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We study the generation of quantum entanglement in two-particle scattering processes. When two wave
packets collide, we discover that entanglement grows appreciably because of the interference between the
incident and scattered waves. After the collision, quantum entanglement is mainly governed by the scattering
phase shift and the widths of the incident wave packets. For interaction potentials that exhibit scattering
resonance, we show that quantum entanglement can be enhanced near resonance energies.
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Generation of quantum entanglement between two spa-
tially separated particles requires nonlocal interactions that
build up quantum correlations dynamically[1,2]. In recent
years, the dynamics of two-particle entanglement has been
discussed in various physical situations. For example,
continuous-variable entanglement in photon-atom scattering
[3], photoionization processes[4–7], trapped atom pairs[8],
and classically chaotic systems[9,10], have been studied.
Conceptually, the simplest mechanism of entangling two par-
ticles is by scattering. Because of mutual interactions, the
two particles can become entangled as they approach each
together. After the collision, the two particles may still be
entangled and share some forms of quantum information in
the final (scattered) states. However, much remains unclear
about the nature of such entanglement and how the interac-
tion potentials and particle energies control the entangle-
ment. In addition, the interesting role of scattering resonance
in entanglement production has not been explored.

To address these issues, we investigate a system of two
colliding particles(A andB) in a one-dimensional free space.
One-dimensional models allow us to study the quantum dy-
namics in detail, and they demonstrate some interesting and
general features that may shed light on more complicated
three-dimensional problems. In this paper we examine the
time development of entanglement with various short range
interaction potentials. We will show that there exists a tran-
sient period during which quantum entanglement changes
significantly. After the completion of scattering, the final en-
tanglement is determined by the nonlinearity of wave vector
dependence on the scattering phase angle. In addition, for
interaction potentials that allow scattering resonances, we
show that entanglement can be enhanced at the correspond-
ing resonance energies.

To begin with, we indicate that quantum entanglement of
a general two-particle system(in a pure state) can be char-
acterized by the purity functionPstd=TrfrAstd2g, where
rAstd=TrBfrstdg is the reduced density of the particleA, and
rstd is the wholesA+Bd density matrix at timet. To quantify
the entanglement, it is more convenient to employ the in-
verse ofPstd, i.e.,

Kstd = 1/Pstd, s1d

which measures the effective number of Schmidt modes[4].
The larger the value ofK, the higher the entanglement. A

disentangled(product) state corresponds toK=1. Bell states
of two-photon polarization haveK=2. For continuous sys-
tems,K can in principle be very large because of the vast
Hilbert space involved. The main constraint comes from the
conservation of energy and momentum which restricts acces-
sible phase space. In atomic physics,K has also been em-
ployed to indicate the important role of two-body correla-
tions in various dynamical processes[5,11].

In this paper, we will focus on a system of particles with
equal mass. Using the center of mass and relative coordinates
X=sxA+xBd /2 andx=xA−xB, the Hamiltonian of the system
is given by

H =
P2

2M
+

p2

2m
+ Vsuxud, s2d

where P=pA+pB and p=spA−pBd /2 are the momentum of
the center of mass and relative coordinates, respectively. The
interaction potentialVsuxA−xBud is a function of the distance
between the particles. For convenience, we will adopt the
units "=m=1, so that the center mass isM =2 and the re-
duced mass ism=1/2. Since the center of mass and relative
coordinates are uncoupled in the Hamiltonian, the two-
particle wave function at timet takes the formCsxA,xB,td
=CcsX,tdCrsx,td, if the initial state can be factorized into a
product of a center mass part and a relative coordinate part.

Let us first discuss a simple hard-wall model, which is a
one-dimensional analog of the hard-sphere potential prob-
lem. In this case, the interaction potentialVsxd=0 for uxu
.a and Vsxd=` for uxu,a, wherea/2 is the size of each
particle. Initially, particleA sBd is described by a localized
wave packet at the positionq0 s−q0d with an averaged mo-
mentum −"k0 s+"k0d. We assume thatq0 is large compared
with a and the initial width of the wave packets. Because the
particles are impenetrable, the two-particle wave function is
mainly confined in thex.a domain at any time. It is not
difficult to construct a solution that satisfies the Schrödinger
equation with the boundary conditionCrsa,td=0:

CsxA,xB,td = ff−sxA,tdf+sxB,td − f+sxA − a,tdf−sxB + a,tdg

usxA − xB − ad. s3d

Hereusjd is a step function, andf+ and f− are free Gaussian
wave packets propagating in the right and left directions:

PHYSICAL REVIEW A 70, 062311(2004)

1050-2947/2004/70(6)/062311(4)/$22.50 ©2004 The American Physical Society062311-1



f±sj,td = S 2

p
D1/4Î s0

s2std
expF−

sj ± q0 7 k0td2

s2std
± ik0j

− i
k0

2

2
tG , s4d

wheres2std=s0
2+2it with s0 being the initial spread of the

wave packets. Sinceq0@a,s0, the initial stateCsxA,xB,0d
< f−sxA,0df+sxB,0d is a disentangled state. The long time be-
havior of CsxA,xB,td is described by thef+sxA−a,tdf−sxB

+a,td term which corresponds to the reflected waves due to
scattering.

With the help of the solution(3), we can calculate the
purity function and hence the time development of the en-
tanglement. The expression ofPstd is calculated from the
integral

Pstd =E E E E C*sxA,xB8,tdC*sxA8,xB,td

3 CsxA,xB,tdCsxA8,xB8,tddxAdxA8dxBdxB8 . s5d

Such an integral does not have a simple analytic form. We
carry out numerical calculations, and the typical behavior of
K is shown in Fig. 1. For convenience, we plot with the
dimensionless timet="t /2ms0

2. We notice that the increase
and decrease of entanglement occur in a transient period.
Such a period corresponds to the time interval during which
the incident and the reflected wave packets interfere most. It
can be seen from Eq.(3) that the incident part
f−sxA,tdf+sxB,td and the reflected partf+sxA−a,tdf−sxB

+a,td are product states. It is only when both parts are su-
perimposed that entanglement is generated.

In Fig. 1, K reaches a peak value att0=s2q0−ad /2k0s0
2

[or equivalently the timet0=s2q0−adm/2"k0]. This is the
instant when the centers of the incident wave packets are
separated bya. We notice that the peak value is insensitive to
the incident wave vectork0. In fact, if k0 is sufficiently large
such thatk0s0@1 or k0q0@1, we find that the peak value of
K is given by

Kst0d < 3. s6d

This result can be derived analytically for Gaussian wave
functions. According to Eq. (4), CsxA,xB,t0d
=NcsxAdc*sxBdsinfk0sa−xA+xBdgusxA−xB−ad, wherec is a
Gaussian function andN is a normalization constant. Quan-
tum correlation between the particles is described by the in-
terference term sinfk0sa−xA+xBdg, which depends only on
the relative coordinate. In the case wherek0 is large as stated,
we can carry out the integral(5) approximately by discarding
fast oscillatory(spatial) terms[12]. The four step functions
that would appear in the integral(5) can be taken care of by
using the symmetry property of the wave function(3). The
result is an interesting integer value 3, which agrees very
well with the numerical calculations in Fig. 1.

Transient entanglement arising from quantum interference
between the incident and the scattered wave packets is also
observed in various interaction potentials with a dominant
repulsive core. For example, we have examined a more real-
istic potential for atom-atom interactions, namely, the Morse
potential Vsxd=V0se−2asx−x0d−2e−asx−x0dd, where x0 is the
minimum potential position, andV0 and a are the strength
and range of the potential, respectively. The Morse potential
is attractive forx.x0, but becomes strongly repulsive for
x!x0. With initial Gaussian wave packetsf−sxA,0d and
f+sxB,0d, we employ the split-operator method to obtain the
time-dependent wave function.

In Fig. 2, a typicalK is illustrated as a function of time.
Similar to the hard-wall problem,K reaches a maximum
when strong interference between the incident and reflected
waves occurs(see the inset). However, the peak value ofK
can be substantially higher than 3. The reasons are compli-
cated by the existence of bound states and interference ef-
fects involving nontrivial wave packet spreading inside the
potential well. In addition, the main phase factors ofCr are
no longer e±ik0x, but are approximated by
exps±iexÎE−Vsjddjd (whereE is the energy), according to
the WKB argument. The nonlinear position dependence in
the phase would cause extra cancellations in the integral(5)
and hence reduce the purity value[12].

FIG. 1. K as a function of dimensionless timet for various
incident velocities in the hard-wall problem. The initial wave packet
separation is 2q0=20s0. The dimensionless quantityk0s0 is propor-
tional to the incident speed. All the three curves correspond to the
same initial wave packet widths0.

FIG. 2. An illustration of the time dependence ofK in the Morse
potential problem with the initial wave packet parametersk0s0=3
andq0=30s0. The parameters of the potential area=s0, x0=10s0,
V0=24"2/ms0

2. The inset shows the absolute square of the relative
coordinate wave function whenK reaches the maximum.
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An important feature shown in Fig. 2 is thatK is greater
than 1 in the final state, i.e., the two particles are entangled
after the scattering is completed. This is in sharp contrast to
the hard-wall problem in which the final statef+sxA

−a,tdf−sxB+a,td is disentangled. This phenomenon can be
analyzed by studying the scattering phase factor in the long
time limit. Let us consider a general short range potential
with an impenetrable hard core. For elastic scattering, the
long time two-particle wave function in momentum space
takes the general form

FskA,kB,td = f̃−s− kAde−ikA
2t/2f̃+s− kBde−ikB

2t/2eifskA,kBd, s7d

where f̃± is the spatial Fourier transform of the initial wave
packetsf±, andfskA,kBd is the scattering phase angle. The

negative signs in the argument off̃± are due to the change of
propagation directions after the scattering, assumingkA.0
andkB,0.

The purity of the state(7) is given by

P =E E E E dkAdkA8dkBdkB8 u f̃−s− kAdu2u f̃+s− kBdu2

3u f̃−s− kA8du2u f̃+s− kB8du2 3 exphiffskA,kBd + fskA8,kB8d

− fskA,kB8d − fskA8,kBdgj. s8d

Therefore the purity function and the scattering phase angle
are related. We note thatfskA,kBd=ffskA−kBd /2g is a func-
tion of kA−kB, because of the separability of the Hamiltonian
(2). In the case of the hard-wall problem,fskd is purely a
linear function ofk and hence the exponent in Eq.(8) is zero.
This explains whyP=1 (i.e., disentangled states) for the
hard-wall problem. For general potentials,fskd depends onk
nonlinearly, and hence the phase angles in the exponent can-
not be completely cancelled. In other words, the nonlinear
property of the scattering phase shift is the key to the gen-
eration of entanglement in scattering processes[13].

If the variation off is small within the width off̃±skd [or

equivalently the width off̃±skd is sufficiently narrow], we
may expandf around the peak atkA=k0, kB=−k0, i.e.,

fsjd < fsj̄d + f8sj̄dsj − j̄d + f9sj̄dsj − j̄d2/2, s9d

wherej=skA−kBd /2 andj̄=k0. In this way the combinations
of phase angles in Eq.(8) can be reduced to a simple expres-

sion that is proportional to the second derivativef9sj̄d,

fSkA − kB

2
D + fSkA8 − kB8

2
D − fSkA − kB8

2
D − fSkA8 − kB

2
D

< −
f9sk0d

4
skA − kA8dskB − kB8d. s10d

For Gaussianf̃±, a direct integration gives an approximate
expression ofK,

K < Î1 + ff9sk0d/2s0
2g2. s11d

This expression indicates how the degree of entanglement is
controlled by f9sk0d and the widths of the incident wave
packets.

The nonlinear dependence ofk in fskd is responsible for
the generation of entanglement. For potentials that allow
quasibound states or resonances,fskd can be a highly non-
linear function ofk. This suggests an interesting mechanism
that quantum entanglement can be enhanced near scattering
resonances. We illustrate this phenomenon in a “cavity” po-
tential model:Vsxd=gdsx− l0d for uxu.a and Vsxd=` for
uxu,a, whereg.0 is the strength of thed-function potential
at x= l0.a. In this model, the hard wall atx=a and the
d-function potential form a cavity for matter waves. The
scattering phase factor can be calculated analytically, and
reads

eifskd = e−2ikl0
− ik cosfksl0 − adg + sk − igdsinfksl0 − adg
ik cosfksl0 − adg + sk + igdsinfksl0 − adg

.

s12d

When g is sufficiently large, quasibound states appear at
k<np / sl0−ad with n being positive integers.

In Fig. 3 we illustrate the long timeK value as a function
of the incident wave numberk0. The range ofk0 shown cor-
responds to the third resonance zone wheref9 has two
maxima (indicated by arrows in the inset). ThereforeK is
expected to display two peaks according to the estimation
(11). Our numerical calculations(solid line), which were per-
formed without employing the approximation(9), confirm
the doublet feature. In fact we also observe doublets at the
first and second resonances(not shown). However, we re-
mark that Eq.(11) serves only as a guide to locate the reso-
nance. Its validity depends on the quadratic phase approxi-

FIG. 3. Long time value ofK as a function of incident wave
number in the cavity potential problem. The solid line is obtained
by numerical integration of(8); the dashed line corresponds to the
approximation formula(11). The potential parameter isg=3"2/ml,
wherel = l0−a. The wave packet has an initial widths0=2Î2l. The
inset shows the dimensionless second derivativef̃9; l−2d2f /dk2 of
the scattering phase angle.
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mation (9), which requires narrow bandwidths in the
momentum space. Therefore the discrepancy between exact
results and Eq.(11) could be expected.

In summary, we have examined several features of en-
tanglement generated in wave packet scattering processes.
For interaction potentials with a strong repulsive core, quan-
tum interference between the incident and reflected waves
can generate a transient entanglement. The peak value ofK
is close to an integer 3 for the hard-wall model, and higher
peak values ofK are observed numerically in a Morse po-
tential. Quite generally, the two particles can become en-
tangled after the collision. We establish a relation between
the long timeK value and the scattering phase shiftfskd. If
fskd is a linear function ofk, there is no entanglement in the
final state. We note that this feature is not limited to the
hard-wall problem, becausefskd is typically linear at high
energies"2k/ma@V for potentials with a short rangea.
Therefore entanglement production is more significant in
low-energy regimes, for example, in collisions of cold atoms.
Our analysis also indicates that the strong nonlinearity in
fskd around the scattering resonance can be exploited to en-
hance entanglement. However, in order to resolve the reso-

nance, incident wave packets should have a narrow energy
spread, i.e., a large initial spreads0. This would limit the
value ofK according to the estimation(11). Hence the idea
of resonance enhancement should be understood in a relative
sense, referring to the increase ofK whens0 is fixed.

This work is a step toward addressing interesting dynam-
ics of entanglement in scattering processes, and further in-
vestigations with more realistic models would be needed.
Comparing with three-dimensional situations, our one-
dimensional study has the limitation that angular correlations
are omitted. However, we remark that if one could choose to
observe scattered waves in two opposite directions only, then
the relevant quantum state may be analyzed by a one-
dimensional treatment. In this case, our result implies that
the scattering phase shift is a crucial quantity to determine
quantum entanglement.
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