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In order to calculate the cross section for electron-positron pair production with capture of the electron into
theK shell of the target in relativistic scattering of heavy nuclei, we apply the semiclassical method and solve
the time-dependent Dirac equation in time-reversal symmetry, starting with a 1s1/2 state at the target. The
solution is carried out numerically on a three-dimensional lattice in coordinate space. Cross sections for
excitation, ionization, electron transfer, and pair production with capture are obtained for collisions of
U92+sg=1.5d, Au79+sg=2d, and U92+sg=10 000d on U91+s1s1/2d and U92+, whereg is the Lorentz factor, and
compared with experimental data and other theoretical results.
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I. INTRODUCTION

The process of pair production with capture, also called
bound-free pair production, has been of great interest in the
recent years[1]. Because this process constitutes the domi-
nant electron capture mechanism for higher energies in
heavy ion collisions, it plays an important role in ultrarela-
tivistic heavy ion colliders where it causes the loss of accel-
erated nuclei and limits the lifetime of the beams[2]. First
measurements for bound-free pair production were per-
formed by Belkacemet al. [3] in 1993 and further experi-
mental investigations on its dependence on energy and
nuclear charges were published in the following years[4–6].

From the theoretical point of view, a description of pair
production with capture also includes the processes of exci-
tation, ionization and charge exchange if one considers the
time-reversal symmetry. The time-reverse process starts with
a bound electron state at the target and evolves according to
the time-dependent Dirac equation under the influence of the
projectile potential. Results for pair production with capture
were first obtained by Beckeret al. [7] in time-dependent
perturbation theory for the scattering on an92+U-target with a
projectile energy up to 100 GeV/nucleon. Eichler[8] consid-
ered the pair production as a charge transfer process from the
negative target continuum to the bound projectile state using
the OBK approximation.

The perturbation theory fails for the case of high charges
of the heavy ions and at small impact parameters. A strong
nonperturbative enhancement was found by Strayeret al. [9]
for muon pair production with capture by solving the Dirac
equation on a lattice with a three-dimensional spline collo-
cation method. Similar effects were observed in non-
perturbative calculations for relativistic energies of the heavy
ions by Rumrichet al. [10] using a one-center coupled chan-
nel method and, for example by Gailet al. [11], with one-
and two-center coupled channel calculations.

For high energetic collisions, Baltzet al. [12] obtained the
cross section for bound-free pair production in the forms
=A ln g+B, whereg is the Lorentz factor of the projectile
andA andB are constants. For Pb82+-Pb82+ collisions at en-
ergies of the Brookhaven Relativistic Heavy Ion Collider

(RHIC), Baltz et al. [13] found only a small nonperturbative
enhancement of a few percent.

In our group only two-dimensional grid solutions of the
Dirac equation for zero impact parameter[14,15] were con-
sidered up to now. Here we present a new investigation for
pair production with capture where we solve the time-
dependent Dirac equation in coordinate space on a three-
dimensional lattice. It should be mentioned that three-
dimensional calculations with the spline-collocation method
in coordinate space were already done by Strayeret al. [9]
and Wellset al. [16–18] for muon pair production with cap-
ture in heavy ion collisions. Also, three-dimensional lattice
calculations in momentum space were carried out by Mo-
mbergeret al. [19] for Au79++U91+ collisions at low and
medium relativistic energies, mostly for zero impact param-
eter.

The aim of this paper is to give the methods to solve a
time-dependent two-center Dirac equation in three spatial di-
mensions numerically. Starting with a 1s1/2 state around the
target ion we calculate the wave function and extract the
probabilities for excitation, ionization, transfer and electron-
positron pair production with capture of the electron into the
K shell of target after the collision. Then we compare the
results with experimental data and other theories as far as
possible. We find serious difficulties to interpret the numeri-
cally gained wave functions in terms of the calculated prob-
abilities for the created electron-positron pairs. The reason
for these difficulties lies in our unknowing about the exact
positron states in the field of two moving ions.

In Sec. II we review the semiclassical theory of pair pro-
duction with capture. The procedure for solving the time-
dependent Dirac equation on a three-dimensional grid is
given in Sec. III. In Sec. IV we present and discuss the
results of our calculations for U92+s466 MeV/nucleond
+U91+, Au79+s930 MeV/nucleond+U91+ and for the ul-
trarelativistic scattering of U92+ on U91+.

II. THEORY

We consider the process of electron-positron pair produc-
tion as an excitation of an electron of the fully occupied
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negative continuum into a bound or positive continuum state
(see Ref.[1]). The wave functions of these states fulfill the
time-dependent Dirac equation with the following Hamil-
tonian written in the target system:

H = H0T + WP, s1d

where

H0T = cap + bmc2 − eVT, s2d

WP = ecaAP − eVP s3d

with

VT =
1

4p«0

ZTe
Îx2 + y2 + z2

, s4d

VP =
g

4p«0

ZPe
Îx2 + sy − bd2 + g2sz− vPtd2

, s5d

AP =
b

c
VPez. s6d

Here, we apply the semiclassical approximation and treat the
nuclei as point charges with charge numbersZP andZT, re-
spectively, moving classically on straight lines with a con-
stant velocityvP of the projectile in the target system and an
impact parameterbfb=vP/c,g=s1−b2d−1/2g. Further,H0T is
the unperturbed target Hamiltonian with analytic Coulomb-
Dirac eigenfunctionsfl±,

H0Tfl±sr d = El±fl±sr d. s7d

The indexl+ denotes a state of the positive continuum or a
bound state andl− a state of the negative continuum. These
states are used to fix the initial conditions of the solutions of
the time-dependent Dirac equation with the Hamiltonian(1).
Writing this equation as

HCl±sr ,td = i"
]

]t
Cl±sr ,td, s8d

we demand as initial condition fort→−`,

lim
t→−`

Cl±sr ,td = fl±sr dexps− iEl±t/"d. s9d

Then, by using a field-theoretical approach the expectation
values of the numbers of created electrons and positrons per
state can be calculated as

Nl+
e−

= o
m−

ukufl+uCm−sr ,t → `dlu2, s10d

Nl−
e+

= o
m+

ukufl−uCm+sr ,t → `dlu2. s11d

Equation (10) [and equivalently(11)] can be rewritten by
using the time-reversal symmetry,

Nl+
e−

= o
m−

ukufm−uCl+sr ,t → `dlu2. s12d

The advantage of Eq.(12) compared to Eq.(10) is that only
one single time evolution must be carried out. For example,
if one is interested in the electron-positron creation with cap-
ture of the electron into a bound statel+, one must calculate
the time evolution ofCl+sr ,td with Eq. (8). In the following
we only consider the time evolution of the 1s1/2 state which
yields information on the electron-positron pair creation with
capture of the electron into the 1s1/2 state.

The expectation values(10)–(12) of numbers of created
electrons and positrons are interpreted as probabilities for the
creation of the corresponding particles. Cross sections are
obtained by integrating the probabilities multiplied with the
factor 2pb over the impact parameter.

III. DESCRIPTION ON THE LATTICE

A. Discretized Dirac equation

We introduce an equidistant three-dimensional Cartesian
grid on which we define finite elements with respect to each
Cartesian coordinate. The corresponding basis functions on
the grid are written as products of the formwisxdw jsydwkszd.
The indices si , j ,kd denote a grid pointPijk =sxi = ih ,yj

= jh ,zk=khd with is j ,kd=1,2,3, . . . ,NxsNy,Nzd where h is
the grid width. The functionswisxdw jsydwkszd are real, ex-
tended over a small number of elements and symmetric
around their middle pointsPijk. They are chosen(see Sec.
III C ) to fulfill the equations on the grid points

wisxi8d = dii8, w jsyj8d = d j j 8, wkszk8d = dkk8. s13d

This means that, for example, the functionwisxd is one at its
middle pointx=xi and has zeroes at the other grid points.

Then we choose an ansatz for the time-dependent solution
Csr ,td of the Dirac equation(8) in terms of these basis func-
tions, which are assumed as real. By omitting the signature
l± we write

Csr ,td = o
i,j ,k

wisxdw jsydwkszd1
aijk

1 std
aijk

2 std
aijk

3 std
aijk

4 std
2 . s14d

Inserting this expansion into(8) and projecting with the real
basis functions, we obtain a matrix equation for the time-
dependent expansion coefficientsaijk

n std which are collected
in a spinorastd:

i"M
d

dt
astd = Hastd s15d

with

BUSIC, GRÜN, AND SCHEID PHYSICAL REVIEW A70, 062707(2004)

062707-2



astd =1
a111

1 std
a111

2 std
a111

3 std
a111

4 std
a112

1 std
A

aNxNyNz

4 std

2 s16d

and

M = M x
^ M y

^ M z
^ I 4, s17d

H = cK x
^ M y

^ M z
^ ax + cM x

^ K y
^ M z

^ ay

+ cM x
^ M y

^ K z
^ az + mc2M x

^ M y
^ M z

^ b

− esVT + VPd ^ I 4 + esvP/cdVP ^ az. s18d

The sign^ means matrix multiplication. The matricesM x,y,z

are the overlap matrices and the matricesK x,y,z the matrices
of the momentum operator. For example, we have the ele-
ments

Mii8
x =E wisxdwi8sxddx, Kii8

x = − i"E wisxd
d

dx
wi8sxddx.

s19d

The matrix elements of the scalar potentialsV =VT or VP are
given by

Vsi jkd,si8 j8k8d

=E wisxdw jsydwkszdVsr ,tdwi8sxdw j8sydwk8szddx dy dz.

s20d

Because these matrix elements are only nonzero for
neighboring finite elements, we simplify the potential matrix
elements by the approximation

Vsi jkd,si8 j8k8d = 1
2sVsxi,yj,zk,td + Vsxi8,yj8,zk8,tddMii8

x Mjj 8
y Mkk8

z .

s21d

This potential matrix is Hermitean.

B. Time evolution of the discretized Dirac equation

The formal solution of Eq.(15) for a small time interval
Dt is given by

ast + Dtd = exps− iM −1HDt/"dastd, s22d

where we assumeH to be constant during the time interval
Dt. The exponential operator is expanded in power series of
Dt up to the ordern and calculated as follows:

exps− xd = X1 − xH1 −
x

2
F1 −

x

3
S¯−

x

n
¯ DGJC . s23d

A high numerical accuracy could be reached.

C. Requirements for the basis functions

The basis functions, fulfilling Eq.(13), are chosen so that
the eigenvalues and eigenfunctions of the momentum opera-
tor are reproduced in an optimum manner. The eigenvalue
equation of the momentum operator is

"

i

d

dx
fsxd = lfsxd. s24d

If the function fsxd is expanded with real basis functions,

fsxd = o
i=1

N

aiwisxd,

Eq. (24) leads to a matrix equation for the coefficientsai,

o
j

Kijaj = lo
j

Mijaj s25d

with

Mij =E wisxdw jsxddx,

Kij = − i"E wisxd
d

dx
w jsxddx.

We require for the basis functionswisxd that (i) they are real,
(ii ) they are defined on an equidistant grid with the distance
h between two neighboring grid points,(iii ) they fulfill Eq.
(13), (iv) they are symmetric with respect to the grid points
x= ih, and (v) they are extended over a small number of
elements in the intervalsi −fn+1g /2dhøxø si +fn+1g /2dh
with n=1,2, . . . .Then we can introduce the following re-
placements:

Mi,i±s = hms with s= 0,1, . . . ,n,

Ki,i±s = 7 i"ds with s= 1,2, . . . ,n, s26d

where ms and ds are real quantities. With the ansatzaj
=expsikjhd with −pøkhøp one can solve the eigenvalue
problem(25) (see Ref.[20,21]):

lskd =
2"

h

os=1

n
ds sinskshd

m0 + 2os=1

n
ms cosskshd

. s27d

In order to confine the freedom in the choices of the basis
functions, we demand thatlskd="k up to the order ofkn+2.
This leads to the conditions forn=1,

d1 = 1
2sm0 + 2m1d, s28d

for n=2,

d1 + 2d2 = 1
2m0 + m1 + m2,

d1 + 8d2 = 3sm1 + 4m2d, s29d

and forn=3,

d1 + 2d2 + 3d3 = 1
2m0 + m1 + m2 + m3,
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d1 + 8d2 + 27d3 = 3sm1 + 4m2 + 9m3d, s30d

d1 + 32d2 + 243d3 = 5sm1 + 16m2 + 81m3d.

Linear tent functionswisxd=1−usx/hd− i u for i −1øx/hø i
+1 and 0 otherwise belong ton=1. In this case we have
m0=2/3, m1=1/6, d1=1/2 andcondition (28) is fulfilled.

The procedure of solving the time-dependent coupled
equation(15) simplifies if we additionally require the or-
thonormalization of the basis functions. This means

ms = ds0. s31d

With this condition we obtain from Eqs.(28)–(30),

n = 1, d1 = 1
2 ; n = 2, d1 = 2

3, d2 = − 1
12;

n = 3, d1 = 3
4, d2 = − 3

20, d3 = 1
60. s32d

The coefficientsds are the coefficients of approximate differ-
ential formulas derived from interpolation formulas and may
be taken for higher values ofn from the literature[22].

The functionswisxd fulfilling all demanded requirements
are usually complicated functions[23]. However, their ex-
plicit form is not needed in solving Eq.(15) since we re-
placed the interaction matrix(20) by mean values at the grid
points. Also the projection of the calculated final wave func-
tion on given analytical wave functions can be done on the
same grid by only using the values at the grid points accord-
ing to Eq.(13). Therefore, we could use Eqs.(31) and(32) in
our calculations without an explicit knowledge of the func-
tions wisxd.

D. Initial solution for the 1 s1/2 state on the lattice

As stated above, we only consider the time evolution of
an initial 1s1/2 state. In order to construct an equivalent
spinor for this state on the lattice, we treat the following
eigenvalue problem on the grid:

M −1H0a = Ea, s33d

where

H0 = lim
t→−`

Hstd = HsVP = 0d.

We search for the lowest eigenvalueE=E0 of the bound
states. This is done by a two-step method. In the first step we
calculate the eigenvalueEmax with the largest absolute value
by the iteration method of von Mises,

ai = M −1H0ai−1/Ni−1, s34d

with

lim
i→`

ai = ã andM −1H0ã = Emaxã,

whereNi−1 is a normalization constant. In the second step we
again use the method of von Mises and calculate the largest
eigenvalueemax

2 of the eigenvalue equation

fEmax
2 − sM −1H0d2ga = e2a. s35d

Since the energyE0 of the 1s1/2 state up to uranium is the
smallest positive eigenvalue ofM −1H0 and no eigenvalues
exist in the intervals−mc2,0d, the eigenvalueE=E0 maxi-
mizes the functione2=Emax

2 −E2. Therefore, the spinoramax
=a0 to the eigenvaluee max

2 =Emax
2 −E0

2 is simultaneously
eigenspinor to the equationsM −1H0d2a0=E0

2a0.
The eigenvalueE0 and eigenspinora0 obtained by the

method described above are the lattice replacements for the
analytical 1s1/2 state. According to the Coulomb-Dirac equa-
tion the 1s1/2 energy forZ=92 is 378.4 keV. With the above
method we get 379.9 keV for the energy and a value of 0.997
for the absolute square of the overlap between the analytic
and lattice-type 1s1/2 spinor. These results were reached with
a cubic grid with a length of the sides of 10 000 fm and 216
grid points in each Cartesian direction of space.

E. Symmetry relations

As indicated in Eqs.(5) and (6), the projectile moves
along a straight line described by the vectorR=s0,b,vPtd. In
order to make use of symmetry relations, it is of some ad-
vantage to quantize the spinors of the initial wave function in
the x direction, which is thez8 axis of a dashed coordinate
system defined as(see Fig. 1)

z8 = x, x8 = − z, y8 = y. s36d

1. Reflection on the plane x=0

The Dirac-Hamiltonian(1) is invariant under the action of
the product of the parity operatorPx in the x coordinate and
a s434d-matrix Sx for the spin,

SxPxHspx,py,pz,x,y,z,td = SxHs− px,py,pz,− x,y,z,tdPx

= Hspx,py,pz,x,y,z,tdSxPx s37d

with

Sx = Ssx 0

0 − sx
D s38d

and

hax,Sxj = fay,Sxg = faz,Sxg = fb,Sxg = 0. s39d

Eigenfunctions of the operatorSxPx have the eigenvalues ±1.
Therefore, if the initial wave function is an eigenfunction of

FIG. 1. Coordinate systemssx,y,zd and sx8 ,y8 ,z8d. The trajec-
tory is shown by a thick line in a distanceb parallel to thez axis.
The target nucleus is at the coordinate origin and the projectile
nucleus moves on the trajectory.
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SxPx, it remains for all times with the property

Cs− x,y,z,td = ± SxCsx,y,z,td. s40d

Bound Coulomb-Dirac eigenfunctionsfkm, quantized in
the x direction, are eigenfunctions ofSxPx,

SxPxfkm = s− 1d,A+m−1/2fkm, s41d

where,A is the , value of the large component. Since ini-
tially we start with the 1s1/2 state, we can use the symmetry
relation (wave function quantized in thex direction),

Ck=−1,ms− x,y,z,td = s− 1dm−1/2SxCk=−1,msx,y,z,td. s42d

This means that the wave function needs only to be calcu-
lated forxù0.

2. Impact parameter symmetry

The Dirac-Hamiltonian(1) is invariant under the action of
the product of three operators

SyPyPbHspx,py,pz,x,y,z,t,bd = SyHspx,− py,pz,x,− y,z,t,

− bdPyPb

= Hspx,py,pz,x,y,z,t,bdSyPyPb.

s43d

Here,Pb replacesb by −b, Py is the parity operator in they
coordinate and

Sy = Ssy 0

0 − sy
D s44d

with

hay,Syj = fax,Syg = faz,Syg = fb,Syg = 0. s45d

Eigenfunctions of the operatorSyPy have the eigenvalues
±1. Coulomb-Dirac eigenfunctionsfkm, quantized in thex
direction, which is thez8 direction in the dashed coordinate
system[see Eq.(36)], have the property under the action of
SyPy,

SyPyfkmsr d = is− 1dm+1/2 k

uku
fk−msr d. s46d

This relation can be used to obtain the functionCk−msr ,t ,bd
from the function Ckmsr ,t ,−bd, which solves the time-
dependent Dirac equation with the HamiltonianHsp ,r ,t ,
−bd, i.e., with a negative impact parameter −b. The connec-
tion is

Ck−msr ,t,bd = − is− 1dm+1/2 k

uku
SyPyCkmsr ,t,− bd s47d

with

lim
t→−`

Ckmsr ,t,− bd = fkmsr dexps− iEkt/"d.

Since we start our time development with the 1s1/2 state,
we only need to calculate the wave function withm=mjx
=1/2, but forpositive and negative impact parameters. The
cross section for pair production with capture of the electron
into theK shell can then be written as

spp =E
0

`

2pb dbo
m−

fukfm−uC1s1/2,1/2usr ,t → `,bdlu2

+ ukfm−uC1s1/2,−1/2usr ,t → `,bdlu2g

=E
−`

`

2pubudbo
m−

ukfm−uC1s1/2,1/2usr ,t → `,bdlu2.

s48d

In a similar way the excitation, ionization, and transfer cross
sections for a target electron in theK shell are calculated,
where a factor 1/2 must be included by assuming an unpo-
larized hydrogenlike target ion.

F. Gauge transformation

In order to have better asymptotic solutions, we follow
Eichler [24] and apply a phase transformation to the spinor
Csr ,td by the ansatz

Csr ,td = expf− inP lnsR8 − vPt8dgC8sr ,td, s49d

where

nP =
ZPe2

4p«0"vP
, R8 = Îb2 + vP

2t82, t8 = gSt −
vPz

c2 D .

s50d

This leads to a Dirac equation forC8sr ,td with the modified
projectile potentials

VP8 =
gZPe

4p«0
S 1

rP
−

1

R8
D, Az8 =

b

c
VP8 ,

rP = fx2 + sy − bd2 + g2sz− vPtd2g1/2. s51d

These potentials are zero at the coordinate origin for all
times, i.e., at the location of the target ion, and fall off faster
near the target for large projectile-target distances than the
potentials(5) and(6). This behavior has the consequence that
the functionC8sr ,td approaches its asymptotic values faster
than the functionCsr ,td. For large positive and negative
times the phase factor in(49) depends essentially only on
time if the coordinatez is restricted to a region around the
target ion,

lim
t→−`

Csr ,td = c1stdC8sr ,td, uc1u = 1,

lim
t→`

Csr ,td = c2stdC8sr ,td, uc2u = 1.

Therefore, we use the bound 1s1/2-wave function as initial
condition forC8sr ,td and the eigensolutionsfl± of Eq. (7)
for projection onC8sr ,td since the time-dependent factor
c2std drops out from the probabilities after the collision,

lim
t→`

ukfm±uCl+lu2 = lim
t→`

ukfm±uCl+8 lu2.

The probability on the right-hand side assumes its
asymptotic valuest→`d at much smaller times than the ex-
pression on the left-hand side becauseC8 solves the Dirac
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equation with the screened potential(51). In conclusion we
can project with the statesfm± unperturbed by the projectile
instead of the solutions expf−inP lnsR8−vPt8dgfm± of the
asymptotic two-center Dirac equation for an electron near the
target, but distant from the projectile. For an extended dis-
cussion of this point see Ref.[25].

G. The problem of Fermion doubling

Fermion doubling occurs in numerical formulations of the
Dirac equation on lattices when the operators of the first
derivative are replaced by difference expressions[26]. The
authors of this paper proposed a special method which al-
lows to avoid Fermion doubling by introducing a unitary
transformation of the Dirac equation[27]. However, here we
take no special method into account to avoid the Fermion
doubling besides the condition of the conservation of the
norm of the wave function.

For the present numerical solution of the Dirac equation it
is difficult to find a dispersion relation since Eq.(15) is time
dependent because of the potentials[see Eq.(21)]. In the
case of the free Dirac equation[VT and VP=0 in Eq. (18)]
we derive the following dispersion relation by making use of
Eq. (25):

E2 = m2c4 + c2fl2skxd + l2skyd + l2skzdg,

where lskd is given in Eq.(27) and kx, ky, and kz are the
Cartesian components of the wave number of the free par-
ticle. The dispersion relation has the following form for the
simplest case(ms=ds0, n=1, d1=1/2):

E2 = m2c4 +
c2"2

h2 fsin2skxhd + sin2skyhd + sin2skzhdg,

where we assumed an equal grid distanceh in all directions.
This formula shows the Fermion doubling phenomenon: un-
physical waves with small energiesE<mc2 for maximal
wave numberskx, ky, kz=p /h. Therefore, contributions in the
numerical solution of the Dirac equation with momenta in
the order of"p /h and energies aroundmc2 could appear.

In our treatment these unphysical states negligibly con-
tribute to the calculated reaction probabilities for the follow-
ing reasons: The numerically obtained wave functions are
projected with analytical wave functions which follow the
usual physical relation between momentum and energy, e.g.,
E= ± sm2c4+c2"2k2d1/2 for free particles. The analytical wave
functions have small momenta for small energies andvice
versa. For example, if we choosekx, ky, kz=p /h with h
=100 fm, we calculateE=21mc2 for a free particle. We
found that the projection with analytical wave functions, pos-
sessing the same large wave numbers as the energetically
lowest unphysical states with an energy nearmc2, yielded
negligible contributions to our probabilities. Therefore, the
contribution of the unphysical states in the numerical wave
function is small. Projection with analytical wave functions
at low energies have small momenta and cannot pick up
noticeable contributions from the unphysical states with high
momenta. We conclude that mainly the states with momenta
aroundp="p / s2hd may be the most disturbing ones which
need further investigations. However, these intermediate mo-

menta and energies also play no essential role in our final
results since the main contributions to the probabilities arise
from lower energiesuEu<1–2mc2 and lower momentap
,"p / s2hd=3 MeV/c.

IV. RESULTS

A. U92+
„466 MeV/nucleon…+U91+ scattering

First we consider the impact of U92+ ions on U91+ ions at
466 MeV/nucleon. The Lorentz factor of the projectile isg
=1.5. At such low energies the probabilities for pair creation
are rather small. Therefore, we only discuss the processes of
excitation, ionization, and charge transfer of the electron. As
unit of length we use 1 fm=10−15 m in the following. TheK
shell radius of uranium is 575 fm calculated asa0/92 where
a0=0.529310−10 m is the Bohr radius. Choosing a total
length of the grid in the order of 12 000 fm means lengths of
about 20K shell radii.

The equidistant grid used in this case has an extension in
the z direction from −4200 fm to 7150 fm with 118 grid
points, iny direction from −6500 fm to 6500 fm with 136
grid points and inx direction from −6500 fm to 0 fm with
68 grid points(the symmetry with respect to theyz plane is
used). The range in thez direction is slightly enhanced to-
wards larger values ofz in order to have a better description
for the electron moving in the direction of the projectile ve-
locity. We use basis functions which are extended over two
neighboring elements, which meansn=1 (see Sec. III C). We
choose the time stepDt=4.34 fm/c. For each time step the
time evolution operator is expanded up to the seventh order
of the Hamiltonian matrixH [see Eqs.(22) and (23)].

The time evolution starts when the projectile enters the
grid at z=−4200 fm and ends when the projectile is atz
=4300 fm. This means more than 2600 time steps. The start
vector is obtained by the von Mises iteration procedure. Af-
ter we stop the time evolution, we project on bound target
states with principal quantum numbersnø7 to obtain the
probabilities for excitation. To calculate the probabilities for
ionization, we project on states of the positive continuum
with ukuø5 up to an energy of 4.3mc2. For these quantities
we can also calculate the probabilities within the first order
of perturbation theory by the formula

Pif = 4nP
2Ukf fus1 − bazd

3expsiq0zdK0Sq0

g
Îx2 + sy − bd2DufilU2

s52d

with nP=sZPe2d / s4pe0"vPd andq0=sEf −Eid / s"vPd.
The impact parameter dependent probability for the exci-

tation of the target electron is shown in Fig. 2. For large
impact parameters we find a good agreement with the pertur-
bation theory(dashed curve). At small impact parameters,
the nonperturbative results are much smaller than the results
of the perturbation theory. The nonperturbative results de-
pend on the gauge used in the calculations, whereas the first-
order perturbation theory is shown to be independent of the
gauge[1,28]. We obtain a total cross section for excitation of
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sexc=1.363104b, whereas the perturbation theory yields
2.023104b.

The probability for ionization is shown in Fig. 3. The
perturbative results(dashed curve) exceed unity at small im-
pact parameters, whereas the results of the lattice calcula-
tions remain smaller than unity(full curve). At larger impact
parameters we find good agreement between the results of
both methods. The total cross section for ionization is found
to be 1.93104b with the lattice calculation and 2.03104b
with the perturbation method.

To calculate the amplitudes for the electron transfer to the
ground state of the projectile, we project on the boosted
ground state wave function of the projectile. The transfer
probability is depicted in Fig. 4. For the total cross section of
transfer we found a value of 1.23103b. The transfer reaction
is also clearly visible in the densityuCu2. Figure 5 shows the
density in the scattering plane at the timet=4780 fm/c. The

target is at rest in the right half of the figure atsy=0,z=0d,
where noticeable density values indicate that the electron re-
mains in the target state with a certain probability. The posi-
tion of the projectile is that of the second maximum in the
front left corner, which is an indication of the transfer pro-
cess.

In Figs. 2–4 and in the following figures one recognizes
an asymmetry of the probability distribution with respect to
zero impact parameter. This behavior has the following ori-
gin. Depending on the sign ofb the magnetic field of the

FIG. 2. Probability for excitation of the target electron from the
1s1/2smjx

=1/2d state in the collision of U92+sg=1.5d on U91+ as a
function of the impact parameter. The full curve is calculated with
the lattice method, the dashed curve is the result of the perturbation
theory.

FIG. 3. Probability for ionization of the target electron from the
1s1/2smjx

=1/2d state for the same collision system as in Fig. 2. The
notations are the same as in Fig. 2.

FIG. 4. Probability for transfer of the electron from the
1s1/2smjx

=1/2d state of the target to the ground state of the projec-
tile for the same collision system as in Fig. 2. The curve is calcu-
lated with the lattice method.

FIG. 5. Probability density of the time-developed electron state
1s1/2smjx

=1/2d in the scattering plane in the collision of U92+sg
=1.5d on U91+ at the timet=4780 fm/c at an impact parameterb
=1060 fm. The forward left peak is the transferred density around
the projectile nucleus, the backward right peak is the remaining
density around the target nucleus.
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projectile has a different direction at the position of the target
nucleus. Since the angular momentum of the initial 1s1/2
state is directed perpendicularly to the scattering plane, we
have a different magnetic interaction for trajectories with a
different sign ofb and, therefore, we find slightly different
probabilities. The same effects would result for a positive
impact parameter and considering states withmjx= +1/2 and
−1/2.

B. Au79+
„930 MeV/nucleon…+U91+ scattering

To study the process of electron-positron pair creation
with capture at low incident energies, we choose the scatter-
ing of Au72+ ions at 930 MeV/nucleonsg=2d on U92+ ions.
Experimental results of Belkacemet al. [3] as well as theo-
retical results are available. Mombergeret al. [19] calculated
probabilities for pair creation with capture by solving the
Dirac equation in momentum space on a lattice.

We took a grid with 112 points inx direction (reflection
symmetry is used) and 224 points iny andz directions. This
grid has an extension from −6500 fm to 0 in thex direction
and from −6500 fm to +6500 fm in the other directions. To
get a better approximation between momentum and wave
number, we now assumen=2 in relation(27). The time step
is set to 25.4 fm/c. In order to obtain for the norm only a
small deviation of less than 10−12 from unity, we expand the
time-evolution operator up to the 25th order in the Hamil-
tonian. The wave function is evolved in time fromt=
−5800 to +5800 fm/c.

The probabilities for pair production with capture are ob-
tained according to Eq.(12) by projecting the final wave
function onto the states of the negative continuum of the
target ion with quantum numbersukuø8. For impact
parametersubuø60 fm we use 448 energies for eachk rang-
ing from −8.8mc2 to −mc2. For larger impact parameters
already 224 states with energies from −4.4mc2 to −mc2 are
sufficient.

Figure 6 shows the probability for pair production with
capture of the electron into the U91+1s1/2smjx=1/2d ground
state. The full and dashed curves represent the results of the
finite element treatment and of the perturbation theory, re-
spectively. Since the upper limit oft=5800 fm/c is not suf-
ficient for larger impact parameters, we assume perturbative
values forubuù800 fm. Atb=0 we can compare our value of
3.1310−4 with the value of Mombergeret al. who obtained
3.9310−4 [19]. The cross section for pair production with
capture results in 1.3b with the lattice calculation.

The distribution of the probabilities for pair production
with capture are shown in Fig. 7 as functions of thek values
for special values ofb. A rapid convergence ink is reached
for small impact parameterssb=−58 fmd, but a very slow
convergence for larger impact parameterssubu=530 fmd. The
reason for the large contributions at highk values is found in
the occupation of bound states of the projectile by electron
transfer. These bound states have negative energy parts in a
basis of states centered around the target ion. The negative
energy parts around the projectile could be incorrectly inter-
preted as positron contributions. As later explained in detail,
we do not know the correct positron states for projecting on

numerical wave functions. The correct positron states should
also contain the contributions from the projectile ion, i.e.,
they have to be solutions of a time-dependent two-center
Dirac problem. For instance, if we compare the differential
probability of the positron states withk=−8 andmjx=−4.5,
calculated by projection with our final wave function(full
curve in Fig. 8), with the probability of the same states ob-
tained by the projection on the boosted ground state of the
Au78+ ion at t=5800 fm/c (dashed curve), we recognize an
astonishing agreement. The dashed curve is adjusted in the
way that the main maxima of both curves take the same
height.

For a further insight in this problem, we calculated the
density distribution generated by the states of the negative
continuum contained in the time-developed wave function on
the lattice. We projected our numerical solution forb
=530 fm on the continuum states withukuø5 and summed
up all density contributions of the negative energy states. The
resulting density distribution in the scattering plane is shown
in Fig. 9. One clearly sees that the main part is located
around the projectile and moves with the projectile.

A strong overlap of the boosted projectile ground state
with the negative target continuum was already mentioned
by Mombergeret al. [19] for the same reaction. These au-
thors found a probability of 0.018 contained in the negative
continuum att=3680 fm/c. With this value we can estimate
the “false” contributions to the pair production which stem
from the ground state of the projectile. We take the value
0.018 as the limit fort→` and multiply it with the cross
section for charge transfer to the projectile which we deter-
mined to be 579b with our method. A further factor of 2 must
be taken into account, because the cross section for charge
transfer is averaged over both initial spin directions, whereas
the cross section for pair creation includes the sum of both.
This would lead to a cross section of pair creation with cap-
ture of 20.8b, originating mainly from impact parameters
larger than 2 reduced Compton wavelengths of the electron.
This value is an unphysical result.

FIG. 6. Probability for electron-positron pair production with
capture of the electron into the 1s1/2smjx

=1/2d state of U91+ in the
collision of Au79+sg=2d on U92+ as a function of the impact param-
eter. The full-square points withubu,800 fm are calculated with the
lattice method and connected with full lines. The dashed curve is
the result of the perturbation calculation.
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The problems, discussed here, arise from the difficulty to
define the positron states in a two center problem. Equations
(10)–(12) assume that a positron is defined by a hole state in
the negative continuum of the target ion after the collision.
However, this definition is incorrect if a second ion, namely
the projectile, is present independently of the distance. In-
stead of a projection with the target states of the negative
continuum, in principle we must project with the time-
dependent solutions of the Dirac equation with the electro-
magnetic potentials of two separating ions at very large dis-
tances st→`d. These solutions are two-center states
perturbed around the ions, the use of which was already pro-

posed by Eichler[8] and Ionescuet al. [29], who faced the
same problem regarding the process of pair creation with
capture as a charge transfer process from the negative con-
tinuum of one of the ions to the bound states of the other ion.

In order to get rid of the contributions of the bound pro-
jectile ground state, we subtracted the contribution of this
state from the wave function obtained on the grid. Therefore,
we determined a complex amplitude for the impact
parameterb=530 fm such that the spectrum in Fig. 8 nearly
vanishes after having subtracted the contributions of the
negative continuum inherent in the projectile ground state.
Then we projected again on the negative continuum with

FIG. 7. Contributions to the probability for electron-positron pair production with capture of the electron into the 1s1/2smjx
=1/2d state of

U91+ in the collision of Au79+sg=2d on U92+ for variousk values and the impact parametersb=−58, −530, and 530 fm.
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states having different values ofk. The result is shown in
Fig. 10, where the black boxes give the outcome of the cor-
rected projection in contrast to the original results which are
shown by grey boxes. The convergence ink is now much
better. Repeating this procedure also for other impact param-
eters, we finally obtain the cross section for pair production
with capture into the target ground state of 1.1b. If we esti-
mate the contribution of captured electrons in higher shells
by a factor of 1.2, valid for photon-induced pair production
with capture in first order ofaZ [30], there is still a gap to
the experimental result of 2.19b [5].

The description of the system in terms of eigenstates of
the target Hamiltonian becomes more adequate for higher
projectile energies. At ultrarelativistic energies the transfer of
the electron to the projectile is negligibly small and neither
the electronic nor the positronic parts of the wave function
can follow the projectile which travels nearly at the speed of
light. The projectile potential is strongly Lorentz contracted
and can be “turned off” after having passed the target region.
Then the target basis alone is appropriate for the projection
procedure.

C. Ultrarelativistic collisions of U92+ on U91+

Here we consider the collision with a high valuegFT
=10 000 of the Lorentz factor of the projectile for a fixed
target. In order to avoid that the effective width of the
Lorentz-contracted projectile potential becomes much
smaller than the grid width, we start the calculation in the
collider system where the target and projectile move with the
same velocityvc in opposite directions. Since the target and
projectile systems are now contracted by the same Lorentz
factor gc with respect to the collider system, we set thez
range of our grid from −z0/gc to z0/gc. Then the grid width
is always small enough with respect to the extension and
form of the electromagnetic potentials.

For gFT=10 000 the Lorentz factor of the projectile and
target in the collider system isgc=ssgFT+1d /2d1/2=70.7. We
choose a lattice with 216 points inx andy directions ranging
from −5000 fm to +5000 fm. In thez direction we take 324
points and setz0=7500 fm. For the initial state we take the

FIG. 8. Differential probabilities of the negative continuum
states withk=−8 andmjx

=−4.5 in the lattice wave function(full
curve) and in the wave function of the boosted projectile 1s1/2smjx
=1/2d ground state of Au78+ (dashed curve). The latter probability
is multiplied by a factor 3.1310−3. The impact parameter isb
=530 fm.

FIG. 9. Probability density of the negative continuum states in
the scattering plane for the collision of Au79+sg=2d on U92+ at b
=530 fm. The projection has been done for angular momentum
quantum numbersukuø5. The high maximum on the right-hand
side arises due to the transferred electron and not due to the
positrons.

FIG. 10. Probability for electron-positron pair
production with capture of the electron into the
1s1/2smjx

=1/2d state of U91+ in the collision of
Au79+sg=2d on U92+ at b=530 fm for variousk
values. In the black boxes the parts are subtracted
which originate from the electron transferred to
the Au ion, the grey boxes have no subtractions.
The grey boxes are the same as in Fig. 7.
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1s1/2 solution of the von Mises iteration for a fixed nucleus
and place it on the grid via a Lorentz boost. We start the
calculation atti =−2500/gc fm/c and end the time evolution
at tf =2500/gc fm/c. The time steps are set to beDz/c, so
that both nuclei move the distance of the grid widthDz dur-
ing this time. For the projectile potentials we again use the
phase transformation given in Eqs.(49)–(51).

The minimum order of the expansion of the time-
evolution operator, needed to keep the norm of the wave
function constant, is about seven. This is much less than the
one for low energetic collisions and is a hint that the process
is more perturbative. The density of the final wave function
differs only slightly from the density of the initial wave func-
tion, except for translation. This means that the transient pro-
jectile potential affects the wave function by a space-
dependent phase factor only.

At the end of the time evolution we project on boosted
target states. The expansion reads

Csx,y,z,td = Ŝo
n

cnfnsx,y,gcsz− vctdd

3exps− iEngcst − vcz/c
2d/"d s53d

with

Ŝ= coshsv/2d + sinhsv/2daz, v =
1

2
lnS1 + vc/c

1 − vc/c
D ,

whereŜ is the boost matrix inz direction [1] andcn are the
expansion coefficients in the target system. Assuming that

the effects of the projectile potentials on the wave function
are negligible for tù tf, we obtain the probabilitiesPnst
ù tfd= ucnu2 in the target system.

For small impact parameters, a comparison of our work
with the ultrarelativistic exact theory of Baltz[31] should be
possible. The corresponding amplitudes are calculated by

afst = `d = kf fus1 − azdexpSisEf − Eid
z

"c
D

3exp„− iaZP lnhfx2 + sy − bd2g/b2j…ufil. s54d

In the following we give the results for an impact param-
eterb=530 fm. At first we examine the process of excitation
of the target electron. In Table I we compare our results with
those of the theory of Baltz[31] for infinite energies and
with the results of the perturbation theory. Our results agree
well with the ultrarelativistic limit, while those of the pertur-
bation theory are about a factor of 2 too high.

In order to discuss the results for ionization and pair cre-
ation, we project the final wave function onp1/2 states of the
positive and negative continua withmjx

=−1/2. Figure 11
shows the spectrum for ionization of the initially bound elec-
tron obtained with this method and compared with results of
Baltz and from perturbation theory. Figure 12 gives the same
quantities for the positron. In both cases the agreement of our
results with the theory of Baltz[31] is very good whereas the
perturbation theory tends to overestimate the nonperturbative
results.

Thus we have numerically confirmed the ultrarelativistic
theory of Baltz [31], using a quite different approach. By

FIG. 11. Spectrum of emittedp1/2smjx
=−1/2d electrons atb

=530 fm in the collision of U92+sg=10 000d on U91+s1s1/2d. The
full curve is obtained in the ultrarelativistic limit, the short-dashed
curve with the numerical solution of the Dirac equation and the
long-dashed curve with the perturbation theory.

TABLE I. Probabilities for the ground state and special excited bound states after the U92+sg=10 000d
+U91+ collision atb=530 fm.

State Ultrarelativistic This work Perturbation theory

1s1/2s+1/2d 0.524 0.528

2s1/2s+1/2d 4.565310−2 4.497310−2 8.628310−2

2p1/2s−1/2d 9.329310−4 9.765310−4 1.848310−3

2p3/2s−1/2d 5.049310−3 5.15310−3 1.169310−2

2p3/2s+3/2d 7.049310−3 6.949310−3 1.609310−2

FIG. 12. Spectrum of thep1/2smjx
=−1/2d positrons at b

=530 fm in the collision of U92+sg=10 000d on U92+ The notation
of the curves is the same as in Fig. 11.
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switching to the collider system, this new method is useful to
treat high Lorentz factors and does not need to make any
approximations or assumptions about the structure of the
electromagnetic potentials.

V. SUMMARY AND CONCLUSIONS

We have calculated probabilities for pair production with
K-shell capture of the electron in the target by using the
time-reversal symmetry method, where a 1s1/2 state of the
target ion is developed in time under the influence of the
electromagnetic fields of the projectile ion and finally pro-
jected on the positive and negative continua and bound states
of the target. The time-dependent Dirac equation is numeri-
cally solved on a three-dimensional lattice in space with dis-
crete time steps. These calculations simultaneously yield
cross sections for the pair production with capture and the
excitation, ionization and charge transfer of aK-shell elec-
tron.

For the collision system U92+s466 MeV/nucleond+U91+

we reported on excitation, ionization, and charge transfer
cross sections. The probabilities for these processes are
found in good agreement with those of perturbation theory
for larger impact parameters. For the case of the reaction
Au79+s930 MeV/nucleond+U91+ we calculated probabilities
for pair production withK-shell capture by projecting on the

negative continuum of target states. However, we found that
these probabilities contain large parts stemming from the
electron transferred to the ground state of the projectile. In
order to get rid of these contributions, one must in principle
introduce dynamical two-center states with the centers fixed
at the target and the moving projectile. Here we simply sub-
tracted the contributions of the negative continuum around
the projectile which belongs to the transferred electron. The
obtained cross section for pair production with capture is
smaller than the experimental one. Our calculations show a
moderate enhancement compared to the perturbation calcu-
lation, but the strong nonperturbative enhancement reported
earlier [10] could not be seen.

The problems connected with the negative continuum
states of the target are less important for higher collision
energies. We made calculations for ultrarelativistic collision
energies for the system U92+sg=10 000d+U91+ by applying a
coordinate system in which both heavy ions have equal but
opposite velocities. Our results agree with those of the exact
theory of Baltz[31] for infinite collision energies.
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