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The ability to perform a universal set of quantum operations based solely on static resources and measure-
ments presents us with a striking viewpoint for thinking about quantum computation and its powers. We
consider the two major models for doing quantum computation by measurements that have hitherto appeared
in the literature and show that they are conceptually closely related by demonstrating a systematic local
mapping between them. This way we effectively unify the two models, showing that they make use of
interchangeable primitives. With the tools developed for this mapping, we then construct more resource-
effective methods for performing computation within both models and propose schemes for the construction of
arbitrary graph states employing two-qubit measurements alone.
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I. INTRODUCTION

Faced with the question of describing a quantum compu-
tation in terms of elementary operations, one is almost in-
variably tempted to answer by drawing lines signifying qu-
bits and little boxes signifying unitary operators performed
on them. Thus quantum computation is usually viewed as
some more or less complicated manipulation of the initial
quantum state, the sum total, and ultimate goal of which is to
apply a certain unitary operator on it. Measurement naturally
appears at the very end of the computation, and is generally
considered harmful for the coherence if it is included in the
main body of the computation, due to its inherent irrevers-
ibility. In this respect, the computational power bestowed on
us by quantum computers appears to depend vastly on our
ability to perform unitary operations on our qubits, postpon-
ing any measurements until the very end when the result of
the computation is ready to be read off. In fact, the standard
model of quantum computation[1] consists of preparing a
standard initial stateu0l^n, applying an arbitrary unitary
transformation and performing measurements in the very
end.

The first indication that measurements can be an integral
part of the main body of our quantum computation was given
by the fault-tolerant constructions for thep /8 and the Toffoli
gates[2–4]. Both of these make use of measurements and
special ancillary states for the fault-tolerant implementation
of the gates, with the ancillary states in turn prepared by
measurements. But truly, the ability to perform universal
quantum computation based on measurements alone was not
fully realized until recently. Two explicit models for doing
computation by measurements will be considered: The first
one based on one-qubit measurements on a cluster state
(1WQC) [5], and the second one based on two-qubit mea-
surements alone(TQC) [6–8]. Proofs for the universality of
both of these models were obtained by reduction to the stan-
dard model: Preparation of a standard initial state, the ability

to perform any unitary operation with arbitrary accuracy and
the ability to perform measurement, which is a natural con-
stituent of them both. The ability to realize any unitary trans-
formation was in turn reduced to proving that all gates from
a universal set of gates(typically taken to be the one con-
sisting of all one-qubit gates and theCNOT [9]) can be real-
ized within each model.

A. One-way quantum computer (1WQC)

In the 1WQC model, quantum computation is performed
on qubits arranged in a regular lattice and prepared initially
in a specific entangled state, known as thecluster state. Any
desired computation is then encoded as a sequence of pro-
jective one-qubit measurements of these lattice qubits along
certain bases. Although the intermediate measurement results
are random, by monitoring the measurement outcomes one is
able to exploit the quantum correlations and readapt the fu-
ture measurement bases in order to effectively steer forward
the desired computation. Thus an arbitrary trajectory in the
Hilbert space of the input state can be achieved, as quantum
information is made to travel within the lattice from the mea-
sured qubits to their neighboring ones and thereover until the
completion of the measurement sequence.

Conceptually, the easiest way to describe the cluster state
is by giving its stabilizer generators. For each qubit, viewed
as a lattice site in a latticeL, the stabilizer consists of gen-
erators of the form

Ksid = Xsid
^

jPnbhdsid
Zs jd, ∀ i P L,

wherenbhdsid is the set of qubits in the neighborhood of the
qubit i PL and {I,X;sx, Y;sy, Z;sz} is a notation that
will be used in this paper alternatively with the notation
hs0,s1,s2,s3j for the Pauli matrices. The cluster state is a
particular example of a family of states known asgraph
states, which have stabilizer generators of the same form as
the cluster state, with the exception that the vertices are not
necessarily viewed as points on a lattice and the neighboring
relations are generally given by an adjacency matrix.

Operationally, any graph state can be prepared by various
methods. A simple realization is obtained by examining the

*Email address: panos@caltech.edu
†Email address: wcleung@caltech.edu

PHYSICAL REVIEW A 70, 062314(2004)

1050-2947/2004/70(6)/062314(11)/$22.50 ©2004 The American Physical Society062314-1



stabilizer: All lattice qubits need to be initialized in the state
u+l, creating ^ iPLu+l, and then a controlled-phase gate
needs to be applied between all pairs of neighboring qubits.
The controlled phase,LsZd, in the computational basis takes
the simple diagonal form

LsZd =1
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 − 1
2 .

These controlled-phase gates have the convenient properties
that each acts symmetrically between the two qubits on
which it is applied and also they all commute with one an-
other. Physically, the preparation of the graph state can be
accomplished by applying the nearest-neighbor homoge-
neous Isingsz^ sz interaction on the statê iPLu+l for the
appropriate period of time and then correcting the resulting
state with local unitary operations.

Returning to the issue of how an arbitrary unitary opera-
tion can be realized on an already prepared cluster state, we
recall that the requirement has been relaxed to just being able
to realize all operators from a universal gate set. To this
direction, one way to prove the universality of the 1WQC
model is to consider disjoint regions of the cluster and use
each such region for simulating a certain quantum gate from
our selected universal set. Identifying the input qubits of one
such region with the output qubits of the previous, an arbi-
trarily large succession of quantum operations can then be
realized.

Disjoining lattice regions can be accomplished by selec-
tively disentangling qubits from the cluster state, thus effec-
tively deleting them from the initial lattice. A quick inspec-
tion of the stabilizer in fact shows that measuring a qubit in
the computational basis is sufficient for this deletion. Indeed,
a measurement of theith qubit in the computational basis
corresponds to a measurement of the operatorZsid, which
commutes with all stabilizer generators except for that one
having the measured qubit as the correlation center, namely
Xsid^ jPnbhdsidZ

s jd. Thus measuringZsid removes the generator
Xsid^ jPnbhdsidZ

s jd from the stabilizer, while leaving all other
stabilizer generators unaltered up to the removal of the mea-
sured qubit.

To complete the proof that performing one-qubit measure-
ments on the cluster state is universal for quantum computa-
tion, in Fig. 1 we explicitly show how certain elementary
operations can be realized by one-qubit measurements on the
appropriate qubit configurations[10]. As already stated, uni-
versality then follows from our ability to simulate any opera-
tor from the universal set of one-qubit rotations andCNOT.

At this point it should be noted that computation is done
up to local Pauli corrections, meaning that the quantum state
of the qubits at the output will be of the general form
^ i=1

N s j
sidUuCl, whereU is the unitary to be applied to the

input stateuCl ands j
sid, j =0, …, 3 is one of the Pauli opera-

tors applied to theith of theN output qubits. Additionally, it
is important to emphasize that the operation of the 1WQC

always starts with a cluster state, and no other input states or
ancillae are being used.

B. Teleportation-based quantum computer (TQC)

The core idea of this scheme lies in the realization that we
can modify the basic teleportation protocol[11] in order to
also affect a unitary transformation while teleporting a quan-
tum state from one qubit to another. In the context of the
TQC, teleportation is therefore viewed as a way of affecting
unitary transformations, with its function as simulating a
quantum communication channel becoming irrelevant in the
absence of distant communicating parties.

In Fig. 2 we describe two alternative ways for applying an
arbitrary one-qubit unitaryU to the input quantum stateuCl
using only two-qubit measurements: either apply the unitary
to the state after it has been teleported, which can equiva-
lently be viewed as absorbingU directly into the special
ancilla sI ^ UduF0l before performing the Bell measurement
[6,7], or apply the unitary to the input state before teleporting
and combine it with the measurement to form a generalized
Bell measurement in the basishsU† ^ IduF jlj j [8,12]. A Bell
measurement is conventionally defined as the complete two-
qubit measurement along the basishuF jlj j, with j =0, …, 3,
where

uF0,3l =
u00l ± u11l

Î2
, uF1,2l =

u01l ± u10l
Î2

.

In order to form a universal set of operators we need to
augment our set containing all one-qubit rotations with one
more two-qubit operator, theCNOT. TheCNOT (as well as any
other two-qubit unitary) can also be simulated in the TQC
model by doubling the number of ancillary qubits and Bell

FIG. 1. Measurement patterns that realize(a) a rotation off
about thex axis, (b) a rotation ofu about thez axis, (c) the CNOT4→1

[5]. A general rotation with Euler decompositionUzscdUxsudUzsfd
can be built by composingx and z rotations using a total of five
qubits [10]. Boxed circles indicate the input qubits. The measure-
ment bases are shown asX, for measurements of the observablesx

corresponding to a projection along thex axis, or as the appropriate
angle, v, with respect to thex axis in the equator of the Bloch
sphere for measurements of the observable cossvdsx+sinsvdsy.
The choice between positive or negative angles is made based on
the outcomes of previous measurements.
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measurements. The construction, employing the ancilla
uaCNOTl, is shown in Fig. 3.

Although both circuits in Fig. 2 were presented as exten-
sions to the basic teleportation scheme, an important trade-
off between them should be stressed[12]. When the unitary
to be realized is not in the Clifford group(defined as the
normalizer of the Pauli group[13]), the circuit of Fig. 2(a)
implementsU nondeterministically: Commuting the Pauli
corrections j throughU can, for certain values ofj , result in
realizing a totally different unitary. Extra teleportation steps
would be needed(each to undo the faulty gate and reattempt
the intended unitary gateU) until the outcome of the Bell
measurement is zero, indicating the successful application of
the gate. Hence, the complication of a nondeterministic num-
ber of teleportation steps and the additional complexity of
the ancillae are traded for the simplicity of the same Bell
measurement for any unitary. On the other hand, the circuit
of Fig. 2(b) realizes anyU deterministically(the Pauli cor-
rections appearing to the left ofU) with the additional com-
plication of a generalized Bell measurement that must be

adapted each time according to which operator is to be
implemented. Because of this tradeoff, the circuit of Fig. 2(b)
will be used for all single-qubit operations and that of Fig. 3
for theCNOT, to ensure that the Pauli corrections occur to the
left of the applied gate in both cases.

Thus in the TQC, just as in the 1WQC, we candetermin-
istically perform the quantum computation up to local Pauli
corrections. This is sufficient, since it will just translate into
left propagating the Pauli errors in the case when the next
applied unitary is in the Clifford group, or appropriately
modifying the subsequent measurement bases to compensate
for the accumulated Pauli errors up a given point in the case
of a non-Clifford single-qubit gate.

In Sec. II we explicitly demonstrate how the two models
can be mapped to one another based on the universal set of
one-qubit rotations andCNOT. Using the tools developed for
this mapping, in Sec. III we derive a useful circuit that
implements the remote-LsZd gate and utilize it to propose
more resource-effective methods for performing computation
in both the TQC and 1WQC models and also to develop
schemes for the construction of arbitrary graph states em-
ploying a combination of complete and incomplete two-qubit
measurements. Graph states have emerged as the natural
generalization of the cluster state and are of fundamental
importance in the operation of the 1WQC, as they provide
the starting point for embarking upon error correction and
fault tolerance[14,15].

II. MAPPING BETWEEN THE 1WQC AND THE TQC

To gain some insight into how to establish an equivalence,
we will begin by showing how teleportation is realized in the
two models. We will then proceed to explicitly show the
mapping for arbitraryx andz rotations and for theCNOT.

A. Teleportation

In the 1WQC model, a wire for teleporting a quantum
state is formed by three qubits connected in the pattern
sketched in Fig. 4. The first two qubits are measured in theX
basis, resulting in the teleportation of the input state from the
first to the third qubit. In all our 1WQC gate diagrams, the
effective input qubits(carrying the quantum state from the
previous part of the computation) will be distinguished by
being drawn boxed. As already explained in the introduction,
all other qubits in the lattice are initialized in theu+l state,
while the nearest-neighbor interaction that was used to create
the cluster state can be viewed as affecting a controlled-
phase gate between all pairs of neighboring qubits. An
equivalent circuit representation of the quantum wire is
therefore that of Fig. 5(a).

The circuit of Fig. 5(b) can now be obtained from the one
of Fig. 5(a) by inserting the identityH2= I. In Fig. 5(b), the
stabilizer of the second and third qubits is initiallyXI,IX.

FIG. 2. To apply the single-qubit unitaryU, we either(a) pre-
pare the ancillasI ^ UduF0l and measure in the Bell basishuF jlj j or
(b) use a Bell stateuF0l and perform the generalized Bell measure-
ment in the basishsU† ^ IduF jlj j. Lines joined on one end indicate a
Bell pair uF0l throughout this paper.

FIG. 3. The ancillauaCNOTl is prepared separately using two-
qubit measurements alone[8]. Subsequently, two Bell measure-
ments are performed, one for each input qubit.CNOT being in the
Clifford group allows us to commute the Pauli corrections through
it and writeCNOTss j1

^ s j2
d=ss j18

^ s j28
dCNOT.

FIG. 4. The quantum wire in the 1WQC.
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After conjugation withsH ^ IdLsZd it becomes

XI

IX
→
LsZd XZ

ZX
→
H^ I ZZ

XX.

This is the stabilizer of the stateuF0l, proving that box 1
prepares a Bell pair. Similarly, in order to interpret box 2, we
begin with the stabilizer generators of the outputs−1d j1X
^ s−1d j2X, where j1, j2P h0,1j are the outcomes of theX
measurements on the first two qubits. Conjugating it back-
wards throughsI ^ HdLsZd, we obtain

s− 1d j1XI

s− 1d j2IX
→
LsZd s− 1d j1XZ

s− 1d j2ZX
→
I ^H s− 1d j1XX

s− 1d j2ZZ.

Box 2 can therefore be viewed as realizing a Bell measure-
ment in the basishuF jlj j, with j P h0,1,2,3j now given in
binary asj =s j1, j1 % j2d.

Naturally, the above derivation can also be carried out by
working explicitly with states and without any use of the
stabilizer formalism. For that purpose, the identities of Fig. 6
provide a quick way to visualize the operation of boxes 1 and
2. Indeed, using the identity of Fig. 6(c), box 1 is trans-
formed into the Bell state preparation circuit of Fig. 6(a) and
similarly, box 2 is transformed into the Bell measurement of
Fig. 6(b).

Boxes 1 and 2 then establish the equivalence of the circuit
of Fig. 5(b) and the teleportation circuit of Fig. 2 forU= I.
Overall, the transition from Fig. 4 to the circuits of Fig. 5
exhibits the mapping from the 1WQC pattern to the well-
known teleportation circuit in the TQC. All steps can equally
well be traced backward, proving also the mapping from the
TQC to the 1WQC.

B. Rotation about the x axis

In Fig. 1(a), we sketched the pattern that realizes a
rotation by an anglef about thex axis in the 1WQC
model. The first qubit is initially measured along the
x axis, and then the second is projected along the axis
n̂=hcosfs−1d j1+1fg ,sinfs−1d j1+1fg ,0j on the equator of the
Bloch sphere, conditioned on the outcomej1 of the measure-
ment of the first qubit. This is a typical example in the
1WQC of a measurement performed in a basis adapted ac-
cording to previous measurement results. A circuit represen-
tation is given in Fig. 7(a).

The transition from Figs. 7(a) and 7(b) is made again by
inserting the identityH2= I and noticing that the measure-
ment along then̂ axis can be replaced by the rotation
Uzfs−1d j1fg followed by a measurement in theX basis. In
order to interpret the generalized measurement performed by

FIG. 5. In this paper the controlled-phase gate is denoted by a
line segment connecting two qubits, withx’s drawn on both ends to
emphasize that it acts symmetrically between them. Measurement
boxes are labeled on their lower right corner by the corresponding
measurement basis. To go from(a) to (b) we insert the identity in
the form H2= I. Then we identify box 1 as preparing a Bell state
uF0l and box 2 as performing a Bell measurement.

FIG. 6. (a) Simple circuit preparation of the Bell stateuF0l, (b)
Bell measurement in the basishuF jlj j, with j =s j1, j1 % j2d in
binary, and (c) a circuit representation of the identity
LsZd=sI ^ HdCNOT1→2sI ^ Hd.

FIG. 7. In (a), we directly translate the measurement pattern
shown in Fig. 1(a). In (b), inserting the identity in the formH2= I
we identify box 1 as preparing a Bell stateuF0l and box 3 as
performing a generalized Bell measurement. Replacing the mea-
surement alongn̂ with a rotation bys−1d j1f about thez axis fol-
lowed by an measurement in theX basis we complete the mapping
from (a) to (b).
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box 3, we would like to translate it into a measurement in the
basishsU† ^ IduF jlj j, whereU is the unitary to be applied to
the input state, to match the TQC operation[Fig. 2(b)]. We
first note that, starting with the Bell stateuF0l, the other three
Bell states can be created by applyingZj1Xj2 on the first qubit

uF jl = sZj1Xj2 ^ IduF0l, j = s j1, j1 % j2d.

The identity of the Bell state can subsequently be revealed
by the Bell measurement performed by the circuit of Fig.
6(b) or equivalently box 2 of Fig. 5(b). Before attaching the
Bell stateuF jl to the Bell measurement, we insert the identity
in the formUxsfdUx

†sfd= I to the first qubit as shown in Fig.
8(a). CommutingUxsfd to the left throughZj1 it becomes
Ux(s−1d j1f), which can equivalently be applied to the second
qubit. Here we made use of the useful symmetry property of
the Bell stateuF0l

sU ^ IduF0l = sI ^ UTduF0l,

which is true for any operatorU. ThenUxfs−1d j1fg can be
commuted to the right of the Hadamard givingUzfs−1d j1fg,
which commutes with the controlled phase. ShiftingUx

†sfd
on the first qubit to the left into the Bell state preparation and
with Uzfs−1d j1fg now inside the Bell measurement on the
second qubit, we finally obtain an interpretation of box 3 as
shown by the identity circuit of Fig. 8(b): The statefUx

†sfd
^ IguF jl is first prepared and then measured.

Hence, box 3 in Fig. 7(b) indeed performs a measurement
in the basishfUx

†sfd ^ IguF jlj j. This completes the mapping
for Uxsfd from the 1WQC to the TQC. Again, the reverse
mapping is easily obtained by tracing all steps backward.

C. Rotation about the z axis

A rotation by an angleu about thez axis is realized in the
1WQC model by the qubit pattern of Fig. 1(b).
The first qubit is projected along the direction

k̂=hcoss−ud ,sins−ud ,0j in the Bloch sphere, whereas the sec-
ond is projected along thex axis. This time no special time
ordering is necessary, so both measurements can be done
simultaneously. An equivalent circuit representation is given

by Fig. 9(a). The measurement along thek̂ axis can be re-
placed by the rotationUz(s−1d j1f) followed by a measure-
ment in theX basis. Inserting once more the identityH2= I,
we obtain the circuit of Fig. 9(b).

In order to interpret the measurement performed by box 4
in Fig. 9(b), we note that Uzsud commutes with the
controlled-phase gate and therefore can be taken out of the
measurement box as sketched in Fig. 10. Hence, box 4 can
be thought of as a rotationUzsfd applied to the input, fol-
lowed by a Bell measurement. This is precisely equivalent to
a measurement in the basishsUz

†sud ^ IduF jlj j. This completes
the mapping forUzsud from the 1WQC to the TLC, which
again can equally well be traced in the opposite direction.

D. The controlled-NOT

To construct the mapping between the two models for the
CNOT gate, it is easiest to begin with the teleportation-based
circuit given in Fig. 3. We then replace the ancillary Bell

FIG. 8. (a) Starting with the identity circuit that prepares the
Bell stateuF jl and then performs a Bell measurement, we insert the
identityUxsfdUx

†sfd= I. (b) CommuteUxsfd to the left, then use the
symmetry ofuF0l in order to apply the rotation to the second qubit.
Finally, commute it to the right through the Hadamard to end up
with box 3 of Fig. 7(b).

FIG. 9. In (a), we translate the 1WQC pattern shown in Fig.

1(b). Replacing the measurement alongk̂ with a rotation by u
around thez axis followed by anX measurement we obtain the
mapping from(a) to (b).

FIG. 10. Since box 2 realizes a measurement in the Bell basis
huF jlj j, box 4 is a measurement in the basishsUz

†sud ^ IduF jlj j ac-
cording to Fig. 2(b).
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statesuF0l and the Bell measurements by boxes 1 and 2 of
Fig. 5(b), respectively. Thus, we directly obtain the equiva-
lent circuit of Fig. 11.

We immediately note that the Hadamards cancel each
other out on the third and fourth qubit, so that the circuit
contains only controlled-phase gates and theCNOT5→6. Since in
the 1WQC the only unitary that acts between the cluster
qubits is the controlled phase,LsZd, we seek a way to re-
place theCNOT5→6 with a controlled-phase gate applied be-
tween some other pair of qubits. Inspecting the lower part of
the circuit, we observe that theCNOT can be commuted
through theLsZds4,6d leaving behind a factor that multiplies
the state with −1 whenever both the fourth and the fifth qubit
are in the stateu1l. This is exactly how aLsZds4,5d gate would
act. Figure 12 summarizes the argument.

Therefore the circuit of Fig. 11 can be transformed into an
equivalent circuit that makes use of qubits prepared in the
u+l state, controlled-phase gates and one-qubit measure-
ments in theX basis. Hence it can directly be mapped into
the pattern of the 1WQC drawn in Fig. 13.

We note that the resulting 1WQC construction for the
CNOT first teleports the control state from the first to the fifth
qubit before theCNOT is applied. In fact, using extra telepor-
tation steps for the control qubit is necessary for such aCNOT

construction in the 1WQC[5], since it allows the explicit
separation of the input from the output qubits and therefore
enables the identification of the input(output) qubits ofCNOT

with the output(input) qubits of the gate preceding(follow-
ing) it in the computation. This is particularly important
when computation is performed on a two-dimensional clus-
ter, where the geometry of the lattice imposes restrictions on
how patterns, corresponding to different gates, can be com-
posed in a sequence. An example of how theCNOT can be
combined with the quantum wire of Fig. 4 to give a square-
shaped pattern in a two-dimensional cluster is shown in Fig.
14.

Thus, we have completed the mapping from the TQC to
the 1WQC for theCNOT, which again can be worked back-
ward as long as the extra teleportation step is included.

At this point, we have reached our goal of demonstrating
a systematic mapping between the two models for the uni-
versal set of one-qubit rotations andCNOT. The two models
are therefore shown to make use of interchangeable primi-
tives in order to implement computation by measurement

FIG. 11. TheCNOT of Fig. 3, substituting boxes 1 and 2 from
Fig. 5(b). The Pauli correctionssi18

^ si28
are given in terms of the

measurement outcomes by the commutation relationsCNOTssi1
^ si2

d=ssi18
^ si28

dCNOT, wherei1=s j1, j1 % j3d, i2=s j2, j2 % j4d.

FIG. 12. Successively commuting theCNOT5→6 to the left, we
obtain an equivalent circuit that uses only controlled-phase gates. In
(c) note thatCNOTu+lu+l= u+lu+l, hence(d).

FIG. 13. The realization ofCNOT in the 1WQC. The control
qubit is teleported from 1 to 5 by the three-qubit wire pattern of Fig.
4. The rest of the circuit is exactly the pattern forCNOT in Fig. 1(c).

FIG. 14. The control is teleported from qubit 1 to 3 before the
CNOT, marked by the dashed line, is applied. The control is then
teleported again from site 3 to 5. The pattern from qubit 3 to 9
realizes a controlled phase between those two qubits, as is ex-
plained in the following section. Empty circles indicate qubits re-
moved from the cluster after being measured in theZ basis.
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alone. Depending on which model we consider as more fun-
damental, or conceptually easier to understand, we can group
in boxes operations performed in the 1WQC to obtain primi-
tive operations of the TQC(Bell pairs and complete two-
qubit measurements), or alternatively we can decompose the
primitive operations of the TQC into the primitives of the
1WQC (controlled-phase gates and one-qubit measure-
ments).

III. A SIMPLE REMOTE- L„Z… CIRCUIT AND ITS
APPLICATIONS

In this section, we describe a simple method of imple-
menting the remote-LsZd gate that applies to both the 1WQC
and the TQC models. As will subsequently be shown, this
construction leads to significant simplifications in the basic
operations in both models and can also be applied to the
preparation of arbitrary graph states using two-qubit mea-
surements alone. The key observation that leads to these sim-
plifications is that given the ability to perform single qubit
gates, both theCNOT and theLsZd can equally well be used
to complete universality.

In the TQC, we recall that theCNOT is realized by the
circuit of Fig. 3, using a special ancillary state,uaCNOTl, and
two Bell measurements. Considering that the preparation of
uaCNOTl requires three two-qubit measurements[8], the total
number of two-qubit measurements needed for this proce-
dure is five. Here, we will employ two-qubit incomplete
measurements in order to implement the controlled-phase
gate in a significantly more resource-effective way. Our start-
ing point will be the remote-CNOT gate that has appeared in
the literature[16], shown in Fig. 15.

Starting from Fig. 15, one can obtain a method of per-
forming the remote-LsZd as shown in Fig. 16(a): Conjugat-
ing the fourth qubit with Hadamards, theCNOT3→4 is replaced
by LsZds3,4d, according to the identity of Fig. 6(c), with the
correction being switched fromsx to sz. Furthermore, in Fig.
16(a), we have used box 1 of Fig. 5(b) that provides an
equivalent way to prepare the Bell stateuF0l. Surprisingly
enough, the resulting circuit can be transformed to consist
only of controlled-phase gates and one-qubit measurements
in the X basis. Indeed, using the identity of Fig. 6(c) once
more, theCNOT1→2 can be replaced byLsZds1,2d with the Had-

amard on its left side being cancelled out and the one on its
right turning the measurement of the second qubit into a
measurement in theX basis. Thus, we obtain the circuit of
Fig. 16(b), which can be directly translated into a four-qubit
pattern that realizes the controlled-phase gate between the
first and fourth qubit in the 1WQC as shown in Fig. 16(c).

A. Simplifying the 1WQC model

The first application of the remote-LsZd circuits of Fig. 16
is a more economic way of doing computation in the 1WQC
model using a two-dimensional cluster state. In that case,
either aCNOT pattern using extra teleportation steps for the
control state(Fig. 14) can be used or alternatively, a pattern
with fifteen qubits[Fig. 17(a)] has been proposed. Again, we
can use theLsZd instead of theCNOT, replacing the known
qubit-costlyCNOT realizations with the remote-LsZd pattern
derived in Fig. 16(c), without sacrificing our ability to do
universal quantum computation.

The economy in qubits is apparent if we consider a typical
computation block consisting of one-qubit unitaries applied
to two logical qubits, which then interact through theCNOT

or alternatively theLsZd. These one-qubit unitaries can in
general be decomposed in terms of the Euler anglessf ,u ,cd
as UzscdUxsudUzsfd. But, since the rotations around thez
axis commute with the controlled-phase gates, it is sufficient
to realize one-qubit unitaries of the formUxsudUzsfd fol-
lowed by a remote-LsZd gate at each repeated unit of the
computation. Composing the patterns of Figs. 1(a) and 1(b)
and eliminating the intermediate consecutive measurements
in the X basis(which realize a redundant quantum wire ac-

FIG. 15. The remote-CNOT: We performCNOT gates from the
control qubit to one half of a Bell pair, and also from the other Bell
pair qubit to the target qubit. By subsequently measuring the Bell
pair qubits, theCNOT1→4 gate is realized(up to Pauli corrections)
without qubits 1 and 4 having directly interacted.

FIG. 16. (a) The remote-LsZd, (b) an equivalent circuit that uses
only controlled-phase gates and one-qubit measurements, and(c) its
direct translation in the 1WQC which realizesLsZds1,4d after qubits
are measured in theX basis.
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cording to Fig. 4), two measured qubits are needed to realize
a UxsudUzsfd rotation, in contrast to the four measured qu-
bits needed to realize a general one-qubit rotation used origi-
nally in the 1WQC constructions.

Comparing first the contruction of Fig. 17(a) with the one
of Fig. 17(b), the latter uses less than one-third of the total
number of qubits and one-fifth of the computation length,
with an increase of the computation width by one. Compu-
tation is performed in a linear fashion from left to right, with
the logical qubits separated by regions of qubits measured in
the Z basis. The comparison is done by considering the re-
peated computation units per logical qubit in each case, de-
noted by the shaded regions in Fig. 17. The comparison with
theCNOT pattern of Fig. 14 can also immediately be made, if
we observe that the remote-LsZd pattern already forms part
of the former in the connection between the third and the
ninth qubit. Thus, using the remote-LsZd in place of the
CNOT proves more qubit efficient for both these different
CNOT realizations.

B. Simplifying the TQC model

Second, the remote-LsZd circuit of Fig. 16 suggests a
method of affecting a controlled-phase gate between two qu-
bits using measurements of operators of weight at most two.
This provides an alternative and greatly simplified proof of
the universality of two-qubit measurements in the TQC
model, without the need for the preparation of the ancillary
stateuaCNOTl.

Two different measurement procedures are implicit in Fig.
16(b). The first one, although not minimal in the number of
two-qubit measurements used to affect theLsZd gate, will be

useful as a method for constructing graph states in the fol-
lowing section. Starting with the circuit of Fig. 16(b), we can
interpret each of the boxes A and B as performing an incom-
plete two-qubit measurement on one half of the entangled
state

uVl = Lszdu + lu + l =
u + lu0l + u− lu1l

Î2

and the control and target qubits, respectively. The stateuVl
can also be prepared by a complete two-qubit measurement,
giving a total of three two-qubit measurements to affect the
controlled-phase gate according to this method.

To elaborate on the exact measurements that will be
needed, box A of Fig. 16(b) can be viewed as realizing a
measurement ofZs1dXs2d followed by a measurement of the
second qubit in theZ basis and similarly for box B. Starting
with the stateuVl, the subsequent measurement procedure
should therefore be:(1) MeasureZXII and IIXZ, then (2)
measureIZII and IIZI . The analysis for the evolution of the
stabilizer generators under the proposed measurement se-
quence is given in Table I. To prove that the controlled-phase
gate between the first and the fourth qubit is in fact realized,
we also follow the evolution of the initial(or logical) X,Z

FIG. 17. Dashed boxes A,B realize general one-qubit unitaries
and D,E one-qubit unitaries with decompositionUxsudUzsfd. C is a
fifteen-qubit realization for theCNOT found in [10] and F is the
remote controlled phase. Arrows indicate measurements in a gen-
eral direction on the equator of the Bloch sphere. The shaded re-
gions denote the repeated computation units per logical qubit. Here
again, empty circles indicate qubits measured in theZ basis.

TABLE I. Verifying that the proposed measurement procedure
realizesLsZds1,4d. S is the set of stabilizer generators at each step.

X̄1,Z̄1 andX̄4,Z̄4 indicate the logicalX,Z operators on the first and
fourth qubit, respectively.

At start

S: I X Z I

I Z X I

X̄1:X I I I

Z̄1:Z I I I

X̄4: I I I X

Z̄4: I I I Z

1a) MeasureZXII 1b) MeasureIIXZ

S: I X Z I S: I I X Z

Z X I I Z X I I

X̄1:X Z X I X̄1:X Z X I

Z̄1:Z I I I Z̄1:Z I I I

X̄4: I I I X X̄4: I X Z X

Z̄4: I I I Z Z̄4: I I I Z

2a) MeasureIZII 2b) MeasureIIZI

S: I I X Z S: I I Z I

I Z I I I Z I I

X̄1:X Z X I X̄1:X I I Z

Z̄1:Z I I I Z̄1:Z I I I

X̄4:Z I Z X X̄4:Z I I X

Z̄4: I I I Z Z̄4: I I I Z
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operators on those qubits, denoted byX̄,Z̄, keeping in mind
that LsZd after conjugation takesX^ I to X^ Z andZ^ I to
itself.

The measurement procedure with the minimal number of
two-qubit measurements is obtained if we interpret the mea-
surement of the second qubit as a measurement ofZs1dZs3d

(box C) and then the measurement on the third qubit as a
measurement ofXs3dZs4d (box B) as before. Eliminating the
second qubit altogether and renumbering the rest, the mea-
surement procedure is:(1) MeasureZZI, (2) measureIXZ,
and (3) measureIZI. The last operator to be measured is
chosen so that it anticommutes with the previously measured
operator and therefore projects out the ancillary second qu-
bit. Although the two measurementsZZI and IXZ do not
commute, we note that if the measurements are performed in
the opposite order, then the gate is still applied if the ancil-
lary qubit is initialized in theu0l instead of theu+l state and
finally projected on thex axis instead of thez axis.

In case theCNOT is to be realized instead of the controlled
phase, the measurement procedure above can be straightfor-
wardly modified by conjugating the third qubit with a Had-
amard, thereby changing the measured operatorIXZ to IXX.
In fact, a method for realizing theCNOT using just two two-
qubit measurements, essentially identical to the one we just
presented, has already appeared in the literature in the con-
text of fault tolerance in higher-dimensional systems[17],
but its relevance to the TQC model had not been hitherto
appreciated. A surprising feature of our result in this section
is that we have explicitly drawn a connection between the
remote-CNOT circuit of Fig. 15 and the seemingly unrelated
method for affecting theCNOT according to the measurement
sequenceIXX, ZZI, and IXI, both of which have been pro-
posed for the realization of theCNOT gate in very different
contexts and without reference to one another.

It is interesting to note that only two two-qubit measure-
ments are required to perform theLsZd gate according to this
second measurement procedure, in contrast to the five two-
qubit measurements needed to performCNOT in the method
illustrated in Fig. 3. Moreover, this is the minimal number of
two-qubit measurements possible, since in order to simulate
a two-qubit gate with measurements each one of the two
qubits need to interact at least once with the ancillary state.

C. Constructing graph states with two-qubit
measurements

As discussed in the Introduction, the cluster state forms a
substrate for universal quantum computation within the
1WQC model. The essense of its universality lies in the ob-
servation that, by appropriately deleting qubits, an arbitrary
sequence of gates taken from a universal gate set can be
imprinted and then executed on it. But, as has been repeat-
edly hinted about in the literature[10], this is not necessarily
the most beneficial way of thinking about doing computation
in the 1WQC model. A powerful indication toward this
comes from the surprising fact that all the computational
tasks that lie within the Clifford group can be executed si-
multaneously in the 1WQC, resulting in a transformation of
the initial cluster state to a general graph state(up to local
Pauli operators).

Due to this fact and in cases when an application-specific
quantum computer would be desirable(we think of factoring,
for example), the computation can equally well be performed
by circumventing the Clifford part measurements and start-
ing directly with a specific graph state. In addition, this may
practically even prove preferable for reasons pertaining to
the robustness of the computation: Removing altogether the
Clifford part measurements will significantly reduce the total
number of qubits involved in the computation, thus decreas-
ing the possible locations of error. Such application-specific
graph states will then have to be constructed and verified
(using graph purification protocols[18]) before the compu-
tation initiates[19].

Since operationally any graph state can be realized by
selectively applying the controlled-phase gate between pairs
of adjacent qubits initialized in theu+l state, it is interesting
to investigate how a given graph state can be constructed
within a measurement-based model for performing quantum
computation. In particular, in this section we will discuss
how the two measurement procedures for affecting the
controlled-phase gate, that were inspired by the circuit of
Fig. 16(b), give rise to explicit methods for constructing an
arbitrary graph state.

The first measurement procedure of the previous section
can be used to affect the controlled-phase gate between the
qubits in our graph, using as ancillae a number of copies of
the stateuVl equal to the number of edges created. Imple-
menting the two-qubit measurements needed will require a
number of measurement steps at least equal to the vertex
degree of the graph under construction, since all measure-
ments with support on a common qubit will have to be real-
ized at different times. Considering that all one-qubit mea-
surements on the ancillary qubits can be performed
simultaneously in the final step, the actual logical depth of
the graph preparation will equal one plus the maximum ver-
tex degree of the graph to be constructed. An example of the
graph state preparation is shown schematically in Fig. 18(a).
In order to create all edges connected to the striped qubit of
this graph, three two-qubit incomplete measurements, each
represented by a dashed triangle, must be done consecutively
followed by three one-qubit projections performed simulta-
neously in the fourth and last step.

At this point, it is intriguing to consider the similarities of
this method for constructing graph states to the valence bond
solid model for doing quantum computation[20]. In fact, if
the distinction between the qubits of the graph(denoted by
filled circles in Fig. 18) and the qubits in the entangled state
uVl (dark dots) is lifted and they are all viewed as physical
qubits residing on different sites of a solid, then the correla-
tions between the qubits in the entangled states can be inter-
preted as arising from valence bonds formed between qubits
on neighboring sites. In such a valence bond model, our
viewpoint for constructing the graph state is retained by
identifying in each site one of these physical qubits as the
logical one and performing appropriate measurements lo-
cally on the sites in order to form the desired graph state. The
subsequent computation can then be performed by one-qubit
measurements, in accordance to the 1WQC model.

Naturally, the graph state can be constructed even in the
absence of the ancillary entangled pairs, according to our
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second measurement procedure proposed in the previous sec-
tion. In this case, a number of ancillary qubits equal to the
number of edges of the graph will be needed. For each edge,
the measurement procedure then consists of two two-qubit
measurements each performed between an ancillary qubit
and one of the two vertices incident on this edge, followed
by a projective measurement on the ancillary qubit.

As with our previous method for constructing the graph
state, we would like to inquire into the extent to which this
measurement sequence can be parallelized, calculating its
logical depth. Due to the fact that the number of two-qubit
measurements with support on a given graph qubit equals its
degree in the graph, the logical depth of this measurement
procedure is at least equal to one plus the maximum vertex
degree of the graph under construction. In fact, the two-qubit
measurement sequence for the construction of the graphG
can be thought of as an edge coloring of the larger graphG8
constructed by adding the ancillary qubits to the vertex set
and dividing each edge of the graphG into two, each be-
tween the originally adjacent vertices and the corresponding
ancilla. In the graphG8, edges represent the two-qubit mea-

surements to be performed and the requirement that all two-
qubit measurements with support on a given qubit need to be
executed in different time steps translates into the require-
ment that edges incident on a given vertex are colored dif-
ferently. As a consequence, the logical depth of the measure-
ment procedure will be given by the minimum number of
colors to realize the edge coloring of the graphG8. Letting
VsGd,EsGd denote, respectively, the vertex and edge set of
the graphG, the graphG8 will then be given by

VsG8d = VsGd ø ha1,a2,…,auEsGduj,

EsG8d = hsi,akd,sak, jd:si, jd P EsGdj,

wherekP h1,2,… , uEsGduj enumerates the edges ofG andak

is used as a label for thekth ancillary qubit. The minimum
number of colors necessary to color each edge ofG8 so that
no two edges incident on the same vertex have the same
color is defined as itsedge-chromatic numberx8sG8d. As we
already remarked,x8sG8dùDsG8d, whereDsG8d is the maxi-
mum vertex degree ofG8. For graphs with no multiple edges
between the same pair of vertices, a remarkable theorem
[21,22] states thatx8sG8døDsG8d+1 and for bipartite
graphs(also calledtwo colorable) in particular, the equality
x8sG8d=DsG8d has been proven[23]. But in our case,G8 is
always bipartite by virtue of the fact that the qubits of the
graph G are adjacent to ancillary qubits only. Hence, the
logical depth for the construction of the graphG equals its
maximum vertex degree[24] plus one(to account for the
one-qubit projections of the ancillary qubits done simulta-
neously in the last step). An example for the use of this
measurement procedure is given in Fig. 18(b).

In both measurement procedures mentioned above, the
desired graph state is realized up to Pauli operators that de-
pend on all measurement outcomes. However, preparing the
graph state up to local Pauli corrections will not jeopardize
the computation later performed on it, since these corrections
can be absorbed in the initialization of the classical registers
that will be used to buffer the subsequent measurement out-
comes[10].

IV. CONCLUSION

The mapping that we derived between the two models for
doing computation by measurement is eloquent of the deep
structural similarities between them. In fact, the 1WQC
model can be thought of as naturally emerging from the TQC
once the restriction to one-qubit measurements is imposed.
In such a case, the mapping reveals that the interaction be-
tween qubits will have to be mediated by a two-qubit unitary,
which in the case of the 1WQC is taken to be the controlled
phase. In this respect, our mapping sheds light on the inner
workings of the 1WQC, helping us understand its operation
on a more intuitive level. Moreover, our mapping explicitly
demonstrates the correspondence between the local Pauli
corrections in the TQC and 1WQC models, which had been
strongly suggestive of an underlying connection between
them since the time both models were developed. The map-
ping thus significantly simplifies the proofs for the operation

FIG. 18. Creating an arbitrary graph with two-qubit measure-
ments. For clarity only the measurements needed to create the edges
incident on the central striped qubit are shown. Circles represent
qubits initialized in theu+l state, with those drawn filled being the
graph qubits and those empty the extra ancillas. The dark dots con-
nected with a bar indicate two qubits in the entangled stateuVl.
Dashed triangles represent measurements ofXZ and rhombuses of
ZZ. All ancillary qubits are simultaneously measured in the final
step in appropriate bases.

P. ALIFERIS AND D. W. LEUNG PHYSICAL REVIEW A70, 062314(2004)

062314-10



of the 1WQC circuits that so far always allude to theorems
based on the stabilizer formalism[10]. If you would concede
that the operation of either one of the 1WQC or TQC is more
transparent, then this mapping facilitates the understanding
of the other model. In particular, the less familiar model of
the 1WQC is thus rendered less enigmatic and more apt for
adaptation toward the ultimate goal of achieving fault toler-
ance within this model with a realistically low threshold.

In the last section, two methods were proposed for the
direct construction of an arbitrary graph state making use of
two-qubit measurements, one of which is strongly reminis-
cent of the valence bond model for quantum computation.
Apart from the inherent merit of the simplicity of the remote-
LsZd gate construction itself, this also led us to propose a
scheme for realizing a universal set of operators within the
1WQC which is more qubit effective than the known ones,
as well as to considerably simplify the proof of the univer-
sality of two-qubit measurements in the TQC model. The
basic construction emerging within only a few logical steps
from the well-known remote-CNOT circuit is more evidence
that the mapping occupying the main body of this paper can
be viewed as an attractive mental tool when thinking within
the two models that perform computation by measurements

for swiftly translating useful structures back and forth be-
tween them.
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