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Computation by measurements: A unifying picture
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The ability to perform a universal set of quantum operations based solely on static resources and measure-
ments presents us with a striking viewpoint for thinking about quantum computation and its powers. We
consider the two major models for doing quantum computation by measurements that have hitherto appeared
in the literature and show that they are conceptually closely related by demonstrating a systematic local
mapping between them. This way we effectively unify the two models, showing that they make use of
interchangeable primitives. With the tools developed for this mapping, we then construct more resource-
effective methods for performing computation within both models and propose schemes for the construction of
arbitrary graph states employing two-qubit measurements alone.

DOI: 10.1103/PhysRevA.70.062314 PACS nun®er03.67.Lx

[. INTRODUCTION to perform any unitary operation with arbitrary accuracy and
) ) o the ability to perform measurement, which is a natural con-
Faced with the question of describing a quantum compugityent of them both. The ability to realize any unitary trans-

tation in terms of elementary operations, one is almost information was in turn reduced to proving that all gates from
variably tempted to answer by drawing lines signifying qu-5 ynjversal set of gategypically taken to be the one con-

bits and little boxes signifying unitary operators performedsisting of all one-qubit gates and tloaioT [9]) can be real-
on them. Thus quantum computation is usually viewed as,e4 within each model.

some more or less complicated manipulation of the initial

quantum state, the sum total, and ultimate goal of which is to A. One-way quantum computer (IWQC)

apply a certain unitary operator on it. Measurement naturally L
appears at the very end of the computation, and is generallgnmutgi?sl:v”gnc Qjoi(:]eg ?gajgjrwa;?crgp;gznofe Izrezrf%ri?aelld
considered harmful for the coherence if it is included in the>" 9 i nt%m led stat% KNOWN &S d:hB{::ar gtateAn y
main body of the computation, due to its inherent irrevers-:;1 a_spdeC| ce t t'g i th ' ded yf
ibility. In this respect, the computational power bestowed on esired computation 1S then encoded as a sequence of pro-
us by quantum computers appears to depend vastly on onherCt'V.e one-qubit measurem.ents of these lattice qubits along
ability to perform unitary operations on our qubits, postpon_certam bases. Although the intermediate measurement results
ing any measurements until the very end when the result of
the computation is ready to be read off. In fact, the standar
model of quantum computatiofil] consists of preparing a

standard initial statd0)®", applying an arbitrary unitary

re random, by monitoring the measurement outcomes one is
ble to exploit the quantum correlations and readapt the fu-
ure measurement bases in order to effectively steer forward
the desired computation. Thus an arbitrary trajectory in the
transformation and performing measurements in the verHilbert space of the input state can be achieved, as quantum
Ynformation is made to travel within the lattice from the mea-

end. . oo . .
The first indication that measurements can be an integraﬁured qu'ts to their neighboring ones and thereover until the
completion of the measurement sequence.

part of the main body of our quantum computation was given Conceptually, the easiest way to describe the cluster state

by the fault-tolerant constructions for thd 8 and the Toffoli . bv giving its stabilizer aenerators. For each qubit. viewed
gates[2—4]. Both of these make use of measurements and® Y 9VINg 1S St 9 qubit,
as a lattice site in a lattic&, the stabilizer consists of gen-

special ancillary states for the fault-tolerant implementation
of the gates, with the ancillary states in turn prepared b)‘f; rators of the form

measurements. But truly, the ability to perform universal Kh=x) g z0 Oiec,

quantum computation based on measurements alone was not jenbhdi)

fully realized until recently. Two explicit models for doing wherenbhdi) is the set of qubits in the neighborhood of the
computation by measurements will be considered: The firsf, i i < ang (I X=0, Y=o, Z=0,} is a notation that
one based on one-qubit measurements on a clus_ter SR pe used in this paper aﬁernatively with the notation
(AWQQ) [5], and the second one based on two-qubit Meas 5, 01,0, 05} for the Pauli matrices. The cluster state is a
surements alonérQC) [6—§]. Pro_ofs for the un[versallty of articular example of a family of states known gsaph
both of these models were obtained by reduction to the sta States which have stabilizer generators of the same form as

dard model: Preparation of a standard initial state, the abilityfhe cluster state, with the exception that the vertices are not

necessarily viewed as points on a lattice and the neighboring
relations are generally given by an adjacency matrix.
*Email address: panos@caltech.edu Operationally, any graph state can be prepared by various
"Email address: wcleung@caltech.edu methods. A simple realization is obtained by examining the
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stabilizer: All lattice qubits need to be initialized in the state (8) Un(d) = e igos (b) U, (8) = ¢ 3=
|+), creating ®;..|+), and then a controlled-phase gate
needs to be applied between all pairs of neighboring qubits. 1 2 3 2 3

1
The controlled phase\(2), in the computational basis takes @O _(:> Q

the simple diagonal form
control O 4
(c) cNoT

_ target target
000 1 in ® O out

1 2 3

o O k-
o - O
= O O
o O O

These controlled-phase gates have the convenient properties ] ,

that each acts symmetrically between the two qubits on F!G. 1. Measurement patterns that realiz a rotation of ¢
which it is applied and also they all commute with one an-2Pout thex axis, (b) a rotation off about thez axis, (c) the cnor,_.,
other. Physically, the preparation of the graph state can b A 9eneral rotation with Euler decompositieh(y)Ux(6)Ux¢)

accomplished by applying the nearest-neighbor homogeqan be built by composing and z rotations using a total of five

neous Isings,® o, interaction on the state, £|+> for the qubits [10]. Boxed circles indicate the input qubits. The measure-
z z le

iat iod of ti d th ting th i ment bases are shown Asfor measurements of the observable
app“’pf'a € perio . of ime an_ en correcting the resu In%orresponding to a projection along tkexis, or as the appropriate
state with local unitary operations.

angle, w, with respect to thex axis in the equator of the Bloch

Returning to the issue of how an arbitrary unitary Opera-gohere for measurements of the observabld g+ sin(w) .

tion can be realized on an already prepared cluster state, Wg,e choice between positive or negative angles is made based on
recall that the requirement has been relaxed to just being ablge outcomes of previous measurements.

to realize all operators from a universal gate set. To this
d|rect|o_n, one way to prove the _umversahty of the IWQC always starts with a cluster state, and no other input states or
model is to consider disjoint regions of the cluster and use,_ . .
: : ! : ancillae are being used.
each such region for simulating a certain quantum gate from
our selected universal set. Identifying the input qubits of one
such region with the output qubits of the previous, an arbi- B. Teleportation-based quantum computer (TQC)
trarily large succession of quantum operations can then be
realized.

Disjoining lattice regions can be accomplished by selec
tively disentangling qubits from the cluster state, thus effec
tively deleting them from the initial lattice. A quick inspec-
tion of the stabilizer in fact shows that measuring a qubit in
the computational basis is sufficient for this deletion. Indeed
a measurement of thigh qubit in the computational basis
corresponds to a measurement of the operatoy which
commutes with all stabilizer generators except for that one
having the measured qubit as the correlation center, name

XV, 3ZW. Thus measuring’ removes the generator ) : ;
Jenbhdi) g 9 to the state after it has been teleported, which can equiva-

N, .70 ili i i
X @J.E”bhd“)z from the stabilizer, while leaving all other lently be viewed as absorbing directly into the special
stabilizer generators unaltered up to the removal of the Me&ngiila (1 ® U)|d,) before performing the Bell measurement

sured qubit. [6,7], or apply the unitary to the input state before teleporting

To complete the proof that performing one-qubit measurey 4’ .o mping it with the measurement to form a generalized

ments on the cluster state is universal for quantum COMPUtasa || measurement in the bagitUT® 1)|® )} [8,12. A Bell
177 ! '

tion, in Fig. 1 we exp_I|C|tIy show h°W. certain elementary measurement is conventionally defined as the complete two-
operations can be realized by one-qubit measurements on ta

appropriate qubit configuratiorj40]. As already stated, uni- fibit measurement along the baﬁ@j>}j’ with j=0, ..., 3,

The core idea of this scheme lies in the realization that we
can modify the basic teleportation protoddfl] in order to
also affect a unitary transformation while teleporting a quan-
tum state from one qubit to another. In the context of the
TQC, teleportation is therefore viewed as a way of affecting
unitary transformations, with its function as simulating a
guantum communication channel becoming irrelevant in the
absence of distant communicating parties.

In Fig. 2 we describe two alternative ways for applying an
bitrary one-qubit unitary to the input quantum state)
sing only two-qubit measurements: either apply the unitary

versality then follows from our ability to simulate any opera- where
tor from the universal set of one-qubit rotations amnbT. |00) +[112) |01) + |10)
At this point it should be noted that computation is done [®o9 = —h [®12 = 5
v !

up to local Pauli corrections, meaning that the quantum state
of the qubits at the output will be of the general form |n order to form a universal set of operators we need to
®{110§')U|‘P>, where U is the unitary to be applied to the augment our set containing all one-qubit rotations with one
input stateg W) and o\ j=0, ..., 3is one of the Pauli opera- more two-qubit operator, thenoT. ThecNOT (as well as any
tors applied to théth of theN output qubits. Additionally, it  other two-qubit unitary can also be simulated in the TQC
is important to emphasize that the operation of the 1WQGnodel by doubling the number of ancillary qubits and Bell
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FIG. 4. The quantum wire in the 1WQC.

(a)
Uaj|¥) adapted each time according to which operator is to be
implemented. Because of this tradeoff, the circuit of Figp) 2

will be used for all single-qubit operations and that of Fig. 3
for thecNOT, to ensure that the Pauli corrections occur to the
left of the applied gate in both cases.

Thus in the TQC, just as in the IWQC, we cdetermin-
istically perform the quantum computation up to local Pauli
corrections. This is sufficient, since it will just translate into
left propagating the Pauli errors in the case when the next
applied unitary is in the Clifford group, or appropriately

FIG. 2. To apply the single-qubit unitaty, we either(a) pre- ~ Modifying the subsequent measurement bases to compensate
pare the ancilldl © U)|®y) and measure in the Bell bagib;)}; or for the accqmulatgd Pauli errors up a given point in the case
(b) use a Bell statéb) and perform the generalized Bell measure- Of @ non-Clifford single-qubit gate.
ment in the basi§(U'® 1)|®;)};. Lines joined on one end indicate a  In Sec. Il we explicitly demonstrate how the two models
Bell pair |®g) throughout this paper. can be mapped to one another based on the universal set of

one-qubit rotations andNoOT. Using the tools developed for
measurements. The construction, employing the ancilldhis mapping, in Sec. Il we derive a useful circuit that
lacnon), is shown in Fig. 3. implements the remotA{Z) gate and utilize it to propose

Although both circuits in Fig. 2 were presented as extenmore resource-effective methods for performing computation
sions to the basic teleportation scheme, an important tradéd both the TQC and 1WQC models and also to develop
off between them should be stresg&@]. When the unitary schemes for the construction of arbitrary graph states em-
to be realized is not in the Clifford grougefined as the ploying a combination of complete and incomplete two-qubit
normalizer of the Pauli groufl3]), the circuit of Fig. 2a) measurements. Graph states have emerged as the natural
implementsU nondeterministically: Commuting the Pauli generalization of the cluster state and are of fundamental
correctiona; throughU can, for certain values gf resultin ~ importance in the operation of the 1IWQC, as they provide
realizing a totally different unitary. Extra teleportation stepsthe starting point for embarking upon error correction and
would be neededeach to undo the faulty gate and reattemptfault tolerance14,15.
the intended unitary gatd) until the outcome of the Bell
measurement is zero, indicating the successful application of |1I. MAPPING BETWEEN THE 1WQC AND THE TQC
the gate. Hence, the complication of a nondeterministic num- ) o ) )
ber of teleportation steps and the additional complexity of 10 9&in some insight into how to establish an equivalence,
the ancillae are traded for the simplicity of the same BellV€ Will begin by showing how teleportation is realized in the
measurement for any unitary. On the other hand, the circuftv© models. We will then proceed to explicitly show the
of Fig. 2b) realizes anyU deterministically(the Pauli cor- Mapping for arbitrary andz rotations and for thenor.
rections appearing to the left &f) with the additional com-
plication of a generalized Bell measurement that must be A. Teleportation

In the IWQC model, a wire for teleporting a quantum
|\I/>{ state is formed by three qubits connected in the pattern
_ B — 71 sketched in Fig. 4. The first two qubits are measured inkthe
basis, resulting in the teleportation of the input state from the
first to the third qubit. In all our 1IWQC gate diagrams, the
effective input qubitgcarrying the quantum state from the
previous part of the computatipmwvill be distinguished by
being drawn boxed. As already explained in the introduction,
all other qubits in the lattice are initialized in the) state,
}(Ufi ® 0, )CNOT|¥) while the nearest-neighbor interaction that was used to create
the cluster state can be viewed as affecting a controlled-
phase gate between all pairs of neighboring qubits. An
FIG. 3. The ancillajacyor) is prepared separately using two- €quivalent circuit representation of the quantum wire is
qubit measurements alor{8]. Subsequently, two Bell measure- therefore that of Fig. @).

a;U[V)

|aCNOT>

ments are performed, one for each input qubioT being in the The circuit of Fig. 8b) can now be obtained from the one
Clifford group allows us to commute the Pauli corrections throughof Fig. 5a) by inserting the identity42=1. In Fig. 5b), the
it and write cnot(oy, ® 07,) = (07, ® o )onoT. stabilizer of the second and third qubits is initiall,1X.
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o 1 . (a) Bell state preparation (b) Bell measurement
) A
D —
@ | 2 B: g2
< |®o) .
3
I+

jl (C) —

A
_____________
(b) 2, =- ~
A i _E? ” FIG. 6. () Simple circuit preparation of the Bell stal@), (b)

@ Bell measurement in the basi§®)};, with j=(j1,j1®]j,) in
binary, and (c) a circuit representation of the identity
------------- AZ)=(I®H)cnot,_ (I @ H).

FIG. 5. In this paper the controlled-phase gate is denoted by a
line segment connecting two qubits, witls drawn on both ends to
emphasize that it acts symmetrically between them. Measurement In Fig. 1a), we sketched the pattern that realizes a

boxes are labeled on their lower right corner by the correspondin . o
measurement basis. To go frai@ to (b) we insert the identity in gotatlon by an angleq&_ a_boqt_t_hex axis in the 1WQC
model. The first qubit is initially measured along the

the formH?=1. Then we identify box 1 as preparing a Bell state ; . . .
o) and box 2 as performing a Bell measurement. X axis, and then t_he second is projected along the axis
n={cog(-1)11*1¢],sin(-1)11*1¢4],0} on the equator of the
. . . . Bloch sphere, conditioned on the outco®f the measure-
After conjugation with(H®1)A(2) it becomes ment of the first qubit. This is a typical example in the
1WQC of a measurement performed in a basis adapted ac-
. . cording to previous measurement results. A circuit represen-
IX 7% XX tation is give_n in Fig. @. _ _
The transition from Figs. () and {b) is made again by
This is the stabilizer of the statdy), proving that box 1 inserting the identityH?>=1 and noticing that the measure-
prepares a Bell pair. Similarly, in order to interpret box 2, wement along then axis can be replaced by the rotation
begin with the stabilizer generators of the outgatl)iiX  U,[(-1)i1¢] followed by a measurement in thé basis. In
® (-1)12X, where j,,j,{0,1} are the outcomes of th¥  order to interpret the generalized measurement performed by
measurements on the first two qubits. Conjugating it back-
wards throughll ® H)A(Z), we obtain oy 1

B. Rotation about the x axis

Xl A@2) XZ Hel ZZ

(= D)Xl A@ (- 1)IIXZ 1en (- 1)I1XX
. - ) — A . )
(= DX (= 1)l2zX (- D)i2zZ. (@) |4y

Box 2 can therefore be viewed as realizing a Bell measure-
ment in the basig|®))};, with j €{0,1,2,3 now given in
binary asj=(j1,j1® j2).

Naturally, the above derivation can also be carried out by
working explicitly with states and without any use of the
stabilizer formalism. For that purpose, the identities of Fig. 6
provide a quick way to visualize the operation of boxes 1 and (b)
2. Indeed, using the identity of Fig.(@®, box 1 is trans-
formed into the Bell state preparation circuit of Figagand
similarly, box 2 is transformed into the Bell measurement of
Fig. 6b).

Boxes 1 and 2 then establish the equivalence of the circuit g 7. in (a), we directly translate the measurement pattern
of Fig. 5b) and the teleportation circuit of Fig. 2 f&=1. shown in Fig. 1a). In (b), inserting the identity in the formki2=1
Overall, the transition from Fig. 4 to the circuits of Fig. 5 we identify box 1 as preparing a Bell sta@,) and box 3 as
exhibits the mapping from the 1IWQC pattern to the well-performing a generalized Bell measurement. Replacing the mea-
known teleportation circuit in the TQC. All steps can equally surement alongi with a rotation by(-1)it¢ about thez axis fol-
well be traced backward, proving also the mapping from théowed by an measurement in thebasis we complete the mapping
TQC to the 1IWQC. from (a) to (b).
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o)L = j,
k
(a)
@ |+)2 A
l+)3
|‘~I’> 1 Uz(0) X n

(b)

FIG. 8. (a) Starting with the identity circuit that prepares the i+ 3
Bell state|®;) and then performs a Bell measurement, we insertthe ~ =-=---c-oo-ee
; ; Ty —
|dent|tyUX(¢)UX(<_;S)—I. (b) CommuteU, () t(.) the left, then use the. FIG. 9. In (a), we translate the 1WQC pattern shown in Fig.
symmetry ofl®) in order to apply the rotation to the second qubit. ) A .
Finally, commute it to the right through the Hadamard to end upl(P®)- Replacing the measurement alokgwith a rotation by 6
around thez axis followed by anX measurement we obtain the

with box 3 of Fig. 7b).
g- 15 mapping from(a) to (b).

box 3, we would like to translate it into a measurement in the_
basis{(UT®1)|®,)};, whereU is the unitary to be applied to k={cog~6),sin(~6),0} in the Bloch sphere, whereas the sec-
the input state, to match the TQC operatiétig. 2b)]. We  ond is projected along the axis. This time no special time
first note that, starting with the Bell stel®,), the other three  ordering is necessary, so both measurements can be done
Bell states can be created by applyizigk2 on the first qubit ~ Simultaneously. An equivalent circuit representation is given
i S by Fig. 9a). The measurement along theaxis can be re-

[ =(22X2 @ DIdg), = (j1.]1® J2)- placed by the rotatiotJ,((-1)/1¢) followed by a measure-
The identity of the Bell state can subsequently be revealethent in theX basis. Inserting once more the identitf=I,
by the Bell measurement performed by the circuit of Fig.we obtain the circuit of Fig. @).
6(b) or equivalently box 2 of Fig. @®). Before attaching the In order to interpret the measurement performed by box 4
Bell state|®;) to the Bell measurement, we insert the identityin  Fig. 9b), we note thatU,#) commutes with the
in the form UX(¢)U:[(¢):I to the first qubit as shown in Fig. controlled-phase gate and therefore can be taken out of the
8(a). CommutingU,(¢) to the left throughZt it becomes measurement box as sketched in Fig. 10. Hence, box 4 can
U,((-1)i1¢), which can equivalently be applied to the secondbe thought of as a rotatiod,(¢) applied to the input, fol-
qubit. Here we made use of the useful symmetry property ofowed by a Bell measurement. This is precisely equivalent to

the Bell statd®,) a measurement in the basi&)!(6) ® 1)|®))};- This completes
_ T the mapping forU,(6) from the 1WQC to the TLC, which
U@ Dby = (1 & Uh|dy), again can equally well be traced in the opposite direction.
which is true for any operatdd. ThenU,[(-1)/1¢] can be
commuted to the right of the Hadamard givibig[ (-1)1¢], D. The controlled-NoT

which commutes with the controlled phase. Shiftid(¢) :
on the first qubit to the left into the Bell state preparation and To construct the mapping between the two models for the

: i L CNOT gate, it is easiest to begin with the teleportation-based
—1)
with U ( 1). '] now inside .the Bgll measur.ement on the circuit given in Fig. 3. We then replace the ancillary Bell
second qubit, we finally obtain an interpretation of box 3 as

shown by the identity circuit of Fig.(®): The statfUX(¢) .

® I]|<I>J-) is first prepared and then measured. :|—|: .
. . . 1 1 1
Hence, box 3 in Fig. (b) indeed performs a measurement [0) U=(0) E? n
in the basis{[U{(¢) ® I®))};. This completes the mapping (1)
for U f the 1WQC to the TQC. Again, the reverse "2 "= i : :
or U,(¢) from the QC to the TQ gain, the reverse ) ) ML .'ﬁ E? s

mapping is easily obtained by tracing all steps backward.

C. Rotation about thezaxis el

A rotation by an anglé about thez axis is realized in the FIG. 10. Since box 2 realizes a measurement in the Bell basis
1IWQC model by the qubit pattern of Fig. (k. {|®)};, box 4 is a measurement in the baﬁﬂbli(ﬂ)@l)@p}j ac-
The first qubit is projected along the direction cording to Fig. 2b).
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[ e B 1 3 I5
! Ei:]ﬁ roooTessTe T
R ~ x i control ! /N control
: E:jzii : in E X Q</ out
E —E: Ja : PN target target
L...............?_(____:@ @ in X \>_</ out
2 4 6

FIG. 13. The realization oEnoT in the IWQC. The control
qubit is teleported from 1 to 5 by the three-qubit wire pattern of Fig.
} (0 ® 0y )CNOT|W) 4. The rest of the circuit is exactly the pattern &voT in Fig. 1(c).
*1 *2

We note that the resulting 1WQC construction for the
CNOT first teleports the control state from the first to the fifth
~ FIG. 11. Thecnor of Fig. 3, substituting boxes 1 and 2 from it before theenoT is applied. In fact, using extra telepor-
Fig. S(b). The Pauli corrections;; ® oj; are given in terms of the  tatjon steps for the control qubit is necessary for suchar
measurement outcomes by the commutation relationsi(oi,  construction in the 1WQG5], since it allows the explicit
® 01,)=(07; ® oy)enor, whereis=(j1,j1 @), 2= (12,129 Ja). separation of the input from the output qubits and therefore
states|®,) and the Bell measurements by boxes 1 and 2 O]er_lables the identification pf the inpiatpu) qubitg ofcNOT
with the output(input) qubits of the gate precedir(@pllow-

Fig. 5b), respectively. Thus, we directly obtain the equiva- . o . S . -
lent circuit of Fig. 11. ing) it in the computation. This is particularly important

We immediately note that the Hadamards cancel eacMhen computation is performed on a_two-dimensio_na_ll clus-
other out on the third and fourth qubit, so that the circuitter, where the geometry of the lattice imposes restrictions on
contains only controlled-phase gates andder, .. Since in  how patterns, corresponding to different gates, can be com-
the 1WQC the only unitary that acts between the clusteposed in a sequence. An example of how ¢heT can be
qubits is the controlled phasd,(Z), we seek a way to re- combined with the quantum wire of Fig. 4 to give a square-
place thecnot;_, with a controlled-phase gate applied be- shaped pattern in a two-dimensional cluster is shown in Fig.
tween some other pair of qubits. Inspecting the lower part ofi4.
the circuit, we observe that thenOoT can be commuted Thus, we have completed the mapping from the TQC to
through theA(2) 4 ¢ leaving behind a factor that multiplies the IWQC for thecNoT, which again can be worked back-
the state with —1 whenever both the fourth and the fifth qubiward as long as the extra teleportation step is included.
are in the statél). This is exactly how a\(2),, 5 gate would At this point, we have reached our goal of demonstrating
act. Figure 12 summarizes the argument. a systematic mapping between the two models for the uni-

Therefore the circuit of Fig. 11 can be transformed into anversal set of one-qubit rotations ageloT. The two models
equivalent circuit that makes use of qubits prepared in thare therefore shown to make use of interchangeable primi-
|+) state, controlled-phase gates and one-qubit measurtives in order to implement computation by measurement
ments in theX basis. Hence it can directly be mapped into
the pattern of the 1IWQC drawn in Fig. 13.

(a) (b)

control
out

) 2 [+ 2
+) +) 2
+) 2 +) 2 5
-1
+) ) )
(c) (d)
[+ 3 |+) 3 target i i:i (X) ““E“j—-i target
|+> 4 4 in T/ : out
|+ 8 9 10
) 2 1) 2 . .
. 14. The control is teleported from qubit 1 to 3 before the
P FIG. 14. Th trol is tel ted fi bit 1 to 3 before th
[+) an [+) 6 cNoT, marked by the dashed line, is applied. The control is then

teleported again from site 3 to 5. The pattern from qubit 3 to 9
FIG. 12. Successively commuting thwot,_s to the left, we  realizes a controlled phase between those two qubits, as is ex-
obtain an equivalent circuit that uses only controlled-phase gates. Iplained in the following section. Empty circles indicate qubits re-
(c) note thatenot|+)|+)=|+)|+), hence(d). moved from the cluster after being measured in Zheasis.
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control 1 7 control

24, ) 2L 4
‘ ()

3
s T

4
target () X target

-

FIG. 15. The remotenoT. We performcNoOT gates from the
control qubit to one half of a Bell pair, and also from the other Bell

E_
0
2(%)

pair qubit to the target qubit. By subsequently measuring the Bell trol C o
pair qubits, thecnot,_, gate is realizedqup to Pauli corrections contro Z
without qubits 1 and 4 having directly interacted. 7/ ) %@
J2
alone. Depending on which model we consider as more fun- (b bt - ()
damental, or conceptually easier to understand, we can group 1) 3 \&% ja 3 X)
in boxes operations performed in the 1WQC to obtain primi- 4&\ &
tive operations of the TQ@Bell pairs and complete two- 4
qubit measurementsor alternatively we can decompose the target 4@

primitive operations of the TQC into the primitives of the
1WQC (controlled-phase gates and one-qubit measure-

ments. FIG. 16.(a) The remoteA(2), (b) an equivalent circuit that uses

only controlled-phase gates and one-qubit measurementsgcgitsl
direct translation in the 1WQC which realiza$Z), 4 after qubits
Ill. A SIMPLE REMOTE- A(Z) CIRCUIT AND ITS are measured in th¥ basis.

APPLICATIONS

In this section, we describe a simple method of imme_amard on its left side being cancelled out and the one on its

menting the remotex(Z) gate that applies to both the IWQC right turning the measurement of the second qubit into a

and the TQC models. As will subsequently be shown, thi easurement in th& basis. Thus, we obtain the circuit of
construction leads to significant simplifications in the basic' 9: 180), which can be directly translated into a four-qubit

operations in both models and can also be applied to th attern that realizes the controlled-phase gate between the

preparation of arbitrary graph states using two-qubit mea!!"st and fourth qubit in the IWQC as shown in Fig(d6
surements alone. The key observation that leads to these sim-
plifications is that given the ability to perform single qubit PESRTP
gates, both thenoT and theA(Z) can equally well be used A. Simplitying the TWQC model
to complete universality. The first application of the remot&{Z) circuits of Fig. 16
In the TQC, we recall that thenoT is realized by the IS & more economic way of doing computation in the 1WQC
circuit of Fig. 3, using a special ancillary statagyor), and model using a two-dimensional cluster state. In that case,
two Bell measurements. Considering that the preparation dtither acNOT pattern using extra teleportation steps for the
lacnor) requires three two-qubit measuremef8} the total ~ control state(Fig. 14) can be used or alternatively, a pattern
number of two-qubit measurements needed for this procewith fifteen qubits[Fig. 17a)] has been proposed. Again, we
dure is five. Here, we will employ two-qubit incomplete can use the\(Z) instead of thecNOT, replacing the known
measurements in order to implement the controlled-phas@ubit-costlycNOT realizations with the remot&{2) pattern
gate in a significantly more resource-effective way. Our startderived in Fig. 16c), without sacrificing our ability to do
ing point will be the remote&NOT gate that has appeared in universal quantum computation.
the literature[16], shown in Fig. 15. The economy in qubits is apparent if we consider a typical
Starting from Fig. 15, one can obtain a method of per-computation block consisting of one-qubit unitaries applied
forming the remoteA(Z) as shown in Fig. 1@): Conjugat-  to two logical qubits, which then interact through thsoT
ing the fourth qubit with Hadamards, theor, , is replaced Or alternatively theA(Z). These one-qubit unitaries can in
by A(Z)(3.4, according to the identity of Fig.(6), with the  general be decomposed in terms of the Euler anghes, )
correction being switched from, to o,. Furthermore, in Fig.  @s U()U(6)U,(¢). But, since the rotations around tize
16(a), we have used box 1 of Fig.(® that provides an axis commute with the controlled-phase gates, it is sufficient
equivalent way to prepare the Bell stdtk,). Surprisingly to realize one-qubit unitaries of the forid,()U,(¢) fol-
enough, the resulting circuit can be transformed to consigowed by a remotex(Z) gate at each repeated unit of the
only of controlled-phase gates and one-qubit measurement®mputation. Composing the patterns of Fig&) nd Xb)
in the X basis. Indeed, using the identity of Figicbonce and eliminating the intermediate consecutive measurements
more, thecnor,_, can be replaced by (Z); » with the Had-  in the X basis(which realize a redundant quantum wire ac-
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(a) TABLE |. Verifying that the proposed measurement procedure

AR o realizesA(Z)(,4. S'is the set of stabilizer generators at each step.

//%/////6/////6/;;/%///”//////”////”/////“’///”/////’ us X1,Z; andX,,Z, indicate the logicaX,Z operators on the first and
7

////

Lo
/%%// fourth qubit, respectively.

7

et e Rt At start
—0—C—0—"—0—0—0—@—®—J SIXZ
1Z X1
XX 111
5 Z:Z 111
! Xa:l 11X
(b) i Z1112
IRy 18) MeasurezXI| 1b) MeasurelIXZ
1) 1® SIIXZI SiiXz
Z X1 Z X1
FIG. 17. Dashed boxes A,B realize general one-qubit unitaries X:X Z X XX Z X1
and D,E one-qubit unitaries with decompositiog(#)U,(¢). C is a Zl;z 111 Z—liz 11
fifteen-qubit realization for thenoT found in [10] and F is the 11X Xl X Z X
remote controlled phase. Arrows indicate measurements in a gen- 4 4
eral direction on the equator of the Bloch sphere. The shaded re- Zy 1z Zy 1z
gions denote the repeated computation units per logical qubit. Here
again, empty circles indicate qubits measured inZHmasis. 23) MeasurelZI| 2b) Measurel|Z|
_ _ _ . Si1XZ Szl
cording to Fig. 4, two measured qubits are needed to realize 1711 1Z11
a U,(0)U,(¢) rotation, in contrast to the four measured qu- X 7 X1 X117
bits needed to realize a general one-qubit rotation used origi- L 2
nally in the 1WQC constructions. VARVA RN Zy:Z 111
Comparing first the contruction of Fig. (& with the one Z;:Z | Z X >_<4:z 11X
of Fig. 171b), the latter uses less than one-third of the total Z0112 7117
4 - 4-

number of qubits and one-fifth of the computation length
with an increase of the computation width by one. Compu-

tation is performed in a linear fashion from left to right, with ful hod f . h in the fol
the logical qubits separated by regions of qubits measured jpsetul as a metho for cpnstruct.mg grapn states in the 1ol-
E)wmg section. Starting with the circuit of Fig. (§, we can

the Z basis. The comparison is done by considering the re- . :
. i ) o interpret each of the boxes A and B as performing an incom-
peated computation units per logical qubit in each case, de

noted by the shaded regions in Fig. 17. The comparison witlglgf[: two-qubit measurement on one half of the entangled
thecNoOT pattern of Fig. 14 can also immediately be made, if
we observe that the remotetZ) pattern already forms part | +)[0) +|-)|1)
of the former in the connection between the third and the 10)=A@)|+)| +>:T
ninth qubit. Thus, using the remofe:Z) in place of the v
CNOT proves more qubit efficient for both these different and the control and target qubits, respectively. The $fate
CNOT realizations. can also be prepared by a complete two-qubit measurement,
giving a total of three two-qubit measurements to affect the
L controlled-phase gate according to this method.
B. Simplifying the TQC model To elab%rate gn the exactgmeasurements that will be
Second, the remot&{Z) circuit of Fig. 16 suggests a needed, box A of Fig. 1®) can be viewed as realizing a
method of affecting a controlled-phase gate between two quneasurement oZVX@ followed by a measurement of the
bits using measurements of operators of weight at most twaecond qubit in th& basis and similarly for box B. Starting
This provides an alternative and greatly simplified proof ofwith the state|(), the subsequent measurement procedure
the universality of two-qubit measurements in the TQCshould therefore be(l) MeasurezXIl and 11XZ, then (2)
model, without the need for the preparation of the ancillarymeasurdZll andllZI. The analysis for the evolution of the
state|acyor)- stabilizer generators under the proposed measurement se-
Two different measurement procedures are implicit in Fig.quence is given in Table I. To prove that the controlled-phase
16(b). The first one, although not minimal in the number of gate between the first and the fourth qubit is in fact realized,
two-qubit measurements used to affect &) gate, willbe  we also follow the evolution of the initialor logical) X,Z
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operators on those qubits, denotedXyzZ, keeping in mind Due to this fact and in cases when an application-specific
that A(2) after conjugation takeX®| to X®Z andZ®| to quantum computer would _be desiralohee think of factoring,
itself. for example, the computation can equally well be performed

The measurement procedure with the minimal number Opy circumventing the Clifford part measurements and start-

two-qubit measurements is obtained if we interpret the meahd directly with a specific graph state. In addition, this may

) @  practically even prove preferable for reasons pertaining to
?tl:cr)imce; natmczjf ttE:ns'?hC; rr]r?eggglrteﬁwser?t rgr? iigr?mr%%ﬁit as the robustness of the computation: Removing altogether the

S lifford part measurements will significantly reduce the total
(37(4) o . !
measurement okK™®'Z* (box B) as before. Eliminating the  ,,mper of qubits involved in the computation, thus decreas-

second qubit altogether and renumbering the rest, the megyy the possible locations of error. Such application-specific
surement procedure igl) MeasureZZI, (2) measurelXZ,  graph states will then have to be constructed and verified

and (3) measurelZI. The last operator to be measured is ysing graph purification protoco[d.8]) before the compu-
chosen so that it anticommutes with the previously measuregtion initiates[19].
operator and therefore projects out the ancillary second qu- Since operationally any graph state can be realized by
bit. Although the two measuremen&ZI| and IXZ do not  selectively applying the controlled-phase gate between pairs
commute, we note that if the measurements are performed ivf adjacent qubits initialized in thie-) state, it is interesting
the opposite order, then the gate is still applied if the ancil4o investigate how a given graph state can be constructed
lary qubit is initialized in thg0) instead of the+) state and  within a measurement-based model for performing quantum
finally projected on the axis instead of the axis. computation. In particular, in this section we will discuss
In case theeNOT is to be realized instead of the controlled how the two measurement procedures for affecting the
phase, the measurement procedure above can be straightfopntrolled-phase gate, that were inspired by the circuit of
wardly modified by conjugating the third qubit with a Had- Fig. 16b), give rise to explicit methods for constructing an
amard, thereby changing the measured opeiai@rto IXX. arbitrary graph state.
In fact, a method for realizing theNOT using just two two- The first measurement procedure of the previous section
gubit measurements, essentially identical to the one we justan be used to affect the controlled-phase gate between the
presented, has already appeared in the literature in the cogubits in our graph, using as ancillae a number of copies of
text of fault tolerance in higher-dimensional systefig], the state|QQ) equal to the number of edges created. Imple-
but its relevance to the TQC model had not been hithertanenting the two-qubit measurements needed will require a
appreciated. A surprising feature of our result in this sectiomumber of measurement steps at least equal to the vertex
is that we have explicitly drawn a connection between thelegree of the graph under construction, since all measure-
remoteeNoOT circuit of Fig. 15 and the seemingly unrelated ments with support on a common qubit will have to be real-
method for affecting thenoT according to the measurement ized at different times. Considering that all one-qubit mea-
sequencdXX, ZZI, andIXl, both of which have been pro- surements on the ancillary qubits can be performed
posed for the realization of thenoT gate in very different  simultaneously in the final step, the actual logical depth of
contexts and without reference to one another. the graph preparation will equal one plus the maximum ver-
It is interesting to note that only two two-qubit measure-tex degree of the graph to be constructed. An example of the
ments are required to perform th&€Z) gate according to this graph state preparation is shown schematically in Figa)18
second measurement procedure, in contrast to the five twdn order to create all edges connected to the striped qubit of
gubit measurements needed to perfaroT in the method this graph, three two-qubit incomplete measurements, each
illustrated in Fig. 3. Moreover, this is the minimal number of represented by a dashed triangle, must be done consecutively
two-qubit measurements possible, since in order to simulatéollowed by three one-qubit projections performed simulta-
a two-qubit gate with measurements each one of the twaeously in the fourth and last step.
qubits need to interact at least once with the ancillary state. At this point, it is intriguing to consider the similarities of
) _ _ this method for constructing graph states to the valence bond
C. Constructing graph states with two-qubit solid model for doing quantum computati¢®Q]. In fact, if
measurements the distinction between the qubits of the graplenoted by
As discussed in the Introduction, the cluster state forms dilled circles in Fig. 18 and the qubits in the entangled state
substrate for universal quantum computation within thelQ) (dark dotg is lifted and they are all viewed as physical
1WQC model. The essense of its universality lies in the obgubits residing on different sites of a solid, then the correla-
servation that, by appropriately deleting qubits, an arbitrarytions between the qubits in the entangled states can be inter-
sequence of gates taken from a universal gate set can Ipgeted as arising from valence bonds formed between qubits
imprinted and then executed on it. But, as has been repeath neighboring sites. In such a valence bond model, our
edly hinted about in the literatufd0], this is not necessarily viewpoint for constructing the graph state is retained by
the most beneficial way of thinking about doing computationidentifying in each site one of these physical qubits as the
in the 1WQC model. A powerful indication toward this logical one and performing appropriate measurements lo-
comes from the surprising fact that all the computationalcally on the sites in order to form the desired graph state. The
tasks that lie within the Clifford group can be executed si-subsequent computation can then be performed by one-qubit
multaneously in the 1WQC, resulting in a transformation ofmeasurements, in accordance to the 1IWQC model.
the initial cluster state to a general graph staip to local Naturally, the graph state can be constructed even in the
Pauli operators absence of the ancillary entangled pairs, according to our
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(a) surements to be performed and the requirement that all two-
O qubit measurements with support on a given qubit need to be
/ executed in different time steps translates into the require-

O ment that edges incident on a given vertex are colored dif-
T O ferently. As a consequence, the logical depth of the measure-
[ \ ment procedure will be given by the minimum number of

colors to realize the edge coloring of the graph Letting
6 O V(G),E(G) denote, respectively, the vertex and edge set of

the graphG, the graphG’ will then be given by
/ \ V(G') =V(G) U{ay,ay,...,ag@)}

E(G) ={(i,a0),(ax)):(i.j) € E(G)},

whereke{1,2,...,|E(G)|} enumerates the edges®@fanday
(b) is used as a label for thiegh ancillary qubit. The minimum
O O number of colors necessary to color each edg&'o$o that
no two edges incident on the same vertex have the same
O O O O color is defined as itedge-chromatic numbey’ (G’). As we
O already remarkedy’ (G') =A(G’), whereA(G’) is the maxi-
mum vertex degree d&’. For graphs with no multiple edges
O O Q 0 between the same pair of vertices, a remarkable theorem
Q. L O [21,22 states thaty'(G’')<A(G’)+1 and for bipartite
graphs(also calledtwo colorablg in particular, the equality
@ ) C O x'(G')=A(G’) has been provef23]. But in our case@’ is
O O O always bipartite by virtue of the fact that the qubits of the
graph G are adjacent to ancillary qubits only. Hence, the
@ logical depth for the construction of the gra@hequals its
maximum vertex degreg24] plus one(to account for the
FIG. 18. Creating an arbitrary graph with two-qubit measure-one-qubit projections of the ancillary qubits done simulta-
ments. For clarity only the measurements needed to create the edgeeously in the last stgpAn example for the use of this
incident on the central striped qubit are shown. Circles represenineasurement procedure is given in Fig(t9)8
qubits initialized in the +) state, with those drawn filled being the In both measurement procedures mentioned above, the
graph qubits and those empty the extra ancillas. The dark dots comfesired graph state is realized up to Pauli operators that de-
nected with a bar indicate two qubits in the entangled sf@%  pend on all measurement outcomes. However, preparing the
Dashed triangles represent measurementszoénd rhombuses of  graph state up to local Pauli corrections will not jeopardize
zZ AII ancillary qubits are simultaneously measured in the finalihe computation later performed on it, since these corrections
step in appropriate bases. can be absorbed in the initialization of the classical registers
second measurement procedure proposed in the previous sé’&‘:"t will be used to buffer the subsequent measurement out-
tion. In this case, a number of ancillary qubits equal to thecomes[lO].
number of edges of the graph will be needed. For each edge,
the measurement procedure then consists of two two-qubi_t IV. CONCLUSION
measurements each performed between an ancillary qubit
and one of the two vertices incident on this edge, followed The mapping that we derived between the two models for
by a projective measurement on the ancillary qubit. doing computation by measurement is eloquent of the deep
As with our previous method for constructing the graphstructural similarities between them. In fact, the 1WQC
state, we would like to inquire into the extent to which this model can be thought of as naturally emerging from the TQC
measurement sequence can be parallelized, calculating itsice the restriction to one-qubit measurements is imposed.
logical depth. Due to the fact that the number of two-qubitin such a case, the mapping reveals that the interaction be-
measurements with support on a given graph qubit equals itsveen qubits will have to be mediated by a two-qubit unitary,
degree in the graph, the logical depth of this measuremenwhich in the case of the 1IWQC is taken to be the controlled
procedure is at least equal to one plus the maximum verteghase. In this respect, our mapping sheds light on the inner
degree of the graph under construction. In fact, the two-qubiworkings of the 1IWQC, helping us understand its operation
measurement sequence for the construction of the g@ph on a more intuitive level. Moreover, our mapping explicitly
can be thought of as an edge coloring of the larger g@aph demonstrates the correspondence between the local Pauli
constructed by adding the ancillary qubits to the vertex secorrections in the TQC and 1WQC models, which had been
and dividing each edge of the gra@hinto two, each be- strongly suggestive of an underlying connection between
tween the originally adjacent vertices and the correspondinghem since the time both models were developed. The map-
ancilla. In the graplG’, edges represent the two-qubit mea- ping thus significantly simplifies the proofs for the operation
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of the 1WQC circuits that so far always allude to theoremdfor swiftly translating useful structures back and forth be-
based on the stabilizer formalisih0]. If you would concede tween them.
that the operation of either one of the IWQC or TQC is more
transparent, then this mapping facilitates the understanding
of the other model. In particular, the less familiar model of ACKNOWLEDGMENTS
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