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The quantum clock synchronization(QCS) algorithm proposed by Chuang[Phys. Rev. Lett.85, 2006
(2000)] has been implemented in a three qubit nuclear magnetic resonance quantum system. The time differ-
ence between two separated clocks can be determined by measuring the output states. The experimental
realization of the QCS algorithm also demonstrates an application of the quantum phase estimation.
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I. INTRODUCTION

The combination of quantum mechanics and computer
science gives birth to quantum computer where quantum
properties enable quantum computer to efficiently solve dif-
ficult problems in classical computer, for instance to factor-
ize a large number using the Shor algorithm[1]. Marriage of
quantum mechanics with other traditional science and tech-
nology has also produced fruitful results. Clock synchroniza-
tion is one such example. The task of clock synchronization
is to determine the time differenceD between two spatially
separated clocks. It is important both in practical application
and in scientific research. Recently, some authors have ap-
plied quantum mechanical means to this classical problem
and showed that quantum clock synchronization gains sig-
nificant improvement compared to its classical counterpart
[2–4]. One of the quantum clock synchronization(QCS) al-
gorithms is the one proposed by Chuang[2], which uses the
quantum phase estimation method[5,6]. Chuang’s QCS al-
gorithm obtainsn digits of accuracy in the time differenceD
while exchanging only the order ofn number of qubits. This
quantum algorithm gains an exponential improvement over
classical algorithms which requiresOs22nd message ex-
changes.

With the highest speed, the photon is the natural choice
for the practical implementation of the QCS algorithm. An
alternative quantum system to implement the QCS algorithm
is to use quantum spins in a magnetic field as suggested in
Ref. [2]. Nuclear magnetic resonance(NMR) has been
widely used in various fields, and it has also become an
important arena to demonstrate quantum algorithms. Many
algorithms, such as the Grover algorithm, the quantum Fou-
rier transform, and Shor’s quantum factoring algorithm, have
been demonstrated in NMR quantum systems[7–11]. Some
quantum communication protocols, such as the quantum
teleportation and quantum dense coding, have also been
demonstrated in NMR quantum systems[12–14]. It is thus a

good system to demonstrate the QCS algorithm.
In this paper, we report the result of an implementation of

the QCS algorithm in a three qubit NMR quantum computer.
The basis of the algorithm is the quantum Fourier transform
(QFT) which has been applied in experiments previously
[9,15,16]. The QCS algorithm requires a pure state as the
initial state. To use an NMR ensemble for quantum compu-
tation, preparation of the effective-pure state is one necessary
step [17,18]. Temporal averaging and spatial averaging are
two main practical methods to prepare effective-pure states
[19–21]. In our experiments, we chose the spatial averaging
method to prepare the effective-pure state. Using this
method, the algorithm is implemented through only one ex-
periment. Compared with the temporal averaging, the spatial
averaging can shorten experiment time, and it has been ap-
plied in various experiments[22–28].

This paper is organized as follows. After this brief intro-
duction, we give the outline of the QCS algorithm, and in
particular we give the explict quantum circuit of the QCS
algorithm in a three qubit system in Sec. II. In Sec. III, we
give the details of the experimental demonstration of the
QCS algorithm, including the pulse sequence and the results
of the experiment. In Sec. IV, we give a brief summary.

II. THE QCS ALGORITHM AND SIMPLIFIED CIRCUIT
FOR A THREE-QUBIT NMR QUANTUM SYSTEM

A brief summary of the QCS algorithm is given below,
and the details can be found in Ref.[2]. In the QCS algo-
rithm, Alice possessesm+1 qubits. The firstm qubits are the
working qubits and are retained at Alice’s site, and the extra
qubit is an ancilla qubit for implementing theT-unitary op-
eration. The procedure of the QCS is as follows. Alice per-
forms the Hadamard operation on each of the firstm qubits.
This prepares the state of them+1 qubit system to

uf1l =
1

Î2m o
k=0

2m−1

uklu0l.

Then theT operation, which inscribes the time difference
between the two clocks into the many-body quantum state, is
implemented. At this stage the state of them+1 qubit system
is
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uf2l =
1

Î2m o
k=0

2m−1

e2pikvDuklu0l.

Then Alice applies an inverse quantum Fourier transformF−1

on the firstm qubits, transforming their state to

uf3l =
1

2m o
k=0

2m−1

o
j=0

2m−1

e2piksvD−j /2mdu jl = o
j=0

2m−1

cju jl. s1d

The state is peaked atj =2mvD. If 2mvD is an integer, the
equality is exact. Measuring the qubit values of the firstm
qubits gives us the value ofj which in turn determines the
time differenceD. In practice, the equality cannot hold ex-
actly, and it givesvD aboutm bits of accuracy with a high
probability.

The central ingredients of the QCS algorithm are theT
operation and the quantum Fourier transform. TheT opera-
tion can be implemented by performing the following opera-
tion on each of them qubits:(1) Alice makes controlled-NOT

(CNOT) operation on thelth and the ancilla qubit which is the
target state.(2) The ticking qubit handshake(TQH) protocol
sp2l−1v , ucld is performed, transforming the state of thelth
and ancilla qubit system into

1
Î2

se−2lpivD/2u00l + e2lpivD/2u11ld. s2d

(3) Alice performs anotherCNOT gate to thelth and the an-
cilla qubit, so that the state of thelth and the ancilla qubit
becomes

e−2lpivD/2o
kl=0

1
1
Î2

uklle2lpiklvDu0l. s3d

(4) After all the m qubits have gone through the previous
operations, the overall operation is to transform the state
uk8lu0l= uk0k1¯km−1lu0l into uk8le2pivDsol2

lkldu0l, because

Tuk8lu0l = fT0uk0lT1uk1l ¯ Tm−1ukm−1lgu0l

= uk8le2pivDsol2
lkldu0l. s4d

Using theSWAP operation, the stateuk8l is transformed into
ukl= ukm−1¯k1k0l, and Eq.(4) becomes

ukle2pikvDu0l, s5d

whereol2
lkl =k.

The quantum network shown in Fig. 1 implements the
QCS algorithm in a three qubit system. The three lines de-
note the three qubits, respectively.u0l denotes the spin up
state.H denotes the Hadamard transform. The effect of the
TQH is to introduce a phase to the two different quantum
states of the ancilla qubit, namely for theu0l state with phase
e−2lpivD/2 and for stateu1l with phasee2lpivD/2, hence the state
s1/Î2dsu00l+ u11ld of the lth qubit and the ancilla qubit sys-
tem changes to

1
Î2

se−2lpivD/2u00l + e2lpivD/2u11ld. s6d

In NMR, this is equivalent to a rotation about thez-axis. For
the first qubit, the rotation isRzswkd=eiwkIz, and for the sec-
ond qubit the rotation isRzs2wkd=RzswkdRzswkd. We have
written −vDp asw. Because 22vD has to be integer, ranging
from 1 to 2m−1=3, sow can take the following valueswk
=−kp /2, wherek=0,1,2,3. Whenm is large, k takes the
value from 0 to 2m−1 and the measurement of thisk value
gives the value ofvD, and hence the time differenceD.

For the quantum Fourier transform, some simplification is
possible. We useI u11l

−p/2 to denote the controlled phase shift
operation applied to the subsystem constructed by qubit 1
and 2.I u11l

−p/2 is explicitly

I u11l
−p/2 =1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 − i
2 , s7d

with the basis orders inu00l, u01l, u10l, u11l. The network
outlined by the dashed rectangle in Fig. 1 implements the
inverse of the quantum Fourier transform, where theSWAP

operation has been counteracted by another one in the net-
work. The inverse of the QFTF−1 can be written as
F8−1OSWAP, where OSWAP denotes theSWAP operation[9].
The effect of this network is to make the following transfor-
mation:

F8−1 =
1

21
1 1 1 1

1 − 1 − i i

1 1 − 1 − 1

1 − 1 i − i
2 . s8d

The bit values of the first two qubits are the desired output.
The network shown in Fig. 1 transformsu000l to u000l, u010l,
u100l, and u110l, corresponding towk=0, −p /2, −p, and
−3p /2, respectively, andvD to be 0, 1

4, 2
4, and 3

4, respec-
tively. By measuring qubit 1 and 2, one obtains the concrete
value ofw and hence determines the time difference between
the two clocks.

FIG. 1. The quantum network to implement the QCS algorithm.
The three lines denote the three qubits.H denotes the Hadmamard
transform,I u11l

−p/2 denotes the controlled phase shift operation, and
Rzswkd=eiwkIz, where wk=−kp /2 sk=0,1,2,3d. The network out-
lined by the dashed rectangle implements the inverse of quantum
Fourier transform without theSWAP operation. Time goes from left
to right. uxl1uyl2 is the output state, which can be obtained through
measuring qubits 1 and 2.
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III. IMPLEMENTATION IN A THREE-QUBIT NMR
QUANTUM SYSTEM

The experiment uses a sample of13C labeled trichloroet-
hylene (TCE) dissolved in d-chloroform. Data are taken at
room temperature with a Bruker DRX 500 MHz spectrom-
eter.1H is denoted as qubit 3, the13C directly connecting to
1H is denoted as qubit 2, and the other13C is denoted as
qubit 1. The three qubits are denoted asC1, C2, andH3. By
setting"=1, the Hamitonian of the three-qubit system is[29]

H = − 2pn1Iz
1 − 2pn2Iz

2 − 2pn3Iz
3 + 2pJ12Iz

1Iz
2 + 2pJ23Iz

2Iz
3

+ 2pJ13Iz
1Iz

3. s9d

Iz
js j =1,2,3d are the matrices forz-component of the angular

momentum of the spins.n1,n2,n3 are the resonance frequen-
cies ofC1, C2, andH3, andn1=n2+904.4 Hz. The coupling
constants are measured to beJ12=103.1 Hz,J23=203.8 Hz,
and J13=9.16 Hz. The coupled-spin evolution between two
spins is denoted as

ftg jl = e−i2pJjltIz
j Iz

l
, s10d

where l =1,2,3, andj Þ l. ftg jl can be realized by averaging
the coupling constants other thanJjl to zero [30]. For ex-
ample,ftg13 is realized by the pulse sequence shown in Fig.
2(a). The chemical shift evolution ofC2 is realized by the
pulse sequence shown in Fig. 2(b). Rz

2spd can be realized by
choosing the proper evolution time, and the transmitter fre-
quency[31]. The p pulses forC2 are chosen as RE-BURP
(the abbreviation for refocusing- band-selective, uniform re-
sponse, pure-phase) pulses to excite the multiplet ofC2 uni-
formly [32].

The initial effective-pure stateu000l is prepared by spatial
averaging[20]. The following radio-frequency(rf) pulse and
gradient pulse sequence

fp/4gx
1,2− f1/2J12g12 − f− 5p/6gy

1,2− fagx
3 − fgradgz − fp/4gy

3

− f9/2J23g23 − f1/2J13g13 − fp/4gy
3 − fgradgz − fp/4gy

3

− f9/4J23g23 − f1/4J13g13 − fp/4gx
3 − fgradgz, s11d

transforms the system from the equilibrium state,

req= gCsIz
1 + Iz

2d + gHIz
3, s12d

to

r0 = Iz
1/2 + Iz

2/2 + Iz
3/2 + Iz

1Iz
2 + Iz

2Iz
3 + Iz

1Iz
3 + 2Iz

1Iz
2Iz

3, s13d

where an overall phase factor has been ignored[20–22,33].
fp /4gx

1,2 denotes thep /4 pulse excitingC1 andC2 simulta-
neously along thex-axis. fp /4gy

3 denotes the spin-selective
p /4 pulse for1H along they axis. gC and gH denote the
gyromagnetic ratio of13C and1H. a=arccoss−gC

Î6/gHd. r0

is equivalent tou000l. We find that the compound operations

OCNOT13
Rz

3swkdOCNOT13
Rz

3 = F − wk

pJ13
G

13
, s14d

OCNOT23
Rz

3s2wkdOCNOT23
= F− 2wk

pJ23
G

23
, s15d

realize the network much easier, whereOCNOT13
denotes a

CNOT operation for qubits 1 and 3. The Hadamard transform
simultaneously applied toC1 and C2 is realized by pulse
sequencef−p /2gy

1,2−fpgx
1,2 where the number in the super-

script refers to the qubit number. The Hadamard transform
for C2 in the inverse of QFT, denoted byH2, is realized by
fp /4gy

1,2,3−Rz
2spd−f−p /4gy

1,2,3, and H1=H1,2H2, noting H−1

=H. I u11l
−p/2 is realized by f1/4J12g−f−p /2gy

1,2−fp /4gx
1,2

−fp /2gy
1,2 [9,34].

The experimental results are represented as the density
matrices obtained by the state tomography technique
[19,35,36], where the spin-selective readout pulses forC2,
denoted asfp /2gx

2 and fp /2gy
2, are realized by pulse se-

quences fp /2gy
1,2−Rz

2sp /2d−f−p /2gy
1,2 and f−p /2gx

1,2

−Rz
2sp /2d−fp /2gy

1,2, respectively, in order to freeze the mo-
tion of C1 [31,37]. Rz

2sp /2d is realized by the pulse sequence
shown in Fig. 2(b). Figure 3 shows the experimentally mea-
sured density matrix when the system lies in effective-pure
stateu000l prepared by the pulse sequence(11). In the gen-
erated density matrix, the desired element, which is the only
nonzero element in theory, is measured to be 14.2(in arbi-
trary units). The amplitudes of the other elements, which are
zero in theory, are less than 1.8.

The QCS algorithm starts with effective-pure stateu000l.
When w0=0, w1=−p /2, w2=−p, and w3=−3p /2, the net-
work shown in Fig. 1 transformsu000l to u000l, u010l, u100l,

FIG. 2. Pulse sequence to realizeftg13 (a) and the chemical shift
evolutionRz

2s2pd8td (b), whered is the offset between the chemical
shift of C2 and the transmitter frequency. Rectangles denotep
pulses. The narrow ones are so short that the widths can be ignored.
The wide ones, however, are long pulses of which widths cannot be
ignored.

FIG. 3. The density matrix(in arbitrary units) reconstructed us-
ing the state tomography technique, when the system is prepared in
effective-pure stateu000l.
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and u110l, respectively, corresponding to the four different
time differencesD=0, D=1/4v, D=1/2v, and D=3/4v.
Figures 4(a)–4(d) show the experimentally measured density
matrices of the three-qubit system after the completion of the
QCS algorithm, corresponding tow0-w3, respectively. The
fidelity of the transformation is described by[9]

C =
Trsrtheoryrexpd

ÎTrsrtheory
2 dÎTrsrexp

2 d
Î Trsrexp

2 d
Trsrinitial

2 d
. s16d

rinitial is the initial density matrix shown in Fig. 3.rtheory
=UrinitialU

†, whereU denotes the theoretical transformation
to implement the QCS algorithm.rexp denotes the experi-
mentally measured density matrix shown in Fig. 4. The fi-
delities corresponding to Figs. 4(a)–4(d) are 90.7%, 77.4%,
75.2%, and 77.0%, respectively. The errors mainly result
from the imperfection of the pulses, the inhomogeneity in the
magnetic field and the decoherence time limit.

IV. CONCLUSION

We have implemented the quantum clock synchronization
algorithm in a three-qubit NMR quantum computer. Using
spatial averaging, the algorithm is implemented through one
experimental run which is much shorter than the temporal
averaging method. For a small qubit system such as three
qubit used in this experiment, the level of accuracy is as
good as the temporal averaging method. Compared with tem-
poral averaging, process of experiments is simplified greatly.
The time difference can be read out through the output state.
In the experiments, we have exploited the long range cou-

pling between nonadjacent nuclear spins, and it is found that
it works well. In NMR samples, long range coupling is a
precious resource, and use of this long range coupling in
experimental realization should be made as much as pos-
sible. On the other hand, through optimizing network, the
experimental operation difficulty can be reduced. In this ex-
periment, using a simplified network where some redundant
operations have been gotten rid of, we have shortened the
total time consumed by the whole algorithm, and hence also
reduced the effect of decoherence consequently. Although we
have demonstrated the algorithm with only three qubits, the
techniques can be generalized to larger qubit system. It
should be pointed out that QCS is one promising area of
quantum information technology that may be implemented in
the future because it requires a lower number of qubits than
other quantum algorithms. For instance, to achieve an accu-
racy of 100 ps, the number of qubits required is only 34. Of
course, before QCS can be realistically used in practice,
there should be big advancement in the technology, for in-
stance in the accuracy of quantum gate operations, and the
length of decoherence time.
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FIG. 4. The density matrices of the three-
qubit system, after the implementation of the
QCS algorithm. Only the real components are
plotted. The imaginary portions, which are theo-
retically zero, are found to contribute less than
10% to the experimental results.(a)–(d) corre-
spond to the four effective-pure statesu000l,
u010l, u100l, andu110l, and the four effective-pure
states correspond to the four different time differ-
encesD=0, D=1/4v, D=1/2v, and D=3/4v,
respectively.
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