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We investigate several problems in entanglement theory from the perspective of convex optimization. This
list of problems compriseA) the decision whether a state is multiparty entangi{&,the minimization of
expectation values of entanglement witnesses with respect to pure product &atédse closely related
evaluation of the geometric measure of entanglement to quantify pure multiparty entangl@mehtg test
whether states are multiparty entangled on the basis of witnesses based on second moments and on the basis of
linear entropic criteria, an¢E) the evaluation of instances of maximal output purities of quantum channels. We
show that these problems can be formulated as certain optimization problems: as polynomially constrained
problems employing polynomials of degree 3 or less. We then apply very recently established known methods
from the theory of semidefinite relaxations to the formulated optimization problems. By this construction we
arrive at a hierarchy of efficiently solvable approximations to the solution, approximating the exact solution as
closely as desired, in a way that is asymptotically complete. For example, this results in a hierarchy of
efficiently decidable sufficient criteria for multiparticle entanglement, such that every entangled state will
necessarily be detected in some step of the hierarchy. Finally, we present numerical examples to demonstrate
the practical accessibility of this approach.
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[. INTRODUCTION dedicated to the problem of finding good criteria for separa-
One of the reasons for the superior performance of quanl2|||ty that arehsugable for specmc conlte>{t3]. : val
tum devices for computation and communication compared To state whether a state is separable or notis equivalent to
to their classical counterparts is simply due to the fact that i Stating whether a state is in the convex hull of product states.
. r}B\Iso, the evaluation of many measures of entanglement es-
quantum mecha_nlcs, one has a very large space at h"’mdégntially require the solution of a convex problem. So in
work with: .the. dimension .of the state space of a number.o ecent years, it has increasingly been realized that a good
quantum bits is exponentially larger than the correspondingje| of insight into several problems in quantum information
configuration space of classical bits. This renders the simuynq in particular in entanglement theory could in fact come
lation of a quantum computer on a classical device a difficulfrom the field of research that is primarily concerned with
task. But it is not only the sheer size of state space thaguestions of this typgl,4—1Q: this is the theory of convex
makes the assessment of quantum states a difficult problersptimization. Many problems are already of the required
In fact, even to decide whether quantum states have certafiorm, and powerful tools such as the concept of Lagrange
properties that are of central interest in quantum-informatiorduality readily deliver bounds for the problems at hand. Ex-
science often amounts to solving computationally hard probamples include the evaluation of measures of entanglement
lems on a classical computer. Most prominently, to decidghat reasonably quantify the degree of entanglement of a
whether a known statg of a finite-dimensional bipartite given state, such as the distillable entanglement or the
system is separable or entangled, i.e., whether or not it cagsymptotic relative entropy of entanglemdnt5]. Also, it
be written as a convex combination of product states has been realized that while the Complete solution of the
N question of separability islP hard, one can nevertheless find
_ @ o () hierarchies of sufficient criteria for entanglement in the bi-
p= Z Pip1” @ P2’ @) partite setting. In each step, by solving an efficiently solvable
=t convex optimization problem, one finds an answer to the
is already arNP hard problem in the system sif#]. A state  problem in the form(i) one can assert that the state is en-
is separable if there is a preparation of the state that involveangled, or(ii) one cannot assert it, and has to go ¢oem-
only local quantum operations and shared classical randonputationally more expensiyestep further[8]. The problem
ness. Such states are correlated, but classically correlated, afstesting for multipartite entanglement has been related to
the source for the correlations can be thought of as resultingpbust semidefinite programming and a hierarchy of relax-
entirely from the shared source of randomnggs Due to  ations in Ref.[9].
the central status of the concept of entanglement in quantum This paper is concerned with a link of the theory of en-
information, a very significant amount of research has beetanglement to the theory of convex optimization in a similar
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spirit. The central observation of this paper is very simple yeering upper bounds to the optimal solution, as no control is
potentially very useful: many problems related to entanglepossible as to what extent one is far away from the global
ment can be cast into the form of optimization problems withoptimum.

polynomial constraints of degree 3. This includgs) the The general strategy of this paper is in instances of the
guestion whether a state is entangled or not, notably not onlgbove type to introduce additional variables, giving rise to
in the bipartite, but also for the several separability classes afne vectorx e R!, x=(x;,...,%)", which is the objective
the multipartite setting. ThergB) the construction of nonde- variable, parametrizing the product states. The problem is
composable witnesses involves a problem of this kind, ashen cast into the form of a linear objective function, simply
well as (C) the evaluation of the geometric measure of en-as
tanglement to quantify multipartite entanglemei) Also,

when considering entanglement witnesses based on second

moments rather than on first moments one has to solve @ith a (fixed) c e R, subject to constraints which are poly-
problem of this form. We will also discuss criteria based onpomials in the objective variables. These constraints will

minimize c'x (3)

linear entropiesi.e., p-norms forp=2). (E) Finally, we will  then be relaxed to semidefinite problems. So two types of
brIEﬂy mention the evaluation of maximal Output purltles of constraints will be encountered in the present paper.
quantum channels with respect pnorms for p=2. This Semidefinite constraint¥hese are constraints of the form

structure is due to the fact that in all these instances one
essentially minimizes over product state vectors of a multi-
partite quantum system. Fo+ 2 xFs=0, (4)
This polynomial part of the optimization problems is still ot
nonconvex and computationally expensive to solve. Yet, apwhereF, ... ,F; are Hermitian matrices of arbitrary dimen-
plying results from relaxation theory of nonconvex problemssions. The resulting matrix has to be positive semidefinite;
[11-15, notably the method of Lasserf&3], we find hier-  therefore it is referred to as a semidefinite constraint. Opti-
archies of solutions to our original problems, and each step imization problems of this type, exhibiting a linear objective
a better approximation than the previous one. Each step itseffinction and semidefinite constraints, are called semidefinite
amounts to solving an efficiently implementable semidefiniteprograms[16]. Such instances of convex optimization prob-
program [16]. Moreover, the hierarchy is asymptotically lems can be efficiently solved, for example by means of the
complete, in the sense that the exact solution is asympotinterior-point method$16]. Moreover, the idea of Lagrange
cally attained. The increase of the size of the vector of obduality [17] readily delivers lower bounds for the problem.
jective variables of these semidefinite problems grows notafypically, the dual optimization problem yields an optimal
bly polynomially in the label of the hierarchy. value which is identical to the optimal value for the primal
We will first clearly state how one can introduce auxiliary problem (unless there is a duality gapMany problems in
variables to cast the considered problems from entanglemequantum information theory have already the form of a
theory into the desired form. Then, we will investigate thesemidefinite progranii6,8]. In fact, it may be convincingly
hierarchies of relaxations in detail, and study numerical exargued that to specify the solution of a problem in form of a
amples. Finally, we will summarize what has been achievedsemidefinite program has the same status as stating a result
in terms of the spectrum of a matrix, as this again merely
Il. PROBLEMS IN ENTANGLEMENT THEORY AS means that e_fficient mgthods are available to find the eigen-
OPTIMIZATION PROBLEMS values of a given matrix. .
Polynomial constraintsThis means that we can write the
The problems that we will encounter are of the following constraints as
type or similar. At the core are typically minimizations over

t

product vectors, originating from the very definition of the 9(x) =<0, ®)
concept of entanglement. Givené=W', we seek the mini- |=1,... |, whereg,:R'—R are real polynomials of some
mum of degree. Quadratic constraints are of the form

trl ) (gal ® -+ @ || W, (2 X'Ax+b/x+¢ =<0, (6)

where the minimum is taken with respect to product statd=1,... L. The matricesA, are, however, not necessarily
vectors of a composite quantum systems with parts labelegositive semidefinite. This is by no means a minor detail: if
1,....N, with Hilbert spaceH=H;® --- ® Hy. Throughout all matricesA,,...,A_ were positive matrices®; =0, this
the paper, the respective Hilbert spaces are assumed to haweuld yield a convex quadratic program, which can be effi-
finite dimensions?{j:Cdi, i=1,...N. ciently solved(they are in fact also instances of semidefinite
One way of solving this problem is to choose a specificprograms and of second-order cone prograrimsstark con-
basis for the Hilbert space and to explicitly parametrize therast, if the matrices are not all positive semidefinite, one
state vectors. This yields a complex polynomial in these paebtains a very hard, nonconvex optimization problem. This
rameters, in general of very high order. This is obviously notstructure is yet dictated by the problems from quantum in-
a convex problem in these variables: a solution can be foundormation theory at hand.
albeit not in an efficient manner. For small systems, algo- The central point is to employ known methods from the
rithms such as simulated annealing may be employed, delivtheory of relaxations of nonconvex optimization problems, to
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obtain complete hierarchies of cheaply computable approxiwill be incorporated as follows. Denoting Hy={1, ... N}
mations, approximating the solution as closely as desiredhe index set labeling the subsystems and hyttre partial
The idea of a relaxation is to introduce new variables and tarace with respect to all systems except the one with label
formulate the problem as a convex problem in a larger spacehe lines

This idea can be exemplified in the simplest form of a relax-

27 — 2
ation, the Shor relaxatiofi1]. For example, lef; in (6) be trltry[PT°]= (WP, (13
a matrix which is not positive semidefinite, and let us assume
thatb,=0 andc,=0 for simplicity. Then, one can still write trftr[P1*] = (t{ P])® (14)

the constraint equivalently as for all j el indeed enforce that the matrices are products. If

tXA]<0, X=xx, (7) reductions are pure, the global state must be a pure product
state. This can be seen as follows. For stateshe only
using atxt symmetric matrixX. The equalityX=xx" is possibility for
equivalent with the convex constraint
tftry[pl1=1, ttry[pl*1=1 (15

) ) to hold for all j e | is thatp is of the form of the 9 product
together with the nonconvex oné<xx'. Shor’s relaxation pure state,

amounts to taking only the convex part into account, thereby
delivering an efficiently solvable convex problem which p=p | ® - @ [l (16)
yields a lower bound to the original problefi]. Such re- If an additional constan&>0 is included, these conditions

laxations in terms of semidefinite constraints will be em-
read tftr[ap]?] = (trlap])?=a? and tftry[ap]®] =(tr[ap])

ELO%:?étZerﬁi:anrsatrec?S/ of one many such relaxations, forming %cﬁ, which explains the above constraji®]. Having stated

As pointed out before, we will show that the encounteredthe general strategy, let us now I(.)Ok at the_ specific Instances
of problems in quantum information we will be considering

optimization problems can be written as polynomially CON-1 thic paper
strained problems of degree 3. That this is possible is based Paper.
on the observation that any Hermitiamx m matrix O for

X=xx, (8)

which A. Tests for bipartite and multipartite entanglement
tf0%]=1, t{0%]=1 (9) The approach is here to consider for a given state
. o e S(H1® -+ ® Hy) the minimal Hilbert-Schmidt norm with
is one that satisfies respect to the set of separable states. For simplicity of nota-
t{O]=1, 0=0% 0=0, (10) tion, we explicitly formulate the optimization problem for

the instance of full separability, without loss of generality.
i.e., it corresponds to a pure statmmpare also Ref.19)). That is, we test whethes can be written as
This follows from the fact that, deToting the decreasingly N
ordered list of eigenvalues @ by \*(O), the only vector _ i i
consistent with p= 21 Pt @ - @ pi, 17
m m
9 _ 3_ with {p;}; forming a probability distribution. The question
gl )‘il(o) =1 21 )‘ii(o) =1 (12) whether a state is fully separable is hence equivalent to ask-
ing whether a state is an element of the convex hull of prod-
is the vectorA}(0)=(1,0,...,0. The quantitieE}\il(O)2 and uct vectors with respect to all subsystems. According to
)\}(O)e‘ are unitarily invariant, and hence the above state-Caratheodory’s theorerf20], for any k-dimensional subset
ments can be shown to be valid on the level of probabilitySC R™, any point of the convex hull o& can be written as a
distributions. Essentiallyz";\/(0)?=1 already requires all convex combination of at most+1 points fromS. Hence,
absolute values of eigenvalues to be smaller than or equal ¢ number of elements in the convex combination given by

1, such that the only ordered vector of real numbers consig=d. (17) can be restricted to=II},d?, again without loss of

tent with zi":‘l)\il(o)3:1 becomeg1,0....,0). generality. To decide whether a statas fully separable or

For systems where the individual constituents are qubifiot, we may solve the following optimization problem:
systemsd; =2 for all j=1, ... N, the constraints can further . 2 2
b)é simplilgied by meJrer requiring as constraintgOf=1, minimize | - Pl = tr(p - P)*, (18)
tr[O?]=1, as for Hermitian X 2 matrices these conditions , )
alone imply that subject toP is fully separable.
0=0 0=O2. (12) We make use of .the Hilbert-Schmidt norm as it is quadratic

in the matrix entries.

When applied to our specific problems at hand, these con- The task is to write this problem in terms of a polynomi-
straints will appear in the following form. We will require ally constrained problem. Each relaxatitsee Sec. ), la-
that Hermitian matriced® are, except from normalization, beled withh=h.,,hmint1,...,then delivers a lower bound
products of pure states with respect to all constituents. Thisf the Hilbert-Schmidt distance to the set of fully separable
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states. Hence, asserting that the state is not fully separabté genuine multiparticle entanglement can be detected. Note
whenever we obtain a value larger than the one that we adhat when even applied to the bipartite case, the resulting
cept as accuracy of the computatifii], each step delivers hierarchy of semidefinite relaxations is inequivalent to the
a sufficient criterion for multipartite entanglement in its own one in Ref.[8], and also inequivalent to the robust semidefi-
right, and the hierarchy is complete in the sense that eachite programming approach in Ref®]. The above formu-
entangled state is detected by some step. The associated dation in the optimization problem in terms of full separabil-

timization problem can now be written as ity still does not constitute a restriction of generality, as this
o includes all separability classes with respect to all possible
minimize x, (19 splits.
_ ) Alternatively to the above approach, one may write each
subject tax = tr(p - P)*, test in the form of a feasibility problem, a problem with a

vanishing objective function,

n
P-> pi=0, minimize 0, (21)
i=1

- - subject top satisfies the test of step
trltr [PV 1] = (t[PV])
h = hyin Nmin+1s - - - IN the hierarchy.

foralli=1,...n jel, Either one finds no solutiofwhich is to say, the problem is

N not primal feasiblg and one can assert that the state is not
S [P =1 fully separable, or one has to go on one step m_the hierarchy.
vt ' In each step of the hierarchy forming a semidefinite problem,
the dual problem can then be employed to prove the infeasi-
bility of the above primal problem serving as a certificate
[16] (see also Ref8]).

The IineE{thr[P(‘)]:l takes the normalization of the whole  In general the total problem can in each step be written as
state into account. This is a quadratic program, combine@ semidefinite problem of the form

with a semidefinite constraint for the positivity of the matri-
cesP'. As pointed out above, the problem can also be for-
mulated as a polynomial problem without a semidefinite con-
straint, but now with constraints that are of degree 3:

PV=0 foralli=1,...n.

minimize 0, (22

.
subject toHy + >, zHs = 0,
=1

minimize x, (20
) 5 with appropriate matriceds, s=1,...,T. The associated
subject tox = tr(p - P)<, Lagrange dual problerfi7] is again a semidefinite program,
n maximize - tfZHg], (23
P-> Pi=0,
i=1 subject to ftZH,]=0, s=1,...T,
trltry[PUT] = (tr[ PV])? Z=0

In the context of our feasibility problem above, any feasible

solution of the dual problem with[ZH;] <0 proves the in-

7137 — T3 feasibility of the primal(original) problem. That is, we can
tr[tn\j[P( )= @lP) use theydual pr(F))bIem to gproveIo properties of our original
problem at hand.

Finally, it is important to point out that in probleii9),

. one may keep the semidefinite constraint provided by the last
S [P =1 Ilne,_anq I_ook for the intersection (_)f the feasible sets of_ the
= ' sem|d9f|n|te part and the constraint set of the relaxatlons:

Then, in each step we can assert either whether the state is
This is a global optimization problem with polynomial con- entangled, or that one cannot say whether it is entangled or
straints of degree 3, but no semidefinite constraint. not. In this way, it may happen, yet, that the state is en-
Here one tests the hypothesis that the state is fully sepdaangled, although this entanglement is not detected in any
rable against the alternative that the state is entangled istep of the hierarchy. One hence obtains a hierarchy of suf-
some sense. To assert that the state is multiparticle entanglédient criteria, albeit one which is not necessarily asymptoti-
and not separable with respect to any separability class, seeally complete. This will be discussed in more detail in the
eral tests are hence required. In this way, the various classegction on the hierarchy of relaxations.

foralli=1,...n, jel,

foralli=1,...n, jel,
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In an implementation of this optimization problem, one problems occur we choose the construction of nondecompos-
has to choose a basis of Hermitian matrices for each Hilberble witnesses for PPT entangled std®4. These are en-
space, tangled states which have a positive partial transg@sg

We discuss our example in the bipartite setting for simplicity.
loy, .. ’Ud,-z}' (24) In the theory of PPT entangled states the extreme points of
the set are of central interest, and often referred to as edge
states. A state is a PPT entangled edge state if it has a
positive partial transpose, while for all product vectzs)

for j=1,... N, suppressing an additional index labeling the
subsystems. These Hermitian matrices satigy,{=1 and

o =0, k=2, ... d]2 (25) in the range o the vectorla,b* ) is not in the range of the
. ] partially transposeg'® [23,27. Here the asterisk refers to
and have a Hilbert-Schmidt scalar product complex conjugation.
tovoi] = & 8 (26) To construct witnesses for these states, one proceeds as
J

follows. Let R=K(p) and Q=K(p'8) be the projectors onto
with a dimension-dependent constaft (and similarly for the kernels ofp and of p'e, respectively. Then a witness
terms of third ordex For the case of qubit subsystems, theallowing the detection of the stajeis given by[27]

appropriately normalized familiar Pauli matrices can be W =R+QTe-gl (30)
taken. In terms of this basis of Hermitian matrices, the ma- ’
tricesP" andP can be written as where
. " =mi +0Q's .
pi= > pis,, 27 e =min trf|a,b)(a,b|(R+ Q)] (31
K=Ky, . . Kn)
Sincep is an edge state, we hawe>0. This implies that
— trfW’ p] <0; thus,p is detected. Also, it is clear that the dif-
P= 2 p3. (28) | . ted IS clear
K=k Key) ficult part of this construction is the minimization procedure
B . . o ) in Eq. (31)—which is just of the type of Eq2).
wherex=(ky, ... ky), is a multi-index, withkj=1, ... d for This method can also be used to obtain a finer witness
jel, and from a given oneW, i.e., a witness that detects the same
3,0, ® 0, ® - ® oy (29)  states asV and more. Ifé =min, ,tr[|a,b)(a,b|W]>0 then

This parametrization will be used in the section presenting%/v_‘gJl is a finer witness thakV. This can also be applied in
numerical examples. Before we present the hierarchy of re'® Scenario where only a restricted set of observables is
pavailable, since the observableis always accessible. In
practical situations, given a particular implementation of a
quantum-key-distributiofQKD) scheme, it is sufficient to
obtain one relevant entanglement witness as a first step to-
ward the demonstration of the feasibility of the scheme. Here
B. Nondecomposable witnesses is where the method presented in this section can be used.
Although this method requires one, as a starting point, to
ave already a valid entanglement witness for the given
KD protocol, note that this operator does not need to be an

=W with the property that ftp]= 0 holds for all separable entanglement witness in the strict sense, but can be a positive
p 8Perator from the restricted set which is more easy to char-

p; thus a negative expectation value signals the presence ; : ¥
entanglement. So entanglement witnesses can be used for %%ter|ze than an entanglement witnesis. Moreover, dur

. e . . ng several steps of the method, better entanglement wit-
experimental verification that a given state is entangled, an . . i
. ! resses can be obtained from it, belonging to the same
in fact, they have already been implemenfad].

The detection of entanglement is not only of interest forrestrlcted set.

. 7 . The construction of the withess above can also be used for
fundamental reasons, it can also be of practical interest. Th'r%ulti artite PPT witnessg82]. The other approaches for the
is the case in quantum crytography, since it has been shown b : pp

. . onstruction of entanglement witnesses also need similar op-
that ihe pr ovable presence of qu_qntum correlations N SUClmization processeg6]. For the sake of generality, we for-
protocols IS a necessary precondmon for secure key (.j'St'”ar'nulate the optimization strategies directly in the multipartite
tion [25]. Entanglement witnesses are particularly suited to___ . . ) .

. . setting as in Eq(2). For a given entanglement witne¥g
deliver this entanglement proof, even when the quantum:WT the optimization problem looks as follows. The aim is
state shared by the users cannot be completely reconstruct(?g.sélve the problem ’

In turn, by measuringll accessible witnesses, one can de-

laxations explicitly, we discuss the other applications whic
are similar in structure from the point of view taken in this

paper.

Optimization problems of the type of the one in Kg)
often appear in the construction of entanglement witnesse
[23]. An entanglement witness is a Hermitian observalle

cide whether the measurable correlations of the state origin minimize x (32
from an entangled state or may be compatible with a sepa-
rable state. subject tox = tr{WP],
There are many strategies to construct entanglement wit-
nesseg26,27. As an example in which such optimization tr[trm-[P]z] =1foralljel,
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tr[tr|\j[P]3] =1foralljel. D. Entanglement witnesses based on second moments
and entropic criteria
Again, for multiparty qubit systems this can be written as a

polynomially constrained problem with polynomials of de- In this subsection we will consider again entanglement

witnesses, but not in the original sense, which involve only

gree 2. . .= ; .
expectation values of Hermitian operators. It is also possible
o ) ) to introduce nonlinear functionals with similar properties:
C. Estimating the geometric entanglement to quantify these are entanglement witnesses based on second moments,

multiparticle entanglement on variances of observables. Such entanglement criteria

The same tools can be used in order to quantify multiparbased on second moments are very popular in the study of
ticle entanglement for pure quantum states. Needless to sdfifinite-dimensional quantum systems having canonical co-
the question of quantifying multiparticle entanglement isordinates39]. There, to measure arbitrary observables is of-
much more involved that the anak)gous question in the bilen by far UnfeaSible, whereas the estimation of second mo-
partite setting: in the bipartite setting, the degree of entanglelents of canonical coordinates is very accessible. In optical
ment of pure states can be uniquely quantified in terms of th8ystems, the appropriate measurements are available in ho-
entropy of entanglement. Any pure state can be asymptotmodyne detection. Similarly, one may also for finite-
cally reversibly transformed into any other, the achievabledimensional systems look at variances rather than at first
rates being given by just this measure of entanglement. Imoments themselvepl0]. In Ref. [41], second-order wit-
this sense, any bipartite entanglement of pure states is essdif:sses related to variances of operators were constructed,
tially equivalent to that of the maximally entangled pair of and the relation to entanglement criteria for continuous vari-
qubits, which forms the so-called minimal reversible able systems based on second moments was shown. The ad-

entanglement-generating SMREGS) [33]. The situation is vantage in a practical context is that one specifies some ob-
very different in the multipartite case, where the MREGS'sservables which are the most accessible, and tests whether
have not even been identified for three-qubit systems, |efhe obtained second moments are consistent with a separable
alone for more general setting84]. In view of this fact, state. The application of such a test always requires the so-
several more pragmati@nd inequivalentmeasures of en- lution of an optimization problem as pointed out below.
tanglement have been proposed, reasonably grasping the de-Let us specify a set of observablb, ... ,My. Then we

gree of multiparticle entanglemerj85-37. To evaluate can define the real symmeticx K covariance matrixy, of

these quantities typically amounts to solving a computation2 Statep associated with these observables as

ally hard problem.

One of the reasonable quantities to quantify multiparticle ~ (Yo)ki = (TIMiMp] + trIMMyp])/2 = tfMyp ]t Myp],
entanglement is the geometric measure of entanglement (37
[35,36,38: for a given state vectoy) e H,® - ® Hy, €S-
sentially, entanglement is then quantified in terms of the sowith k, =1, ... K. This is completely analogous to the fa-

lution of the maximization problem miliar covariance matrix of systems with canonical coordi-
nates. Then, it turns out that—in the previous notation—any
A?=ma{(y ), (33 fully separable statp has the property that there exist states
such that the geometric measure of entanglement becomes pg), ,p&), i=1,...n, (38)
Byl =1~ A% (34) n:Hszldjz, and probability distributiongp;}; such that
The maximization is performed over all state vecttys
which are products with respect to all subsystems. Setting Y= E PiYpe---opl)- (39
p=[y)(yl and !
P=[o)Nd| = |d)(br] @ - ® | bul, (35) So one would fix those observables that are the most acces-
sible, and estimate the appropriate second moments. This
we arrive at would yield an estimate of the elements of the covariance
matrix to some accuracy. Then, the question that arises is: do
minimizet, (36)  states and probability distributions exist that satik$9)? If
not, we can conclude that the state must have been en-
subject to fPp]+t=1, tangled. It is important to note that this judgement is not

based on the knowledge of the entire state, but only on the
knowledge of the covariance matrix with respect to a previ-

trltry[PJ"]=1 for all j e I, ously selected set of observables. This is a problem that can
be cast into a feasibility problem, again in the form that we
tr[tr|\j[P]3] =1foralljel, envision. As it is a feasibility problem, the objective function

can be set to zero. This can be written as follows:
which is the same optimization as in the previous subsection,
except for one line in the list of constraints. minimize O, (40)
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n , minimize x, (43
subject toQ - >, p;Q" =0,
=1 subject tox = tr([M?P] - tfMPJ?,
QW) = W MM,PYT + MM, PV])/2 |
— M, PVt [M,PO], P->PV=0,
i=1

trtr [PP]?] = (ar[PP])2  for all i _ _
Y . o trltr, [PUT2] = (t{PO])2 for all i=1, ..., jel,
=1,...n, jel,

tftr, [PVTE] = (@[PO])®  for all trltry [Pl = @[POD3 foralli=1,...n, jel,
J

=1,...nh, jel, n .
S tPP]=1.
n i=1
(H7 = . .
2 ufP=1, It should be clear at this point that the same method can

' be used for entanglement criteria based on linear entropies,

that is, p-norms forp=2 (see, in the rich literature on the

%~ Q=0. subject, e.g., Refg42]). For any expression that is linear in
In each step of the hierarchies of relaxations, we can asse#ize linear entropies of the whole staie
whether there is a feasible solution or not. If there is no loll, = tp?] (44)
feasible solution in some step, we can conclude that the state Pllz p
is entangled, and multiparticle entanglement is hence desf a multipartite system and in the linear entropies of the
tected. This is now a problem which is still a combination of reductions
a polynomially constrained problem, together with a .
semidefinite constraint. Here, two strategies may be applied. ltriulplllo = trl(triulpD?], §=1,...n, (45)

On the one hand, one can keep the semidefinite constrainine can in the same manner find the largest value consistent
and can proceed as pointed out in Sec. Il A. This means thafith a separable state. Any state that delivers a larger value is
one can in each step assert that the state was entangled,tgén clearly entangled. In practical considerations, these lin-
one has to go one step further. This is computationallfear entropies can be estimated in a fairly feasible manner

cheaper, but comes at the price of losing asymptotic comr42], for example, when assessing entanglement in Bose-
pleteness. For practical purposes, however, this method iqubbard-type models.

expected to be the method of choice; in particular in the light _ 3
of the fact that for a given set of observables, typically not E. Maximal output purities of quantum channels
every entangled state is anyway detected by the entangle- gimilar arguments, it will finally be briefly discussed, can

ment witness based on second moments. immediately be applied to assess minimal output purities of
The other strategy, on the other hand, is to formutgfe .hannels

-Q=0 as a set of polynomial constraints. A Hermitian ma-

trix is positive if and only if the determinants of all its sub- K +

matrices are positivésee also Refi31]). This gives rise to a p—E(p) = E RipR/, (46)
set of polynomial constraints, for which the relaxations can =1

be applied, leading to an asymptotically complete hierarchyyhere zikleiTRiz], with respect top-norms for p=2 (and
of tests. This comes at the price of being computationallyother integemp); see, e.g., Ref§43]. One may then investi-

more expensive. gate the maximal output purity
In view of Refs.[40,417, it is useful to employ arguments
along the following line. If we can show that no fully sepa- vo(€) = mpa>¢|5(p)||2, (47)

rable state can have the image that we estimate in an experi-

ment, we can assert that the state must have been entangl@ere it does not constitute a restriction of generality to
This observation can, while being fairly obvious, still be maximize not over all statgs but merely over all pure states

practically very relevant. For example, we may for any ob-(compare also Ref7]). The central question here is to see
servableM=MT look at the minimum of second moments whether this quantity is multiplicative in general. That is
that are consistent with a separable state, i.e., the solution @fhether generally

minimize tfM2P] - tfMP7?, (41) v2(E1 ® &) = v(EDva(Er) (48)

holds, which means that it is never an advantage to allow for
entangled inputs when maximizing the output purity. In the
and use this as a criterion for detecting entangled states. Thgeviously used language, this optimization problem can be
gives rise to the optimization problem written as follows:

subject toP is fully separable, (42
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maximizex (49) minimize c'x, (54)

subject tog(x) = 0,

k k
subject tox < tr[ (E R,-PR—T> (2 RJ-PRJ-T) ] .
i=1 =1

for 1=1,... L in the following form: For h=h.,, Nmin
+1,...,each instance is of the form

27 —
u[P7=1, minimize d'y, (55)
37 =
wlPI=1, subject toFl"(y) = 0,
as a polynomially constrained problem with polynomials of
degree 3. GVy)=0, I=1,...L
lll. COMPLETE HIERARCHIES OF RELAXATIONS with matricesF"(y) and G["(y) that are linear in the ele-
TO APPROXIMATE THE SOLUTIONS ments ofy that increase in dimension with increasingsee

the Appendiy. This method is based on recent results in real
glgebraic geometry; see also RET5].

In Ref. [13] convergence to the solution ¢84) is guar-
anteed if certain conditions are satisfied. Convergence in the
limit h—o is guaranteed if there exist polynomials

We will now state how the theory of relaxations can be
applied to the described problems in entanglement theory. |
all of the above case@xcept in Sec. Il ) we obtained an
optimization problem of the following structure: fare R',

minimize c'x, (50)  ug,uq, ...,u, all sums of squares, such that the set
. L
sublect togi(x0 =0, X € Riug(x) + 3 u(9g(x) = 0 (56
for I1=1,... L, the global optimum value being denoted as I=1

p*, where g, is a polynomial of at most degree 3. The con-

X ) is compact. This is, however, the case in all of the specific
straint set given by

situations from entanglement theory considered above. The
M={xeRig(x=0,1=1,... L} (51) set in Eq.(56) is compact if there exists dre {1, ... L} such
that the set
is not a convex set. We may however apply Lasserre’s
method of semidefinite relaxations to treat this gage the {x e Rig/(x) = 0} (57)

Appendi®. This will yield a sequence of semidefinite pro- . . '
grams, labeled with an index=h, . .h. +1,.... such that is compact. In each of the discussed cases, we find that due

. . to the linear constraints incorporating the trace requirement
"hnd the quadratic constraints coming from the purity of the

of the original problem. The minimal steffyy, is 1 if the oy 00 states, there existsan 0 such thag?-|x||>=0 for

highest degree of the constraint polynomials is 2 apgl all xe M. This follows from the fact that for each of the

g PP positivity of the matrices enforces boundedness of all ele-

?cae“?r?éhjg"ﬁgr é Itsingtzssscc;?r%azndasc%iZCé(?g?tg’rIg IC;rrﬁca'lrnents. Hence, to ensure asymptotic completeness, we may
9 P : y add the constraing, ,1(x)=a?—|x[?=0 to the list of qua-
number of steps in the hierarchy.

dratic constraints, such that the condition in Esj/) is cer-

A. Semidefinite relaxations tainly satisfied. Hence, one can conclude that
Instead of considering an optimization problenxia Rt min d"y — minc"x (58)
this is turned into an optimization problem in a larger real ye Mt xeM

vectory e RPn, D,,, being a natural number defined in the
Appendix. This larger dimension is due to the uplifting pro-
cedure used in Lasserre’s methid®,14 for approximating AN ={y e RPzn:FN(y) =0, Gl[h](y) =0,1=1,... L+1}.
the quadratic part of our problems, and goes back to work in

Ref. [44]. For each instance of the hierarchy of semidefinite (59
programs, the objective function will be the same, but up-This is not only meant as a numerical procedure: instead, as

for h— o, and for

lifted, namely, each step is an analytically accessible semidefinite program,

ysdly (52) in each step one may assess the approximations with analyti-

' cal means. Moreover, symmetries of the involved states un-

where der certain groups can be carried over to symmetries in the
d"=(0,cy, ... €0, ...,0, (53) Hermitian matrices in the semidefinite programs, similarly to

the strategy employed in Rdb] for semidefinite programs,
with ¢ e R! being defined as above. Lasserre’s method novand in Ref.[4] for convex but not semidefinite programs.
gives rise to a sequence of semidefinite programs approxi- In Sec. Il D, we encountered an additional semidefinite
mating the solutions of constraint. Then, Lasserre’s method may be applied using
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polynomials of higher order, as described above. Or, onély, in each of the steps, the effort of a numerical solution of
may combine the semidefinite relaxations with the semidefithe associated semidefinite program is polynomial in the di-
nite constraint itself. This gives rise to a hierarchy of suffi-mension of the matricegl6]. Hence, each problem can be
cient tests, without the property of asymptotic completenesssolved in an efficient manner.

To see how they can be combined, let us consider an addi- In terms of the step in the hierarchy, it turns out that the
tional semidefinite constraint such gs-Q=0. In terms of  scaling is also polynomial. Approximating the above sum by
the ye RP2n, we have the feasible set of the additional an integral expression, we arrive at

semidefinite constraint

D,=0(h'). (66)
t
F={ye RPmF,+ S VersFe= 01, (60) That.is, for a fixed number of variabléshich is the §etting.
=1 considered hepethe size of the vector of the objective vari-

_ ) i ) ables increases also only polynomially in the stepm the
with appropriate matriceB,, ... ,Fi. Therefore, we can writé  pigrarchy. Moreover, in many small- and medium-size prob-
the full hierarchy of semidefinite programs as lems, the program detects optimal solutions in the first itera-

minimize dTy (61) tion steps at relatively low cqmputational ccpéS]_. Also, thg
sparsity of the moment matrices may be exploited. The issue
of computational effort will be discussed in more detail else-
where. Another point of interest is that it is possible in some
hl _ cases to trade in a lower number of variabider a higher
G'(y)=0, I=1,...L, lowest relaxation step,,,, as in the examples in the subse-
quent section. In some cases, this might simplify the prob-
lem, as in our example in the next section.

subject toFt"(y) = 0,

t
I:O"' 2 y$+1Fs2 0,
st IV. NUMERICAL EXAMPLES
h=hin, Nmint1s - - - DEING the label of the element of the hier-

archy. The projection of the feasible set™ onto the plane
of first-order moments, i.e., onto the plane

In this section we present some numerical examples, in

order to show that the approach is also feasible in practice.
pp p

We will provide three examples, two for the geometric mea-

{y e RP2h:y=(0,y,, ... Yis1,0, ...,0}, (62) sure of entanglement and one for the construction of en-

) o tanglement witnesses for bound entangled three-qubit states.
conceived as a subset &, convergespointwisg to the

convex hull of M [12-14. Therefore, we have that A. Geometric measure for three-qubit states

m[|hr]1 d'y < p* (63) Let us start with the calculation of the geometric measure
yeMENF of entanglement for three-qubit states. As we have shown in
for all h—cc. Moreover, mi_ nn#d"y is @ monotone in- Sec. Il the computation of the geometric measure of en-

creasing sequence im such that the sufficient criteria be- tanglement for a given pure three-qubit state vegorre-
come more powerful with an increasing order of the hierar-duires essentially the calculation of
chy. A?%=max(a,b,c|y)|?. (67)
b,
B. Size of the relaxations labc

As already mentioned above, we use here a different param-

are in each step of the hierarchy. In the worst-case Scenarisetrization from the general one described in Sec. Il. In terms
p ot Ny 1 o 1aNB¢ the Pauli matrices forming a basis of Hermitan matrices,
where the polynomial constraints is a polynomial involving we can write

all basis elements of the basis of polynomials of the respec-

tive degree, one obtains the subsequent sizes of the relax- 13
ation matrices. The matrik!" is of dimensionDy, X D, (for == 2 N0 ® 0y @ ay), (68)
a definition ofDy,, see the AppendjxAs a formula forD;, we 8i k=0
arrive at
h 1
+ k- = — .N. ) )
0.=S (t kk 1>. 64 la,b,c)a,b,c| 8i,LEk:0a1bJCk(UI ®oj®a), (69
k=0
where A\ogo=ap=by=Co=1. The coefficients Ny, i,j,k
For example, =0,...,3, are determined from the known state vegior
t(t+ 1) We have to impose constraints that guarantee phais a
D,=1+t+ > (65 pure state on the coefficienta;,a,,a3) describing the state

pA=Ei3:0ai0'i/2 [and similarly(b;,b,,bs) and(c;,c,,c3)]. We
In the number of variables this is a manifestly polynomial have seen before that for qubit systems, instead of requiring
expression. In step the vectory is of the lengthD,,,. Nota-  tr[pa]=1 and tfp3]=1, we may alternatively merely require
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that tfpa]=1 and tfpa]=1 (where tfp,]=1 is already a con- 0.6
sequence of the parametrizatjo8o we arrive at the optimi- 0.55¢ S
zation problem
0.5
1 3
L 450
minimize, p c, P > Nijaybjcy, (70) 0.45
i,j,k=0 04}
. 0.35}
subject toa + a5+ a5=1,
0.3}
b?+b2+b3=1, 0.25 : :
0 0.2 0.4 0.6 0.8 1

c2+ci+ci=1.

. i o . FIG. 1. The numerical values of the geometric measure of en-
This polynomial optimization problem can be solved with tanglement of the family of states of Eq(71), plotted on top of
the help of Lasserre’s methadee the Appendix For these  the analytical values of Ref36].
calculations the packagg.opTiPOLY [45] based orseDUMI
[46] is freely available, and we have used it for our calcula- , =
tions. The packageLopPTIiPOLY has a number of desirable [GHZ") = (/001 +|1100)/\2, (75)

features, in particular, it provides a certificate for global Op'|llf+>:(|01>+|10>)/\f'§ and pe[0,1]. The state vector

timality. | o )
. . L . |#a(213)) corresponds to the four-qubit singlet state, i.e., the
Note that with this parametrization, the number of Objec'state vector satisfying

tive variables is 8, N being the number of qubits, in con-

trast to 4' parameters which are necessary to parametrize a U4y = |9 (76)

generalN qubit state as decribed in Sec. Il A. From E@0)

it is clear that the objective function will be a polynomial of for all unitary U [48]. For the two individual states in the

degreeN which increase$,, (see the Appendix above superpositions in E¢/4), the geometric measure can
First, we present a nontrivial example for the calculationbe directly evaluatefB6]: Forp=1 we findA2=1/2, and for

of the geometric measure of entanglement, in a case whege=0 we obtainA2=1/4 from A2¢+=1/2. Thenumerical re-

its value is already known. In this way we can test our methsults for the geometric measure of entanglement for other

ods. We aim at computing the geometric measure of envalues ofp are plotted in Fig. 2.

tanglement for state vectors of the form It is interesting to note that at the singlet vajpe?2/3, the
- — behavior of the geometric measure changes. From there up to
|4(9)) = VS|W) + V1 - s|W), (71)  p=1 the optimum is attained for the choide®11) or [1100

of the product state which gives rise to the linear behavior.
The family of states specified in E¢Z4) is invariant un-
der the exchangéAB)« (CD). Because of this symmetry,

se[0,1], where|W) and|W) are state vectors of three-qubit
W stateg[47] in different bases,

|W) = (|001) +|010) + |100>)/\;'§, (72)  one may without loss of generality assume that the product
state vector leading to the maximal value/_b% is given by

~ = |1, b, b1, Do), where |1, =€X12C086; 5|0)

W) = (|01D) +[10D +[110)/13. (73 +emasin 61 5|1), where the optimal phases can be shown to

For the geometric measure of entanglementyg)) a for- P& xa=x2=7m=7,=0. This gives rises to an optimization
mula has been developed in RES6], exploiting the permu- problem with polynomial constraints with only four variables

tation symmetry of the states. The comparison between th&hich can be solved exactly byLopTIPOLY. The results co-

theoretical value and the numerical calculation usingNCide with the results above.

Lasserre’s method fdn=2 is shown in Fig. 1. Details of the

performance are summarized in Table I. The results indicate TABLE |. Details of the relaxations in the three numerical ex-
clearly the usefulness of the presented approach. As a mattemples discussed above for one point of each example. The pro-
of fact, this is a case where already a very small number oYided CPU time refers to a machine with an Intel Xeon Processor,
steps in the hierarchy detects the global optimum, as is typié-2 GHz, 1 Gbyteram, using GLOPTIPOLY 2.2E [45], SEDUMI 1.05

cal for this relaxation, as has been pointed out in R&5), [47], andMATLAB 6.5.1.199709(release 18 In all caseh=h,,;;,=2, SO
based on numerical experiments that the result was obtained after the first relaxation step.

B. Geometric measure for four-qubit states Number of
We calculate the geometric measure of entanglement alseuPsection  Relaxation  variables  dinty) ~ CPU time
for the following one-parameter family of state vectors: A 2 9 714 10.92%
|0a(P) =PIGHZ)) =1 -ply) ® [y), (74 B 2 12 1819 10398
C 2 9 714 6.14
where
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0.75 . , . , 0.12
0.7 fe ] 0.1}
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FIG. 2. The numerical values of the geometric measure of en- FIG. 3. The numerical values @ffor W of Eq. (79) plotted on
tanglement of the family of states of Eq(74). top of the results of Ref.32].

required can be written as instances of certain optimization
problems involving polynomial constraints of degree 2 or 3,
Employing the same strategy, we would like to calculateor with additional semidefinite constraints. For such polyno-
the value ofe as defined in Sec. Il for the family of witnesses mially constrained problems, which are generally instances
constructed for the PP{bound entangled states of nonconvex optimization problems, hierarchies of
semidefinite relaxations can be found. In this sense, one ad-

1 ditional intention of this paper is t icate th -
= alo01(001 + bl010(010d + clo11¢011 + =|100(10 paper is to communicate these re
P ( 1002003 + bj010(010 + c[012014 c| 0100 cently achieved results in the theory of relaxations and to

C. Witness for three-qubit PPT entangled states

1 1 show that they can be fruitfully applied in the quantum-
+=]101)(101 + =|110¢110 + 2|GHZ><GHZ|> / C, information context. One arrives at hierarchies of more and
b a more refined tests detecting entangled or separable states, or
(770 better and better lower bounds to optimization problems. In
all instances, recently achieved known results from semial-
gebraic geometry guarantee that asymptotically, the achieved
minimum is indeed approaching the globally optimal one. In
_ 2y this sense, the statements are similar in spirit with yet more
[GHZ) = (/000 +[11)/v2. (78) versatile than the ones presented in RE8$. Moreover, we
In Ref.[32], upper bounds for the values ofwere obtained have seen that the size of the optimization problems to be
by using a multivariable minimization routine for the param- solved in each test grows polynomially with the steps in the
eter rangea=b=1/ce(0,1). The minimization over the hierarchy, and that for small problems, often already a small

where C=2+a+b+c+1/a+1/b+1/c, and a,b,c>0, ab
#c, and

product states has to be performed with respe¢88) number of steps is required to find the exact solution.

The presented method is on the one hand meant as a nu-

W= 1(|000><00q +]111¢111) + 1 (c?100(100 merical method to achieve good bounds to problems that are

2 1+c? of relevance in the study of multiparticle entanglement, in

1 the construction of entanglement witnesses in the bipartite

+1011)(011)) + ——(|010¢014 + b%101)(101)) and multipartite case, in the context of quantum-key distri-
1+b bution, and to assess maximal output purities. On the other

1 1 hand, each instance of the hierarchy delivers a semidefinite

1 +a2(|00]><00]l +a%110(110) - (E t e program which is readily accessible with analytical methods,
and where properties of the Lagrange dual can be exploited.
b a It is hoped that these techniques shed light on the structure of

TlipE 1 +a2)(|000><11ﬂ +[111¢000).  (79) optimization problems underlying the questions of entangle-

ment and separability of several constituents.
The numerical results are plotted in Fig. 3. Again, the global  Finally—and shifting perspective to some extent—it
optimum is achieved, and the found values agree with thgeems worth noticing that very similar techniques may be
values found in Ref[32]. For details concerning the relax- expected to be useful tools to assess ground-state properties

ations, see Table I. of many-body Hamiltonians. Often variational approaches
deliver already a good approximation to properties of the
V. SUMMARY AND OUTLOOK true ground state. For example, in the Gutzwiller ansatz for

the ground state of the Bose-Hubbard model in a lattice one

In this paper, we have reconsidered several problems ioptimizes the energy functional over product states with re-
entanglement theory with the tools and language of convexpect to the sites. Similar techniques can be used for spin
optimization. The central point of the paper was that manysystems and matrix product states. Then, relaxations in the
problems where a minimization over pure product vectors isvay discussed above could potentially be applied for a rea-
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sonable size of the system. Such studies could complemeirtdex, as this will stay the same throughout the procedure.
numerical techniques yielding upper bounds, such as simuAny polynomial of degree of at mostcan then be identified
lated annealing techniques, delivering provable lower boundwith a vectorp € RPr. It is convenient to introduce two la-
for the ground state energy. belings, connected with each other by a function
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APPENDIX: LASSERRE'S METHOD [6/2] be the smallest ir}teg.er greater than or equaﬁld:
S _ ) We assume that the objective function is linear, which is no
For completeness, in this appendix we briefly sketch theestriction of generality, as other polynomials can always be
method to construct sequences of semi-definite relaxations Qﬁcorporated in the constraints as in Sec. Il. Then the first
glObal Optimization prOblemS with multivariate real-valued possib|e relaxation Step of Lasserre’s method h-lﬁin
polynomial objective function and constraints due to=max5/2]. For h=h,,, the matrixF"(y) is of dimension
Lasserre[13]. The class of problems is of the following Dy, X Dy, and linear in a vectoy e RP2,
form:

(A5)

[h] = \eelre - )
minimizec'x, x e R! (A1) [F (y)]'vl_yfzﬁ[fh(')’ffh(”]' (A6)
In turn, the matrice:G,[h](y), one for each of the constraint
polynomials,I=1, ... L, are of dimensiorDﬁlngl, where
whereg;, ..., :R'— R are real-valued polynomials of de- }, —p_[4/2]. Each polynomialy is characterized according

gree 2 fort3. Altrtlo?t‘gt: Wﬁl cg)nsider on]y E)otlynfomialls tOf tdhe'to the above procedure by a vectgr The matricesGl[h](y)
gree of at most 3, it will be convenient to formulate the " yofined as

subsequent sequence of semidefinite programs in terms that
formally involve higher-order polynomials. For amye N,

we consider the basis of polynomials of degrde the vari-
ablesxy, ... x; as

subject tog(x) =0, 1=1,...L, (A2)

h _ B}
(Gl ](y)]i,j = %‘4 vf:sll(a)y{f;zal[fa(i)#&(j)]+a}- (A7)

For qubits,h,,=1, because the maximal degree of the con-
straint polynomials is 2. For higher-dimensional systems, the
in this ordering. The dimension of this basis will be denotedhighest occurring order is 3 due to the positivity constraints.
as D,. For clarity of notation, we will not specify as an In this caseh,=2.

(11X, + oo X Xo XX, « . XX X5, XoXa, - X)  (A3)
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