-system.

Ab initio calculations of Born-Oppenheimer potentials,
with the exception of a few simple cases, do not give suffi-
ciently accurate predictions of absolute positions of molecu-
lar bound states. Therefore, theoretical potentials are used as

initial guesses, and modified at short interatomic separation
to reproduce experimental binding energies. Unfortunately,
there are no experimental data on binding energies near the
3P1+1S0 dissociation limit for the calcium molecule. As the
rovibrational structure is not known experimentally, we can
only map out possible spectra by varying the short-range part
of the potential.

The Born-Oppenheimer potentials have Hund’s case(a)
symmetry,2S+1uLus, whereS is the total electron spin,L is
the projection of the total electron orbital angular momentum
along the interatomic axis, ands=g/u describes the gerade
or ungerade symmetry of a state. Near the3P1+1S0 limit,
where the atomic spin-orbit interaction is much bigger than
the Born-Oppenheimer potentials, adiabatic potentials are
better described by Hund’s case(c) symmetry,uVus

±, whereV
is the projection of the total electron angular momentum
along the interatomic axis, and forV=0, the label6 de-
scribes the symmetry under a reflection of the electronic
wave function. The adiabatic Hund’s case(c) potentials are
obtained by simultaneous diagonalization of the Born-
Oppenheimer potentials and the spin-orbit coupling.

Relevant data about the interaction potentials between
alkaline-earth-metal atoms in the ground and excited states
have been compiled by Kotochigova and Julienne[25]. The
Ca2 potentials[25] are shown in Fig. 3. Czuchajet al. [40]
have published a similar set of potentials. It is convenient to
use atomic units. The atomic unit of length is equal to a Bohr
radiusa0=4pe0"2/ smee

2d=0.052 917 72 nm; the atomic unit
of energy is equal to the Hartree energyEH="2/ smea0

2d
=4.359 744310−18 J. Hereme, e, and e0 are the electron
mass, electron charge, and the electric constant, respectively.

The X 1Sg
+ electronic ground-state potential of Ca2 has

been determined by Allardet al. [27]. Parameters of the po-
tential are listed in Table 1 of this reference. For large inter-
atomic separations, the potential asymptotically approaches a
van der Waals potential withC6sX 1Sg

+d=2081.18EHa0
6. The

atomic unit of C6 is EHa0
6=0.957 343 4310−79 J m6. The

scattering length for this potential isascat=389.8a0.
The excited-state interaction potentials between calcium

atoms dissociating to the1P1+1S0 and3P0,1,2+
1S0 limits for

short-range interatomic separations have been modeled using
the adiabatic1,3Sg,u

+ and 1,3Pg,u potentials. These adiabatic
potentials are determined on the basis ofab initio calcula-
tions of Ref. [25] and smoothly connected to their
asymptotic functional form. The form isC6/ r6 for triplet
states andC3/ r3 for singlet states, respectively. Triplet poten-
tials dissociate to the3P+1S limits, while singlet potentials
dissociate to the1P+1S limit.

In the model describing interaction of two calcium atoms,
we do not include potentials correlating to1D2+1S0 [41] and
3D1,2,3+

1S0 dissociation limits. These potentials could give
rise to molecular bound states near the3P1+1S0 limit, but the
sparse density of states makes it unlikely that such levels
occur in a small energy interval close to the3P1+1S0 disso-
ciation limit.

Dispersion coefficients for two ground-state atoms are
well known for many atomic species[27,42,43]. For excited
atoms, however, there are few data. For a calcium atom in
the ground1S state interacting with another calcium atom in
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the excited3P state, the long-range dispersion coefficients
have been recently calculated by Derevianko and Porsev
[26]. The attractive Hund’s case(c) uVug/u

± potentials correlat-
ing to the 3P1+1S0 limit have C6s0g/u

+ d=2462EHa0
6 and

C6s1g/ud=2593EHa0
6 [26]. For this paper, however, dispersion

coefficients are needed for Hund’s case(a) 2S+1uLug/u Born-
Oppenheimer potentials. Following Ref.[39], we have
C6s0g/u

+ d=C6s3Pg/ud, C6s1g/ud=fC6s3Sg/ud+C6s3Pg/udg /2, and,
therefore,C6s3Sg/ud=2724EHa0

6, C6s3Pg/ud=2462EHa0
6. Der-

evianko and Porsev[26] found that the splitting between the
long-rangeS and P potentials is small. This small aniso-
tropy for the quasi-two-electron atom is qualitatively differ-
ent from analytical predictions for single-electron excited
alkali-metal atoms interacting with rare-gas atoms[44,45].
Older data[46] do not agree with the results of Ref.[26].

The lifetime of the atomic1P1 state determines the dipole-
dipole interaction coefficients,C3, of the singlet potentials.
In fact, C3s1uLusd=zs1uLusdC3

s0d, where C3
s0d=s3/4dGAs1P1d

3flAs1P1d / s2pdg3, GAs1P1d=" /tAs1P1d is the natural width
of the excited1P1 state, andlA is the wavelength of the
corresponding radiation. The coefficientzs1uLusd is defined
by zs1Sgd= +2, zs1Sud=−2, zs1Pgd=−1, and zs1Pud= +1.
For calcium,tAs1P1d=4.59 ns[19,47].

Retardation effects[48,49] do not change our main con-
clusion. The calcium bound states of interest are mostly con-

fined to interatomic separations that are small compared to
the wavelengthlAs1P1d. Under such circumstances, retarda-
tion effects can be neglected. Moreover, this implies that
photoassociation of two ground-state atoms can only excite
the ungerade states. Therefore, Fig. 3 only shows ungerade
excited potential curves.

IV. RESULTS

Photoassociation spectra near the3P1+1S0 limit are ex-
pected to be weak because the atomic transition dipole to the
intercombination line is nearly forbidden. As we will show,
such spectra can most easily be measured at ultracold tem-
peratures on the order ofmK and below. At these tempera-
tures, onlys-wave collisions will contribute to the spectrum.
Consequently, contributing transitions are between the
groundgeradescattering state,uCg

+s«r ,JgMgpgdl, with total
molecular angular momentumJg= lg=0 and parity pg=1,
where lg is the rotational angular momentum between the
atoms, and excitedungeradebound statesuCesv ,JeMepedl
with Je=1 andpe=−1. For total molecular angular momen-
tum Jg=0 andJe=1, there are one and five coupled channels,
respectively(see Appendix A). The excited-state channels
for oddJe and negative total paritype do not include the3P0
atomic state and, therefore, the predissociation widthGe,dis in
Eq. (4) is zero.3

Figure 4 shows an example of a bound-state structure and
the corresponding spectrum. The PA spectrum is a reflection
of the rovibrational structure of excited molecules. In this
case, lines are assigned to the Hund’s case(c) 0u

+ or 1u sym-
metry.

Details of the Born-Oppenheimer potential at short inter-
atomic separation are insufficiently known for a quantitative
prediction of the bound-state locations. Therefore, we have
modified the short range of the3Pu potential to demonstrate
how a spectrum can change. The 0u

+ and 1u potentials corre-
late to the3Pu and3Su

+ potentials at short range, respectively.
Consequently, by changing the3Pu potential we can change
the location of the 0u

+ bound states while leaving the position
of 1u bound states virtually unchanged. It is convenient to
define “bins” of the 0u

+ potential as energy intervals with
edges marked by the 0u

+ energy levels calculated with a3Pu
potential, such that the last bound state is exactly on the
3P1+1S0 threshold. As the short-range3Pu potential is
changed, there is always exactly one 0u

+ bound state in each
bin. The “bin edges” for 0u

+ states are shown in Fig. 4. The
“bins” illustrate the density of features one might expect in
an experimental spectrum.

Figure 5 shows PA spectra for two3Pu potentials in order
to illustrate the limiting cases of overlapping and nonover-
lapping 0u

+ and 1u bands. The PA spectra are calculated using
the line shape formula derived in the previous section and

3Excited bound states with evenJe and negative parity can pre-
dissociate to a scattering state dissociating to the3P0+1S0 limit.
Such a level can only be excited fromJg= lgù2 ground scattering
states and the excitaion probability is negligible at ultracold tem-
peratures on the order ofmK and below.

FIG. 3. Adiabatic potentials of two calcium atoms as a function
of interatomic separation. The inset shows a blowup of the region
near the3P+1S limits. At short range, the potentials are labeled by
their Hund’s case(a) symmetry and in the inset by a Hund’s case(c)
symmetry label. Ungerade excited states, accessible by an optically
allowed transition from the groundX 1Sg

+ potential, are shown.
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take into account Doppler broadening. In both spectra, the
last five vibrational levels of 0u

+ and 1u symmetry are shown.
The PA rate coefficient increases by nine orders of magnitude
near each vibrational level. Observable trap loss is on the
order of 10−12 cm3 s−1. In principle, ion detection allows
measurement of weaker PA lines than is possible with trap
loss. On the frequency scale of the figure, the location of the
1u vibrational lines for the two potentials is almost the same.

A spectrum in which lines with 0u
+ and 1u symmetry are

far apart from one another is shown in Fig. 5(a). In this case,
the projectionVe of the electronic angular momentumje on
the intermolecular axis is a good quantum number and bound
states can be labeled by the Hund’s case(c) coupling
scheme. This kind of spectrum has been observed in prelimi-
nary experiments on strontium near the1S0−3P1 line by Ido
and Katori[50].

The rather small anisotropy of the long-range dispersion
interaction of the 0u

+ and 1u potentials[C6s0u
+d<C6s1ud to

within 5%] can lead to a near coincidence of 0u
+ and 1u levels

over a range ofv. Such a case is shown in Fig. 5(b). For
closely spaced doublets, the projectionVe is not a good
quantum number, and bound states should rather be labeled
by the rotational angular momentumle as in the Hund’s case
(e) coupling scheme. It can be clearly seen that in each dou-
blet there is a strong and weak line corresponding tole=0
and le=2, respectively.

We have also studied the change in coupling scheme from
Hund’s case(c) to e for bound states very close to the mo-
lecular thresholds. By changing the shape of the3Pu poten-
tial, the last bound state, initially attributed to 0u

+ symmetry,
smoothly approaches threshold. Simultaneously, the wave

function smoothly changes its character as well. For a bind-
ing energyDe/h=−0.026 GHz, 90% of the wave function
hasVe=0 character, while forDe/h=−0.003 GHz, 90% of
the wave function can be attributed tole=0. In other words,
Hund’s case(c) holds for binding energies larger than
0.026 GHz.

In Fig. 5 and in the remainder of this paper, the natural
linewidth Ge,nat is approximated by 2GAs3P1d=0.663 kHz.
The natural linewidths calculated from the theory described
in the appendixes show that the width is less than about four
timesGAs3P1d for the detunings shown in Fig. 5. We believe
that our simple model cannot quantitatively describe the
natural widths. The treatment of the coupling between1P
and 3P states is not sufficiently accurate. For simplicity, we
assume the same natural linewidth for all lines.

Figure 6 displays the collision-energy dependence of the
stimulated widthGegs«rd for the 0u

+ lines shown in Fig. 5(a).
The ground-state potential has a scattering length of 389.8a0
and the laser intensity is 1 W/cm2. The width rapidly in-
creases for bound states closer to the threshold as the overlap
of the bound and scattering wave function grows. Moreover,
for collision energies smaller than«r /kB=100mK, the width
of all lines is proportional toÎ«r, satisfying the Wigner
threshold law. For a 1 W/cm2 laser intensity and collision

FIG. 4. (Color online) An example bound-state structure and
corresponding photoassociation spectrum of calcium near the inter-
combination line. The detuningD is defined relative to the3P1
+1S0 limit. The panel on the left shows the 0u

+ (dark line) and 1u
(light line) Hund’s case(c) adiabatic potentials as a function of
interatomic separationr. The bound states of these potentials are
indicated by the thick and thin solid horizontal lines, respectively.
The panel on the right shows the corresponding photoassociation
spectrum under typical conditions. Each peak corresponds to a
bound state in the left panel as indicated by the dashed lines. Fi-
nally, the short dotted lines on the left side of the graph indicate
“bin edges” of the 0u

+ potential.
FIG. 5. (Color online) Photoassociation spectra of calcium near

the intercombination line for two3Pu potentials. Panel(a) is for the
potential used in Fig. 4. Panel(b) is for a potential where the 0u

+ and
1u bands nearly overlap. The laser intensity is 1 W/cm2 and the
temperature of the gas isT=1 mK. The 0u

+ and 1u vibrational as-
signment is shown in panel(a). The last vibrational level is labeled
by “1.”
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energies less than 1mK, the stimulated width for four of the
vibrational levels is smaller than the natural width. There-
fore, the lines are unsaturated for most of the lines shown in
Fig. 5. The exception is those lines closest to resonance.

In order to show the temperature dependence of the shape
of a line, we have chosen line 2 of the 0u

+ band in Fig. 5(a).
Figure 7 shows the line shape for a temperature of 1 mK,
1 mK, and 1 nK with and without Doppler broadening. In
the absence of Doppler broadening,DD=0 in Eq. (6). For
these three temperatures, the thermal widthDT/h
=20 837 kHz, 20.8 kHz, and 0.021 kHz and the Doppler
width DD /h=694 kHz, 21.9 kHz, and 0.694 kHz, respec-
tively.

At a temperature of 1 mK, the line in Fig. 7(a) has the
typical “cutoff exponential” shape determined by thermal
broadening and is only slightly affected by Doppler broad-
ening. The width of the line is on the order of ten MHz and
the peak rate coefficient is 10−15 cm3 s−1. Such a low rate
coefficient makes trap loss hard to detect in typical ultra-
cold-atom experiments in a magneto-optical trap. In this
case, ion detection might be a sensitive alternative.

A 1 mK atomic-gas temperature is close to the recoil tem-
peratureTR=1.11mK. Under such conditions, both thermal
and Doppler broadening in the PA line shape are comparable.
Figure 7(b) demonstrates a significant difference between a
Doppler broadened profile and one without Doppler broad-
ening. The width of the line is on the order of 100 kHz and
the peak rate coefficient is 10−12 cm3 s−1. A trap-loss signal
should be observable for such rate coefficients.

In Fig. 7(c), a PA line shape for a thermal gas at 1 nK is
shown. Typically for such low temperatures and sufficiently
high densities, an atomic gas could be Bose condensed
(BEC) and a Boltzmann distribution of atomic momentum
should not be used. Here, we assume a low enough density
that condensation has not occurred. The line shape is an or-
dinary Voigt profile, which is determined by Doppler and
natural broadening. The natural widthGe,nat is 0.663 kHz.
The line is Lorentzian if Doppler broadening is neglected.
The width of the line is on the order of kHz and the peak rate

coefficient is 10−10 cm3 s−1. Moreover, the molecular recoil
energyErec,mol/h=5.775 kHz is significantly bigger than the
width of the line.

The width of the lines in Fig. 7 varies by four orders of
magnitude. The peak rate coefficient changes by five orders
of magnitude. Clearly, for temperatures on the order of 1mK
and below, photoassociation spectra should be observable.
Moreover, Doppler broadening is an important factor and
affects the shape of the lines significantly.

We have also analyzed the stimulated width of the 0u
+ lines

as a function of the scattering length in the1S0+1S0 ground
state and the binding energyDe of the excited 0u

+ bound
states. The scattering length is varied within the range al-
lowed by experiment[27]. The scattering length is varied by
slight modifications of the short-range part of the ground-
state potential. The binding energy of the 0u

+ bound states is
changed by modifying the3Pu potential as discussed above.

Figure 8 shows the stimulated width at a collision energy
«r /kB=1 mK as a function ofascat andDe. The figure shows
multiple nearly vertical dark structures, where the width is
nearly zero. There are two kinds of these structures: ones
accompanied by a parallel bright feature, whereGeg is large,
and those without. The latter structures are not quite vertical

FIG. 6. The stimulated width as a function of the kinetic energy
of a 1S+1S collision calculated for the five lines of the 0u

+ band
shown in panel(a) of Fig. 5. The laser intensity is 1 W/cm2. The
natural widthGe,nat/h=0.663 kHz is marked by the dashed line.

FIG. 7. The line shape of the 0u
+ line labeled 2 shown in panel

(a) of Fig. 5 as a function of laser detuning. Panels(a), (b), and(c)
show line shapes at a temperature of 1 mK, 1mK, and 1 nK, re-
spectively. Profiles that include and do not include Doppler broad-
ening are marked by solid and dashed lines, respectively. The laser
intensity is 1 W/cm2. The quantityDe is the binding energy of the
0u

+ rovibrational level relative to the1S0+1P1 dissociation limit.
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for smallerascat. The “first kind” of structure occurs when a
0u

+ bound state coincides with a 1u bound state. This mixing
is independent of any ground-state scattering property and
therefore the structures are vertical. The “second kind” of
dark structures occurs when the overlap of the scattering
wave function and the excited bound state vanishes. The
shape of the scattering wave function near the outer turning
point of the excited bound state does not change much when
the scattering length is on the order of a few hundreda0.
Therefore, these structures are nearly vertical. Nearascat
=300a0, a departure from vertical can be observed.

For photoassociation near strongly allowed atomic transi-
tions, such as occur in alkali-metal experiments[15,18] and
near the1P1 line of the alkaline earth metals[19], the overlap
vanishes for excited bound states with outer turning points
near the nodes of the ground-state wave function. Their de-
tuning De can be found with the help of the reflection ap-
proximation[14,28], which says that the Franck-Condon fac-
tor is proportional to the square of the ground-state wave
function at the positionrC for which the difference in the
excited- and ground-state potentials equals the photon fre-
quency.

In our case, the reflection approximation cannot be ap-
plied because the asymptotic potentials in the ground and
excited state are similar. The ground-state wave function has
nodes at 26.5a0, 32.4a0, and 46.1a0 for a scattering length
ascat=389.8a0 and a collision energy«r /kB=1 mK. For the
reflection approximation, the relation between detuning and
the outer turning point of the excited bound states is deter-
mined from a potential that is the sum of the Hund’s case(c)
potential Vs0u

+d and the rotational correctionf2+JesJe

+1dg"2/ s2mr2d. The potentialVs0u
+d approaches the3Pu po-

tential at large internuclear separation andJe=1. These
ground-state nodes correspond to outer turning point detun-
ings of −51.3 GHz, −15.0 GHz, and −1.6 GHz, respectively.
These detunings do not correspond with the dark lines in Fig.
8.

Appendix C gives another perspective of Fig. 8. The data
are described in terms of a near threshold vibrational quan-
tum number instead of the binding energy. Integer values of
this quantum number are related to the bins defined in Fig. 4.
This discussion is not crucial for the main thrust of the paper
and, therefore, has been placed in an appendix. It, however,
gives a deeper understanding of the physics involved and is
worth presenting.

Finally, we have investigated the possibility of creating
cold molecules in the ground electronic state via the photo-
association process. The similarC6/ r6 dependence of the
ground and excited potentials can make such a process more
efficient than making ground-state molecules through excited
states in which the asymptotic form of the potential isC3/ r3.
We have calculated rates for bound-bound transitions be-
tween 0u

+ excited states and1Sg
+ ground states. From these

rates, we have calculated the fraction of ground-state mol-
ecules, which after photoassociation are formed by natural
decay. Figure 9 presents the fractionfge of molecules in the
rovibrational statevg, Jg=0 of the1Sg

+ potential produced by
natural decay of rovibrational stateve,Je=1 of 0u

+ symmetry.
The fraction of avg, Jg=0 molecule is no more than 15%.
For ve.10, high vg vibrational levels of the ground-state
potential are produced, while forve,10, low vg levels are
produced. Nevertheless, even for highve, a few percent of
the ground-state molecules have lowvg. The fraction of mol-
ecules decaying toJg=2 vibrational states of the1Sg poten-
tial has also been calculated, but is not shown. It was found
that the fraction of excited molecules decaying to theJg=2
vibrational states is bigger than those decaying to theJg=0
vibrational states. Rotational states withJg=1 do not exist
because of Bose symmetrization(see Appendix A).

Adding theJg=0 and 2 fractionsfge of molecules shows
that most of the spontaneous emission of ave, Je 0u

+ rovibra-
tional level goes to ground molecular bound states. In fact,
for ve,19 more than 80% of the decay is to molecular
states. The only exception is the last vibrational level,ve
=19, corresponding to line 1 in Fig. 5(a), for which 30% of
the decay is to molecular states. We have also found that the

FIG. 8. (Color online) The stimulated linewidth of the 0u
+ band

as a function of their line position(binding energy) De and scatter-
ing lengthascat of the ground-state potential. The laser intensity is
1 W/cm2 and the kinetic energy of the collision is«r /kB=1 mK.

FIG. 9. (Color online) The fractionfge of molecules in rovibra-
tional statevg, Jg=0 of the1Sg

+ potential produced by natural decay
of rovibrational stateve, Je=1 of 0u

+ symmetry.
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spontaneous decay rate of deeply bound excited states can be
one order of magnitude larger than 2GAs3P1d /".

The potentials[25] used in our model calculations differ
from those by Czuchajet al. [40]. In particular, their3Pu
potential is much deeper than that of Ref.[25]. Recent ex-
perimental results obtained by Tiemann[51] also favor a
deep3Pu potential.4 Obviously, a deeper3Pu potential has a
larger number of bound states. Nevertheless, the properties
of the photoassociation spectra near threshold are almost un-
changed. Tests show that the intensity of the lines does not
change by more than a few percent if the positions of the last
bound states for both deep and shallow3Pu potentials are the
same. This also implies that the spacing between lines is not
changed. It is caused by the fact that the long-range van der
Waals interaction between the atoms determines the proper-
ties of the spectrum. Significant changes in the spectrum are
observed, however, for detunings where the interaction en-
ergy cannot be described by the van der Waals potential.

V. CONCLUSIONS

We have developed a description for the shape of photo-
association lines for weak transitions in which the natural
width is smaller than the Doppler width. The line-shape
theory includes Doppler broadening and a photon recoil
shift. It was shown that the Doppler effect significantly af-
fects the PA line shape when the gas temperature is on the
order of the recoil temperature and below.

A model calculation for calcium has been carried out. It is
an example of photoassociation near the intercombination
line of alkaline-earth-metal atoms. We find that photoasso-
ciation spectroscopy should be possible at calcium gas tem-
peratures on the order ofmK and below. In addition, it was
shown that when the long-range potentials of the ground and
excited state are similar, the reflection approximation
[10,14,28] incorrectly estimates the stimulated width and
strength of PA lines. Finally, we have indicated that excited
molecules are very likely to decay to vibrational levels of the
electronic ground state. This can be used as an effective way
to produce cold molecules.
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APPENDIX A: CLOSE-COUPLING CALCULATIONS

The quantum theory of slow-atom collisions[52,53] al-
lows a quantitative description of the scattering process and
bound states. We apply this theory to describe the slow col-
lisions and bound states of alkaline-earth-metal atoms.

Scattering or bound states of two identical alkaline-earth-
metal atoms with zero nuclear spin can be described in the
basis

uSLjlJMJ;pl ; o
mj,ml

k jlmjmluJMJluSLjmj ;slYlml
su,fd,

sA1d

where theuSLjmj ;sl describe the electronic state of the mol-
ecule andYlmsu ,fd is a spherical harmonic describing the

nuclear rotation. The quantityLW is the total electron orbital

angular momentum,SW is the total electron spin angular mo-

mentum,jW=LW +SW is the total electron angular momentum,lW is

the rotational angular momentum, andJW = lW+ jW is the total

angular momentum. The projections ofjW, lW, andJW on a space-
fixed z axis aremj, ml, andMJ, respectively. The quantityp
is the total parity.Gerade sg,s= +1d and ungeradesu,s
=−1d electronic states correspond to total parityp= +1 and
p=−1 states, respectively. This is a consequence of the more
general rule for atoms with nonzero nuclear spinp
=ss−1dIT, whereIT is the total nuclear spin of the two atoms.
The total parity restricts the allowedl by p=pApBs−1dl,
wherepA andpB are the atomic parities. The atomic parity is
+1 for the ground1S state and −1 for excited1P and 3P
states.

The molecular HamiltonianH=T+HA+Vint+Vrot is calcu-
lated in theuSLjlJMJ;pl basis. Here,T=−f"2/ s2mdgd2/dr2 is
the kinetic energy operator,HA is the atomic Hamiltonian,
Vint are the nonrelativistic Born-Oppenheimer potentials, and

Vrot="2lW2/ s2mr2d describes the rotational energy. The matrix
elements for the kinetic and rotational energy are diagonal
in this basis. In fact, kSLjlJMJ;puTuSLjlJMJ;pl
=−f"2/ s2mdgd2/dr2 and kSLjlJMJ;puVrotuSLjlJMJ;pl="2lsl
+1d / s2mr2d.

The matrix elements for the Born-Oppenheimer potentials
are calculated in two steps. The first step involves transform-
ing the molecular electronic stateuSLjmj ;sl into a body-
fixed coordinate system. That is into a superposition of
uSLjV ;sl states, whereV is the projection ofjW on the inter-
nuclear axis. After some algebra, the matrix elements are
given by

kS8L8 j8l8J8MJ8;p8uVintuSLjlJMJ,pl = dp8,pdJ8,JdMJ8,MJ
Îs2l8 + 1ds2l + 1d

s2J + 1d2 o
V

k j8l8V0uJ8Vlk jlV0uJVlkS8L8 j8V;suVintuSLjV;sl,

sA2d

4Results by Tiemann[51] were not available before submission of
this paper.
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i.e., the operatorVint is diagonal inJ, MJ, and p but not
diagonal inj and l. A similar transformation is discussed by
Napolitanoet al. [33] in the context of ultracold collisions
between atoms in the1S0 and1P1 states.

The next step is to express the body-fixed electronic states
uSLjV ;sl=oS,LkSLSL u jVluSLSL ;sl in terms of
uSLSL ;sl, whereS andL are projections ofS andL along
the internuclear axis. In other words,

kS8L8 j8V8;s8uVintuSLjV;sl

= o
S8,L8,S,L

kS8L8S8L8u j8V8lkSLSLu jVl

3kS8L8S8L8;s8uVintuSLSL;sl. sA3d

The Born-Oppenheimer potentials are diagonal in this
uSLSL ;sl basis and the diagonal matrix elements are
kSLSL ;suVintuSLSL ;sl=Vints

2S+1uLusd.
Finally, we calculate matrix elements of the Hamiltonian

HA for two noninteracting atoms, where one atom is always
in the 1S0, state while the other atom can be in the state1S0,
1P1, or 3P2,1,0. Because one atom is in the1S0 state, the
molecular angular momentaS, L, and j in Eq. (A1) are
equivalent to those of the second atom.

A realistic description of the atomic Hamiltonian should
include relativistic coupling between singlet1P1 and triplet
3P1 states. Therefore, the atomic Hamiltonian is not diagonal
in the basis of Eq.(A1). Following Mies et al. [39],
“dressed” electronic states forj =1, which are a mixture of
singlet and triplet, are introduced as follows:

uS̃= 0,Ljmj ;sl

; cossaduS= 0,Ljmj ;sl + sinsaduS= 1,Ljmj ;sl,

and

uS̃= 1,Ljmj ;sl

; − sinsaduS= 0,Ljmj ;sl + cossaduS= 1,Ljmj ;sl,

wherea is a small mixing angle. Forj =0 and 2, we have

uS̃Ljmj ;sl= uSLjmj ;sl. We assume that in this dressed basis,
the atomic Hamiltonian is diagonal with diagonal matrix el-

ements kS̃LjlJMJ;puHAuS̃LjlJMJ;pl=EAs2S̃+1Ljd, where

EAs2S̃+1Ljd is the energy of the dressed state2S̃+1Lj relative to
the 1S0 ground state.

The mixing anglea is determined by the requirement that

the dressed basisuS̃Ljmj ;sl reproduces the experimental
transition probabilities between the excited1,3P1 states
and the ground1S0 state. The angle can then be related
to the ratio of the experimental dipole moments of these
transitions. In fact, we used tansad
=ÎfEAs1P1d /EAs3P1dg3ftAs1P1d /tAs3P1dg. This approach is
only an approximation of the description of a real alkaline-
earth-metal atom[39]. For the purposes of this paper, how-
ever, it is sufficient. The values for the energies and lifetimes
have been obtained from Refs.[19,47,54] and listed in Table
I. The experimental results on the3P1 lifetime are compared

by Drozdowskiet al. [54], and some uncertainty still exists.
We have chosen the estimated value of Ref.[19], which lies
between the experimental values.

The molecular HamiltonianH conservesJ, MJ, andp. In
fact, the matrix elements ofH in the basis of Eq.(A1) for
given J and p are independent ofMJ. It is convenient to

introduce the channelsugl= uSLjlJMJ;pl, ug̃l= uS̃LjlJMJ;pl,
and note thatkg̃8uHug̃l=og8,gkg̃8 ug8lkg8uHuglkg u g̃l. Close-
coupling equations for the molecular wave functionuCl
=og̃ug̃lFg̃srd / r can be written as

−
"2

2m

d2

dr2Fg̃srd + o
g̃8

kg̃uHA + Vint + Vrotug̃8lFg̃8srd = EFg̃srd,

sA4d

where E is the total molecular energy. These coupled
Schrödinger equations are solved numerically to find scatter-
ing and bound states.

The collision between two ground-state atoms can be
solved separately from that of a ground- plus an excited-state
atom. Moreover, for photoassociation of Ca we need scatter-
ing solutions of the Schrödinger equation for ground-state
collisions and bound states for ground-excited molecules.

For the collision of two ground-state atoms1S0+1S0, there
is only a single channel for givenJg, Mg, and pg. The
channel isuggl= uSgLgjglgJgMg;pgl with Sg=0, Lg=0, jg=0,
and lg=Jg. The two40Ca atoms are indistinguishable bosons
and, therefore, the wave function must be symmetric under
exchange of atoms and only channels with positive parity
p= +1 exist. Consequently, only evenlg=0,2,4, . . . are al-
lowed and the atoms interact on the gerade electronic state
1Sg

+. Solving the Schrödinger equation withE=«r .0, we
obtain the scattering wave functionuCg

+s«r ,Jg,Mgdl
= ugglFgg

+ srd / r. This wave function occurs in the stimulated
width defined by Eq.(5). For larger, the wave function goes
to Fgg

+ srd→Î2m / sp"2krdsinskrr +plg/2+hlg
dexpsihlg

d
[14,15]. Our interest will be in the solution forJg= lg=0 or
s-wave collisions. For collisions at ultralow temperatures,
other partial waves do not contribute significantly.

For molecules formed by a ground- and excited-state
atom, there are multiple channels involved. The number of
channels is determined byJe and pe. Photon selection rules
limit the allowed total angular momentum of the excited
bound states toJe=Jg,Jg±1 and their parity tope=−pg. For
Jg=0 or s-wave collisions, PA can only makeJe=1 andpe
=−1 bound states. Table II lists the five channels forJe=1

TABLE I. The values of energies and lifetimes of Ca atomic
states used in this paper.

2S+1Lj EAs2S+1Ljd fcm−1g tAs2S+1Ljd

1P1 23 652.304 4.59 ns
3P2 15 315.943
3P1 15 210.063 0.48 ms
3P0 15 157.901
1S0 0.000
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and pe=−1. The first two channels correspond to1S0+3P1
states. There are no channels withje=0 and, since the atomic
energies satisfyEAs3P0d,EAs3P1d,EAs3P2d, predissociation
of bound states below the1S0+3P1 limit does not occur. In
fact, this is true for all oddJe andpe=−1.

The numerical solutions of the Schrödinger equation for
the scattering collision in the ground state are calculated us-
ing the Numerov method[55,56] implemented in the close-
coupling code developed by Mies, Julienne, and Sando[57].
The coupled-channel bound-state calculations for the excited
state are carried out using the discrete variable representation
(DVR) [58,59] following Tiesingaet al. [60].

APPENDIX B: INTERACTION WITH LIGHT

In our treatment of the photoassociation process, we need
the stimulated width, defined by Eq.(4), between the scatter-
ing ground state and the excited bound states. The stimulated
width can be expressed as

Gegs«rd = 2pUo
g̃e

E
0

`

drkg̃euVlasugglFg̃e

* srdFgg

+ srdU2

,

sB1d

where the wave functions are expressed in terms of channel
functions Fg̃e

srd and Fge

+ srd and kg̃euVlasuggl are matrix ele-
ments between channels in the ground and excited state. If
we only consider dipole transitions and neglect the
r-dependence of the dipole function at short[40] and long
[19] range, this matrix element is independent of the inter-
atomic separationr and given by

kg̃euVlasuggl =Î2pI

c

1
Î4pe0

kg̃eudW ·eWquggl, sB2d

where the laser has intensityI and polarizationeWq, and

kg̃eudW ·eWquggl=oge
kg̃eugelkgeudW ·eWquggl is the molecular dipole

matrix element between spin channels.
Napolitanoet al. [33] discuss the connection between mo-

lecular and atomic dipole matrix elements. A similar ap-
proach is used here to find matrix elements. The molecular
dipole matrix elements between the ground and excited state
are

kSeLejeleJeMe;peudq
KuSgLgjglgJgMg;pgl

=Îs2le + 1ds2lg + 1d
s2Je + 1d2 kJgKMgquJeMel

3 o
Vg,Ve,q8

kJgKVgq8uJeVelk jeleVe0uJeVelk jglgVg0uJgVgl

3 kSeLejeVe;seudq8
K uSgLgjgVg;sgl, sB3d

where the spherical tensor operatordq
K=dW ·eWq with K=1 and

q=−1,0, or +1. In Eq.(B3), we have expressed the dipole
operator in a body-fixed coordinate system. For both singlet
S=0 ground and excited states, we realize thatuSLjV ;sl
= uSLSL ;sl and thusj =L andV=L. It then follows

kSeLejeVe;seudq
KuSgLgjgVg;sgl

= kSeLeSeLe;seudq
KuSgLgSgLg;sgl, sB4d

for electronic states withzerototal electron spinSe=Sg=0. In
the uSLSL ;sl basis, the dipole operator can be evaluated in
terms of the atomic linewidth,GAs1P1d, of the 1P1 atomic
state decaying to the ground1S0 state. There are four distinct
matrix elementsk010L ;sudL

1 u0000;gl=ds1uLusd given by

ds1uLusd =Î3

4
SlAs1P1d

2p
D3

4pe0GMs1uLusd , sB5d

whereGMs1uLusd is the molecular linewidth. Theds1uLusd are
r-independent quantities as we neglect retardation[19,48,49]
and, therefore, the molecular linewidth can be well approxi-
mated by GMs1uLuud=2GAs1P1d for ungerade states and
GMs1uLugd=0 for gerade states. In our phase convention, the
ds1uLusd are positive. The molecular dipole matrix elements
between the tripletSe=1 and the groundSg=0 states are
zero.

APPENDIX C: NEAR THRESHOLD VIBRATIONAL
QUANTUM NUMBER

Following LeRoy and Bernstein[61], the JWKB quantum
condition for the eigenvalues of energiesE for a potential
Vsrd is that FsEd=vp, where v is an integer and the
phaseFsEd=FJWKBsEd−p /2. HereFJWKBsEd=er1

r2drksE,rd
is the semiclassical phase integral ofkfE,rd
=ÎfE−Vsrdg2m /" calculated between the classical turning
points r1 and r2. This criterion is valid for deeply bound
states but breaks down near the dissociation limit[62]. It can
be shown that for energiesE close to the threshold, this
condition still holds[63] if the phaseFsEd is modified in the
following way: FsEd=FJWKBsEd−p /2−p / s2q−4d for long-
range potentials of the formVsrd=Cq/ rq. A recent discussion
on improvements to the LeRoy-Bernstein approach can be
found in Ref.[64].

The phaseFsEd allows us to define ageneralized vibra-
tional quantum number asfFsEd−v0pg /p, a continuous
function of energyE, where v0 is an arbitrary constant,
which does not need to be an integer. Forv0=0, the gener-
alized vibrational quantum number is0,1, . . . ,vmax−1, or

TABLE II. The allowedJe=1, pe=−1, andMe=0, ±1 dressed
channels of interacting ground- and excited-state alkaline-earth-
metal atoms.

ug̃el S̃e Le je le

1 1 1 1 0

2 1 1 1 2

3 1 1 2 2

4 0 1 1 0

5 0 1 1 2
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vmax whenE is equal to the energy of a bound state. Here, a
zero value corresponds to the most deeply bound state and
vmax is the vibrational quantum number of the last bound
state. At the dissociation limit, this generalized vibrational
quantum number equalsvD=Fs0d /p and, in general, can
have a noninteger value[61].

In the analysis of bound states near the threshold, it is
convenient to setv0=vD or v0=vmax+1. In the first case, the
generalized vibrational quantum number is equal to zero at
threshold. Negative integers −1,−2,−3, . . . correspond to en-
ergies that mark the edges of “bins,” in which there is exactly
one bound state. Only for integervD, however, do “bin
edges” coincide with bound-state energies of the potential. In
fact, “bin edges” were introduced in this way in Fig. 4. A
second useful choice ofv0 is v0=vmax+1. It allows us to
define anear threshold vibrational quantum number, which
has values −1,−2,−3, . . . for bound states counting from the
top. The near threshold vibrational quantum number forE
=0 is vD−vmax−1, and lies between −1 and 0.

In practice, for energies far from threshold but not far
enough to justify the use of the JWKB approximation, the
energy dependence of the effective vibrational quantum
number can be calculated using expressions given by Mies
[65]. Following Refs.[65,66], we define a near threshold
vibrational quantum numbernsEd /p as a continuous func-
tion of energyE, wherensEd is the phase difference between
two solutions of the Schrödinger equationfsrd and fsrd at
the equilibrium separation,re, of the potentialVsrd. The
function fsrd is obtained by solving the Schrödinger equation
assuming thatfs0d=0. The functionfsrd is obtained by solv-
ing the Schrödinger equation assuming thatfs`d=0. Then
tanfnsEdg can be calculated from[65]

tanfnsEdg =
ksE,redffsredf8sred − fsredf8sredg
k2sE,redfsredfsred + f8sredf8sred

, sC1d

where the primes denote the first derivative with respect tor.
The near threshold vibrational quantum number, defined this
way, has an integer value for energies corresponding to the
bound states of the potentialVsrd.

A connection between the near threshold vibrational
quantum number and the binding energiesDe of the multi-
channel excited bound states, used in Fig. 8, can be made
using quantum defect theory[65]. The theory states that the
shapeof the energy dependence ofnsEd near threshold is
nearly independent of the short-range form of the potential
and that we can replace the energyE in Eq. (C1) by the
binding energyDe.

The near threshold vibrational quantum numbernsDed /p
for a potentialVs3Pud+f2+JesJe+1dg"2/ s2mr2d as a function
of De is shown in Fig. 10. For this potential, the short-range
shape is adjusted to obtainsingle-channelbound states(or
negative integer near threshold vibrational quantum num-
bers) for binding energies equal to −1.39 GHz, −8.71 GHz,
−25.56 GHz, and −54.01 GHz. These values agree well with
the multichannel “bin” edges −1.45 GHz, −8.75 GHz,
−25.56 GHz, and −53.94 GHz shown in Fig. 4. In fact, for
binding energies below −0.026 GHz, the multichannel 0u

+

bound states are well approximated by this single-channel

Hund’s case(c) potential. The connection between integer
nsDed /p and the multichannel bin edges breaks down for
smaller binding energies as Coriolis mixing changes the mul-
tichannel coupling scheme from Hund’s case(c) to (e). Since
a single channel cannot fully simulate the multichannel
bound states, the near threshold vibrational quantum number
nsDed /p=−0.2135 is not an integer forDe=0.

Figure 11 shows the results of Fig. 8 in terms of the near
threshold vibrational quantum numbernsDed /p instead of
the binding energyDe. It is clearly seen from Fig. 11 that for
nsDed /p betweenv and v+1, wherev=−4,−3, or −2, and

FIG. 10. (Color online) The near threshold vibrational quantum
numbernsDed /p of the potentialVs3Pud+f2+JesJe+1dg"2/ s2mr2d
with Je=1 as a function of the binding energyDe. The dashed lines
indicate the binding energies at whichnsDed /p is an integer. The
value ofnsDed /p at De=0 is also indicated.

FIG. 11. (Color online) The stimulated linewidth of the 0u
+ band

as a function of the near threshold vibrational quantum number
nsDed /p and the scattering lengthascatof the ground-state potential.
The laser intensity is 1 W/cm2 and the kinetic energy is«r /kB

=1 mK.
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thus for each corresponding bin, a pair of dark structures
occurs. In fact, the “first kind” of structure always appears at
nearly the same location within a bin. The “second kind” of

structure moves much more within a bin. Both observations
reflect the fact that theC6 coefficients of the ground- and
excited-state potentials are similar.
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