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We present the wave-packet analysis for twoS-wave resonances in positron scattering by a helium ion
whose existence was predicted by Bhatia and Drachman but has been controversial. The evolution of the wave
packet is solved to exhibit temporary formation of the quasistationary state. For both the resonances, the
position and width are determined through the resulting time delays in a consideration of a multichannel nature
to agree with those by previous variational eigenenergy calculations. It is further found that the lower reso-
nance dominantly forms from, and decays into, then=2 states of the helium ion, while the higher one then
=3 states.
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I. INTRODUCTION

Resonances are the most striking phenomena in the whole
range of scattering experiments in physics. In its simplest
form, a resonance manifests itself in a sharp peak of a cross
section as a function of energy. According to the time-
dependent wave-packet description[1–4], the resonance is
observed as temporary formation of a metastable state in a
projectile-target complex, thus defined as a maximum of the
time delayof a scattering wave packet.

The wave-packet formalism has been extensively applied
to scattering calculations owing to recent increase of com-
puter power. Mitnik, Griffin, and Pindzola[5] have applied
the formalism to a doubly exciteds2s2d resonance in electron
scattering by a helium ionsHe+d. They have demonstrated
rapid formation and exponential decay of the resonance
when the temporal widthT of a wave packet is much shorter
than the resonance lifetimet. For an actual wave packet in
beam experiments, however, the opposite conditionT@t is
realized so that the formation and the decay of a resonance
are almost overlapped in the time domain. It leads to a well
defined concept of the time delay because the wave packet
retains its shape in the scattering. Thus, the nature of a reso-
nance should be analyzed through observing the time delay
whenT@t.

In the positron-helium ion systemse+,e−,He2+d, many
resonances have been found in previous theoretical studies
[6–10]. Bhatia and Drachman[6] predicted twoS-wave reso-
nances in a variational eigenenergy calculation with the sta-
bilization method. Their prediction was confirmed in com-
plex eigenenergy calculations with the complex coordinate
rotation method by Ho[7], by Ho and Yan[8], and by Toya,

Kino, and Kudo[9]. The energy position«l and the widthGl

of the two resonances, labeled byl=1 and 2, were precisely
determined to be se1,G1/2d=s−10.082,1.761d and
se2,G2/2d=s−5.050,0.535d in eV [7]. They are multichannel
resonances lying above the excitedn=2 and 3 states of the
helium ionsHe+d, respectively, and both supported in spite of
asymptotic Coulomb repulsion between the positron and the
helium ion. However, the resonances were not reproduced in
scattering calculations with the close-coupling method by
Igarashi and Shimamura[10] and by Bransden, Noble, and
Whitehead[11]. They observed no potential well supporting
the resonances in hyperspherical adiabatic potential curves
[10], and no increase ofp in the eigenphase sum[11].
Hence, the existence of the resonances has been a question in
controversy.

In the present paper, we present a wave-packet analysis
for the twoS-wave resonances in positron scattering upon a
helium ion by solving time-dependent coupled-channel
(TDCC) equations. The TDCC method is known to be suc-
cessfully applied to electron and positron scattering by atoms
(see Refs.[5,12–14] and references therein). We observe
wave-packet behaviors characteristic of a resonance, and de-
termine its position and widths(partial as well as total)
through the time delays in a consideration of a multichannel
nature. The values obtained forel and Gl turn out to be in
good agreement with those predicted in the previous
eigenenergy calculations[6,7,9]. It is further found that the
lower resonance dominantly forms from, and decays into, the
n=2 states of the helium ion, while the higher one then=3
states. Atomic units(a.u.) e=m="=1 are used unless other-
wise stated.

II. NUMERICAL METHOD

The time-dependent wave function for anS wave is ex-

panded over the coupled spherical harmonicsY Ll
00sR̂ , r̂ d

=fYLsR̂d ^ Ylsr̂ dg0
0 as
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CsR,r ,td =
1

Rr
o
Ll

cLlsR,r,tdY Ll
00sR̂, r̂ d, s1d

whereR and r are the position vectors of the positron and
the electron relative to the helium nucleus,L and l being the

angular momenta associated withR̂ and r̂ . The TDCC equa-
tions for the radial functioncLlsR,r ,td are derived[14] to be

i
]

]t
cLlsR,r,td = FTLl,Ll

00 + o
L8l8

VLlL8l8
00 GcL8l8sR,r,td, s2d

whereALl,L8l8
00 =kY Ll

00uAuY L8l8
00 l for operatorsA=T andV. The

operatorT represents the kinetic energy including the cen-
trifugal potential, whileV is the Coulomb interaction among
the three charged particles. The initial condition is taken as

cLlsR,r,t = 0d = gkLsRdfnlsrddLl s3d

with the targetnl statefnlsrd and an incoming wave packet.
The latter is given by

gkLsRd =
1

sw2pd1/4 expF−
sR− R0d2

2w2 GFkLsRd, s4d

wherew andR0 are the width and the position of the initial
Gaussian envelope, andFkLsRd an asymptotic form of the
Coulomb wave function at a collision energyE=k2/2. The
energy spread of the incident wave packet is taken to be
DE/E=2/skwd,20%. The calculation is carried out for ini-
tial target states ofnl=1s, 2s, 2p, 3s, 3p, and 3d. The expan-
sions overL and l in Eq. (1) are truncated by 9. The TDCC
equation(2) is stably solved with numerical techniques de-
veloped in Ref.[13]. Numerical accuracy has been demon-
strated in previous work[13,14].

III. RESULTS AND DISCUSSION

Figure 1 shows the time evolution of probability density
ucLlsR,r ,tdu2, for the incomingS wave sL=0d at E=3.5 eV
with the target 2s state. This energy corresponds to the pre-
dicted position of the lowerl=1 resonance. The first row
sa1d–sa4d in the figure shows free propagation taking the
asymptotic Coulomb potentialR−1; only the initial channel
sL , ld=s0,0d is populated. The wave packet comes from the
right in panelsa1d, reflects at the origin insa2d andsa3d, and
goes out to the right insa4d. In sa2d and sa3d are seen inter-
ference fringes of incoming and outgoing waves. Insa4d, the
packet retains the incident Gaussian shape, though the spread
gets wider.

The other three rows in Fig. 1 show the propagation with
full collision interaction 2R−1− uR−r u−1. Panelssb1d–sb4d
and sc1d–sc4d indicate population in two open channels
sL , ld=s0,0d and (1, 1), respectively, whilesd1d–sd4d in a
closed channel(2, 2). In the entrance channel, the interfer-
ence fringes appear insb2d and sb3d the same as insa2d and
sa3d, though affected by the interaction in an internal region
R,30. The outgoing packet is split into two parts as shown
in sb4d. In another open channel(1, 1), on the other hand, a
packet is generated in the interaction region[seesc1d] and

grows with time[seesc2d–sc4d]. This represents an angular
momentum transfer process,e++He+s2sd→e++He+s2pd. It
is found from the comparison ofsc4d with sa4d at a common
time t=350 that the peak position is slightly shifted toward
the left, which means a time delay due to the collision.

In the closed channel(2, 2), a hump is temporarily
formed, retaining its shape as it appears, grows, decays, and
disappears with time[seesd1d–sd4d]. This is a manifestation
of a quasistationary state associated with a resonance. The
extent of the hump is consistent with averaged distances
among the three particles calculated in Ref.[9]. The hump
has two ridges alongr ,4 andR=r; the former comes from
virtual excitation of the helium ion, while the latter from
virtual formation of positronium. The positronium channel
supports an attractive potential well due to the polarization
force.

Figure 2 shows the time profile of a flux

Afstd = zkfn8l8srducl8l8sR`,r,tdlrz2, s5d

passing through a surface at a distance ofR`,80 into the
two open channelsf =n8l8=2s and 2p. The time delay found
in Figs. 1sc4d and 1sa4d for the (1, 1) channel is clearly con-
firmed in Fig. 2 as a peak shift betweenA2p andA2ssfreed. It
is also found that the fluxA2p is comparable in magnitude to
A2ssfreed of free propagation, whileA2s, having two humps,
is smaller thanA2ssfreed by one order. Note that the fluxA1s

is several orders of magnitude smaller thanA2ssfreed.

FIG. 1. Time evolution of wave-packet densityucLlsR,r ,tdu2 for
the scattering of anS-wave positron withE=3.5 eV by a helium ion
in the 2s state. The first row(a) showssL , ld=s0,0d channel when
propagating with the asymptotic Coulomb potential; the other rows
(b), (c), and(d), respectively, show(0, 0), (1, 1), and(2, 2) channels
when propagating with the full collision interaction. The density
profiles are plotted by contours in a logarithmic scale.
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A time delay ktli for an incident channeli =nl is calcu-
lated from the difference of mean distancekCstduRuCstdl at
sufficiently large t with full interaction and that with the
asymptotic Coulomb potential. Figure 3 shows the time de-
lays obtained forn=1 to 3 in the total energye region cov-
ering the two resonances predicted. The total energy is given
by e=En+E, whereEn is the internal energy of thenl-state
helium ion, i.e., E1=−54.423, E2=−13.606, and E3
=−6.047 eV. For the target 1s state, the delay indicates no
sign of a resonance, almost zero and constant with the en-
ergy. For the target states of 2s and 2p, however, the time
delay has a maximum arounde=−10 eVsE,3.5 eVd, close
to the positione1=−10.082 eV predicted for the lower reso-
nance. As the energy further increases, the delay decreases
and turns negative; no sign of a resonance is seen around
e2=−5.050 eV predicted for the higher resonance. For the
target states of 3s, 3p, and 3d, however, the time delay
clearly indicates a peak arounde2.

We determine the resonance parameters from the time de-
lays ktli calculated. For a wave packet injected in channeli
and ejected in channelf, the time delay can be represented as

tif = ReS− iSif
−1dSif

de
D s6d

with theS-matrix elementSif . Its average over final channels
leads to an expressionktli =o fuSif u2ti f , which is identical to a

diagonal element of the “lifetime matrix”Q=−isS†dS/ded
given by Smith[15]. Taking the Breit-Wigner resonance for-
mula for theS-matrix elements[16],

Sif
r sed = eisVi+VfdSdif +

iÎGliGlf

el − e − iGl/2
D , s7d

we obtain a resonance formula for the time delay,

ktli =
Gli

sel − ed2 + sGl/2d2 + 2
dVi

de
, s8d

whereGli is the partial width for channeli, with a total width
given byGl=oiGli, andVi is the background phase shift. As
shown in Ref.[17], if Vi varies rapidly aroundel, its effect
may appear to enhance and suppress the first term as if it
gave rise to a resonance behavior. For the convenience of
incorporating such a background contribution, we employ in
the present analysis an effective formula with an additional
parametera,

ktli =
aGli

sel − ed2 + sGl/2d2 + 2
dVi8

de
. s9d

This expression is associated with the definition of resonance
as the maximum of the time delay. The formula(9) is derived
[1] from a Taylor expansion of the reciprocal of time delay
around its peak positionel, ktl−1=a0+a2se−eld2+O(se
−eld3). The zeroth and second order terms in the expansion
are converted into the resonance term of Eq.(9), while
O(se−eld3) into the background term. The condition of inte-
gera would be further derived by imposing analyticity prop-
erties for theS-matrix elements.

The analysis of the time delay is justified when the shape
of a wave packet is retained in the scattering, or equivalently
when the energy spreadDE of a wave packet is smaller than
the resonance widthGl. This condition is realized in our
treatment as seen in Fig. 2, where the time profile ofA2s
+A2p is similar to that ofA2ssfreed. The parameters«l, Gl,
Gli, anda are determined by fitting the time delays in Fig. 3
with Eq. (9). The background contributionsdVi8 /de are
given by a polynomial ofe−el up to the first and second
orders for the lower and higher resonances, respectively. Ac-
curacies in the fitting are obtained to be better than 10%. The
background obtained is almost flat in the lower resonance
and slanting in the higher resonance.

Table I shows the resonance parameters determined in this
way. The present result is in good agreement with the previ-
ous results obtained in variational eigenenergy calculations
by Bhatia and Drachman[6], by Ho [7], and by Toya, Kino,
and Kudo [9]. Note that the parameter values determined
may involve errors due to ambiguity in describing the back-
ground and due to the finite energy spread in the wave
packet. They are expected to be at most comparable to the
error accompanying by the parameter fitting. In the present
calculation, the sum of partial widthsG1,2s andG1,2p accounts
for the total widthG1, and similarly, the sum ofG2,3s, G2,3p,
andG2,3d for G2. All the other partial widthsG1,1s, G2,1s, G2p,
andG2,Ps:1s (with respect to the positronium 1s channel) are
negligibly small. Hence, it is found that the lower and higher

FIG. 2. Time profiles of a wave packet atE=3.5 eV. Solid lines
representAfstd obtained from the TDCC calculation with Eq.(5),
while broken lines giveAf

rstd constructed from theSmatrix (7) with
Eq. (10).

FIG. 3. Time delay of wave packets for positron scattering by
nl-state helium ions. Symbols “2s+2p” and “3s+3p+3d” indicate
the sums of the delays over the two and three states, respectively.
Solid lines represent fittings to the formula(9). The left vertical axis
corresponds to then=1 and 2 states, while the right axis to then
=3 states.
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resonances are dominantly coupled with then=2 and 3 chan-
nels, respectively. The coupling with the 1s channel is neg-
ligible. This result is consistent with a previous study[14]
for elastic scattering by the helium ion in the ground state; no
resonancelike behavior was discerned in the phase shift. The
parametera obtained is considerably smaller than unity for
both the resonances. If we fixa=1 in the fitting procedure,
we fail in reproducing the time delays within the polynomial
expansion ofdVi8 /de. Therefore, we consider that the maxi-
mum of the time delay is suppressed by a background con-
tribution dVi /de in Eq. (8) which seemingly takes a mini-
mum near the resonance position.

For confirmation, we construct the time profiles at the
resonance positione1 shown in Fig. 2 from the Breit-Wigner
formula (7) as

Af
rstd = ugk8l8

r sR`,tdu2 s10d

with the asymptotic form of the outgoing wave

gk8L
r sR,td =E de ased

Sif
r sed

Îkk8
FkL

* sRde−iet, s11d

wheree=En+E=En8+E8 andk8=Î2E8. The coefficientased
is determined from the initial wave packet(3) as ased
=kukLsRdfnlsrd ucLlsR,r ,t=0dl with the energy normalized
scattering functionukLsRd. TheS-matrix elements in Eq.(11)
are calculated with the formula(7) using the resonance pa-
rameters shown in Table I. The background phase shiftsVi
are calculated with Eqs.(8) and(9). As seen from Fig. 2, the
profiles Af

r obtained with Eq.(10) reproduce the curves of
A2ssfreed, A2s, andA2p obtained from the present TDCC cal-
culation with Eq. (5). The remarkable asymmetry in size
found between amplitudesA2s andA2p is explained also with
Eq. (7); uS2s,2s

r se1du2.0 and uS2s,2p
r se1du2.1, since G1,2s

.G1,2p.G1/2 and G1,1s.0. Thus, the time profiles at the
resonance position are explained as a multichannel resonance
described by Eq.(7).

The previous scattering calculation by Bransden, Noble,
and Whitehead[11] exhibits a marked increase of the eigen-
phase sum around the lower resonance in the form of an
arctangent function, though the increase does not amount to
p. These behaviors are consistent with the present result for
the time delays. The condition of an eigenphase increase of
p is too strict as an actual criterion of a resonance when the
background phase varies rapidly with energy.

IV. SUMMARY

We have presented a multichannel wave-packet analysis
for the two S-wave resonances in positron scattering by a
helium ion. The time evolution of the wave packets shows
behaviors characteristic of resonances. The time delays are
calculated to determine the resonance positions as well as the
total and partial widths. The position and total width are in
good agreement with those obtained in the previous eigenen-
ergy calculations. It is predicted that the two resonances can
be observed in positron scatterings upon excited helium ions,
the lower and higher resonances upon then=2 and 3 states,
respectively. The method of analyzing the time delays dem-
onstrated in the present study would have extensive applica-
tions to resonances.

Note added in proof:A related work by Igarashi and Shi-
mamura[18] was published. In this paper, they have calcu-
lated the eigenphase sum and derived a resonance formula
(8) with the eigenphase theory.
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