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Entanglement production in colliding wave packets
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We study the generation of quantum entanglement in two-particle scattering processes. When two wave
packets collide, we discover that entanglement grows appreciably because of the interference between the
incident and scattered waves. After the collision, quantum entanglement is mainly governed by the scattering
phase shift and the widths of the incident wave packets. For interaction potentials that exhibit scattering
resonance, we show that quantum entanglement can be enhanced near resonance energies.
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Generation of quantum entanglement between two spadisentangledproduc) state corresponds #G=1. Bell states
tially separated particles requires nonlocal interactions thabdf two-photon polarization hav&=2. For continuous sys-
build up quantum correlations dynamically,2]. In recent tems, K can in principle be very large because of the vast
years, the dynamics of two-particle entanglement has beeRilbert space involved. The main constraint comes from the
discussed in various physical situations. For examplegonservation of energy and momentum which restricts acces-
continuous-variable entanglement in photon-atom scatteringiple phase space. In atomic physi&shas also been em-
[3], photoionization process¢4—7], trapped atom pairf8],  ployed to indicate the important role of two-body correla-
and classically chaotic systenii9,10], have been studied. tions in various dynamica| processigs1]].

Conceptually, the simplest mechanism of entangling two par- |n this paper, we will focus on a system of particles with
ticles is by scattering. Because of mutual interactions, th@qual mass. Using the center of mass and relative coordinates

two particles can become entangled as they approach eagt (x,+xg)/2 andx=x,—xg, the Hamiltonian of the system
together. After the collision, the two particles may still be js given by

entangled and share some forms of quantum information in
the final (scatterey states. However, much remains unclear H= 12 + p_2 £ V(X)) @)
about the nature of such entanglement and how the interac- T oM 2u '
tion potentials and particle energies control the entangle-
ment. In addition, the interesting role of scattering resonanc#here P=pa+pg and p=(pa—pp)/2 are the momentum of
in entanglement production has not been explored. the center of mass and relative coordinates, respectively. The
To address these issues, we investigate a system of twipteraction potentiaV/(|x,—xg|) is a function of the distance
colliding particles(A andB) in a one-dimensional free space. between the particles. For convenience, we will adopt the
One-dimensional models allow us to study the quantum dyunits A=m=1, so that the center mass =2 and the re-
namics in detail, and they demonstrate some interesting ardliced mass ig=1/2. Since the center of mass and relative
general features that may shed light on more complicatedoordinates are uncoupled in the Hamiltonian, the two-
three-dimensional problems. In this paper we examine th@article wave function at time takes the form¥(x,,xg,t)
time development of entanglement with various short rangeW (X,t)V,(x,1t), if the initial state can be factorized into a
interaction potentials. We will show that there exists a tran{product of a center mass part and a relative coordinate part.
sient period during which quantum entanglement changes Let us first discuss a simple hard-wall model, which is a
significantly. After the completion of scattering, the final en- one-dimensional analog of the hard-sphere potential prob-
tanglement is determined by the nonlinearity of wave vectotem. In this case, the interaction potenth{x)=0 for |x|
dependence on the scattering phase angle. In addition, fora and V(x)=« for |x|<a, wherea/2 is the size of each
interaction potentials that allow scattering resonances, wgarticle. Initially, particleA (B) is described by a localized
show that entanglement can be enhanced at the correspongave packet at the position, (-qo) with an averaged mo-
Ing resonance energies. mentum kg (+7ko). We assume thal, is large compared
To begin with, we indicate that quantum entanglement ofyjith a and the initial width of the wave packets. Because the
a general two-particle syste(in a pure staecan be char-  particles are impenetrable, the two-particle wave function is
acterized by the purity functiorP(t)=Tr[pa(t)], wWhere  mainly confined in thex>a domain at any time. It is not
pa(t)=Trg[p(t)] is the reduced density of the partigle and  djfficult to construct a solution that satisfies the Schrodinger
p(t) is the whole(A+B) density matrix at time. To quantify  equation with the boundary conditioH,(a,t)=0:
the entanglement, it is more convenient to employ the in-
verse ofP(t), i.e., W(Xa, Xg, 1) = [f-(Xa, D1 (xg,1) = fo(xa —a,Df_(xg + A 1)]

K@) =1/P(1), 1) OXp— Xg — @). 3

which measures the effective number of Schmidt mddgs — Here 6(¢) is a step function, anél, andf_ are free Gaussian
The larger the value ok, the higher the entanglement. A wave packets propagating in the right and left directions:
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FIG. 1. K as a function of dimensionless timefor various FIG. 2. An illustration of the time dependence/6iin the Morse

incident velocities in the hard-wall problem. The initial wave packetpotential problem with the initial wave packet parameteys,=3
separation is ,=200,. The dimensionless quantikgoy is propor-  andq,=300,. The parameters of the potential ae o, Xo= 1007,
tional to the incident speed. All the three curves correspond to thw0:24h2/mo%_ The inset shows the absolute square of the relative

same initial wave packet widthr. coordinate wave function wheid reaches the maximum.
¢ (gt)—<3>1/4 o0 ) ExGT kO ; K(ro) = 3. 6)
=\ (1) an

5 This result can be derived analytically for Gaussian wave
B ik—ot] (4 functions. ~According to Eq. (4), W(Xp, Xg, to)
2| = N(xa) " (Xg)SiMKg(@a—Xa+Xg) |8(Xa—Xg—a), Where s is a
Gaussian function and/ is a normalization constant. Quan-
where o(t) = o5+ 2it with o, being the initial spread of the tum correlation between the particles is described by the in-
wave packets. Sincgy>a, oy, the initial stateW(x,,xz,0)  terference term sfiky(a—Xxa+Xg)], which depends only on
~f_(xa,0)f.(Xg,0) is a disentangled state. The long time be-the relative coordinate. In the case whkgés large as stated,
havior of W(x,,xg,t) is described by thd,(xy—a,t)f_(xg  we can carry out the integréb) approximately by discarding
+a,t) term which corresponds to the reflected waves due tdast oscillatory(spatia) terms[12]. The four step functions
scattering. that would appear in the integréd) can be taken care of by
With the help of the solutior3), we can calculate the using the symmetry property of the wave functi@®). The
purity function and hence the time development of the entesult is an interesting integer value 3, which agrees very
tanglement. The expression @f(t) is calculated from the well with the numerical calculations in Fig. 1.
integral Transient entanglement arising from quantum interference
between the incident and the scattered wave packets is also
. . observed in various interaction potentials with a dominant
P(t) =J f f f W (Xa, X, )W (X, Xg, 1) repulsive core. For example, we have examined a more real-
istic potential for atom-atom interactions, namely, the Morse
X W (X, X, )W (X3, X5, ) AXpdXpdXgdXs.  (5)  potential V(x)=Vo(e 23 %0) — 2emax%0)) - where X, is the
minimum potential position, an¥, and a are the strength
Such an integral does not have a simple analytic form. Wend range of the potential, respectively. The Morse potential
carry out numerical calculations, and the typical behavior ofis attractive forx>x,, but becomes strongly repulsive for
KC is shown in Fig. 1. For convenience, we plot with the x<x,. With initial Gaussian wave packets(x,,0) and
dimensionless time=7#t/2u03. We notice that the increase f.(xg,0), we employ the split-operator method to obtain the
and decrease of entanglement occur in a transient periodme-dependent wave function.
Such a period corresponds to the time interval during which |n Fig. 2, a typicalk is illustrated as a function of time.
the incident and the reflected wave packets interfere most. Bimilar to the hard-wall problemiC reaches a maximum
can be seen from Eq.3) that the incident part when strong interference between the incident and reflected
f_(xa,0f.(xg,t) and the reflected partf.(xa—a,t)f_(xg  waves occurgsee the inset However, the peak value df
+a,t) are product states. It is only when both parts are suean be substantially higher than 3. The reasons are compli-
perimposed that entanglement is generated. cated by the existence of bound states and interference ef-
In Fig. 1, K reaches a peak value a;=(2q0—a)/2k0020 fects involving nontrivial wave packet spreading inside the
[or equivalently the timeo=(2g9—a)m/2%ky]. This is the potential well. In addition, the main phase factorsdgf are
instant when the centers of the incident wave packets argo  longer €%, put are  approximated by
separated bg. We notice that the peak value is insensitive toexp(xi [*\E-V(§)dé) (whereE is the energy according to
the incident wave vectdt,. In fact, if kg is sufficiently large  the WKB argument. The nonlinear position dependence in
such thakyoo> 1 orkyqo> 1, we find that the peak value of the phase would cause extra cancellations in the int¢gyal
K is given by and hence reduce the purity vallf2].
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An important feature shown in Fig. 2 is thatis greater 1.01 . : : . . 1
than 1 in the final state, i.e., the two particles are entangled ~‘° } ]
after the scattering is completed. This is in sharp contrast to 1.008 0" 3 S kol
the hard-wall problem in which the final staté.(xa -10 t
-a,t)f_(xg+a,t) is disentangled. This phenomenon can be 1.006 - ]
analyzed by studying the scattering phase factor in the long K
time limit. Let us consider a general short range potential 1.004
with an impenetrable hard core. For elastic scattering, the

long time two-particle wave function in momentum space 1.002
takes the general form

D(ka kg 1) = (~ k)& M, (- kg)eret2d Hlnke)  (7)

packetsf., and ¢(ka,kg) is the scattering phase angle. The number in the cavity potential problem. The solid line is obtained

negative signs in the argument afare due to the change of by numerical integration of); the dashed line corresponds to the
propagation directions after the scattering, assunkiig0  approximation formula1l). The potential parameter g=32/ml,

andkg<0. wherel=ly—a. The wave packet has an initial widthy=212!. The
The purity of the staté7) is given by inset shows the dimensionless second derivafitee 1 2d2¢/ dk? of
the scattering phase angle.
= ! Arye 2(f (_ 2 -

X[f-(= kDI ke)l* X explilplkake) + Bk ke) This expression indicates how the degree of entanglement is
= p(kn,kp) — P(Ka, ka) ]} (8)  controlled by ¢"(ky) and the widths of the incident wave
packets.
Therefore the purity function and the scattering phase angle The nonlinear dependence loin ¢(k) is responsible for
are related. We note that(ka,kg) = @[ (ka—kg)/2] is a func-  the generation of entanglement. For potentials that allow
tion of ky—kg, because of the separability of the Hamiltonian quasibound states or resonancggk) can be a highly non-
(2). In the case of the hard-wall problen#(k) is purely a linear function ofk. This suggests an interesting mechanism
linear function ofk and hence the exponent in E8) is zero.  that quantum entanglement can be enhanced near scattering
This explains whyP=1 (i.e., disentangled stafegor the  resonances. We illustrate this phenomenon in a “cavity” po-
hard-wall problem. For general potentiads(k) depends ok tential model: V(x)=g&(x—lo) for [x>a and V(x)= for
nonlinearly, and hence the phase angles in the exponent cajpfl <a, whereg>0 is the strength of thé-function potential
not be completely cancelled. In other words, the nonlineaft x=lp>a. In this model, the hard wall at=a and the
property of the scattering phase shift is the key to the gend-function potential form a cavity for matter waves. The
eration of entanglement in scattering proceq4&%. scattering phase factor can be calculated analytically, and

If the variation of¢ is small within the width off,(k) [or ~ '€ads

equivalently the width of?i(k) is sufficiently narroyy, we ] o
may expandp around the peak dt,=ko, kg=—kKo, i.e., o) = g2kl ik cogk(lo—a)] + (k—ig)sink(lo—a)]
ik cogk(lp—a)]+ (k+ig)sink(ly—a)]

(&) = pO)+ B (DE-O+¢(DE-9%2, (9 (12)

whereé=(ky—kg)/2 andgzko_ In this way the combinations When g is suffi.ciently .Iarge, ql_Jasi_bound states appear at
of phase angles in E¢8) can be reduced to a simple expres-k=n/(I;—a) with n being positive integers.

; ; ; St In Fig. 3 we illustrate the long tim& value as a function
sion that is proportional to the second derivat , I
prop W) of the incident wave numbég. The range ok, shown cor-

Y Y K -k responds to the third resonance zone whefehas two
<l'>< kA_kB) + ¢< A~ B) — ¢< A B) _ ¢< A B) maxima (indicated by arrows in the insetThereforek is

2 2 2 2 expected to display two peaks according to the estimation
#"(ko) (112). Our numerical calculationsolid line), which were per-
—T(kA—kg)(kB—ké). (100  formed without employing the approximatig®), confirm

the doublet feature. In fact we also observe doublets at the
_ first and second resonancgsot shown. However, we re-
For Gaussiarf., a direct integration gives an approximate mark that Eq(11) serves only as a guide to locate the reso-
expression ofC, nance. Its validity depends on the quadratic phase approxi-
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mation (9), which requires narrow bandwidths in the nance, incident wave packets should have a narrow energy
momentum space. Therefore the discrepancy between exagfread, i.e., a large initial spreag). This would limit the
results and Eq(11) could be expected. value of K according to the estimatiofil). Hence the idea

In summary, we have examined several features of engf resonance enhancement should be understood in a relative
tanglement generated in wave packet scattering processagnse, referring to the increase/ofwhen oy is fixed.
For interaction potentials with a strong repulsive core, quan-  Thjs work is a step toward addressing interesting dynam-

tum interference between the inlcident anhd reerEtedl Wavfi%s of entanglement in scattering processes, and further in-
can generate a transient entanglement. The peak valie of \ o gsigations with more realistic models would be needed.

is close to an integer 3 for the hard-V\_/aII m(_)del, and higherComparing with three-dimensional situations, our one-
peak values ok are observed numerically in a Morse po- dimensional study has the limitation that angular correlations

tential. Quite genera!ly, the two part_lcles can pecome €N3re omitted. However, we remark that if one could choose to
tangled after the collision. We establish a relation betwee

. . 'Sbserve scattered waves in two opposite directions only, then
the ang t!meIC valug and the sca_ttermg phase ka)'. I the relevant quantum state may be analyzed by a one-
(.ﬁ(k) is & linear function ok, there ISno (_antanglt_am_ent in the dimensional treatment. In this case, our result implies that
final state. We note that this ffeat““? IS no_t limited Fo thethe scattering phase shift is a crucial quantity to determine
hard—wall problem, becau&ﬁ(k)_ is typ_|cally linear at high quantum entanglement.
energiesh?k/ ua>V for potentials with a short range.

Therefore entanglement production is more significant in The author thanks Professor J. H. Eberly and Professor
low-energy regimes, for example, in collisions of cold atoms.M.-C. Chu for discussions. This work is supported in part by
Our analysis also indicates that the strong nonlinearity irthe Research Grants Council of the Hong Kong Special Ad-
¢(k) around the scattering resonance can be exploited to emainistrative Region, China(Project Nos. 400504 and
hance entanglement. However, in order to resolve the res@2370].
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