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In order to calculate the cross section for electron-positron pair production with capture of the electron into
the K shell of the target in relativistic scattering of heavy nuclei, we apply the semiclassical method and solve
the time-dependent Dirac equation in time-reversal symmetry, starting with,astate at the target. The
solution is carried out numerically on a three-dimensional lattice in coordinate space. Cross sections for
excitation, ionization, electron transfer, and pair production with capture are obtained for collisions of
U%2(y=1.5), Au™*(y=2), and P?*(y=10000Q on W*(1s,,,) and WP?*, wherey is the Lorentz factor, and
compared with experimental data and other theoretical results.
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[. INTRODUCTION (RHIC), Baltz et al. [13] found only a small nonperturbative
enhancement of a few percent.

The process of pair production with capture, also called |n our group only two-dimensional grid solutions of the
bound-free pair production, has been of great interest in thejrac equation for zero impact paramefé#,15 were con-
recent yearg1]. Because this process constitutes the domisjdered up to now. Here we present a new investigation for
nant electron capture mechanism for higher energies iRair production with capture where we solve the time-
heavy ion collisions, it plays an important role in ultrarela- dependent Dirac equation in coordinate space on a three-
tivistic heavy ion colliders where it causes the loss of acceldimensional lattice. It should be mentioned that three-
erated nuclei and limits the lifetime of the beaf®}. First  dimensional calculations with the spline-collocation method
measurements for bound-free pair production were pern coordinate space were already done by Strayeal. [9]
formed by Belkacenet al. [3] in 1993 and further experi- and Wellset al. [16—1§ for muon pair production with cap-
mental investigations on its dependence on energy anflire in heavy ion collisions. Also, three-dimensional lattice
nuclear charges were published in the following yddrsf].  calculations in momentum space were carried out by Mo-

From the theoretical point of view, a description of pair mbergeret al. [19] for Au’®*+U%* collisions at low and
production with capture also includes the processes of excimedium relativistic energies, mostly for zero impact param-
tation, ionization and charge exchange if one considers thgter.
time-reversal symmetry. The time-reverse process starts with The aim of this paper is to give the methods to solve a
a bound electron state at the target and evolves according time-dependent two-center Dirac equation in three spatial di-
the time-dependent Dirac equation under the influence of thghensions numerically. Starting with &,J, state around the
projectile potential. Results for pair production with capturetarget ion we calculate the wave function and extract the
were first obtained by Beckest al. [7] in time-dependent probabilities for excitation, ionization, transfer and electron-
perturbation theory for the scattering on#U-target with a  positron pair production with capture of the electron into the
projectile energy up to 100 GeV/nucleon. Eichilg consid- K shell of target after the collision. Then we compare the
ered the pair production as a charge transfer process from thgsults with experimental data and other theories as far as
negative target continuum to the bound projectile state usingossible. We find serious difficulties to interpret the numeri-
the OBK approximation. cally gained wave functions in terms of the calculated prob-

The perturbation theory fails for the case of high chargesapilities for the created electron-positron pairs. The reason
of the heavy ions and at small impact parameters. A strongor these difficulties lies in our unknowing about the exact
nonperturbative enhancement was found by Strayet.[9]  positron states in the field of two moving ions.
for muon pair production with capture by solving the Dirac  |n Sec. Il we review the semiclassical theory of pair pro-
equation on a lattice with a three-dimensional spline colloduction with capture. The procedure for solving the time-
cation method. Similar effects were observed in non-dependent Dirac equation on a three-dimensional grid is
perturbative calculations for relativistic energies of the heavygiven in Sec. Ill. In Sec. IV we present and discuss the
ions by Rumrichet al. [10] using a one-center coupled chan- results of our calculations for ¥*466 MeV/nucleoh
nel method and, for example by Gait al. [11], with one- 4+ 9+ Au®*(930 MeV/nucleop+U%* and for the ul-
and two-center coupled channel calculations. trarelativistic scattering of 8+ on U°L*,

For high energetic collisions, Bal&t al.[12] obtained the
cross section for bound-free pair production in the faym
=Aln y+B, where vy is the Lorentz factor of the projectile
andA andB are constants. For B5-Pi#?* collisions at en- We consider the process of electron-positron pair produc-
ergies of the Brookhaven Relativistic Heavy lon Collider tion as an excitation of an electron of the fully occupied

II. THEORY
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negative continuum into a bound or positive continuum state NE, = (b, | W1t — )2 (12)
(see Ref[1]). The wave functions of these states fulfill the M Cak i
time-dependent Dirac equation with the following Hamil-

tonian written in the target system: The advantage of Eq12) compared to Eq(10) is that only
H = Hor + Wp, (1) one sing_le time evqlution must be ca(ried out. I_:or example,
if one is interested in the electron-positron creation with cap-
where ture of the electron into a bound state, one must calculate
the time evolution of¥, ,(r,t) with Eq. (8). In the following
Hor = cap + Bmc - eV, (2 we only consider the time evolution of the,} state which
yields information on the electron-positron pair creation with
W = ecaAp - eVp (3) capture of the electron into thes}, state.
The expectation value€l0)—«(12) of numbers of created
with electrons and positrons are interpreted as probabilities for the
creation of the corresponding particles. Cross sections are
1 Ze (4) obtained by integrating the probabilities multiplied with the
Ameg X2 +y2 + 22 factor 27b over the impact parameter.

-

VT:

Vp = Y Zpe (5) IIl. DESCRIPTION ON THE LATTICE
4meq\x2+ (y = b)2 + YAz~ vpt)®

A. Discretized Dirac equation

B We introduce an equidistant three-dimensional Cartesian
Ap==Vpe,. (6)  grid on which we define finite elements with respect to each
¢ Cartesian coordinate. The corresponding basis functions on

Here, we apply the semiclassical approximation and treat the grid are written as products of the fory(x)¢;(y) ¢i(2).
nuclei as point charges with charge numb&gsandZy, re-  1he indices(i,j k) denote a grid pointPy,=(5=ih,y;
spectively, moving classically on straight lines with a con-=ih.z=kh) with i(j,k)=1,2,3,... N«(Ny,N,) where h is
stant velocityvp of the projectile in the target system and anthe grid width. The functionsyi(X)¢;(y)¢i(2) are real, ex-
impact parameteb 8=vp/c, y=(1->7Y2]. Further,Hyr is  tended over a small number of elements and symmetric

the unperturbed target Hamiltonian with analytic Coulomb-around their middle point®;;. They are chosersee Sec.
Dirac eigenfunctions,., Il C) to fulfill the equations on the grid points

Hordal1) = Eredialr). @) G)=8r @) =8 elE)=dw.  (13)

The index\+ denotes a state of the positive continuum or a
bound state andl- a state of the negative continuum. TheseThis means that, for example, the functigitx) is one at its
states are used to fix the initial conditions of the solutions oimiddle pointx=x; and has zeroes at the other grid points.

the time-dependent Dirac equation with the Hamiltori&n Then we choose an ansatz for the time-dependent solution
Writing this equation as W(r,t) of the Dirac equatioii8) in terms of these basis func-
5 tions, which are assumed as real. By omitting the signature
HW (0,0 == Wu(r.), (8 Mt we write
we demand as initial condition far— —oo, aﬁk(t)
2
. , aj (1)
t“m Wy.(r,1) = ¢y (r)exp(—iE,.t/h). 9 V(=2 ei(X) ¢j(y) er(2) afj’k(t) (14
=0 ij.k ijk
4
Then, by using a field-theoretical approach the expectation ajk(t)
values of the numbers of created electrons and positrons per
state can be calculated as Inserting this expansion int@) and projecting with the real
. basis functions, we obtain a matrix equation for the time-
NS, = > [( AV - (r t— @), (100  dependent expansion coefficierat§ (t) which are collected
u- in a spinora(t):
Ng = W (r t— )2, 11 d
g ,LE AT el = ) (D iAM a(t) = Ha(t) (15)

Equation(10) [and equivalently(11)] can be rewritten by
using the time-reversal symmetry, with
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aill(t) C. Requirements for the basis functions
a2,(t) The basis functions, fulfilling Eq13), are chosen so that
a3,(1) the eigenvalues and eigenfunctions of the momentum opera-
41‘11 tor are reproduced in an optimum manner. The eigenvalue
at)=| apt) (16)  equation of the momentum operator is
ajyt) 4 d
: i—&f(x) =\ f(x). (24)
af nn (1) i ; i ; i
X yNz If the functionf(x) is expanded with real basis functions,

and

N
M:MX®MV®MZ®I4, (17) f(X):za'i(Pi(X)!

H=ck*® MY @ M?® ay+ cM*® KY @ M?® a, Eq. (24) leads to a matrix equation for the coefficieats

+cM*@ MY @ K?® a,+mEM*e MY @ M?® B EKijaj:)\z Mijq (25)
—e(V1+Vp) @ 14+ e(vplo)Vp ® ay. (18) with : :

The sign® means matrix multiplication. The matric&s*Y*

e e e e e = | e,

ments

d
. d Ki; :—iﬁj @i (X)— @i (X)dx.
M3, =f @i @i (dx, Kii, = —'ﬁf @i e (dx. ! Fdx !
(19) We require for the basis functiors(x) that(i) they are real,
(i) they are defined on an equidistant grid with the distance
The matrix elements of the scalar potentidlsV; or Vpare  h between two neighboring grid pointgii) they fulfill Eq.

given by (13), (iv) they are symmetric with respect to the grid points
x=ih, and (v) they are extended over a small number of
Viijio,(i7j7k) elements in the intervali—[n+1]/2)h=x<(i+[n+1]/2)h

with n=1,2,....Then we can introduce the following re-
= f @i(X) @ (V) e V(r, D) gir (X) @) (Y) i (2)dx dy dz placements:

(20) Mj+s=hmy with s=0,1, ... n,
Because these matrix elements are only nonzero for Kiiss= T ihds with s=1,2,...n, (26)
neighboring finite elements, we simplify the potential matrix N ]
elements by the approximation where m; and ds are real quantities. With the ansaig
) =exp(ikjh) with —w<kh=<= one can solve the eigenvalue
V(ijk),(i’j’k’) = E(V(Xi,yj,zk,t) + V(Xi’iyj’yzk’it))Mi)?’MJyj/Mik" pI’Oblem(25) (See Ref[20,2]])
(21) o 2;1 d sin(ksh
This potential matrix is Hermitean. MK) = Fmo+ ZE;mscos(ksW' (27)
B. Time evolution of the discretized Dirac equation In order to confine the freedom in the choices of the basis

functions, we demand that(k) =7k up to the order ok"?,

The formal solution of Eq(15) for a small time interval X o
This leads to the conditions far=1,

At is given by
=1

a(t+ At) = exp(— iIM~HAUA)a(Y), (22) d; = 3(m +2my), (28)
where we assumkl to be constant during the time interval for n=2,
At. The exponential operator is expanded in power series of d; +2d,= %mo +my+m,
At up to the orden and calculated as follows:

X X X dl + 8d2 = 3(m1 + 4m2), (29)
exp-=x) =|1-x 1—5 1—5 T . (23 and forn=3,

A high numerical accuracy could be reached. dy + 20, + 33 = 3y + my + my +mg,
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dl + 8d2 + 27d3 = 3(m1 + 4m2 + 9m3) , (30) x=z

dl + 32dz + 243j3 = 5(m1 + 1&“2 + 8lm3) .

Linear tent functionsg;(x)=1-|(x/h)—i| for i-1<x/h<i , T
+1 and O otherwise belong to=1. In this case we have : =
my=2/3,m;=1/6,d;=1/2 andcondition(28) is fulfilled. b

The procedure of solving the time-dependent coupled / @P_’

equation(15) simplifies if we additionally require the or- vy’
thonormalization of the basis functions. This means
_ FIG. 1. Coordinate system(x,y,2z) and(x’,y’,z"). The trajec-
M5 = dsp- (31 tory is shown by a thick line in a distandeparallel to thez axis.
With this condition we obtain from Eq$28)—30), The target nucleus is at the coordinate origin and the projectile
nucleus moves on the trajectory.
n=1, d1=%; n=2, dlzg, d2=—132;
Since the energf, of the 1s;,, state up to uranium is the
n=3, d;= %, d,=- %, d;= 6—10 (32 smallest positive eigenvalue & *H, and no eigenvalues
exist in the interval(-mc,0), the eigenvalu€E=E, maxi-
mizes the functione?=E2,_ —E2 Therefore, the Spincayax
=a, to the eigenvaluee’, =E2 .~E3 is simultaneously
eigenspinor to the equatidiM ~*Hg)%ay=Eza,.

The eigenvaluek, and eigenspinor, obtained by the
method described above are the lattice replacements for the
. : . . . analytical X, state. According to the Coulomb-Dirac equa-
p'ﬁ?ceo' the Interaction r_natr()QO) by mean valu_es at the grid tion the Is,,, energy forZ=92 is 378.4 keV. With the above
points. Also the projection of the calculated final wave func-method we get 379.9 keV for the energy and a value of 0.997

tion on g(ljvgn anlalytlc_:al \;\éave flunct|otntsh can_(lj)e qo?e on thd%r the absolute square of the overlap between the analytic

isnarr;e grl 1%’ O'Phy :Js;nrg V:" va uFdS a Ee %rl' pnoénsz aiacor and lattice-type &, spinor. These results were reached with
g to Eq.( .)' eretore, we could use 81 and(32) a cubic grid with a length of the sides of 10 000 fm and 216

our calculations without an explicit knowledge of the func- grid points in each Cartesian direction of space

tions ¢;(x). ’

The coefficientslg are the coefficients of approximate differ-
ential formulas derived from interpolation formulas and may
be taken for higher values of from the literature[22].

The functionsg;(x) fulfilling all demanded requirements
are usually complicated functiorf23]. However, their ex-
plicit form is not needed in solving Eq15) since we re-

E. Symmetry relations

D. Initial solution for the 1 s,/, state on the lattice As indicated in Egs(5) and (6), the projectile moves

along a straight line described by the ved® (0,b,vpt). In

A_s_s_,tated above, we only consider the time evoll_mon Oforder to make use of symmetry relations, it is of some ad-
an initial 1s,, state. In order to construct an equivalent

vantage to quantize the spinors of the initial wave function in

spinor for this state on the lattice, we treat the following g direction, which is thez’ axis of a dashed coordinate
eigenvalue problem on the grid: system defined asee Fig. 1

M Hqa=Ea, (33 Z=x, X'=-z, y'=vy. (36)
where

. 1. Reflection on the plane %0
Ho= lim H(t)=H(Vp=0). _ o o _ )
t— The Dirac-Hamiltoniar(1) is invariant under the action of

We search for the lowest eigenvalBeE, of the bound the product of the parity operat®, in the x coordinate and
0 & (4 4)-matrix S, for the spin,

states. This is done by a two-step method. In the first step w

calculate the eigenvalug., with the largest absolute value SPH(P Py P2 XY, 2,1 = SH(= Py By P = XY, 2Py
by the iteration method of von Mises, » vsp. (@7
=P« Py, P2 XY, Z, X

(%
(38)

0 -0y

a, =M Hgaiy/Ni_y, (34 )
with
with

Y
I

lim a;=3 andM ™"Hoa = Eppd,
| —0
whereN;_, is a normalization constant. In the second step wednd
again use the method of von Mises and calculate the largest - - - -0 39
eigenvaluec? ., of the eigenvalue equation tonSd =lay.SJ=laSJ=1AS]=0. 39
Eigenfunctions of the operat&P, have the eigenvalues +1.

[Enax— (M™Hp)’Ja= €. (35 Therefore, if the initial wave function is an eigenfunction of
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SP,, it remains for all times with the property
V(-xY,zt) = £ SV(X,Yy,z1). (40

Bound Coulomb-Dirac eigenfunctions,,, quantized in
the x direction, are eigenfunctions &P,,

SPypm= (- DA M L2g (41)

where{, is the ¢ value of the large component. Since ini-
tially we start with the &;,, state, we can use the symmetry
relation(wave function quantized in the direction),

lI,K:—l,m(_ X,y,Z,t) = (_ l)m_:UZS(\PK:—l,m(XIyizi t) . (42)

PHYSICAL REVIEW A 70, 062707(2004)

Opp

| 27 48 10, s 1. 0
0 Yo

+ (- 1s,, 172 (1t — 22,0))]

f 27ib|db2 (bl Wis, 112 (r t— 2, D))|%.
. P

(48)

In a similar way the excitation, ionization, and transfer cross
sections for a target electron in the shell are calculated,
where a factor 1/2 must be included by assuming an unpo-

This means that the wave function needs only to be calcul@rized hydrogenlike target ion.

lated forx=0.
2. Impact parameter symmetry
The Dirac-Hamiltoniar(1) is invariant under the action of
the product of three operators
SyPbeH(pX,py,pz,x,y,z,t,b) = SyH(px.— Py, P2 X, ~ Y, Zt,
- b)P,Py,
= H(pX!py! P2 XY, Z!t!b)%Pbe'
(43

Here, P, replacesb by —b, P, is the parity operator in thg
coordinate and

S/=<Uy 0) (44)
0 - oy
with

{oy,. S} =[S ]=[,S]=[BS]=0. (45)

Eigenfunctions of the operat& P, have the eigenvalues
+1. Coulomb-Dirac eigenfunction,,, quantized in thex
direction, which is thez’ direction in the dashed coordinate
system[see Eq(36)], have the property under the action of

S/Py,

SPybn(r) =i(- DM (1), (46)

|«
This relation can be used to obtain the functiBp (r,t,b)
from the function ¥, (r,t,-b), which solves the time-
dependent Dirac equation with the Hamiltoniatip,r ,t,
-b), i.e., with a negative impact parametds.-The connec-
tion is

Vo1 tb) = —i(- 1)m+1/2i|sjpy«1rkm(r t-b) (47

|k
with
lim W, (r,t,-

t——o0

b) = ¢, m(r)exp(— IE, t/h).

Since we start our time development with ths,1 state,
we only need to calculate the wave function wrﬂn:ml

=1/2, but forpositive and negative impact parameters. TheThe probability on the

F. Gauge transformation

In order to have better asymptotic solutions, we follow
Eichler [24] and apply a phase transformation to the spinor
W(r,t) by the ansatz

W(r,t)=exd—ivp IN(R" —vpt")W'(r,t), (49
where
Zpe2 5 5 .5 va
= , R! - J!b2+ 2t!2, t! — <t_ _) .
i dmeghvp ! e 4 c?
(50)

This leads to a Dirac equation fdr’(r ,t) with the modified
projectile potentials

Zpe
V7=7P<
4re

1

)

1 B

_), AZ’:C

_V’ ,
R’ P

rp=[DC+(y—b)?+ Y2z - vpt)"2 (52)
These potentials are zero at the coordinate origin for all
times, i.e., at the location of the target ion, and fall off faster
near the target for large projectile-target distances than the
potentialg5) and(6). This behavior has the consequence that
the functionW’(r ,t) approaches its asymptotic values faster
than the functionW(r,t). For large positive and negative
times the phase factor iM9) depends essentially only on
time if the coordinatez is restricted to a region around the
target ion,

lim W(r,t)=c,(t)P'(r,t), |cq=1
t——

lim W(r,t) =c,() W' (r,1),

t—oo

el =1

Therefore, we use the bound;t-wave function as initial
condition forW’'(r,t) and the eigensolutions,. of Eq. (7)
for projection onW’(r,t) since the time-dependent factor
c,(t) drops out from the probabilities after the collision,

im (W) = tlirfgcl<¢ﬂil‘1’£+>|2-

right-hand side assumes its

cross section for pair production with capture of the electrorasymptotic valugt— o) at much smaller times than the ex-

into theK shell can then be written as

pression on the left-hand side becawke solves the Dirac

062707-5



BUSIC, GRUN, AND SCHEID PHYSICAL REVIEW A70, 062707(2004)

equation with the screened potentiéll). In conclusion we menta and energies also play no essential role in our final
can project with the states,. unperturbed by the projectile results since the main contributions to the probabilities arise
instead of the solutions ekpive IN(R -vpt’)]d,. of the  from lower energieSE|~1-2m¢ and lower momentg
asymptotic two-center Dirac equation for an electron near the< A7/ (2h)=3 MeV/c.
target, but distant from the projectile. For an extended dis-
cussion of this point see RdR25].

IV. RESULTS

G. The problem of Fermion doubling A. U92%(466 MeV/nucleon + Ut scattering

Fermion doubling occurs in numerical formulations of the

gérr?\?at?\?;aggnreor;aggcgs c\;\ilggrnergzg gferr:;cs)irtsgg :[rhhee flrSt466 MeV/nucleon. The Lorentz factor of the projectileyis
P y P ' =1.5. At such low energies the probabilities for pair creation

authors of th's paper propose_d a sp_eual mgthod Wh'.Ch alélre rather small. Therefore, we only discuss the processes of
lows to avoid Fermion doubling by introducing a unitary

transformation of the Dirac equatig@7]. However, here we expitation, ionization, and charge t_ransfer of the electron. As
take no special method into account' to avoid ’the FermiorﬁJnlt of Iength we use 1 fm=1’(1)5 m in the following. TheK
doubling besides the condition of the conservation of theShe" radius of dranium 1S o275 fm cal_culatedaytgz where

2,=0.529x 10 m is the Bohr radius. Choosing a total

norm of the wave function. .
For the present numerical solution of the Dirac equation itlength of the grid in the order of 12000 fm means lengths of

is difficult to find a dispersion relation since Ed.5) is time about 20K shell radi.
dependent because gf the potentipgee Eq.21)]. In the The equidistant grid used in this case has an extension in
case of the free Dirac equatigy andVe=0 in Eq. (18)] the z direction from —-4200 fm to 7150 fm with 118 grid

. . ; ) . . points, iny direction from —6500 fm to 6500 fm with 136
\IIEVCE; c(iggl)\./e the following dispersion relation by making use Ofgrid points and inx direction from —6500 fm to O fm with

68 grid points(the symmetry with respect to thez plane is
E? = mic* + N2k, + )\Z(ky) +\2(k,)], used. The range in the direction is slightly enhanced to-
o . wards larger values of in order to have a better description
where (k) is given in Eq.(27) andk,, ky, andk; are the  for the electron moving in the direction of the projectile ve-
Cartesian components of the wave number of the free pafpcity. We use basis functions which are extended over two
ticle. The dispersion relation has the following form for the neighboring elements, which meams 1 (see Sec. Il G. We

First we consider the impact of%®t ions on U* ions at

simplest cas¢ms= 4y, N=1, d;=1/2): choose the time stefit=4.34 fm/c. For each time step the
22 time evolution operator is expanded up to the seventh order
E?=mPct+ F[sinz(kxh) + sirf(k,h) + sirf(k)], of the Hamiltonian matrixH [see Eqs(22) and(23)].

The time evolution starts when the projectile enters the
where we assumed an equal grid distahde all directions. ~ 9rid at z=-4200 fm and ends when the projectile is zat
This formula shows the Fermion doubling phenomenon: un=4300 fm. This means more than 2600 time steps. The start
physical waves with small energigs~mdc for maximal  Vector is obtained by the von Mises iteration procedure. Af-
wave number,, k,, k,=/h. Therefore, contributions in the t€r we stop the time evolution, we project on bound target
numerical solution of the Dirac equation with momenta inStates with principal quantum numbens<7 to obtain the
the order offiwr/h and energies arounaic could appear. probabilities for excitation. To calculate the probabilities for

In our treatment these unphysical states negligibly conionization, we project on states of the positive continuum
tribute to the calculated reaction probabilities for the follow- With [<|<5 up to an energy of 4B¢. For these quantities
ing reasons: The numerically obtained wave functions ard/e can also calculate the probabilities within the first order
projected with analytical wave functions which follow the Of perturbation theory by the formula
usual physical relation between momentum and energy, e.g.,
E=+(mPc*+c?h%k?) 12 for free particles. The analytical wave Py = 413
functions have small momenta for small energies sive
versa For example, if we choosk,, k,, k,=m/h with h ] B 5
=100 fm, we calculateE=21Imc for a free particle. We Xexpliqo2)Ko| — VX2 + (y —b)* || 1)
found that the projection with analytical wave functions, pos- 4
sessing the same large wave numbers as the energeticaWjth vp=(Zp€?)/ (4meghivp) andqo=(Ei—E;)/ (fivp).
lowest unphysical states with an energy nea?, yielded The impact parameter dependent probability for the exci-
negligible contributions to our probabilities. Therefore, thetation of the target electron is shown in Fig. 2. For large
contribution of the unphysical states in the numerical wavampact parameters we find a good agreement with the pertur-
function is small. Projection with analytical wave functions bation theory(dashed curve At small impact parameters,
at low energies have small momenta and cannot pick uphe nonperturbative results are much smaller than the results
noticeable contributions from the unphysical states with higlof the perturbation theory. The nonperturbative results de-
momenta. We conclude that mainly the states with momentpend on the gauge used in the calculations, whereas the first-
aroundp=#/(2h) may be the most disturbing ones which order perturbation theory is shown to be independent of the
need further investigations. However, these intermediate maggauge[1,28]. We obtain a total cross section for excitation of

(#(1 - Be)

2
(52
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FIG. 2. Probability for excitation of the target electron from the  F|G. 4. Probability for transfer of the electron from the
1s15(my =1/2) state in the collision of &(y=1.5 on " as a 1sy,(m; =1/2) state of the target to the ground state of the projec-
function of the impact parameter. The full curve is calculated withijle for the same collision system as in Fig. 2. The curve is calcu-
the lattice method, the dashed curve is the result of the perturbatioted with the lattice method.
theory.

target is at rest in the right half of the figure (=0,z=0),
Oexc=1.36x 10, whereas the perturbation theory yields where noticeable density values indicate that the electron re-
2.02x 10%. mains in the target state with a certain probability. The posi-

The probability for ionization is shown in Fig. 3. The tion of the projectile is that of the second maximum in the
perturbative resultgdashed curveexceed unity at small im-  front left corner, which is an indication of the transfer pro-
pact parameters, whereas the results of the lattice calculgess.
tions remain smaller than unityull curve). At larger impact In Figs. 2—4 and in the following figures one recognizes
parameters we find good agreement between the results gh asymmetry of the probability distribution with respect to
both methods. The total cross section for ionization is foundzero impact parameter. This behavior has the following ori-
to be 1.9x 10%b with the lattice calculation and 2X010% gin. Depending on the sign df the magnetic field of the
with the perturbation method.

To calculate the amplitudes for the electron transfer to the z [fm)] 6500
ground state of the projectile, we project on the boosted
ground state wave function of the projectile. The transfer
probability is depicted in Fig. 4. For the total cross section of 715
transfer we found a value of 1:210°h. The transfer reaction
is also clearly visible in the density’|2. Figure 5 shows the
density in the scattering plane at the titse4780 fm/c. The

1475

10710

0.8+

0.6 -

0.4 -

P(b) lonization

0.2

0.0 T

4000 -3000  -2000 -1000 0 1000 2000 3000 4000 FIG. 5. Probability density of the time-developed electron state
b [fm] 1sy(m; =1/2) in the scattering plane in the collision of*¥(y
=1.5 on U°'* at the timet=4780 fm/ at an impact parametér
FIG. 3. Probability for ionization of the target electron from the =1060 fm. The forward left peak is the transferred density around
151,2(mjx=1/2) state for the same collision system as in Fig. 2. Thethe projectile nucleus, the backward right peak is the remaining
notations are the same as in Fig. 2. density around the target nucleus.
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projectile has a different direction at the position of the target
nucleus. Since the angular momentum of the initig],,l
state is directed perpendicularly to the scattering plane, weg
have a different magnetic interaction for trajectories with a £
different sign ofb and, therefore, we find slightly different
probabilities. The same effects would result for a positive
impact parameter and considering states witfx +1/2 and
-1/2.

104 4

105 4

B. Au7°*(930 MeV/nucleon + U%* scattering

P(b) pair production with ca|

1076 4

To study the process of electron-positron pair creation

with capture at low incident energies, we choose the scatter ' . . r
-800 -800 -400 -200 0 200 400 600 800

ing of Au’?* ions at 930 MeV/nucleofy=2) on U°?* ions. b fm]

Experimental results of Belkacest al. [3] as well as theo-

retical results are available. Momberggtral. [19] calculated FIG. 6. Probability for electron-positron pair production with
probabilities for pair creation with capture by solving the capture of the electron into thesij(m; =1/2) state of J* in the
Dirac equation in momentum space on a lattice. collision of Au"%*(y=2) on U%?* as a function of the impact param-

We took a grid with 112 points ix direction (reflection  eter. The full-square points with|< 800 fm are calculated with the
symmetry is usedand 224 points iry andz directions. This  lattice method and connected with full lines. The dashed curve is
grid has an extension from —6500 fm to O in thelirection  the result of the perturbation calculation.
and from —=6500 fm to +6500 fm in the other directions. To ) _ .
get a better approximation between momentum and wavBumerical wave funcUo_ns._The correct positron states should
number, we now assunTe=2 in relation(27). The time step also contain the contrl_butlons fro.m the projectile ion, i.e.,
is set to 25.4 fmé. In order to obtain for the norm only a €Y have to be solutions of a time-dependent two-center

small deviation of less than 18 from unity, we expand the Dirac p_r_oblem. For in_stance, if we compare the differential
time-evolution operator up to the 25th order in the Hamil—prObab'“ty of the positron states witk=-8 andm,=-4.5,

tonian. The wave function is evolved in time frome calculated by projection with our final wave functigfull
onian.. 1he wave tunction 1S evolve e fro curve in Fig. 8, with the probability of the same states ob-

5800 to +5800 fme. . . . tained by the projection on the boosted ground state of the
The probabilities for pair production with capture are ob- 5,78+ ioy att=5800 fm/c (dashed curve we recognize an

tained according to Eq12) by projecting the final wave astonishing agreement. The dashed curve is adjusted in the
function onto the states of the negative continuum of theyay that the main maxima of both curves take the same
target ion with quantum numberg«|<8. For impact peight.
parametersb| <60 fm we use 448 energies for eachrang- For a further insight in this problem, we calculated the
ing from -8.8nc® to —mc”. For larger impact parameters density distribution generated by the states of the negative
already 224 states with energies from -m¢l to -mc are  continuum contained in the time-developed wave function on
sufficient. the lattice. We projected our numerical solution for
Figure 6 shows the probability for pair production with =530 fm on the continuum states witk|<5 and summed
capture of the electron into the®t1s,,(m,=1/2) ground  yp all density contributions of the negative energy states. The
state. The full and dashed curves represent the results of thesulting density distribution in the scattering plane is shown
finite element treatment and of the perturbation theory, rein Fig. 9. One clearly sees that the main part is located
spectively. Since the upper limit 85800 fm/ is not suf-  around the projectile and moves with the projectile.
ficient for larger impact parameters, we assume perturbative A strong overlap of the boosted projectile ground state
values forlb| =800 fm. Atb=0 we can compare our value of with the negative target continuum was already mentioned
3.1x 104 with the value of Mombergeet al. who obtained by Mombergeret al. [19] for the same reaction. These au-
3.9X 107 [19]. The cross section for pair production with thors found a probability of 0.018 contained in the negative
capture results in 1tBwith the lattice calculation. continuum at=3680 fm/c. With this value we can estimate
The distribution of the probabilities for pair production the “false” contributions to the pair production which stem
with capture are shown in Fig. 7 as functions of thealues  from the ground state of the projectile. We take the value
for special values ob. A rapid convergence ir is reached 0.018 as the limit fort— o and multiply it with the cross
for small impact parameter®=-58 fm), but a very slow section for charge transfer to the projectile which we deter-
convergence for larger impact parametéb$=530 fm. The  mined to be 578 with our method. A further factor of 2 must
reason for the large contributions at higlvalues is found in  be taken into account, because the cross section for charge
the occupation of bound states of the projectile by electronransfer is averaged over both initial spin directions, whereas
transfer. These bound states have negative energy parts irttee cross section for pair creation includes the sum of both.
basis of states centered around the target ion. The negativighis would lead to a cross section of pair creation with cap-
energy parts around the projectile could be incorrectly interture of 20.®, originating mainly from impact parameters
preted as positron contributions. As later explained in detaillarger than 2 reduced Compton wavelengths of the electron.
we do not know the correct positron states for projecting orThis value is an unphysical result.
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FIG. 7. Contributions to the probability for electron-positron pair production with capture of the electron iniq,gﬁmj;:ll 2) state of
U%* in the collision of AU%*(y=2) on U°2* for variousk values and the impact parametérs—-58, —-530, and 530 fm.

The problems, discussed here, arise from the difficulty tqposed by Eichlef8] and lonesciet al. [29], who faced the
define the positron states in a two center problem. Equationsame problem regarding the process of pair creation with
(100«12) assume that a positron is defined by a hole state iapture as a charge transfer process from the negative con-
the negative continuum of the target ion after the collision.tinuum of one of the ions to the bound states of the other ion.
However, this definition is incorrect if a second ion, namely In order to get rid of the contributions of the bound pro-
the projectile, is present independently of the distance. Injectile ground state, we subtracted the contribution of this
stead of a projection with the target states of the negativstate from the wave function obtained on the grid. Therefore,
continuum, in principle we must project with the time- we determined a complex amplitude for the impact
dependent solutions of the Dirac equation with the electroparameteb=530 fm such that the spectrum in Fig. 8 nearly
magnetic potentials of two separating ions at very large disvanishes after having subtracted the contributions of the
tances (t—). These solutions are two-center statesnegative continuum inherent in the projectile ground state.
perturbed around the ions, the use of which was already proFhen we projected again on the negative continuum with
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FIG. 8. Differential probabilities of the negative continuum

states withk=-8 andm; =-4.5 in the lattice wave functiotfull 2imy % 4000 s000 -6000

curve) and in the wave function of the boosted projectiQ,é(mjX

=1/2) ground state of A(F* (dashed curve The latter probability FIG. 9. Probability density of the negative continuum states in
is multiplied by a factor 3.x10°3. The impact parameter b the scattering plane for the collision of Ai(y=2) on U%* atb
=530 fm. =530 fm. The projection has been done for angular momentum

quantum numbersx|<5. The high maximum on the right-hand

. . . . side arises due to the transferred electron and not due to the
states having different values af The result is shown in positrons

Fig. 10, where the black boxes give the outcome of the cor-
rected projection in contrast to the original results which are
shown by grey boxes. The convergencexiris now much
better. Repeating this procedure also for other impact param- Here we consider the collision with a high valugr
eters, we finally obtain the cross section for pair productior=10 000 of the Lorentz factor of the projectile for a fixed
with capture into the target ground state oftl.If we esti- target. In order to avoid that the effective width of the
mate the contribution of captured electrons in higher shelld orentz-contracted projectile potential becomes much
by a factor of 1.2, valid for photon-induced pair production smaller than the grid width, we start the calculation in the
with capture in first order o&Z [30], there is still a gap to collider system where the target and projectile move with the
the experimental result of 2.h95]. same velocity, in opposite directions. Since the target and
The description of the system in terms of eigenstates oprojectile systems are now contracted by the same Lorentz
the target Hamiltonian becomes more adequate for highdactor y. with respect to the collider system, we set the
projectile energies. At ultrarelativistic energies the transfer ofange of our grid from #/ y. to zy/ v.. Then the grid width
the electron to the projectile is negligibly small and neitheris always small enough with respect to the extension and
the electronic nor the positronic parts of the wave functionform of the electromagnetic potentials.
can follow the projectile which travels nearly at the speed of For y-r=10 000 the Lorentz factor of the projectile and
light. The projectile potential is strongly Lorentz contractedtarget in the collider system ig.=((yer+1)/2)¥?=70.7. We
and can be “turned off” after having passed the target regiorchoose a lattice with 216 points inandy directions ranging
Then the target basis alone is appropriate for the projectiofrom —5000 fm to +5000 fm. In the direction we take 324

C. Ultrarelativistic collisions of U9 on U9*

procedure. points and set,=7500 fm. For the initial state we take the
0.0000025 -
0.0000020{ =530 fm
e [ ] FIG. 10. Probability for electron-positron pair
0.0000015 4— production with capture of the electron into the
— 1sy,(m; =1/2) state of U** in the collision of
o Au’®*(y=2) on U%* at b=530 fm for variousx
0.0000010 ~ values. In the black boxes the parts are subtracted
which originate from the electron transferred to
the Au ion, the grey boxes have no subtractions.
0.0000005 - N
The grey boxes are the same as in Fig. 7.
0.0000000
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TABLE |. Probabilities for the ground state and special excited bound states afte®#fe/£/10 00Q
+U%* collision atb=530 fm.

State Ultrarelativistic This work Perturbation theory
1s;,,(+1/2) 0.524 0.528
2515(+1/2) 4.565x 1072 4.497x10°? 8.628x 1072
2p12(-1/2) 9.329x 1074 9.765x 1074 1.848x 1073
2p3(-1/2) 5.049x 1072 5.15x 1073 1.169x 1072
2p32(+312) 7.049x 1072 6.949x 1073 1.609x 1072

1s,,» solution of the von Mises iteration for a fixed nucleus the effects of the projectile potentials on the wave function
and place it on the grid via a Lorentz boost. We start theare negligible fort=t;, we obtain the probabilitied,(t
calculation at;=-2500/y. fm/c and end the time evolution =t;)=|c,|? in the target system.

at t;=2500/y, fm/c. The time steps are set to k&z/c, so For small impact parameters, a comparison of our work
that both nuclei move the distance of the grid widthdur-  with the ultrarelativistic exact theory of Bal{31] should be
ing this time. For the projectile potentials we again use theyossible. The corresponding amplitudes are calculated by
phase transformation given in Eq49)—(51).

The minimum order of the expansion of the time- z
evolution operator, needed to keep the norm of the wave af(t=°°)=<¢>f|(1‘az)eXF<i(Ef‘ Ei)%)
function constant, is about seven. This is much less than the
one for low energetic collisions and is a hint that the process xexp(—iaZp In{[x?+ (y - b)2)/b?)| ). (54

is more perturbative. The density of the final wave function . . .
In the following we give the results for an impact param-

differs only slightly from the density of the initial wave func- eterb=530 fm. At first we examine the process of excitation

tion, except for translation. This means that the transient PIO¢ the target electron. In Table | we compare our results with
jectile potential affects the wave function by a space- 9 ' P

dependent phase factor only wih the resuls of the pertubation theory. Our resuls agres
At the end of the time evolution we project on boosted . perturba neory. 9
. well with the ultrarelativistic limit, while those of the pertur-
target states. The expansion reads . )
bation theory are about a factor of 2 too high.
P(x,y,zt) = éz Crdhn(X,Y, Ye(Z— vet)) In order to discuss the results for ionization and pair cre-
n ation, we project the final wave function @q,, states of the
positive and negative continua WiMij:—lIZ. Figure 11

— i _ 2
X exp(— iE, v (t — v c)/h) (53 shows the spectrum for ionization of the initially bound elec-

with tron obtained with this method and compared with results of
. 1 (1+vdc Baltz and from perturbation theory. Figure 12 gives the same
S=coslw/2) + sinfw/2)a,, ©== In( c ) quantities for the positron. In both cases the agreement of our
2 \1-vdc results with the theory of Balt31] is very good whereas the

whereSis the boost matrix irz direction [1] andc, are the E)eesr;tjlftrsbatlon theory tends to overestimate the nonperturbative

expansion coefficients in the target system. Assuming that

Thus we have numerically confirmed the ultrarelativistic
N theory of Baltz[31], using a quite different approach. By
\
0.08H
\\ 0.00004
70
i
B — 0.00003
§/ 0 !
—_— C\l’\
L
S g 0.00002
0. -
SIS
0.00001
1.5 2 2.5 3 3.5 4
energy [mc?]

FIG. 11. Spectrum of emitteg,(m; =-1/2) electrons atb
=530 fm in the collision of Y?*(y=10000 on U'*(1s,,). The
full curve is obtained in the ultrarelativistic limit, the short-dashed ~ FIG. 12. Spectrum of thep;,(m; =-1/2) positrons atb
curve with the numerical solution of the Dirac equation and the=530 fm in the collision of §%*(y=10 000 on U°?* The notation
long-dashed curve with the perturbation theory. of the curves is the same as in Fig. 11.
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switching to the collider system, this new method is useful tonegative continuum of target states. However, we found that
treat high Lorentz factors and does not need to make anthese probabilities contain large parts stemming from the
approximations or assumptions about the structure of thelectron transferred to the ground state of the projectile. In
electromagnetic potentials. order to get rid of these contributions, one must in principle
introduce dynamical two-center states with the centers fixed

at the target and the moving projectile. Here we simply sub-

V. SUMMARY AND CONCLUSIONS tracted the contributions of the negative continuum around

We have calculated probabilities for pair production with the Projectile which belongs to the transferred electron. The
K-shell capture of the electron in the target by using theobtained cross section for pair production with capture is
time-reversal symmetry method, where g1 state of the smaller than the experimental one. Our calculations show a

target ion is developed in time under the influence of thgModerate enhancement compared to the perturbation calcu-
electromagnetic fields of the projectile ion and finally pro- lation, but the strong nonperturbative enhancement reported

jected on the positive and negative continua and bound stat&&"ier [10] could not be seen. _ ,
of the target. The time-dependent Dirac equation is numeri- 1he Problems connected with the negative continuum

cally solved on a three-dimensional lattice in space with disStates of the target are less important for higher collision

crete time steps. These calculations simultaneously yie|8nergies. We made calculations for ultrarelativistic collision
: i R ( = 9L+ i
cross sections for the pair production with capture and th&nerdies for the system €(y=10000+U®" by applying a

excitation, ionization and charge transfer oKashell elec- ~ coordinate system in which both heavy ions have equal but
tron. opposite velocities. Our results agree with those of the exact
For the collision system %*(466 MeV/nucleop+ U9t theory of Baltz[31] for infinite collision energies.

we reported on excitation, ionization, and charge transfer ACKNOWLEDGMENT

cross sections. The probabilities for these processes are

found in good agreement with those of perturbation theory The authors thank the John von Neumann-Institut fir
for larger impact parameters. For the case of the reactioComputing(NIC) in Jiilich for generously providing comput-
Au’®*(930 MeV/nucleoi+ U we calculated probabilities ing time to achieve the numerical results presented in this
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