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The exact initial state wave function of an interacting electron pair in a quantum dot under parabolic
confinement and neutralization of the dot by the substrate after ejection of electrons is exploited to obtain the
fivefold differential cross sectionsXd of the se,3ed process on the dot. The reflections of the center-of-mass
(c.m.) motion and relative motion onX are decoupled if the incident and scattered electrons are energetic and
the ejected electrons are slow. The results are studied in fixed mutual angle(with zero c.m. momentumK) and
Bethe ridge modes which allow the “cleanest” analysis of the contribution of the relative motion. The Coulomb
interaction between the emitted electrons is found to qualitatively change the angular distribution ofX. In the
mode in which the magnitude ofK is equal to the momentum transferq, the angular distribution ofX with

respect touKq=cos−1sK̂ ·q̂d leads to a mapping of the initial c.m. wave function of the ejected pair. However,

the c.m. motion is found to be best studied in the kinematics where the relative momentumkW of the ejected pair
is equal toqW.
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I. INTRODUCTION

The study of the effects of electron-electron correlations
mediated through Coulomb interaction is one of the main
aims in most atomic physics calculations. Two such pro-
cesses which specifically aim to probe electron-electron cor-
relations in the target are photo-double-ionizationsg-2ed and
electron-impact double ionizationse,3ed. The calculation of
this process as well as any other dealing withe-e correlations
involves several approximations, as the problem does not
have an exact solution. For example, any calculation of an
se-3ed process on any atomic target involves a target initial-
state wave function that is approximate and more impor-
tantly a description of the final state that has more than two
charged particles. This state does not have an exact solution.
It is usually described through the use of effective charges
which are supposed to mimic mutual Coulomb interactions
[1–3]. Several sets of effective charges have been proposed.
Another approach is to employ multi-Coulomb wave func-
tions which give the correct asymptotic description to the
final state[4–6]. Care has to be exercised so that these or any
other approximation do not introduce features which mask
the real physical ones of the process. One should look for
models/situations which are either exactly solvable or require
a different set of approximations.

Quantum dots provide such a situation. Semiconductor
nanocrystals with nearly spherical boundaries can be thought
of as artificial atoms where the confining potential replaces
the potential of the nucleus. These have been experimentally
realized by several workers. For example, Drexleret al. [7]
prepared quantum dots in GaAs/AlxGa1−xAs and Hertmann
et al. [8] in InxGa1−xAs/GaAs/AlAs. It is believed that in
these dots the electrons are confined by a potential that is
quadratic when the number of electrons is small. For such a
parabolic confinement, the two-electron states with full
electron-electron Coulomb interaction can be found without
any approximation. The details are given in the papers by
Taut [9], Tautet al. [10], and Mandalet al. [11]. The center-
of-mass and relative motions separate out in the same way as

for free electrons. The photoejection of a correlated pair from
a quantum dot has recently been considered by Fominykhet
al. [12].

We consider these-3ed process initiated by an energetic
electrons,200 eVd on a single quantum dot. The incident
and scattered electrons may be described by plane waves.
The role of the projectile is only to impart energy and mo-
mentum. The wave function of the two low-energy ejected
electrons with full mutual Coulomb interaction can be ob-
tained exactly without any approximation. In the next section
we briefly describe for the sake of continuity the method to
obtain the two-electron wave function in the quantum dot
following Ref. [9]. The description of the two-electron final
state is given in Sec. III. The expression for the scattering
amplitude is obtained in Sec. IV. Section V contains the re-
sults.

II. TWO-ELECTRON WAVE FUNCTION
IN A QUANTUM DOT

The Hamiltonian for two interacting electrons with coor-
dinatesrW1 and rW2 with respect to the center of the quantum
dot in a parabolic confining potential of frequencyv,

H = −
1

2
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2 −
1

2
¹2

2 +
1

2
v2r1

2 +
1

2
v2r2

2 +
1

urW1 − rW2u
, s1d

can be expressed as a sum of two independent parts,

H = −
1

4
¹R

2 − ¹r
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1

4
v2r2 + v2R2 +

1

r
; HR + Hr , s2d

by the transformation to center-of-mass(c.m.) and relative
coordinates

RW =
1

2
srW1 + rW2d, rW = rW1 − rW2. s3d

We have used atomic units"=m=e=1. The two-electron
wave function can now be written as
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FsrW1,rW2d = wsrWdjsRW dxssW1,sW2d s4d

becauseH is independent of spin. If the spin partx is a
triplet (singlet) state, thenw must be antisymmetric(symmet-

ric) against particle exchange. There is no constraint onjsRW d
becauseRW is symmetric under exchange. The total energy is
given by the sum of the eigenvaluesER andEr of HR andHr,
respectively,

E = ER + Er . s5d

The wave functionsjsRW d andwsrWd satisfy the equations

F−
1

2
¹R

2 +
1

2
vR

2R2GjsRW d = ER8jsRW d, s6d

wherevR=2v andER8 =2ER, and

F−
1

2
¹r

2 +
1

2
vr

2r2 +
1

2r
GwsrWd = Er8wsrWd, s7d

where vr =v /2 andEr8=Er /2. Equation(6) is the standard
three-dimensional harmonic oscillator Schrödinger equation
whose eigensolutions and eigenenergies for quantum mem-
bersN andL are

jNLMsRW d = :NLe
−h2/2hL

1F1S− N,L +
3

2
,h2DYLMsR̂d,

h = vR
1/2R, s8d

ER8sN,Ld = s2N + L + 3/2dvR, s9d

where:NL is the normalization constant. Equation(7) for the
relative motion admits solutions of the form

wnlmsrWd = rle−r2/2ynlYlmsr̂d, r = vr
1/2r , s10d

whereynl satisfies the equation

F d2

dr2 + 2S l + 1

r
− rD d

dr
+ enl8 − 2l − 3 −

1

vr
1/2r

Gvnlsrd = 0,

s11d

which admits a series solution

vnlsrd = o
p=0

aprp. s12d

The energyenl8 is given by

enl8 = 2Er8sn,ld/vr . s13d

Equation(11) can be solved numerically and in special cases
has an analytical solution. We have adopted the latter ap-
proach. The details are given in Ref.[9].

For the series(12) to terminate atrn−1

. . .an−2 Þ 0, an−1 Þ 0, an = 0, an+1 = 0, . . . . s14d

The conditions(14) lead to the eigenvalue

enl8 = 2n + 2l + 1 s15d

and ansn, ld-dependent value forvr. For example, ifn=5
and l =0, enl8 =11 and the condition fora5=0 leads to the
equation

2848vr
2 − 140vr + 1 = 0 s16d

for vr. The roots of this equation are

vr = 0.008 673 102, 0.040 484 19.

We have used these values ofn and l and vr
=0.008 673 102 for the following reason. For this value of
vr, the frequencyv of the confining parabolic potential of
the quantum dot is 0.017 346 20. This leads to a spatial ex-
tent of the wave function of order 100 Å which is a typical
size of a quantum dot. This combination of values ofn and l
is needed to obtain an analytical solution and typical quan-
tum dot size.

Putting together Eqs.(10)–(12) and (15), the wave func-
tion wsrWd for relative motion is given by

wsrWd =
a0

Î4p
e−r2/2s1 + a1r + a2r2 + a3r3 + a4r4d, s17d

where

a1 =
1

2Îvr

, s18d

a2 =
s1/2vr − 8d

6
s19d

a3 =
s1/6vr − 26/3d

24Îvr

, s20d

a4 =
1

120
S 1

24v2
r

−
25

6vr
+ 32D . s21d

The spin partx of the wave function is a singlet state. The
total energyE is given by

E = ER + Er = vs2N + L + n + l + 2d. s22d

We would like to point out that infinite harmonic oscilla-
tor confinement is an idealization and is needed for separa-
bility of the c.m. and relative motion parts of the wave func-
tion. However, it is expected that the low-lying states in the
case of a finite harmonic confinement will not differ much
from the corresponding infinite case.

III. TWO-ELECTRON WAVE FUNCTION
IN THE FINAL STATE

The final state of the two ejected electrons with momenta

kWb andkWc is described by
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CsrW1,rW2d = s2pd−3eikWb·rW1eikWc·rW2e−pa/2Gs1 − iad1

3F1sia,1,− ikr − ikW · rWd

= csKW ,RW dccskW,rWd, s23d

where

csKW ,RW d = s2pd−3/2e−KW ·RW , s24d

ccskW,rWd = s2pd−3/2e−pa/2Gs1 − iadeikW·rW
1F1sia,1,− ikr − ikW · rWd,

s25d

KW = kWb + kWc, kW =
1

2
skWb − kWcd, s26d

a = 1/k. s27d

The justification for this form ofCsrW1,rW2d is that after ejec-
tion of electrons the quantum dot quickly becomes neutral-
ized by the substrate, so that the final-state interaction be-
tween the two ejected electrons and the ionized quantum dot
is effectively reduced to a two-body interaction between the
free ejected electrons. This approximation has also been used
by Fominykh et al. [12]. The interaction between the fast
scattered electron and the slow ejected electrons has been
ignored.

IV. SCATTERING AMPLITUDE

The scattering amplitude for the process in which an en-

ergetic electron of energy(momentum) Ei skW id is scattered

with almost the same energy(momentum) Ea skWad and two
low-energy electrons are ejected with energiesEb andEc and

momentakWb andkWc, respectively, is given by

F = −
1

2p
KeikWa·rW0CsrW1,rW2dU 1

r01
+

1

r02
UFsrW1,rW2deikWi·rW0L .

s28d

The energy and momentum conservation equations are

Ei + E = Ea + Eb + Ec, s29d

kW i + PW i = kWa + kWb + kWc, s30d

where PW i s=pW1+pW2d is the initial total momentum of the
ejected electrons. Now carrying out integration with respect
to the projectile coordinaterW0 in Eq. (28) and using

eiqW·rW1 + eiqW·rW2 = 2eiqW·RW cosSqW · rW

2
D s31d

and Eqs.(4) and (23), the scattering amplitude reduces to

F =
− 4

q2 kcsKW ,RW dueiqW·RW ujsRW dlKccskW,rWdUcosSqW · rW

2
DUwsrWdL .

s32d

Here qW =kW i −kWa is the momentum transfer. The first matrix

element in Eq.(32) is the Fourier transformj̄sqW −KW d defined
by

j̄sqW − KW d = s2pd−3/2E eisqW−KW d·RWjsRW ddRW . s33d

The second matrix element in Eq.(32), with use of the par-
tial wave decomposition

cosSqW · rW

2
D = 4p o

s=0

even

s− 1ds/2jsSqr

2
Do

p

Yspsq̂dYsp
*sr̂d

s34d

and

CcskW,rWd = s2pd−3/2o
s=0

ise−issFsskrdo
p

Y*
spsr̂dYspsk̂d,

s35d

Fsskrd =
2se−pa/2Gss+ 1 − iad

s2s+ 1d!
e−ikrskrds

31F1ss+ 1 − ia,2s+ 2,2ikrd, s36d

ss = argIss+ 1 + iad
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4p

s2pd3/2 o
s=0

even

eisss2s+ 1dPsscosukqdE
0

`

Fsskrd jsSqr

2
Dwsrdr2dr

= zsqW,kWd. s37d

Finally, the fivefold differential cross sectionsXd is given
by

d5s

dEbdEcdVadVbdVc
=

kakbkc

ki
uFu2

=
kakbkc

ki

16

q4 uj̄sqW − KW du2uzsqW,kWdu2.

s38d

The reflections of the initial c.m. motion and relative mo-
tion are decoupled. It may be pointed out that this decoupling
and the simple analytic form of the final expression are re-
sults of the assumption of parabolic confinement in the quan-
tum dot and neutralization of the dot by the substrate after

ejection of electrons. For fixedq, keepingKW skWd fixed and

varying kW sKW d, the angular distribution ofX may be used to
single out the effect of the initial-state relative(center-of-

se,3ed PROCESS ON A QUANTUM DOT PHYSICAL REVIEW A70, 062702(2004)

062702-3



mass) motion. Note that the wave functionwsrWd of relative
motion defines the pair-correlation functionGsrWd;uwsrWdu2
[9].

V. RESULTS

We have takenn=5, l =0, m=0 for the relative motion
and have consideredN=0, L=0, M =0 andN=0, L=2, M
=0 for the c.m. motion in the initial state. Figures 1 and 2
show the radial wave functionswsrd andjsRd. We have con-
sidered 200-eV electrons scattered by the quantum dot with
the scattered electrons taking away most of the energy while
the ejected electrons are slow. In order to span whole range

of variablesqW, kWb, and kWc the angular distribution ofX has
been studied in the literature in various kinematical arrange-
ments, such as(i) fixed ejected angle mode,(ii ) symmetrical
emission mode,(iii ) energy sharing with fixed total energy of
ejected electrons mode,(iv) identical directions of emission
and varyingqW mode,(v) fixed mutual angle mode, and(vi)
Bethe ridge mode[2,3,13–17]. In the present study the c.m.
contribution

kakbkc

ki
uj̄sqW − KW du2

and the relative motion contribution

uzsqW,kWdu2

may be analyzed separately, and as the reflection of the
electron-electron correlation is interesting, we have studied
the angular distribution ofX in the last two of the above

kinematical arrangements in which the c.m. factoruj̄sqW
−KW du2 is constant[K=0 orqW =KW ]. Note that this is a first Born
calculation with the aim of analyzing the angular distribution
of X in the present context. The modifications caused by the
Coulomb interaction between the scattered electron and the
ejected electrons[18] and the second-order effects[19–21]
have not been considered.

Figure 3 presents angular distribution in the fixed mutual
angle mode, that is, with variableub anduc while keeping the
mutual angleubc fixed for L=0. We have takenubc=180° at
Eb=Ec=5.0 and 2.5 eV and fixedq=0.273 a.u. The c.m. mo-

mentum K is now equal to zero and this makesj̄sqW −KW d
; j̄sqWd independent ofub or uc. A fixed value ofqW implies

here a fixed value ofPW i asqW +PW i =KW =0. The c.m. motion in
this kinematics therefore plays no role in the angular distri-
bution ofX, which is determined by the relative motion ofb
and c. In the case of asg ,2ed process, the cross section
vanishes in this case[3]. The present results therefore mani-
fest a nondipolar contribution. The cross section is symmetri-
cal aboutubq=90° because of the singlet initial state and can
be represented as

FIG. 2. Initial bound-state radial wave functionsjsRd with quan-
tum numbersN=0, L=0 (—) andN=0, L=2 (···) for c.m. motion.

FIG. 1. Initial bound-state radial wave functionwsrd with quan-
tum numbersn=5, l =0 for relative motion.

FIG. 3. Fivefold differential cross SectionX for zero c.m. mo-
mentumsK=0d as a function of angle of emissionubq of the elec-
tron b with respect to momentum transfer direction atEi =200 eV,
q=0.273 a.u., andEb=Ec=5.0 eV (–––) and Eb=Ec=2.5 eV (---).
The results at 2.5 eV have been multiplied by 0.006 to bring them
on the same scale for comparison of angular distribution.
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U o
l=0,even

Alsq,kdPlscosukqdU2
,

whereq andk are constant. It shows a peak when one of the
electrons is emitted along the momentum transfer direction
and the other opposite to it, and a subsidiary peak atubq

=90° which corresponds tokWb'qW ,kWc'qW along with kWb=

−kWc. This is in apparent accord with the observations of
Lahmam-Bennaniet al. [3,15] in the atomic case. This latter
peak becomes more marked and the overall value of the
cross section increases whenEb s=Ecd decreases(Fig. 3).

Both of these features are caused by the factoruzsqW ,kWdu2. A
decrease in momentum transfer, however, decreases the peak
at ubq=90°. The angular distribution ofX for different values
of q at Eb=Ec=2.5 eV is shown in Fig. 4. Atua=2° sq
=0.135 a.u.d, the ratio of maximum to minimum cross sec-
tion is about 1.5, atua=1° sq=0.069 a.u.d it is about 1.1,
while at ua=0.5° sq=0.037 a.u.d it is only about 1.03. The
results have been multiplied by suitable factors to bring them
on the same scale for comparison of the angular distribution.
The large variation withq requiring this scaling is here due

to the constantq-dependent factoruj̄sqWdu2 in X; the angular

distribution is, however, controlled byuzsqW ,kWdu2. We thus find
that the overall magnitude of the relative motion factor

uzsqW ,kWdu2 in X mainly depends onk while its angular distri-
bution depends on bothk andq. At low values ofq andk, the
differential cross section is essentially contributed byl
=0,2 with the coefficientsA0 andA2 having opposite signs.
The Coulomb interaction between the two electrons in the
final state favors symmetrical emission which in theK=0
geometry corresponds toubq=ucq=90°. If it is ignored, the
angular distribution ofX shows a minimum atubq=90° (Fig.
5). This minimum becomes shallower asq decreases. The
ratios of the cross section atubq=0° to the cross section at
ubq=90° are about 11, 2.8, and 1.6 atq=0.135, 0.069, and

0.037, respectively. The occurrence of the minimum indi-
cates that the coefficientsA0 andA2 now have the same sign.
The differences in angular distribution of the results with and
without Coulomb interaction(Figs. 4 and 5) in the final state
very clearly demonstrate the importance of the final-state
e-e correlation.

For fixed ubq sucqd=90° (say), the above kinematics

sK=0d may also be used to spanj̄sPid by varyingqW. At these
values,X is given by

U d5s

dEbdEcdVadVbdVc
U

ubq=90°

=
32kakbkc

pkiq
4 uj̄sqWdu2UE

0

`

F0skrd j0sqr/2dwsrdr2drU2

, s39d

wherej̄sqWd for L=0 is given by

j̄sqWd = spvRd−3/4 exps− q2/2vRd. s40d

Figure 6 shows variation of lnfq4Xg againstq2 for Eb=Ec

=2.5 eV. Note that in this kinematicsqW +PW i =0. The straight
line portion for small values ofq corresponds to the region
wherej0sqr /2d is essentially equal to unity over the effective
range of integration. For larger values ofq, the curve lowers
down as expected.

Figure 7 shows the results in the Bethe ridge kinematics
[22] where momentum transferqW is equal to center-of-mass

momentumKW s=kWb+kWcd. The values ofub, uc, Eb, Ec, andukq

under Bethe ridge conditions for different values ofubc and
given Eb+Ec may be obtained easily from energy/
momentum conservation relations[Eqs.(29) and (30)]. This
kinematics corresponds to the initial total momentumPi
equal to zero. In the present case where c.m. and relative

FIG. 4. Same as Fig. 3, but atua=2° sq=0.135 a.u.d, Eb=Ec

=2.5 eV (---); ua=1° sq=0.069 a.u.d, Eb=Ec=2.5 eV (-··-··-··-··);
andua=0.5° sq=0.037 a.u.d, Eb=Ec=2.5 eV (···). The results have
been multiplied by the indicated factors to bring them on the same
scale.

FIG. 5. Fivefold differential cross SectionX with Coulomb in-
teraction between the ejected electrons switched off in the final state
for zero c.m. momentumsK=0d as a function of angle of emission
ubq of the electronb with respect to momentum transfer direction
for Ei =200 eV at ua=2°, Eb=Ec=2.5 eV (---); ua=1°, Eb=Ec

=2.5 eV (-··-··-··-··); and ua=0.5°, Eb=Ec=2.5 eV (···). The results
have been multiplied by the indicated factors to bring them on the
same scale.
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motions are decoupled, the angular distribution ofX depends

only on the relative motion as the factorj̄sqW −KW d; j̄s0d is a
nonzero constant forL=0. It is found thatX is maximum
when the more energetic of the two electrons is emitted near
the momentum transfer direction and the other one nearly
opposite to it. Similar results have been obtained earlier by
Srivastavaet al. [2] in the case ofse,3ed on helium by en-
ergetic electrons using the Hartree-Fock wave function of
Byron and Joachain[23] and “open-shell” wave function of
Silvermannet al. [24] for the helium ground state. This event
corresponds to a binary collision in which one electron is
emitted near the momentum transfer direction and the other
one by shake-off. This has a higher probability. As the ener-
getic electron moves away from theq̂ direction andubc de-
creases(or ukq increases), the cross section decreases. The
Coulomb repulsion betweenb andc also contributes to this

decrease. Note that there is no Bethe ridge contribution for
LÞ0 because in this case the probability of havingPi =0
vanishes.

Let us now consider equal energy of emission,Eb=Ec
s=5.0 eVd, under Bethe ridge conditions and take

ubc = 2 cos−1sq/2kbd, s41d

so thatq=K. Now if X is considered in fixed mutual angle(at

this value ofubc) mode as a function ofuKq h=cos−1sK̂ ·q̂dj, it

spans the c.m. momentum distributionj̄f2q sinsuKq/2dg of
the ejected electrons in the initial state. This kinematics has
been considered earlier by Lahmam-Bennaniet al. [17]. Fig-
ure 8 shows this for the initial c.m. states with quantum
numberssN=0,L=0d and sN=0,L=2d. The cross section is
zero atuKq=0 in the case ofL=2. It should be noted that the

factorzsqW ,kWd in X is not constant here and affects the angular
distribution. The separation between the contributions of the
c.m. and relative motions is therefore not “clean.”

Figures 9 and 10 show our results for fixedEb+Ec as a

function of uqW −KW u in a new kinematical arrangement where

the relative momentumkW is equal to the momentum transfer

qW. This makes the relative motion factorzsqW ,kWd;zsqW ,qWd in X
a constant. The values ofEb,Ec,ub,uc, ukq andq−K in this
arrangement for given values ofubc, Eb+Ec, ua, andEi may
be obtained from energy/momentum conservation relations
[Eqs. (29) and (30)] as before. The variation ofX here is
essentially given by the c.m. factor which is the Fourier
transform of the initial-state c.m. wave function of the
ejected pair.

VI. SUMMARY

The structure of the fivefold differential cross sectionsXd
as a product of two factors depending on c.m. motion and

FIG. 7. Fivefold differential cross SectionX in Bethe ridge ki-
nematics forEi =200 eV,Eb+Ec=10 eV atua=10° sq=0.666 a.u.d
as a function of angleukq between the directions of relative motion

kW and momentum transferqW. The c.m. and relative momentaK and
k are equal to 0.666 a.u. and 0.507 a.u., respectively.

FIG. 6. Plot of lnfq4Xg as a function ofq2 for Ei =200 eV and
Eb=Ec=2.5 eV in the K=0 kinematics at fixedubq=ucq=90°.
Dashed line is extrapolation of the initial straight line portion.

FIG. 8. Fivefold differential cross SectionX in fixed mutual

angle modeubc=2 cos−1 sq/2kbd as a function ofuKq=cos−1 sqW ·KW d
at Ei =200 eV,ua=4°, Eb=Ec=5.0 eV. The magnitudes of c.m. mo-
mentumK and momentum transferq are equal. The quantum num-
bers of the initial c.m. wave functions areN=0, L=0 (—) and N
=0, L=2 (---).
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relative motion in the case of a quantum dot is exploited to
analzse the reflections of the initial c.m. and relative motions

on it separately. The kinematical arrangements whereKW =qW

(Bethe ridge), K=0, andkW =qW are found to be very useful in
making one of the factors(depending on c.m. motion or
depending on relative motion) a constant. These, for a given
qW, correspond, respectively, to cases where the initial total

momentumPW i of the two electrons is zero, has a fixed value
s=−qWd, or varies. The angular distribution ofX in K=0 kine-

matics shows a very interesting manifestation ofe-e Cou-
lomb correlation in the final state and is found to be very
useful in probing the initial bound-state relative motion wave
function. It may also be used with varyingq and fixedubq
=90° to probe the initial bound-state c.m. wave function for
small Pi. TheK=q kinematics, though not providing a clean
separation, is quite useful in probing the relative motion
wave function.
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FIG. 9. Fivefold differential cross SectionX as a function of

uqW −KW u in the kinematics wherekW =qW at Ei =200 eV,ua=4°, andEb

+Ec=10 eV. The quantum numbers of the initial c.m. wave func-
tion areN=0, L=0.

FIG. 10. Same as Fig. 9, but withN=0, L=2 initial c.m. wave
function.
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