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(e, 3e) process on a quantum dot
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The exact initial state wave function of an interacting electron pair in a quantum dot under parabolic
confinement and neutralization of the dot by the substrate after ejection of electrons is exploited to obtain the
fivefold differential cross sectiofX) of the (e, 3e) process on the dot. The reflections of the center-of-mass
(c.m) motion and relative motion oKX are decoupled if the incident and scattered electrons are energetic and
the ejected electrons are slow. The results are studied in fixed mutual(aithleero c.m. momenturk) and
Bethe ridge modes which allow the “cleanest” analysis of the contribution of the relative motion. The Coulomb
interaction between the emitted electrons is found to qualitatively change the angular distributioim dffie
mode in which the magnitude &€ is equal to the momentum transfey the angular distribution oK with
respect toﬁquco§1(k-Q) leads to a mapping of the initial c.m. wave function of the ejected pair. However,
the c.m. motion is found to be best studied in the kinematics where the relative morrieatune ejected pair

is equal tog.
DOI: 10.1103/PhysRevA.70.062702 PACS nuniber34.80.Dp, 73.21.La
[. INTRODUCTION for free electrons. The photoejection of a correlated pair from

The study of the effects of electron-electron correlations? duantum dot has recently been considered by Fomieykh

mediated through Coulomb interaction is one of the mainal' [12]. . I :
aims in most atomic physics calculations. Two such pro- e consider thee-3e) process initiated by an energetic
cesses which specifically aim to probe electron-electron co€/€ctron(~200 V) on a single quantum dot. The incident
relations in the target are photo-double-ionizatigr2e) and and scattered electrons may be described by plane waves.

electron-impact double ionizatio@, 3e). The calculation of The role ththe projefctile _iS Onfly rt]o impalrt energy anq mo-
this process as well as any other dealing weitacorrelations ~MeNtum. The wave function of the two low-energy ejected

involves several approximations, as the problem does noqlectrons with full mutual Coulomb interaction can be ob-
have an exact solution. For example, any calculation of aItlamed exactly without any approximation. In the next section

(e-3¢) process on any atomic target involves a target initial-V& Priefly describe for the sake of continuity the method to
obtain the two-electron wave function in the quantum dot

state wave function that is approximate and more impor- . . :
tantly a description of the final state that has more than twé?"?w!ng Ref. [_9].SThe Iollles_lcz[]lptlon of th_e tV\:co-etlﬁctron {t'”?"
charged particles. This state does not have an exact solutioﬁf‘;’]l el'tls dge“'/ser:)tl)r':a'nig in .Sece I\e/xréf;s(l)?]nvocrontir?gihznrr;_?
It is usually described through the use of effective charge plitude 1 : ! B : :

which are supposed to mimic mutual Coulomb interactionssuns'

[1-3]. Several sets of effective charges have been proposed.

Another approach is to employ multi-Coulomb wave func- Il. TWO-ELECTRON WAVE FUNCTION
tions which give the correct asymptotic description to the IN A QUANTUM DOT

final statef4-€]. Care has to be exercised so that these or any The Hamiltonian for two interacting electrons with coor-
other approximation do not introduce features which mask,. " S
the real physical ones of the process. One should look fo(lj"ﬁ'a.tesrl andrzlwnh respect to th? center of the quantum
models/situations which are either exactly solvable or requiréiOt in a parabolic confining potential of frequenay
a different set of approximations. 1_, 1_, - - 1

Quantum dots provide such a situation. Semiconductor H=-2V, "= oV, + SoTi+ SoTy+ ——
Nanocr . . . 2 2 2 2 |Fy =15

ystals with nearly spherical boundaries can be thought

of as artificial atoms where the confining potential replacesan be expressed as a sum of two independent parts,
the potential of the nucleus. These have been experimentally
realized by several Workgrs. For example, Drexdeal. [7] H=- }VRZ_ V.2+ }wzrz + ?R2 + 1 =Hg+H,, (2
prepared quantum dots in GaAs/8l,_,As and Hertmann 4 r
et al. [8] in In,Ga_,As/GaAs/AlAs. It is believed that in
these dots the electrons are confined by a potential that
quadratic when the number of electrons is small. For such
parabolic confinement, the two-electron states with full -
electron-electron Coulomb interaction can be found without R=
any approximation. The details are given in the papers by
Taut[9], Tautet al. [10], and Mandakt al.[11]. The center- We have used atomic unitt=m=e=1. The two-electron
of-mass and relative motions separate out in the same way &gve function can now be written as

Y]

Il%y the transformation to center-of-ma&sm.) and relative
goordinates

>

(fi+ry), F=ri—r,. (3

N
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D(F, ) = e(NERX(EL,S) (4) e=2n+2+1 (15)

becauseH is independent of spin. If the spin pagtis a  and an(n,l)-dependent value fow,. For example, ifn=5
triplet (singley state, therp must be antisymmetricymmet- and =0, ¢,=11 and the condition foes=0 leads to the

ric) against particle exchange. There is no constrainf(é) equation

becausear is symmetric under exchange. The total energy is 284802 — 140w, + 1 = 1
given by the sum of the eigenvalueg andE, of Hg andH,, 8480y Qoy 0 (16)
respectively, for w,. The roots of this equation are
E=Er+E,. (5 , =0.008 673 102, 0.040 484 19.

The wave functions_E(Ii) and ¢(r) satisfy the equations We have used these values ai and | and o,

1 1 =0.008 673 102 for the following reason. For this value of

[- V2 + —wRZRZ] g(ﬁ) = E&g(ﬁ), (6) oy, the frequencyw of the confining parabolic potential of
2 2 the quantum dot is 0.017 346 20. This leads to a spatial ex-

tent of the wave function of order 100 A which is a typical
size of a quantum dot. This combination of valuesia@nd|
1, 1 ,, 1 , is needed to obtain an analytical solution and typical quan-
- EVr + Ewr r<+ z o(F) = E o(P), (7) tum dot size.
Putting together Eqg10)<12) and(15), the wave func-
where o, =w/2 andE;=E,/2. Equation(6) is the standard tion ¢(") for relative motion is given by
three-dimensional harmonic oscillator Schrédinger equation

where wg=2w and E;=2Eg, and

whose eigensolutions and eigenenergies for quantum mem- o(F) = ii;e—pz/Z(l +agp+ap’+agd+ap?), (17)
bersN andL are Va4
- 2L 3 5, - where
Enm(R) =Ry €779 Fy( = N,L + >7 Ym(R),
1
7= w0 R, 8) 8=, (18)
2V,
EL(N,L) = (2N + L + 3/2) wg, 9
RN,L) = ( ) o ©) (W20 -8
whereXy, is the normalization constant. Equatiof) for the = 6 (19
relative motion admits solutions of the form
_2 ~ —
enim(D) = p'ePuYin(),  p= wr1/2r1 (10 az= (1/6;):1 ’/—26/3) ) (20)
W,
wherey, satisfies the equation e
d? <|+1 )d 1 1(1 25 )
—+2l —-p|—+€,-2-3-—5%|v =0, =—| —5 -—+32]. 21
Lzlp2 o Plap oY% ni(p) %= 120 240°, 6w, (21)
(19 The spin party of the wave function is a singlet state. The
which admits a series solution total energyE is given by
valp) =2 app®. (12) E=Egr+E =w(@2N+L+n+1+2). (22
P=0 We would like to point out that infinite harmonic oscilla-
The energye,, is given by tor confinement is an idealization and is needed for separa-
" bility of the c.m. and relative motion parts of the wave func-
€ =2E/(n,1)w,. (13 tion. However, it is expected that the low-lying states in the

case of a finite harmonic confinement will not differ much
Equation(11) can be solved numerically and in special casesrom the corresponding infinite case.

has an analytical solution. We have adopted the latter ap-
proach. The details are given in R¢9).

For the serieg12) to terminate ap™? IIl. TWO-ELECTRON WAVE FUNCTION

IN THE FINAL STATE

82 #0, 8,,#0, 3,=0, a,,,=0,.... (14 The final state of the two ejected electrons with momenta

The conditiong14) lead to the eigenvalue |Zb andlzc is described by
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o2 — -3 'IZ-» '1207 —Tal2 s -4 s > L N N _).|7
¥ = @mTehnet e T o)y F:?<¢<K,R>|é‘*R|§<R>><%(kf) cos(q?) ¢<F>>.
XF,4(i —ikr —ik -
F_,l(layl,_,lkr ik - 1) 32
= WK, R) (k) 23 - -
KRk @3 Here d=k;—k, is the momentum transfer. The first matrix
where element in Eq(32) is the Fourier transforn§(g—K) defined
. by
H(K,R) = (2m) 32K R, (24) L
€G- K) = (2m) 32 f dIORERAR. (33

Uk F) = (2m) 3% ™2 (1 i @)X |F,(ia, 1,~ikr - iK -F),
The second matrix element in E2), with use of the par-

(25) tial wave decomposition
T P q-r)_ (ar
K=ky+k, k= E(kb -k, (26) COS<7) = 4w§) (- 1)5’215<5)% Yso(@Ysp (F)
even
a=1k. (27) (34

The justification for this form ofl’(r;,r>) is that after ejec- and

tion of electrons the quantum dot quickly becomes neutral- o) = —3/2N is-ioyg x s r
ized by the substrate, so that the final-state interaction be- ek ) = (2m) 222 BN 2 Y o) Yoy,

. S s=0 p
tween the two ejected electrons and the ionized quantum dot

is effectively reduced to a two-body interaction between the (39
free ejected electrons. This approximation has also been used
by Fominykhet al. [12]. The interaction between the fast 2% ™I(s+1-ia) ik Lns
scattered electron and the slow ejected electrons has been Fo(kr) = (2s+1)! e (kr)
ignored.

X,Fi(s+1-ia,2s+2,2kr), (36)

IV. SCATTERING AMPLITUDE )
os=argl(s+1+ia)

The scattering amplitude for the process in which an en-

ergetic electron of energgmomentum E; (@) is scattered reduces to
with almost the same energmmomentum E, (Iza) and two 4 o * (ar 2
low-energy electrons are ejected with energigandEcand (277372 g €5(2s+ 1)P¢(cos f,) i Fo(knjs > @(r)redr
momentak, andk., respectively, is given by even
1/ -l ol - = 1(G,K). (37)
F=- —<e'ka'r0\I’(r1,r2) —+— <1>(r1,rz)e"‘i'r0>. 4
2m 01 To2 Finally, the fivefold differential cross sectidiX) is given
(28) by
The energy and momentum conservation equations are d°o - kakbkc|F|z
dE,dE.dQ,dQ,dQ), ki
Ei+E=E,+E,+E, (29) K Kok
16—_ - -
aPRlCURLECT
K+ Py = kg + Ky + ke, (30 (39)

where P, (=p,+p,) is the initial total momentum of the The reflections of the initial c.m. motion and relative mo-

ejected electrons. Now carrying out integration with respecfion are decoupled. It may be pointed out that this decoupling

to the projectile coordinatg, in Eq. (28) and using and the simple anal_ytic form of the fina! express_,ion are re-
sults of the assumption of parabolic confinement in the quan-

e tum dot and neutralization of the dot by the substrate after
) (31)  gjection of electrons. For fixed, keepingK (k) fixed and

varyinglz (IZ), the angular distribution oK may be used to
and Eqgs(4) and(23), the scattering amplitude reduces to single out the effect of the initial-state relatiyeenter-of-
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FIG. 1. Initial bound-state radial wave functigitr) with quan-
tum numbers=5, |=0 for relative motion.

FIG. 3. Fivefold differential cross SectioxX for zero c.m. mo-
mentum(K=0) as a function of angle of emissiafy of the elec-
tron b with respect to momentum transfer directionEat 200 eV,
mas$ motion. Note that the wave functioa(r) of relative  g=0.273 a.u., and,=E.=5.0 eV (—) and E,=E,=2.5 eV ().
motion defines the pair-correlation functic®(f)=|¢(r)|>  The results at 2.5 eV have been multiplied by 0.006 to bring them

[9]. on the same scale for comparison of angular distribution.
V. RESULTS
o Klierg- kP
We have takem=5, =0, m=0 for the relative motion K;

and have considereN=0, L=0, M=0 andN=0, L=2, M

=0 for the c.m. motion in the initial state. Figures 1 and 2

show the radial wave functions(r) and&R). We have con- and the relative motion contribution
sidered 200-eV electrons scattered by the quantum dot with

the scattered electrons taking away most of the energy while

the ejected electrons are slow. In order to span whole range |£(d, E)|2

of variablesq, k,, andk. the angular distribution oK has

been studied in the literature in various kinematical arrange-

ments, such af) fixed ejected angle modéj) symmetrical may be analyzed separately, and as the reflection of the
emission modsjii ) energy sharing with fixed total energy of electron-electron correlation is interesting, we have studied
ejected electrons modé€y) identical directions of emission the angular distribution oKX in the last two of the above

and varyingg mode, (v) fixed mutual angle mode, ar@i)  kinematical arrangements in which the c.m. factgtd
Bethe ridge mod¢2,3,13-11. In the present study the ¢.m. -K)|? is constanfK=0 orG=K]. Note that this is a first Born

contribution calculation with the aim of analyzing the angular distribution
of X in the present context. The modifications caused by the
Coulomb interaction between the scattered electron and the
ejected electron§l8] and the second-order effedt$9—-27

. have not been considered.

] Figure 3 presents angular distribution in the fixed mutual
4 angle mode, that is, with variably and 6, while keeping the
mutual angled, fixed for L=0. We have takem,.=180° at
E,=E.=5.0 and 2.5 eV and fixeg=0.273 a.u. The c.m. mo-

mentumK is now equal to zero and this makésﬁ—ﬁ)
. = &(g) independent ofg, or 6,. A fixed value ofg implies

here a fixed value oP; asG+P;=K=0. The ¢.m. motion in

7 this kinematics therefore plays no role in the angular distri-

bution of X, which is determined by the relative motion lof

and c. In the case of &vy,2e) process, the cross section

vanishes in this cag@]. The present results therefore mani-

R (a.u) fest a nondipolar contribution. The cross section is symmetri-

FIG. 2. Initial bound-state radial wave functiog®) with quan-  cal about,,=90° because of the singlet initial state and can

tum numbersN=0, L=0 (—) andN=0, L=2 (--) for c.m. motion. ~ be represented as
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FIG. 4. Same as Fig. 3, but #=2° (q=0.135 a.u, E,=E; FIC_S. 5. Fivefold dlffgrentlal Cross Sect@n with Cc_)ulomb_ in-
=256V (—); 6,=1° (q=0.069 a.U, Ey=E,=2.5 eV (- --); teraction between the ejected electrons switched off in the final state

and 0,=0.5° (q=0.037 a.u, E,=E,=2.5 eV (--). The results hav for zero c.m. momentgr(K:O) as a function of angle of enjissic_)n
been multiplied by the indicated factors to bring them on the saméha Of the electrorb with respect to momentum transfer direction
scale. for E;=200 eV at 6,=2°, E,=E,=2.5 eV (--); 6,=1°, Ep=E;
=25eV(--+-+-----) and 0,=0.5°, E;=E.=2.5 eV (:-). The results
) have been multiplied by the indicated factors to bring them on the
Y A(G,KPy(cosbig) |,

same scale.
A=0,even

0.037, respectively. The occurrence of the minimum indi-
whereq ar!dk are constant. It shows a peak when one of t.hecates that the coefficients, andA, now have the same sign.
electrons is emitted glong t.he momentum transfer dlrectlor1’he differences in angular distribution of the results with and
and the other opposite to it, and a subsidiary peak,at

R without Coulomb interactioFigs. 4 and %in the final state
=90° which corresponds té, 1 g,k. L g along with k,=

J very clearly demonstrate the importance of the final-state
—k.. This is in apparent accord with the observations ofe-e correlation.

Lahmam-Bennarét al.[3,15] in the atomic case. This latter For fixed 6q (6cq)=90° (say, the above kinematics

peak becomes more marked and the overall value of thek=0) may also be used to spafP,) by varyingg. At these
cross section increases whéj (=E) decreasesFig. 3).  yajyes X is given by

Both of these features are caused by the fair, k)2 A .
decrease in momentum transfer, however, decreases the peak d°g

at 6,,;=90°. The angular distribution of for different values ~ dEdEdQ,d(,d(),
of q at E,=E.=2.5 eV is shown in Fig. 4. At9,=2° (q
=0.135 a.u, the ratio of maximum to minimum cross sec-
tion is about 1.5, at),=1° (q=0.069 a.u. it is about 1.1,
while at #,=0.5° (q=0.037 a.u. it is only about 1.03. The —. o

results have been multiplied by suitable factors to bring then{'here&(a) for L=0 is given by

on the same scale for comparison of the angular distribution. —

The large variation withy re%uiring this scaligg is here due £0) = (moR) ™" expl(= ¢/2wp). (40)
to the constang-dependent factojé(q)|? in X; the angular  Figure 6 shows variation of [q*X] againstg? for E,=E,

distribution is, however, controlled Hy(d,k)|%. We thus find =2.5 eV. Note that in this kinematiags+ P,=0. The straight
that the overall magnitude of the relative motion factorline portion for small values of| corresponds to the region
|§(6|,l2)|2 in X mainly depends ok while its angular distri- wherejo(quZ) is gssentially equal to unity over the effective
bution depends on bothandg. At low values ofq andk, the ~ fange of integration. For larger valuesafthe curve lowers
differential cross section is essentially contributed by down as expected. , _ . _
=0, 2 with the coefficientsd, and A, having opposite signs. Figure 7 shows the resultslr_l the Bethe ridge kinematics
The Coulomb interaction between the two electrons in thd22] where momentum transfey is equal to center-of-mass
final state favors symmetrical emission which in te0  momentunK (=k,+k.). The values ob, 6, Ep, E., and by,
geometry corresponds @,,=6.,=90°. If it is ignored, the under Bethe ridge conditions for different valueségf and
angular distribution oK shows a minimum a#,,=90° (Fig.  given E,+E. may be obtained easily from energy/
5). This minimum becomes shallower gsdecreases. The momentum conservation relatiofiggs.(29) and(30)]. This
ratios of the cross section &@,=0° to the cross section at kinematics corresponds to the initial total momentuin
6hg=90° are about 11, 2.8, and 1.6 @+ 0.135, 0.069, and equal to zero. In the present case where c.m. and relative

Oha=90°
2

32akoKe f i Foknio(@r/2)e(nridr| , (39
0

K |E@)
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2
q (a.u.)
FIG. 6. Plot of Ifg*X] as a function ofg? for E;=200 eV and
Ep,=Ec.=2.5eV in the K=0 kinematics at fixedfy,=6,q=90°.
Dashed line is extrapolation of the initial straight line portion.

motions are decoupled, the angular distributiorXafepends

only on the relative motion as the facté(rﬁ—li)zg(O) is a
nonzero constant fok=0. It is found thatX is maximum

PHYSICAL REVIEW A 70, 062702(2004)

X(a.u.)

0 ‘ 30 . 60 ‘ 90 ‘ 120 150 180
By, (deg)

FIG. 8. Fivefold differential cross SectioX in fixed mutual

angle modef,;=2 cos* (q/2ky) as a function offi,=cos™ (G-K)
atE;=200 eV,0,=4°, E,=E.=5.0 eV. The magnitudes of c.m. mo-
mentumK and momentum transfeyare equal. The quantum num-
bers of the initial c.m. wave functions aN=0, L=0 (—) andN
=0,L=2(---).

when the more energetic of the two electrons is emitted neatecrease. Note that there is no Bethe ridge contribution for
the momentum transfer direction and the other one nearly #0 because in this case the probability of havidg0
opposite to it. Similar results have been obtained earlier byanishes.

Srivastavaet al. [2] in the case ofe,3e) on helium by en-

Let us now consider equal energy of emissi@j=E,

ergetic electrons using the Hartree-Fock wave function of=5.0 e\), under Bethe ridge conditions and take

Byron and Joachaif23] and “open-shell” wave function of

Silvermannet al. [24] for the helium ground state. This event

Ope = 2 coS(q/2ky), (41)

corresponds to a binary collision in which one electron isgq thatg=K. Now if X is considered in fixed mutual anglat

emitted near the momentum transfer direction and the oth
one by shake-off. This has a higher probability. As the ener-

getic electron moves away from tliedirection andé,. de-

Shis value ofth) mode as a function oficq {=cos{(K-§)}, it

spans the c.m. momentum distributigfq sin(6kq/2)] of

creasesor 6, increases the cross section decreases. Thethe ejected electrons in the initial state. This kinematics has

Coulomb repulsion betweem andc also contributes to this

X (a.u.)

0 15 30 45 60 75

8, (deg)

FIG. 7. Fivefold differential cross SectioX in Bethe ridge ki-
nematics forg;=200 eV,E,+E.=10 eV at#,=10° (q=0.666 a.u.
as a function of angl#@, between the directions of relative motion
k and momentum transfe. The c.m. and relative momenkaand
k are equal to 0.666 a.u. and 0.507 a.u., respectively.

been considered earlier by Lahmam-Benretral. [17]. Fig-
ure 8 shows this for the initial c.m. states with quantum
numbers(N=0,L=0) and (N=0,L=2). The cross section is
zero atbyy=0 in the case ok =2. It should be noted that the
factorg(d,lz) in X is not constant here and affects the angular
distribution. The separation between the contributions of the
c.m. and relative motions is therefore not “clean.”

Figures 9 and 10 show our results for fixeg+E; as a
function of|d—|2| in a new kinematical arrangement where
the relative momenturk is equal to the momentum transfer

g. This makes the relative motion facti(d, k) = £(q,d) in X

a constant. The values &, E, 6, 6, 6qandq-K in this
arrangement for given values 6§, E,+E., 6,, andE;, may

be obtained from energy/momentum conservation relations
[Egs. (29) and (30)] as before. The variation ok here is
essentially given by the c.m. factor which is the Fourier
transform of the initial-state c.m. wave function of the
ejected pair.

VI. SUMMARY

The structure of the fivefold differential cross sectiof)
as a product of two factors depending on c.m. motion and
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FIG. 9. Fivefold differential cross SectioX as a function of fun';tli%n 10. Same as Fig. 9, but witd=0, L=2 initial c.m. wave

|§-K| in the kinematics wher&=q at E;=200 eV, 6,=4°, andE,
+E,=10 eV. The quantum numbers of the initial c.m. wave func-matics shows a very interesting manifestationeeé Cou-
tion areN=0, L=0. lomb correlation in the final state and is found to be very
useful in probing the initial bound-state relative motion wave
relative motion in the case of a quantum dot is exploited tafunction. It may also be used with varyirggand fixed 6
analzse the reflections of the initial c.m. and relative motions=90° to probe the initial bound-state c.m. wave function for
on it separately. The kinematical arrangements WM small P,. The K=q kinematics, though not providing a clean

separat|on is quite useful in probing the relative motion
(Bethe ridge, K=0, andk= g are found to be very useful in wave function.

making one of the factorgdepending on c.m. motion or
depending on relative motigma constant. These, for a given ACKNOWLEDGMENTS
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