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We investigate several problems in entanglement theory from the perspective of convex optimization. This
list of problems comprises(A) the decision whether a state is multiparty entangled,(B) the minimization of
expectation values of entanglement witnesses with respect to pure product states,(C) the closely related
evaluation of the geometric measure of entanglement to quantify pure multiparty entanglement,(D) the test
whether states are multiparty entangled on the basis of witnesses based on second moments and on the basis of
linear entropic criteria, and(E) the evaluation of instances of maximal output purities of quantum channels. We
show that these problems can be formulated as certain optimization problems: as polynomially constrained
problems employing polynomials of degree 3 or less. We then apply very recently established known methods
from the theory of semidefinite relaxations to the formulated optimization problems. By this construction we
arrive at a hierarchy of efficiently solvable approximations to the solution, approximating the exact solution as
closely as desired, in a way that is asymptotically complete. For example, this results in a hierarchy of
efficiently decidable sufficient criteria for multiparticle entanglement, such that every entangled state will
necessarily be detected in some step of the hierarchy. Finally, we present numerical examples to demonstrate
the practical accessibility of this approach.
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I. INTRODUCTION

One of the reasons for the superior performance of quan-
tum devices for computation and communication compared
to their classical counterparts is simply due to the fact that in
quantum mechanics, one has a very large space at hand to
work with: the dimension of the state space of a number of
quantum bits is exponentially larger than the corresponding
configuration space of classical bits. This renders the simu-
lation of a quantum computer on a classical device a difficult
task. But it is not only the sheer size of state space that
makes the assessment of quantum states a difficult problem.
In fact, even to decide whether quantum states have certain
properties that are of central interest in quantum-information
science often amounts to solving computationally hard prob-
lems on a classical computer. Most prominently, to decide
whether a known stater of a finite-dimensional bipartite
system is separable or entangled, i.e., whether or not it can
be written as a convex combination of product states

r = o
i=1

n

pir1
sid

^ r2
sid, s1d

is already anNP hard problem in the system size[1]. A state
is separable if there is a preparation of the state that involves
only local quantum operations and shared classical random-
ness. Such states are correlated, but classically correlated, as
the source for the correlations can be thought of as resulting
entirely from the shared source of randomness[2]. Due to
the central status of the concept of entanglement in quantum
information, a very significant amount of research has been

dedicated to the problem of finding good criteria for separa-
bility that are suitable for specific contexts[3].

To state whether a state is separable or not is equivalent to
stating whether a state is in the convex hull of product states.
Also, the evaluation of many measures of entanglement es-
sentially require the solution of a convex problem. So in
recent years, it has increasingly been realized that a good
deal of insight into several problems in quantum information
and in particular in entanglement theory could in fact come
from the field of research that is primarily concerned with
questions of this type[1,4–10]: this is the theory of convex
optimization. Many problems are already of the required
form, and powerful tools such as the concept of Lagrange
duality readily deliver bounds for the problems at hand. Ex-
amples include the evaluation of measures of entanglement
that reasonably quantify the degree of entanglement of a
given state, such as the distillable entanglement or the
asymptotic relative entropy of entanglement[4,5]. Also, it
has been realized that while the complete solution of the
question of separability isNP hard, one can nevertheless find
hierarchies of sufficient criteria for entanglement in the bi-
partite setting. In each step, by solving an efficiently solvable
convex optimization problem, one finds an answer to the
problem in the form(i) one can assert that the state is en-
tangled, or(ii ) one cannot assert it, and has to go one(com-
putationally more expensive) step further[8]. The problem
of testing for multipartite entanglement has been related to
robust semidefinite programming and a hierarchy of relax-
ations in Ref.[9].

This paper is concerned with a link of the theory of en-
tanglement to the theory of convex optimization in a similar
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spirit. The central observation of this paper is very simple yet
potentially very useful: many problems related to entangle-
ment can be cast into the form of optimization problems with
polynomial constraints of degree 3. This includes(A) the
question whether a state is entangled or not, notably not only
in the bipartite, but also for the several separability classes of
the multipartite setting. Then,(B) the construction of nonde-
composable witnesses involves a problem of this kind, as
well as (C) the evaluation of the geometric measure of en-
tanglement to quantify multipartite entanglement.(D) Also,
when considering entanglement witnesses based on second
moments rather than on first moments one has to solve a
problem of this form. We will also discuss criteria based on
linear entropies(i.e., p-norms forp=2). (E) Finally, we will
briefly mention the evaluation of maximal output purities of
quantum channels with respect top-norms for p=2. This
structure is due to the fact that in all these instances one
essentially minimizes over product state vectors of a multi-
partite quantum system.

This polynomial part of the optimization problems is still
nonconvex and computationally expensive to solve. Yet, ap-
plying results from relaxation theory of nonconvex problems
[11–15], notably the method of Lasserre[13], we find hier-
archies of solutions to our original problems, and each step is
a better approximation than the previous one. Each step itself
amounts to solving an efficiently implementable semidefinite
program [16]. Moreover, the hierarchy is asymptotically
complete, in the sense that the exact solution is asympoti-
cally attained. The increase of the size of the vector of ob-
jective variables of these semidefinite problems grows nota-
bly polynomially in the label of the hierarchy.

We will first clearly state how one can introduce auxiliary
variables to cast the considered problems from entanglement
theory into the desired form. Then, we will investigate the
hierarchies of relaxations in detail, and study numerical ex-
amples. Finally, we will summarize what has been achieved.

II. PROBLEMS IN ENTANGLEMENT THEORY AS
OPTIMIZATION PROBLEMS

The problems that we will encounter are of the following
type or similar. At the core are typically minimizations over
product vectors, originating from the very definition of the
concept of entanglement. Given aW=W†, we seek the mini-
mum of

trfuc1lkc1u ^ ¯ ^ ucNlkcNuWg, s2d

where the minimum is taken with respect to product state
vectors of a composite quantum systems with parts labeled
1, . . . ,N, with Hilbert spaceH=H1 ^ ¯ ^ HN. Throughout
the paper, the respective Hilbert spaces are assumed to have
finite dimensions,H j =Cdj, j =1, . . . ,N.

One way of solving this problem is to choose a specific
basis for the Hilbert space and to explicitly parametrize the
state vectors. This yields a complex polynomial in these pa-
rameters, in general of very high order. This is obviously not
a convex problem in these variables: a solution can be found,
albeit not in an efficient manner. For small systems, algo-
rithms such as simulated annealing may be employed, deliv-

ering upper bounds to the optimal solution, as no control is
possible as to what extent one is far away from the global
optimum.

The general strategy of this paper is in instances of the
above type to introduce additional variables, giving rise to
one vectorxPRt, x=sx1, . . . ,xtdT, which is the objective
variable, parametrizing the product states. The problem is
then cast into the form of a linear objective function, simply
as

minimize cTx s3d

with a (fixed) cPRt, subject to constraints which are poly-
nomials in the objective variables. These constraints will
then be relaxed to semidefinite problems. So two types of
constraints will be encountered in the present paper.

Semidefinite constraints. These are constraints of the form

F0 + o
s=1

t

xsFs ù 0, s4d

whereF0, . . . ,Ft are Hermitian matrices of arbitrary dimen-
sions. The resulting matrix has to be positive semidefinite;
therefore it is referred to as a semidefinite constraint. Opti-
mization problems of this type, exhibiting a linear objective
function and semidefinite constraints, are called semidefinite
programs[16]. Such instances of convex optimization prob-
lems can be efficiently solved, for example by means of the
interior-point methods[16]. Moreover, the idea of Lagrange
duality [17] readily delivers lower bounds for the problem.
Typically, the dual optimization problem yields an optimal
value which is identical to the optimal value for the primal
problem (unless there is a duality gap). Many problems in
quantum information theory have already the form of a
semidefinite program[6,8]. In fact, it may be convincingly
argued that to specify the solution of a problem in form of a
semidefinite program has the same status as stating a result
in terms of the spectrum of a matrix, as this again merely
means that efficient methods are available to find the eigen-
values of a given matrix.

Polynomial constraints. This means that we can write the
constraints as

glsxd ø 0, s5d

l =1, . . . ,L, wheregl :Rt→R are real polynomials of some
degree. Quadratic constraints are of the form

xTAlx + bl
Tx + cl ø 0, s6d

l =1, . . . ,L. The matricesAl are, however, not necessarily
positive semidefinite. This is by no means a minor detail: if
all matricesA1, . . . ,AL were positive matrices,Al ù0, this
would yield a convex quadratic program, which can be effi-
ciently solved(they are in fact also instances of semidefinite
programs and of second-order cone programs). In stark con-
trast, if the matrices are not all positive semidefinite, one
obtains a very hard, nonconvex optimization problem. This
structure is yet dictated by the problems from quantum in-
formation theory at hand.

The central point is to employ known methods from the
theory of relaxations of nonconvex optimization problems, to
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obtain complete hierarchies of cheaply computable approxi-
mations, approximating the solution as closely as desired.
The idea of a relaxation is to introduce new variables and to
formulate the problem as a convex problem in a larger space.
This idea can be exemplified in the simplest form of a relax-
ation, the Shor relaxation[11]. For example, letA1 in (6) be
a matrix which is not positive semidefinite, and let us assume
that b1=0 andc1=0 for simplicity. Then, one can still write
the constraint equivalently as

trfXA1g ø 0, X = xxT, s7d

using a t3 t symmetric matrixX. The equalityX=xxT is
equivalent with the convex constraint

X ù xxT, s8d

together with the nonconvex oneXøxxT. Shor’s relaxation
amounts to taking only the convex part into account, thereby
delivering an efficiently solvable convex problem which
yields a lower bound to the original problem[11]. Such re-
laxations in terms of semidefinite constraints will be em-
ployed, yet instead of one many such relaxations, forming a
complete hierarchy.

As pointed out before, we will show that the encountered
optimization problems can be written as polynomially con-
strained problems of degree 3. That this is possible is based
on the observation that any Hermitianm3m matrix O for
which

trfO2g = 1, trfO3g = 1 s9d

is one that satisfies

trfOg = 1, O = O2, O ù 0, s10d

i.e., it corresponds to a pure state(compare also Ref.[18]).
This follows from the fact that, denoting the decreasingly
ordered list of eigenvalues ofO by l↓sOd, the only vector
consistent with

o
i=1

m

li
↓sOd2 = 1, o

i=1

m

li
↓sOd3 = 1 s11d

is the vectorl↓sOd=s1,0, . . . ,0d. The quantitiesli
↓sOd2 and

li
↓sOd3 are unitarily invariant, and hence the above state-

ments can be shown to be valid on the level of probability
distributions. Essentially,oi=1

m li
↓sOd2=1 already requires all

absolute values of eigenvalues to be smaller than or equal to
1, such that the only ordered vector of real numbers consis-
tent with oi=1

m li
↓sOd3=1 becomes(1,0,…,0).

For systems where the individual constituents are qubit
systems,dj =2 for all j =1, . . . ,N, the constraints can further
be simplified by merely requiring as constraints trfOg=1,
trfO2g=1, as for Hermitian 232 matrices these conditions
alone imply that

O ù 0, O = O2. s12d

When applied to our specific problems at hand, these con-
straints will appear in the following form. We will require
that Hermitian matricesP are, except from normalization,
products of pure states with respect to all constituents. This

will be incorporated as follows. Denoting byI =h1, . . . ,Nj
the index set labeling the subsystems and by trI\ j the partial
trace with respect to all systems except the one with labelj ,
the lines

tr†trI\ jfPg2
‡ = strfPgd2, s13d

tr†trI\ jfPg3
‡ = strfPgd3 s14d

for all j P I indeed enforce that the matrices are products. If
reductions are pure, the global state must be a pure product
state. This can be seen as follows. For statesr, the only
possibility for

tr†trI\ jfrg2
‡ = 1, tr†trI\ jfrg3

‡ = 1 s15d

to hold for all j P I is thatr is of the form of the 9 product
pure state,

r = uf1lkf1u ^ ¯ ^ ufNlkfNu. s16d

If an additional constanta.0 is included, these conditions
read tr[trI\ jfarg2] =strfargd2=a2 and tr[trI\ jfarg3] =strfargd3

=a3, which explains the above constraint[19]. Having stated
the general strategy, let us now look at the specific instances
of problems in quantum information we will be considering
in this paper.

A. Tests for bipartite and multipartite entanglement

The approach is here to consider for a given stater
PSsH1 ^ ¯ ^ HNd the minimal Hilbert-Schmidt norm with
respect to the set of separable states. For simplicity of nota-
tion, we explicitly formulate the optimization problem for
the instance of full separability, without loss of generality.
That is, we test whetherr can be written as

r = o
i=1

n

pir1
sid

^ ¯ ^ rN
sid, s17d

with hpiji forming a probability distribution. The question
whether a state is fully separable is hence equivalent to ask-
ing whether a state is an element of the convex hull of prod-
uct vectors with respect to all subsystems. According to
Caratheodory’s theorem[20], for any k-dimensional subset
S,Rm, any point of the convex hull ofS can be written as a
convex combination of at mostk+1 points fromS. Hence,
the number of elements in the convex combination given by
Eq. (17) can be restricted ton=p j=1

N dj
2, again without loss of

generality. To decide whether a stater is fully separable or
not, we may solve the following optimization problem:

minimize ir − Pi2
2 = trsr − Pd2, s18d

subject toP is fully separable.

We make use of the Hilbert-Schmidt norm as it is quadratic
in the matrix entries.

The task is to write this problem in terms of a polynomi-
ally constrained problem. Each relaxation(see Sec. III), la-
beled withh=hmin,hmin+1, . . ., then delivers a lower bound
of the Hilbert-Schmidt distance to the set of fully separable
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states. Hence, asserting that the state is not fully separable
whenever we obtain a value larger than the one that we ac-
cept as accuracy of the computation[21], each step delivers
a sufficient criterion for multipartite entanglement in its own
right, and the hierarchy is complete in the sense that each
entangled state is detected by some step. The associated op-
timization problem can now be written as

minimize x, s19d

subject tox ù trsr − Pd2,

P − o
i=1

n

Psid = 0,

tr†trI\ jfPsidg2
‡ = strfPsidgd2

for all i = 1, . . . ,n, j P I ,

o
i=1

n

trfPsidg = 1,

Psid ù 0 for all i = 1, . . . ,n.

The lineoi=1
n trfPsidg=1 takes the normalization of the whole

state into account. This is a quadratic program, combined
with a semidefinite constraint for the positivity of the matri-
cesPsid. As pointed out above, the problem can also be for-
mulated as a polynomial problem without a semidefinite con-
straint, but now with constraints that are of degree 3:

minimize x, s20d

subject tox ù trsr − Pd2,

P − o
i=1

n

Psid = 0,

trftrI\ jfPsidg2g = strfPsidgd2

for all i = 1, . . . ,n, j P I ,

trftrI\ jfPsidg3g = strfPsidgd3

for all i = 1, . . . ,n, j P I ,

o
i=1

n

trfPsidg = 1.

This is a global optimization problem with polynomial con-
straints of degree 3, but no semidefinite constraint.

Here one tests the hypothesis that the state is fully sepa-
rable against the alternative that the state is entangled in
some sense. To assert that the state is multiparticle entangled
and not separable with respect to any separability class, sev-
eral tests are hence required. In this way, the various classes

of genuine multiparticle entanglement can be detected. Note
that when even applied to the bipartite case, the resulting
hierarchy of semidefinite relaxations is inequivalent to the
one in Ref.[8], and also inequivalent to the robust semidefi-
nite programming approach in Refs.[9]. The above formu-
lation in the optimization problem in terms of full separabil-
ity still does not constitute a restriction of generality, as this
includes all separability classes with respect to all possible
splits.

Alternatively to the above approach, one may write each
test in the form of a feasibility problem, a problem with a
vanishing objective function,

minimize 0, s21d

subject tor satisfies the test of step

h = hmin,hmin+1, . . . in the hierarchy.

Either one finds no solution(which is to say, the problem is
not primal feasible), and one can assert that the state is not
fully separable, or one has to go on one step in the hierarchy.
In each step of the hierarchy forming a semidefinite problem,
the dual problem can then be employed to prove the infeasi-
bility of the above primal problem serving as a certificate
[16] (see also Ref.[8]).

In general the total problem can in each step be written as
a semidefinite problem of the form

minimize 0, s22d

subject toH0 + o
s=1

T

zsHs ù 0,

with appropriate matricesHs, s=1, . . . ,T. The associated
Lagrange dual problem[17] is again a semidefinite program,

maximize − trfZH0g, s23d

subject to trfZHsg = 0, s= 1, . . . ,T,

Z ù 0

In the context of our feasibility problem above, any feasible
solution of the dual problem with trfZH0g,0 proves the in-
feasibility of the primal(original) problem. That is, we can
use the dual problem to prove properties of our original
problem at hand.

Finally, it is important to point out that in problem(19),
one may keep the semidefinite constraint provided by the last
line, and look for the intersection of the feasible sets of the
semidefinite part and the constraint set of the relaxations.
Then, in each step we can assert either whether the state is
entangled, or that one cannot say whether it is entangled or
not. In this way, it may happen, yet, that the state is en-
tangled, although this entanglement is not detected in any
step of the hierarchy. One hence obtains a hierarchy of suf-
ficient criteria, albeit one which is not necessarily asymptoti-
cally complete. This will be discussed in more detail in the
section on the hierarchy of relaxations.
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In an implementation of this optimization problem, one
has to choose a basis of Hermitian matrices for each Hilbert
space,

hs1, . . . ,sdj
2j, s24d

for j =1, . . . ,N, suppressing an additional index labeling the
subsystems. These Hermitian matrices satisfy trfs1g=1 and

trfskg = 0, k = 2, . . . ,dj
2, s25d

and have a Hilbert-Schmidt scalar product

trfskslg = jdj
dkl s26d

with a dimension-dependent constantjdj
(and similarly for

terms of third order). For the case of qubit subsystems, the
appropriately normalized familiar Pauli matrices can be
taken. In terms of this basis of Hermitian matrices, the ma-
tricesPsid andP can be written as

Psid = o
k=sk1,. . .,kNd

pk
sidSk, s27d

P = o
k=sk1,. . .,kNd

pkSk, s28d

wherek=sk1, . . . ,kNd, is a multi-index, withkj =1, . . . ,dj
2 for

j P I, and

Sk = sk1
^ sk2

^ ¯ ^ skN
. s29d

This parametrization will be used in the section presenting
numerical examples. Before we present the hierarchy of re-
laxations explicitly, we discuss the other applications which
are similar in structure from the point of view taken in this
paper.

B. Nondecomposable witnesses

Optimization problems of the type of the one in Eq.(2)
often appear in the construction of entanglement witnesses
[23]. An entanglement witness is a Hermitian observableW
=W† with the property that trfWrgù0 holds for all separable
r; thus a negative expectation value signals the presence of
entanglement. So entanglement witnesses can be used for an
experimental verification that a given state is entangled, and,
in fact, they have already been implemented[24].

The detection of entanglement is not only of interest for
fundamental reasons, it can also be of practical interest. This
is the case in quantum crytography, since it has been shown
that the provable presence of quantum correlations in such
protocols is a necessary precondition for secure key distilla-
tion [25]. Entanglement witnesses are particularly suited to
deliver this entanglement proof, even when the quantum
state shared by the users cannot be completely reconstructed.
In turn, by measuringall accessible witnesses, one can de-
cide whether the measurable correlations of the state origin
from an entangled state or may be compatible with a sepa-
rable state.

There are many strategies to construct entanglement wit-
nesses[26,27]. As an example in which such optimization

problems occur we choose the construction of nondecompos-
able witnesses for PPT entangled states[27]. These are en-
tangled states which have a positive partial transpose[28].
We discuss our example in the bipartite setting for simplicity.
In the theory of PPT entangled states the extreme points of
the set are of central interest, and often referred to as edge
states. A stater is a PPT entangled edge state if it has a
positive partial transpose, while for all product vectorsua,bl
in the range ofr the vectorua,b* l is not in the range of the
partially transposedrTB [23,27]. Here the asterisk refers to
complex conjugation.

To construct witnesses for these states, one proceeds as
follows. Let R=Ksrd and Q=KsrTBd be the projectors onto
the kernels ofr and of rTB, respectively. Then a witness
allowing the detection of the stater is given by[27]

W8 = R+ QTB − «1, s30d

where

« = min
ua,bl

trfua,blka,busR+ QTBdg. s31d

Since r is an edge state, we have«.0. This implies that
trfW8rg,0; thus,r is detected. Also, it is clear that the dif-
ficult part of this construction is the minimization procedure
in Eq. (31)—which is just of the type of Eq.(2).

This method can also be used to obtain a finer witness

from a given oneW̃, i.e., a witness that detects the same

states asW̃ and more. If«̃=minua,bltrfua,blka,buW̃g.0 then

W̃− «̃1 is a finer witness thanW̃. This can also be applied in
the scenario where only a restricted set of observables is
available, since the observable1 is always accessible. In
practical situations, given a particular implementation of a
quantum-key-distribution(QKD) scheme, it is sufficient to
obtain one relevant entanglement witness as a first step to-
ward the demonstration of the feasibility of the scheme. Here
is where the method presented in this section can be used.
Although this method requires one, as a starting point, to
have already a valid entanglement witness for the given
QKD protocol, note that this operator does not need to be an
entanglement witness in the strict sense, but can be a positive
operator from the restricted set which is more easy to char-
acterize than an entanglement witnesses[31]. Moreover, dur-
ing several steps of the method, better entanglement wit-
nesses can be obtained from it, belonging to the same
restricted set.

The construction of the witness above can also be used for
multipartite PPT witnesses[32]. The other approaches for the
construction of entanglement witnesses also need similar op-
timization processes[26]. For the sake of generality, we for-
mulate the optimization strategies directly in the multipartite
setting as in Eq.(2). For a given entanglement witnessW
=W†, the optimization problem looks as follows. The aim is
to solve the problem

minimize x s32d

subject tox ù trfWPg,

tr†trI\ jfPg2
‡ = 1 for all j P I ,
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tr†trI\ jfPg3
‡ = 1 for all j P I .

Again, for multiparty qubit systems this can be written as a
polynomially constrained problem with polynomials of de-
gree 2.

C. Estimating the geometric entanglement to quantify
multiparticle entanglement

The same tools can be used in order to quantify multipar-
ticle entanglement for pure quantum states. Needless to say,
the question of quantifying multiparticle entanglement is
much more involved that the analogous question in the bi-
partite setting: in the bipartite setting, the degree of entangle-
ment of pure states can be uniquely quantified in terms of the
entropy of entanglement. Any pure state can be asymptoti-
cally reversibly transformed into any other, the achievable
rates being given by just this measure of entanglement. In
this sense, any bipartite entanglement of pure states is essen-
tially equivalent to that of the maximally entangled pair of
qubits, which forms the so-called minimal reversible
entanglement-generating set(MREGS) [33]. The situation is
very different in the multipartite case, where the MREGS’s
have not even been identified for three-qubit systems, let
alone for more general settings[34]. In view of this fact,
several more pragmatic(and inequivalent) measures of en-
tanglement have been proposed, reasonably grasping the de-
gree of multiparticle entanglement[35–37]. To evaluate
these quantities typically amounts to solving a computation-
ally hard problem.

One of the reasonable quantities to quantify multiparticle
entanglement is the geometric measure of entanglement
[35,36,38]: for a given state vectoruclPH1 ^ ¯ ^ HN, es-
sentially, entanglement is then quantified in terms of the so-
lution of the maximization problem

L2 = maxzkcuflz2, s33d

such that the geometric measure of entanglement becomes

Esuclkcud = 1 −L2. s34d

The maximization is performed over all state vectorsufl
which are products with respect to all subsystems. Setting
r= uclkcu and

P = uflkfu = uf1lkf1u ^ ¯ ^ ufNlkfNu, s35d

we arrive at

minimize t, s36d

subject to trfPrg + t ù 1,

tr†trI\ jfPg2
‡ = 1 for all j P I ,

tr†trI\ jfPg3
‡ = 1 for all j P I ,

which is the same optimization as in the previous subsection,
except for one line in the list of constraints.

D. Entanglement witnesses based on second moments
and entropic criteria

In this subsection we will consider again entanglement
witnesses, but not in the original sense, which involve only
expectation values of Hermitian operators. It is also possible
to introduce nonlinear functionals with similar properties:
these are entanglement witnesses based on second moments,
on variances of observables. Such entanglement criteria
based on second moments are very popular in the study of
infinite-dimensional quantum systems having canonical co-
ordinates[39]. There, to measure arbitrary observables is of-
ten by far unfeasible, whereas the estimation of second mo-
ments of canonical coordinates is very accessible. In optical
systems, the appropriate measurements are available in ho-
modyne detection. Similarly, one may also for finite-
dimensional systems look at variances rather than at first
moments themselves[40]. In Ref. [41], second-order wit-
nesses related to variances of operators were constructed,
and the relation to entanglement criteria for continuous vari-
able systems based on second moments was shown. The ad-
vantage in a practical context is that one specifies some ob-
servables which are the most accessible, and tests whether
the obtained second moments are consistent with a separable
state. The application of such a test always requires the so-
lution of an optimization problem as pointed out below.

Let us specify a set of observablesM1, . . . ,MK. Then we
can define the real symmetricK3K covariance matrixgr of
a stater associated with these observables as

sgrdk,l = strfMkMlrg + trfMlMkrgd/2 − trfMkrgtrfMlrg,

s37d

with k, l =1, . . . ,K. This is completely analogous to the fa-
miliar covariance matrix of systems with canonical coordi-
nates. Then, it turns out that—in the previous notation—any
fully separable stater has the property that there exist states

r1
sid, . . . ,rN

sid, i = 1, . . . ,n, s38d

n=p j=1
N dj

2, and probability distributionshpiji such that

gr ù o
i

pigr1
sid

^¯^rN
sid. s39d

So one would fix those observables that are the most acces-
sible, and estimate the appropriate second moments. This
would yield an estimate of the elements of the covariance
matrix to some accuracy. Then, the question that arises is: do
states and probability distributions exist that satisfy(39)? If
not, we can conclude that the state must have been en-
tangled. It is important to note that this judgement is not
based on the knowledge of the entire state, but only on the
knowledge of the covariance matrix with respect to a previ-
ously selected set of observables. This is a problem that can
be cast into a feasibility problem, again in the form that we
envision. As it is a feasibility problem, the objective function
can be set to zero. This can be written as follows:

minimize 0, s40d
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subject toQ − o
i=1

n

piQ
sid = 0,

Qk,l
sid = strfMkMlP

sidg + trfMlMkP
sidgd/2

− trfMkP
sidgtrfMlP

sidg,

trftrI\ jfPsidg2g = strfPsidgd2 for all i

= 1, . . . ,n, j P I ,

tr†trI\ jfPsidg3
‡ = strfPsidgd3 for all i

= 1, . . . ,n, j P I ,

o
i=1

n

trfPsidg = 1,

gr − Q ù 0.

In each step of the hierarchies of relaxations, we can assess
whether there is a feasible solution or not. If there is no
feasible solution in some step, we can conclude that the state
is entangled, and multiparticle entanglement is hence de-
tected. This is now a problem which is still a combination of
a polynomially constrained problem, together with a
semidefinite constraint. Here, two strategies may be applied.

On the one hand, one can keep the semidefinite constraint,
and can proceed as pointed out in Sec. II A. This means that
one can in each step assert that the state was entangled, or
one has to go one step further. This is computationally
cheaper, but comes at the price of losing asymptotic com-
pleteness. For practical purposes, however, this method is
expected to be the method of choice; in particular in the light
of the fact that for a given set of observables, typically not
every entangled state is anyway detected by the entangle-
ment witness based on second moments.

The other strategy, on the other hand, is to formulategr

−Qù0 as a set of polynomial constraints. A Hermitian ma-
trix is positive if and only if the determinants of all its sub-
matrices are positive(see also Ref.[31]). This gives rise to a
set of polynomial constraints, for which the relaxations can
be applied, leading to an asymptotically complete hierarchy
of tests. This comes at the price of being computationally
more expensive.

In view of Refs.[40,41], it is useful to employ arguments
along the following line. If we can show that no fully sepa-
rable state can have the image that we estimate in an experi-
ment, we can assert that the state must have been entangled.
This observation can, while being fairly obvious, still be
practically very relevant. For example, we may for any ob-
servableM =M† look at the minimum of second moments
that are consistent with a separable state, i.e., the solution of

minimize trfM2Pg − trfMPg2, s41d

subject toP is fully separable, s42d

and use this as a criterion for detecting entangled states. This
gives rise to the optimization problem

minimize x, s43d

subject tox ù trfM2Pg − trfMPg2,

P − o
i=1

n

Psid = 0,

tr†trI\ jfPsidg2
‡ = strfPsidgd2 for all i = 1, . . . ,n, j P I ,

tr†trI\ jfPsidg3
‡ = strfPsidgd3 for all i = 1, . . . ,n, j P I ,

o
i=1

n

trfPsidg = 1.

It should be clear at this point that the same method can
be used for entanglement criteria based on linear entropies,
that is, p-norms for p=2 (see, in the rich literature on the
subject, e.g., Refs.[42]). For any expression that is linear in
the linear entropies of the whole stater

iri2 = trfr2g s44d

of a multipartite system and in the linear entropies of the
reductions

itrj \Ifrgi2 = tr†strj \Ifrgd2
‡, j = 1, . . . ,n, s45d

one can in the same manner find the largest value consistent
with a separable state. Any state that delivers a larger value is
then clearly entangled. In practical considerations, these lin-
ear entropies can be estimated in a fairly feasible manner
[42], for example, when assessing entanglement in Bose-
Hubbard-type models.

E. Maximal output purities of quantum channels

Similar arguments, it will finally be briefly discussed, can
immediately be applied to assess minimal output purities of
channels

r ° Esrd = o
i=1

k

RirRi
†, s46d

where oi=1
k Ri

†Ri =1, with respect top-norms for p=2 (and
other integerp); see, e.g., Refs.[43]. One may then investi-
gate the maximal output purity

n2sEd = max
r

iEsrdi2, s47d

where it does not constitute a restriction of generality to
maximize not over all statesr, but merely over all pure states
(compare also Ref.[7]). The central question here is to see
whether this quantity is multiplicative in general. That is
whether generally

n2sE1 ^ E2d = n2sE1dn2sE2d s48d

holds, which means that it is never an advantage to allow for
entangled inputs when maximizing the output purity. In the
previously used language, this optimization problem can be
written as follows:
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maximizex s49d

subject tox ø trFSo
i=1

k

RiPRi
†DSo

j=1

k

RjPRj
†DG ,

trfP2g = 1,

trfP3g = 1,

as a polynomially constrained problem with polynomials of
degree 3.

III. COMPLETE HIERARCHIES OF RELAXATIONS
TO APPROXIMATE THE SOLUTIONS

We will now state how the theory of relaxations can be
applied to the described problems in entanglement theory. In
all of the above cases(except in Sec. II D), we obtained an
optimization problem of the following structure: forxPRt,

minimize cTx, s50d

subject toglsxd ù 0,

for l =1, . . . ,L, the global optimum value being denoted as
p*, where gl is a polynomial of at most degree 3. The con-
straint set given by

M = hx P Rt:glsxd ù 0, l = 1, . . . ,Lj s51d

is not a convex set. We may however apply Lasserre’s
method of semidefinite relaxations to treat this part(see the
Appendix). This will yield a sequence of semidefinite pro-
grams, labeled with an indexh=hmin,hmin+1, . . ., such that
each of the efficiently solvable steps yields an approximation
of the original problem. The minimal stephmin is 1 if the
highest degree of the constraint polynomials is 2 andhmin
=2 if constraints of degree 3 are required. The caseh=hmin is
the first semidefinite relaxation leading to the first approxi-
mation,h=hmin+1 is the second, and so on. Often, in prac-
tice the global optimum is already achieved after a small
number of steps in the hierarchy.

A. Semidefinite relaxations

Instead of considering an optimization problem inxPRt,
this is turned into an optimization problem in a larger real
vector yPRD2h, D2h being a natural number defined in the
Appendix. This larger dimension is due to the uplifting pro-
cedure used in Lasserre’s method[13,14] for approximating
the quadratic part of our problems, and goes back to work in
Ref. [44]. For each instance of the hierarchy of semidefinite
programs, the objective function will be the same, but up-
lifted, namely,

y ° dTy, s52d

where

dT = s0,c1, . . . ,ct,0, . . . ,0d, s53d

with cPRt being defined as above. Lasserre’s method now
gives rise to a sequence of semidefinite programs approxi-
mating the solutions of

minimize cTx, s54d

subject toglsxd ù 0,

for l =1, . . . ,L in the following form: For h=hmin, hmin
+1, . . .,each instance is of the form

minimize dTy, s55d

subject toFfhgsyd ù 0,

Gl
fhgsyd ù 0, l = 1, . . . ,L

with matricesFfhgsyd and Gl
fhgsyd that are linear in the ele-

ments ofy that increase in dimension with increasingh (see
the Appendix). This method is based on recent results in real
algebraic geometry; see also Ref.[15].

In Ref. [13] convergence to the solution of(54) is guar-
anteed if certain conditions are satisfied. Convergence in the
limit h→` is guaranteed if there exist polynomials
u0,u1, . . . ,uL, all sums of squares, such that the set

Hx P Rt:u0sxd + o
l=1

L

ulsxdglsxd ù 0J s56d

is compact. This is, however, the case in all of the specific
situations from entanglement theory considered above. The
set in Eq.(56) is compact if there exists anl P h1, . . . ,Lj such
that the set

hx P Rt:glsxd ù 0j s57d

is compact. In each of the discussed cases, we find that due
to the linear constraints incorporating the trace requirement
and the quadratic constraints coming from the purity of the
reduced states, there exists ana.0 such thata2−ixi2ù0 for
all xPM. This follows from the fact that for each of the
involved matrices, the trace is bounded from above, and
positivity of the matrices enforces boundedness of all ele-
ments. Hence, to ensure asymptotic completeness, we may
add the constraintgL+1sxd=a2−ixi2ù0 to the list of qua-
dratic constraints, such that the condition in Eq.(57) is cer-
tainly satisfied. Hence, one can conclude that

min
yPMfhg

dTy → min
xPM

cTx s58d

for h→`, and for

Mfhg = hy P RD2h:Ffhgsyd ù 0, Gl
fhgsyd ù 0, l = 1, . . . ,L + 1j.

s59d

This is not only meant as a numerical procedure: instead, as
each step is an analytically accessible semidefinite program,
in each step one may assess the approximations with analyti-
cal means. Moreover, symmetries of the involved states un-
der certain groups can be carried over to symmetries in the
Hermitian matrices in the semidefinite programs, similarly to
the strategy employed in Ref.[5] for semidefinite programs,
and in Ref.[4] for convex but not semidefinite programs.

In Sec. II D, we encountered an additional semidefinite
constraint. Then, Lasserre’s method may be applied using
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polynomials of higher order, as described above. Or, one
may combine the semidefinite relaxations with the semidefi-
nite constraint itself. This gives rise to a hierarchy of suffi-
cient tests, without the property of asymptotic completeness.
To see how they can be combined, let us consider an addi-
tional semidefinite constraint such asgr−Qù0. In terms of
the yPRD2h, we have the feasible set of the additional
semidefinite constraint

F =Hy P RD2h:F0 + o
s=1

t

ys+1Fs ù 0J , s60d

with appropriate matricesF0, . . . ,Ft. Therefore, we can write
the full hierarchy of semidefinite programs as

minimize dTy s61d

subject toFfhgsyd ù 0,

Gl
fhgsyd ù 0, l = 1, . . . ,L,

F0 + o
s=1

t

ys+1Fs ù 0,

h=hmin, hmin+1, . . . being the label of the element of the hier-
archy. The projection of the feasible setsMfhg onto the plane
of first-order moments, i.e., onto the plane

hy P RD2h:y = s0,y2, . . . ,yt+1,0, . . . ,0dj, s62d

conceived as a subset ofRt, converges(pointwise) to the
convex hull ofM [12–14]. Therefore, we have that

min
yPMfhgùF

dTy ø p* s63d

for all h→`. Moreover, minyPMfhgùFdTy is a monotone in-
creasing sequence inh, such that the sufficient criteria be-
come more powerful with an increasing order of the hierar-
chy.

B. Size of the relaxations

A relevant issue is how large the semidefinite relaxations
are in each step of the hierarchy. In the worst-case scenario,
where the polynomial constraints is a polynomial involving
all basis elements of the basis of polynomials of the respec-
tive degree, one obtains the subsequent sizes of the relax-
ation matrices. The matrixFfhg is of dimensionDh3Dh (for
a definition ofDh, see the Appendix). As a formula forDh we
arrive at

Dh = o
k=0

h St + k − 1

k
D . s64d

For example,

D2 = 1 + t +
tst + 1d

2
. s65d

In the number of variablest, this is a manifestly polynomial
expression. In steph the vectory is of the lengthD2h. Nota-

bly, in each of the steps, the effort of a numerical solution of
the associated semidefinite program is polynomial in the di-
mension of the matrices[16]. Hence, each problem can be
solved in an efficient manner.

In terms of the steph in the hierarchy, it turns out that the
scaling is also polynomial. Approximating the above sum by
an integral expression, we arrive at

Dh = Oshtd. s66d

That is, for a fixed number of variables(which is the setting
considered here), the size of the vector of the objective vari-
ables increases also only polynomially in the steph in the
hierarchy. Moreover, in many small- and medium-size prob-
lems, the program detects optimal solutions in the first itera-
tion steps at relatively low computational cost[45]. Also, the
sparsity of the moment matrices may be exploited. The issue
of computational effort will be discussed in more detail else-
where. Another point of interest is that it is possible in some
cases to trade in a lower number of variablest for a higher
lowest relaxation stephmin, as in the examples in the subse-
quent section. In some cases, this might simplify the prob-
lem, as in our example in the next section.

IV. NUMERICAL EXAMPLES

In this section we present some numerical examples, in
order to show that the approach is also feasible in practice.
We will provide three examples, two for the geometric mea-
sure of entanglement and one for the construction of en-
tanglement witnesses for bound entangled three-qubit states.

A. Geometric measure for three-qubit states

Let us start with the calculation of the geometric measure
of entanglement for three-qubit states. As we have shown in
Sec. II the computation of the geometric measure of en-
tanglement for a given pure three-qubit state vectorucl re-
quires essentially the calculation of

L2 = max
ua,b,cl

zka,b,cuclz2. s67d

As already mentioned above, we use here a different param-
etrization from the general one described in Sec. II. In terms
of the Pauli matrices forming a basis of Hermitan matrices,
we can write

uclkcu =
1

8 o
i,j ,k=0

3

li jkssi ^ s j ^ skd, s68d

ua,b,clka,b,cu =
1

8 o
i,j ,k=0

3

aibjckssi ^ s j ^ skd, s69d

where l000=a0=b0=c0=1. The coefficients li jk, i , j ,k
=0, . . . ,3, are determined from the known state vectorucl.
We have to impose constraints that guarantee thatrA is a
pure state on the coefficientssa1,a2,a3d describing the state
rA=oi=0

3 aisi /2 [and similarlysb1,b2,b3d andsc1,c2,c3d]. We
have seen before that for qubit systems, instead of requiring
trfrA

2g=1 and trfrA
3g=1, we may alternatively merely require
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that trfrAg=1 and trfrA
2g=1 (where trfrAg=1 is already a con-

sequence of the parametrization). So we arrive at the optimi-
zation problem

minimizeai,bj,ck

1

8 o
i,j ,k=0

3

li jkaibjck, s70d

subject toa1
2 + a2

2 + a3
2 = 1,

b1
2 + b2

2 + b3
2 = 1,

c1
2 + c2

2 + c3
2 = 1.

This polynomial optimization problem can be solved with
the help of Lasserre’s method(see the Appendix). For these
calculations the packageGLOPTIPOLY [45] based onSEDUMI

[46] is freely available, and we have used it for our calcula-
tions. The packageGLOPTIPOLY has a number of desirable
features, in particular, it provides a certificate for global op-
timality.

Note that with this parametrization, the number of objec-
tive variables is 4N, N being the number of qubits, in con-
trast to 4N parameters which are necessary to parametrize a
generalN qubit state as decribed in Sec. II A. From Eq.(70)
it is clear that the objective function will be a polynomial of
degreeN which increaseshmin (see the Appendix).

First, we present a nontrivial example for the calculation
of the geometric measure of entanglement, in a case where
its value is already known. In this way we can test our meth-
ods. We aim at computing the geometric measure of en-
tanglement for state vectors of the form

ucssdl = ÎsuWl + Î1 − suW̃l, s71d

sP f0,1g, whereuWl and uW̃l are state vectors of three-qubit
W states[47] in different bases,

uWl = su001l + u010l + u100ld/Î3, s72d

uW̃l = su011l + u101l + u110ld/Î3. s73d

For the geometric measure of entanglement ofucssdl a for-
mula has been developed in Ref.[36], exploiting the permu-
tation symmetry of the states. The comparison between the
theoretical value and the numerical calculation using
Lasserre’s method forh=2 is shown in Fig. 1. Details of the
performance are summarized in Table I. The results indicate
clearly the usefulness of the presented approach. As a matter
of fact, this is a case where already a very small number of
steps in the hierarchy detects the global optimum, as is typi-
cal for this relaxation, as has been pointed out in Ref.[45],
based on numerical experiments.

B. Geometric measure for four-qubit states

We calculate the geometric measure of entanglement also
for the following one-parameter family of state vectors:

uc4spdl = ÎpuGHZ8l − Î1 − puc+l ^ uc+l, s74d

where

uGHZ8l = su0011l + u1100ld/Î2, s75d

uc+l=su01l+ u10ld /Î2, and pP f0,1g. The state vector
uc4s2/3dl corresponds to the four-qubit singlet state, i.e., the
state vector satisfying

U^4ucl = ucl s76d

for all unitary U [48]. For the two individual states in the
above superpositions in Eq.(74), the geometric measure can
be directly evaluated[36]: For p=1 we findL2=1/2, and for
p=0 we obtainL2=1/4 from Lc+

2 =1/2. Thenumerical re-
sults for the geometric measure of entanglement for other
values ofp are plotted in Fig. 2.

It is interesting to note that at the singlet valuep=2/3, the
behavior of the geometric measure changes. From there up to
p=1 the optimum is attained for the choicesu0011l or u1100l
of the product state which gives rise to the linear behavior.

The family of states specified in Eq.(74) is invariant un-
der the exchangesABd↔ sCDd. Because of this symmetry,
one may without loss of generality assume that the product
state vector leading to the maximal value ofL2 is given by
uf1,f2,f1,f2l, where uf1,2l=eix1,2 cosu1,2u0l
+eih1,2 sinu1,2u1l, where the optimal phases can be shown to
be x1=x2=h1=h2=0. This gives rises to an optimization
problem with polynomial constraints with only four variables
which can be solved exactly byGLOPTIPOLY. The results co-
incide with the results above.

FIG. 1. The numerical values of the geometric measure of en-
tanglementE of the family of states of Eq.(71), plotted on top of
the analytical values of Ref.[36].

TABLE I. Details of the relaxations in the three numerical ex-
amples discussed above for one point of each example. The pro-
vided CPU time refers to a machine with an Intel Xeon Processor,
2.2 GHz, 1 GbyteRAM, using GLOPTIPOLY 2.2E [45], SEDUMI 1.05

[47], andMATLAB 6.5.1.199709(release 13). In all casesh=hmin=2, so
that the result was obtained after the first relaxation step.

Subsection Relaxationh
Number of
variables dimsyd CPU time

A 2 9 714 10.92s

B 2 12 1819 103.97s

C 2 9 714 6.14s
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C. Witness for three-qubit PPT entangled states

Employing the same strategy, we would like to calculate
the value of« as defined in Sec. II for the family of witnesses
constructed for the PPT(bound) entangled states

r = Sau001lk001u + bu010lk010u + cu011lk011u +
1

c
u100lk100u

+
1

b
u101lk101u +

1

a
u110lk110u + 2uGHZlkGHZuDYC,

s77d

where C=2+a+b+c+1/a+1/b+1/c, and a,b,c.0, ab
Þc, and

uGHZl = su000l + u111ld/Î2. s78d

In Ref. [32], upper bounds for the values of« were obtained
by using a multivariable minimization routine for the param-
eter rangea=b=1/cP s0,1d. The minimization over the
product states has to be performed with respect to[32]

W̄=
1

2
su000lk000u + u111lk111ud +

1

1 + c2sc2u100lk100u

+ u011lk011ud +
1

1 + b2su010lk010u + b2u101lk101ud

+
1

1 + a2su001lk001u + a2u110lk110ud − S1

2
+

c

1 + c2

+
b

1 + b2 +
a

1 + a2Dsu000lk111u + u111lk000ud. s79d

The numerical results are plotted in Fig. 3. Again, the global
optimum is achieved, and the found values agree with the
values found in Ref.[32]. For details concerning the relax-
ations, see Table I.

V. SUMMARY AND OUTLOOK

In this paper, we have reconsidered several problems in
entanglement theory with the tools and language of convex
optimization. The central point of the paper was that many
problems where a minimization over pure product vectors is

required can be written as instances of certain optimization
problems involving polynomial constraints of degree 2 or 3,
or with additional semidefinite constraints. For such polyno-
mially constrained problems, which are generally instances
of nonconvex optimization problems, hierarchies of
semidefinite relaxations can be found. In this sense, one ad-
ditional intention of this paper is to communicate these re-
cently achieved results in the theory of relaxations and to
show that they can be fruitfully applied in the quantum-
information context. One arrives at hierarchies of more and
more refined tests detecting entangled or separable states, or
better and better lower bounds to optimization problems. In
all instances, recently achieved known results from semial-
gebraic geometry guarantee that asymptotically, the achieved
minimum is indeed approaching the globally optimal one. In
this sense, the statements are similar in spirit with yet more
versatile than the ones presented in Refs.[8]. Moreover, we
have seen that the size of the optimization problems to be
solved in each test grows polynomially with the steps in the
hierarchy, and that for small problems, often already a small
number of steps is required to find the exact solution.

The presented method is on the one hand meant as a nu-
merical method to achieve good bounds to problems that are
of relevance in the study of multiparticle entanglement, in
the construction of entanglement witnesses in the bipartite
and multipartite case, in the context of quantum-key distri-
bution, and to assess maximal output purities. On the other
hand, each instance of the hierarchy delivers a semidefinite
program which is readily accessible with analytical methods,
and where properties of the Lagrange dual can be exploited.
It is hoped that these techniques shed light on the structure of
optimization problems underlying the questions of entangle-
ment and separability of several constituents.

Finally—and shifting perspective to some extent—it
seems worth noticing that very similar techniques may be
expected to be useful tools to assess ground-state properties
of many-body Hamiltonians. Often variational approaches
deliver already a good approximation to properties of the
true ground state. For example, in the Gutzwiller ansatz for
the ground state of the Bose-Hubbard model in a lattice one
optimizes the energy functional over product states with re-
spect to the sites. Similar techniques can be used for spin
systems and matrix product states. Then, relaxations in the
way discussed above could potentially be applied for a rea-

FIG. 2. The numerical values of the geometric measure of en-
tanglementE of the family of states of Eq.(74).

FIG. 3. The numerical values of« for W̄ of Eq. (79) plotted on
top of the results of Ref.[32].
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sonable size of the system. Such studies could complement
numerical techniques yielding upper bounds, such as simu-
lated annealing techniques, delivering provable lower bounds
for the ground state energy.
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APPENDIX: LASSERRE’S METHOD

For completeness, in this appendix we briefly sketch the
method to construct sequences of semi-definite relaxations of
global optimization problems with multivariate real-valued
polynomial objective function and constraints due to
Lasserre[13]. The class of problems is of the following
form:

minimize cTx, x P Rt sA1d

subject toglsxd ù 0, l = 1, . . . ,L, sA2d

whereg1, . . . ,gL :Rt→R are real-valued polynomials of de-
gree 2 or 3. Although we consider only polynomials of de-
gree of at most 3, it will be convenient to formulate the
subsequent sequence of semidefinite programs in terms that
formally involve higher-order polynomials. For anyr PN,
we consider the basis of polynomials of degreer in the vari-
ablesx1, . . . ,xt as

s1;x1, . . . ,xt;x1
2,x1x2, . . . ,x1xt;x2

2,x2x3, . . . ,xt
rd sA3d

in this ordering. The dimension of this basis will be denoted
as Dr. For clarity of notation, we will not specifyt as an

index, as this will stay the same throughout the procedure.
Any polynomial of degree of at mostr can then be identified
with a vectorpPRDr. It is convenient to introduce two la-
belings, connected with each other by a function

f r:h1, . . . ,Drj → Ha = sa1, . . . ,atd:o
s=1

t

as ø rJ , sA4d

such that theith elementz, i =1, . . . ,Dr, of the basis given by
Eq. (A3) is written as

z= p
i=1

t

xi
ai , sA5d

characterized bya=sa1, . . . ,atdPN0
t . Note that for a given

kPN there ares t+k−1
k

d possible vectorsa such thatos=1
t as

=k. It follows that the dimensionsDh are given by Eq.(64).
In the following we give the required matrices from

Lasserre’s method for general polynomials[13] and discuss
the cases occuring in the paper explicitly afterward. Letdl be
the degree of the polynomial constraintl P h1, . . . ,Lj and
ddl /2e be the smallest integer greater than or equal todl /2.
We assume that the objective function is linear, which is no
restriction of generality, as other polynomials can always be
incorporated in the constraints as in Sec. II. Then the first
possible relaxation step of Lasserre’s method ishmin
=maxlddl /2e. For hùhmin the matrixFfhgsyd is of dimension
Dh3Dh and linear in a vectoryPRD2h,

fFfhgsydgi,j = yf2h
−1ffhsid+fhs jdg. sA6d

In turn, the matricesGl
fhgsyd, one for each of the constraint

polynomials,l =1, . . . ,L, are of dimensionDh̃l
3Dh̃l

, where

h̃l =h− ddl /2e. Each polynomialgl is characterized according
to the above procedure by a vectorvl. The matricesGl

fhgsyd
are then defined as

fGl
fhgsydgi,j = o

a

v f
dl

−1sadyhf
dl+2h̃l

−1 ff h̃l
sid+f h̃l

s jdg+aj. sA7d

For qubits,hmin=1, because the maximal degree of the con-
straint polynomials is 2. For higher-dimensional systems, the
highest occurring order is 3 due to the positivity constraints.
In this case,hmin=2.
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