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We analyze the resilience under photon loss of the bipartite entanglement present in multiphoton states
produced by parametric down-conversion. The quantification of the entanglement is made possible by a
symmetry of the states that persists even under polarization-independent losses. We examine the approach of
the states to the set of positive partial transpose states as losses increase, and calculate the relative entropy of
entanglement. We find that some bipartite distillable entanglement persists for arbitrarily high losses.
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I. INTRODUCTION

Parametric down-conversion has been used in many ex-
periments[1] to create polarization entangled photon pairs
[2]. Recent experimental[3,4] and theoretical[5–7] work has
studied the creation of strong entanglement of large numbers
of photons. The states under consideration are entangled
pairs of light pulses such that the polarization of each pulse
is completely undetermined, but the polarizations of the two
pulses are always anticorrelated. Such states are the polariza-
tion equivalent of approximate singlet states of two poten-
tially very large spins[8]. An application of the states for
quantum key distribution has been suggested[5].

In any realistic experiment photons will be lost during
propagation. It is therefore of great practical interest to ana-
lyze the resilience of the multiphoton entanglement under
loss. A priori this seems like a very difficult task, because it
requires the quantification of the entanglement present in
mixed quantum states of high or actually even infinite di-
mensionality. However, the multiphoton states introduced in
the above work exhibit very high symmetry—in the absence
of losses they are spin singlets. The related symmetry under
joint polarization transformations on both pulses is preserved
even in the presence of polarization-independent losses. This
makes it possible to apply the concepts of “entanglement
under symmetry” developed in Refs.[9–13] to the quantifi-
cation of the multiphoton entanglement in the presence of
losses. We calculate the degree of entanglement for the re-
sulting states of high symmetry, as quantified in terms of the
relative entropy of entanglement. We show that some(distill-
able) entanglement remains for arbitrarily high losses.

II. SYMMETRY OF THE STATES IN THE PRESENCE
OF LOSSES

In the above-mentioned experiments and proposals a non-
linear crystal is pumped with a strong laser pulse, and a
three-wave mixing effect leads to the creation of photons

along two directionsa and b. To a good approximation the
Hamiltonian in the interaction picture in a four-mode de-
scription is given by

H = eifksah
†bv

† − av
†bh

†d + e−ifksahbv − avbhd. s1d

The real coupling constantk is proportional to the amplitude
of the pump field and to the relevant nonlinear optical coef-
ficient of the crystal, andf denotes the phase of the pump
field. Photons are created into the four modes with annihila-
tion operatorsah, av, bh, bv, whereh andv denote horizontal
and vertical polarization. Note that both the modes and the
associated annihilation operators will be denoted with the
same symbol. In the absence of losses, this Hamiltonian
leads to a state vector of the form[5,6]

ucl = e−iHtu0l =
1

cosh2 t
o
n=0

`

einfÎn + 1 tanhn t uc−
nl, s2d

wheret=kt is the effective interaction time and

uc−
nl =

1
În + 1

1

n!
sah

†bv
† − av

†bh
†dnu0l

=
1

În + 1
o
m=0

n

s− 1dmun − mlah
umlav

umlbh
un − mlbv

. s3d

In experiments the pump phase is typically unknown, and
data is collected over time intervals much longer than the
pump field coherence time. We will therefore consider the
stater obtained from the state vector Eq.(2) by uniformly
averaging over the pump phasefP f0,2pd:

r =
1

cosh4 t
o
n=0

`

sn + 1dtanh2n t uc−
nlkc−

nu. s4d

The HamiltonianH is invariant under any joint polarization
transformation in the spatial modesa andb. That is, if one
definesa=sah,avd andb=sbh,bvd, thenH is invariant under
the joint application of the same unitaryU from SU(2) to
both vectors,a°Ua and b°Ub. This invariance ofH is
inherited by the multiphoton states created through the action*Electronic address: gabriel.durkin@qubit.org
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of H on the vacuum. This symmetry can be expressed as

VsUdrVsUd† = r s5d

for all UPSUs2d, whereVsUd=einJ, and the real vectorn is
specified byU=eins/2, s denoting the vector of Pauli matri-
ces. Here the angular momentum operatorJ can be written as
J=Ja+Jb. The components ofJa associated with spatial
modea are given by the familiar quantum Stokes parameters
Ja,x=sa+

†a+−a−
†a−d /2, Ja,y=sal

†al −ar
†ard /2, and Ja,z=sah

†ah

−av
†avd /2, with a±=sah±avd /Î2 corresponding to light that is

linearly polarized at ±45°, andal,r =sah± iavd /Î2 to left and
right-hand circularly polarized light. Analogous relations
hold for spatial modeb.

In the present work we are interested in the states created
by H in the presence of losses. These losses will be modeled
by four beam splitters of transmittivityhP f0,1g, one for
each of the modesah,av ,bh,bv, where the modes are mixed
with vacuum modes. Explicitly, the operationLh

a corre-
sponding to losses characterized byh acting on a single
modea is given by

Lh
asrd = o

n=0

`

Ln
arsLn

ad†, s6d

with Ln
a being given by

Ln
a =

1
În!

s1 − hdn/2anhs1/2da†a. s7d

One can easily verify that these operators satisfy

o
n=0

`

sLn
ad†Ln

a = 1, s8d

required for trace preservation. In this paper we are inter-
ested in the situation where an equal amount of loss occurs in
all four modes. We will denote the corresponding quantum
operation by

Lh = Lh
ah ^ Lh

av ^ Lh
bh ^ Lh

bv. s9d

It is not difficult to apply this loss channel to the stater of
Eq. (4). However, the resulting expression is quite unwieldy,
and quantifying the entanglement present in the state seems
like a hopeless task at first sight. We will now discuss gen-
eral properties of the resulting state that allow a simple pa-
rametrization and as a consequence the determination of its
entanglement.

In the absence of losses, all components of the state cre-
ated by the action ofH have an equal number of photons in
thea modes and in theb modes, since photons are created in
pairs. The state vectorucl of Eq. (2) is a superposition of
terms corresponding to different total photon numbers. For
any given term we will denote the number of photons in the
a modes bya=ah+av, whereah is the number of photons in
modeah, etc. Analogously, the number of photons in theb
modes is denoted byb=bh+bv. The relative phase between
terms with different values ofa or b depends on the pump
phasef. The corresponding coherences in the density matrix
are removed when averaging over the pump phase.

Losses lead to the appearance of terms withaÞb. The
stater8=Lhsrd after losses now has the form

r8 = o
a,b=0

`

Psa,bdrsa,bd, s10d

wherePsa ,bd is the probability to have photon numbersa
and b in the a and b modes respectively, andrsa,bd is the
corresponding state. In the state before losses, the terms
rsa,ad are maximally entangled states(for aÞ0), denoted by
uc−

alkc−
au in the notation of Eq.(3). Losses reduce this en-

tanglement, but do not make the state become separable, as
will be seen below.

The state vectoruah,avlubh,bvl corresponds to a spin
state vector u ja,malu jb,mbl with ja=sah+avd /2, ma=sah

−avd /2, jb=sbh+bvd /2, mb=sbh−bvd /2. Note that in this
representation a single photon corresponds to a spin-1/2 sys-
tem. A state with fixed photon numbersa andb thus corre-
sponds to a state of two fixed general spinsja=a /2 and jb
=b /2.

The key feature of the lossy channelLh of Eq. (9) is that
it does not destroy the symmetry described by Eq.(5). We
have that

VsUdLhsrdVsUd† = Lhsrd s11d

for all lossesh and all UPSUs2d. To sketch the argument
why this symmetry is retained we will resort to the Heisen-
berg picture. Polarization-independent loss in thea modes
can be described by the map

a ° a8 = Îh a + Î1 − h c, s12d

wherec=sch,cvd is a vector of unpopulated modes that are
coupled into the system due to the loss. ApplyingU
PSUs2d to a8 gives

a9 = Ua8 = ÎhUa + Î1 − hUc. s13d

On the other hand, applying firstU and then the loss opera-
tion gives

a9 = ÎhUa + Î1 − h c, s14d

in which the last term is different. However, this term just
corresponds to a coupling in of unpopulated modes with a
coefficient Î1−h. The resulting lossy channel is invariant
under the mapc°Uc, since these modes are unpopulated.
This implies that the state after application of the loss opera-
tion Lh has the same symmetry as before. Note that for this
argument to hold, the amount of loss in thea andb modes
does not have to be the same, since the transformations are
applied independently to each ofa and b. However, within
each spatial mode, losses must be polarization insensitive.

The identification of the above symmetry dramatically
simplifies the description of the resulting states. The most
general statersa,bd with fixed value ofa and b for which
VsUdrsa,bdVsUd†=rsa,bd for all UPSUs2d is of the form
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rsa,bd = o
j=u ja−jbu

ja+jb

m j
sa,bdV j

sa,bd, s15d

where ja=a /2, jb=b /2 [13], essentially as a consequence of
Schur’s lemma[14]. Here, them j

sa,bd form a probability dis-
tribution for all sa ,bd in the allowed values forj . In turn,
V j

sa,bd is up to normalization to unit trace a projection onto
the space of total spinj (for fixed ja=a /2, jb=b /2). That is,
V j

sa,bd=1 j
sa,bd / s2j +1d, where 1 j

sa,bd is equal to the identity
when acting on the space labeled bya, b, and j , and zero
otherwise[13,15].

As an example, let us consider the case with exactly one
photon in each spatial mode, i.e.,a=b=1. Then there are
just two terms in the expansion of Eq.(15), proportional to
V0

s1,1d and V1
s1,1d. The stateV0

s1,1d is the projector onto the
two-photon singlet state with state vectorfsah

†bv
†

−av
†bh

†d /Î2gu0l, while V1
s1,1d is the normalized projector onto

the spin-1 triplet. The trace conditionm0
s1,1d+m1

s1,1d=1 means
that the set of all invariant statesrs1,1d is characterized by just
one parameter. Note that the most general state with exactly
one photon in each spatial mode would be characterized by
15 parameters.

III. QUANTIFYING THE ENTANGLEMENT

In order to quantify the entanglement in a given physical
situation, one has to determine the coefficientsPsa ,bd of Eq.
(10) andm j

sa,bd of Eq. (15), which may be calculated from the
polarization dependent photon counting probabilities
psah,av ,bh,bvd. These in turn can be determined by explic-
itly applying the loss channelLh of Eq. (9) to the stater of
Eq. (4). One finds

psah,av,bh,bvd =
ha+bs1 − hda+b

fcoshsktdg4ah!av!bh!bv!
3 o

m=m0,n=n0

`

3
fs1 − hdtanhsktdg2sm+ndsm!d2sn!d2

sm− ahd!sm− bvd!sn − avd!sn − bhd!
,

s16d

wherem0=maxsah,bvd andn0=maxsav ,bhd. The probabili-
tiesPsa ,bd are obtained by summing this expression over all
ah, av, bh, bv with ah+av=a andbh+bv=b.

The coefficientsm j
sa,bd may be written as linear combina-

tions of thepsah,av ,bh,bvd via the Clebsch-Gordan coeffi-
cients[14] by means of the standard procedure of “coupling
spins.” Polarization-sensitive photon counting in the spatial
modesa and b corresponds to the basis spanned by the
u ja,malu jb,mbl, while the m j

sa,bd and V j
sa,bd are defined in

terms of the total spin, corresponding to the labelj . Since the
m j

sa,bd characterize the normalized statersa,bd, they only de-
pend on the relative probabilities of the different values of
ah, av, bh, bv for givena andb. Equation(16) then implies
that they depend on the interaction timet and the transmis-
sion h only via the combinationj=s1−hdtanhsktdP f0,1g,
which ranges from zero for perfect transmission(or, less in-
terestingly, zero interaction time) to one in a limit of com-
plete loss and infinite interaction time.

For example, fora=b=1, the single independent param-
eterm0

s1,1d is given by

m0
s1,1d = 1 −

3

2
fps1,0,1,0d + ps0,1,0,1dg/Ps1,1d, s17d

where as before Ps1,1d=ps1,0,1,0d+ps1,0,0,1d
+ps0,1,1,0d+ps0,1,0,1d. This gives

m0
s1,1d = s1 + j2/2d/s1 + 2j2d. s18d

To quantify the entanglement present in the total state,
one can proceed by considering eachrsa,bd separately. There
is no unique measure of entanglement for mixed states. In-
stead, there are several inequivalent ones, each of which is
associated with a different physical operational interpretation
[16,17]. The relative entropy of entanglement[18], which
will be employed in the present paper specifies to which
extent a given state can be operationally distinguished from
the closest state that is regarded as being disentangled. The
relative entropy of entanglement of a stater is defined as

ERsrd = inf
sPD

Ssr i sd, s19d

where Ssr isd=trfr log r−r log sg denotes the quantum
relative entropy of the stater relative to the states. HereD
is taken to be the set of states with positive partial transpose
[19] (PPT states). This set of states includes the set of sepa-
rable states, but in general also contains bound entangled
states[20]. The relative entropy of entanglement is an upper
bound to the distillable entanglement[16], providing a mea-
sure of the entanglement available as a resource for quantum
information purposes[21].

The symmetry of the states dramatically simplifies the
calculation of the relative entropy of entanglement. As fol-
lows immediately from the convexity of the relative entropy
and the invariance under joint unitary operations, the closest
PPT state can always be taken to be a state of the same
symmetry[10,13]. Hence, the closest PPT state is character-
ized by the same small number of parameters. For simplicity
of notation, we will denote the subset of state space corre-
sponding to specific numbersa, b of photons as
sa ,bd-photon space. In the(1,1)-photon space let us denote
the closest PPT state as

ss1,1d = z0
s1,1dV0

s1,1d + s1 − z0
s1,1ddV1

s1,1d. s20d

Forming the partial transpose of this state, and demanding
that the resulting operator be non-negative, gives the condi-
tion z0

s1,1dø1/2. In this simplest space, all symmetric states
lie on the straight line segmentm0

s1,1dP f0,1g with the PPT
region extending from the origin to the midpoint(see Fig. 1).

In general, for higher photon numbersa andb, the set of
symmetric states are represented by a simplex in a
fminsa ,bd+1g-dimensional space, the coordinates of which
are denoted bym j

sa,bd. In turn, the PPT criterion gives rise to
a number of linear inequalities, such that the set of invariant
operators with a positive partial transpose corresponds again
to a simplex. The intersection of the two simplices corre-
sponds to the invariant PPT states, and the coordinates are
denoted byz j

sa,bd [22].
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The situation witha=b=1,2,3 isdepicted explicitly in
Fig. 1. The simplex corresponding to symmetric states, char-
acterized by the condition that them j

sa,bd form a probability
distribution, is in these three cases a straight line segment, an
equilateral triangle, and a regular tetrahedron, respectively.
The vertices of the simplex represent the normalized projec-
tors V j

sa,bd. States in the interior of the simplex are convex
combinations of all the allowed projectors. The PPT set with
the same symmetry is clearly marked.

Figure 1 also shows the curves traced by the down-
conversion states when they are subject to loss. As discussed
above, the position of the states on the curve is determined
by the single parameterj. For perfect transmission corre-
sponding toh=1 the quantum state in ana=b photon space
hasm0

sa,bd=1 for all values oft, corresponding to maximal
entanglement. As losses are increased the state migrates
through the parameter space towards the PPT boundary. It is
an important immediate consequence of Eq.(18) that for all
lossesh.0, the numberm0

sa,ad is always greater than 1/2 for
any finite t and for alla. For any finitet, m0

sa,ad→1/2 asj
→1 (which corresponds to a limit of zero transmission time
and infinite interaction time). This holds true forsa ,ad
=s1,1d, but also for higher values ofa: the state remains

outside the PPT set for any nonvanishingt and for arbitrarily
high losses. Therefore, the above results show that there is
always some entanglement in the down-conversion state, as
quantified in terms of the relative entropy of entanglement.
As a corollary, which one can already infer from the lowest
dimensional subspace,sa ,ad=s1,1d, there is actually distill-
able entanglement in the down-conversion state, regardless
of how lossy the transmission from the source to the detector.

We now proceed to quantify the entanglement in the states
more explicitly. SinceER is convex and the set of symmetric
PPT states is convex, finding the closest states amounts to
solving a convex optimisation problem. For different values
of a, b the quantitiesSsrsa,bd issa,bdd have been evaluated,
wheressa,bd denotes the PPT state which is the unique global
minimum in the convex optimization problem, i.e., the PPT
state closest to the down-conversion state. For generic states,
this optimization problem would still be convex, yet, the
dimensionality of state space grows assa+1d2sb+1d2−1.
The symmetry dramatically reduces the dimensionality of the
constraint set to searched to minsa ,bd, and thus makes the
quantification of the entanglement a feasible task. For in-
stance, for a state with three photons on each side, one has to
consider only three objective variables instead of 255. The
total relative entropy of entanglement is given by the expres-
sion

ERsrd = o
a,b=0

`

Psa,bdERsrsa,bdd. s21d

The average photon number before lossN is related to the
interaction time t as N=2 sinh2sktd. The average photon
number after loss isn=hN. Figure 2 shows the relative en-
tropy of entanglement calculated as described above forN
=0.5,N=1, andN=3. One sees that significant entanglement
remains even for substantial losses.

IV. CONCLUSIONS

We have shown how symmetry considerations make pos-
sible the quantification of entanglement for states produced

FIG. 1. The simplices of symmetric states for the cases of
sa ,bd, a=b=1,2,3,respectively. The equilateral triangle has been
marked with contour lines, on each of which one of the parameters
is constant. The set of PPT states is indicated by the grey line
segment in the top graph, the shaded area of the(2,2) triangle, and
the filled polygon which obscures them3

s3,3d=1 vertex in the(3,3)
tetrahedral space. In all graphs only the projector of highest spin is
within the PPT set. For all three cases, the set of all possible down-
conversion states is a curve ending at the boundary of the PPT set,
shown by the solid black line for the(1,1) space, and by the dotted
curves for the(2,2) and(3,3) spaces. The position of the state on the
curve is determined by the parameterj=s1−hdtanhsktd.

FIG. 2. Lower bounds to the relative entropy of entanglement
for down-conversion states with initial average photon numbers of
0.5 (solid), 1 (dashed), and 3(dotted line) subject to loss, evaluating
the sum of Eq.(21) up to a truncation ofa, bø5. This gives a good
approximation to the total entanglement for average photon num-
bers before loss up to about 3.
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by parametric down-conversion and subject to losses. The
resilience of the entanglement of these multiphoton states
under photon loss makes them an excellent system for the
experimental demonstration of entanglement of large photon
numbers[4] and good candidates for quantum communica-
tion schemes[5].

ACKNOWLEDGEMENTS

G.A.D. was supported by EPSRC, GR/M88976, J.E. by
the European Union(EQUIP, IST-1999-11053 and QUPRO-
DIS, IST-2001-38877), the A.-v.-Humboldt Foundation and
the DFG (Schwerpunkt QIV), and C.S. by a Marie Curie
grant of the EU(HPMF-CT-2001-01205).

[1] For recent reviews, see A. Zeilinger, Rev. Mod. Phys.71,
S288(1999); N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden,
ibid. 74, 145 (2002); D. Bouwmeester, A. Ekert, and A.
Zeilinger, The Physics of Quantum Information(Springer,
Heidelberg-Berlin-New York, 2000).

[2] P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V.
Sergienko, and Y. Shih, Phys. Rev. Lett.75, 4337(1995).

[3] A. Lamas-Linares, J. C. Howell, and D. Bouwmeester, Nature
(London) 412, 887(2001); F. De Martini, G. Di Giuseppe, and
S. Pádua, Phys. Rev. Lett.87, 150401(2001).

[4] H. S. Eisenberg, G. Khoury, G. A. Durkin, C. Simon, and D.
Bouwmeester, Phys. Rev. Lett.93, 193901(2004).

[5] G. A. Durkin, C. Simon, and D. Bouwmeester, Phys. Rev. Lett.
88, 187902(2002).

[6] C. Simon and D. Bouwmeester, Phys. Rev. Lett.91, 053601
(2003).

[7] M. D. Reid, W. J. Munro, and F. De Martini, Phys. Rev. A66,
033801(2002); A. B. U’Ren, K. Banaszek, and I. A. Walms-
ley, Quantum Inf. Comput.3, 480 (2003).

[8] J. C. Howell, A. Lamas-Linares, and D. Bouwmeester, Phys.
Rev. Lett. 88, 030401(2002).

[9] R. F. Werner, Phys. Rev. A40, 4277(1989).
[10] E. M. Rains, Phys. Rev. A60, 179 (1999).
[11] J. Eisert, T. Felbinger, P. Papadopoulos, M. B. Plenio, and M.

Wilkens, Phys. Rev. Lett.84, 1611 (2000); B. M. Terhal and
K. G. H. Vollbrecht,ibid. 85, 2625(2000).

[12] K. Audenaert, J. Eisert, E. Jané, M. B. Plenio, S. Virmani, and
B. De Moor, Phys. Rev. Lett.87, 217902(2001); K. Aude-
naert, B. De Moor, K. G. H. Vollbrecht, and R. F. Werner,
Phys. Rev. A66, 032310(2002).

[13] K. G. H. Vollbrecht and R. F. Werner, Phys. Rev. A64,

062307(2001).
[14] H. F. Jones,Groups, Representations and Physics, 2nd ed.(In-

stitute of Physics, London, 1998).
[15] J. Schliemann, Phys. Rev. A68, 012309(2003).
[16] The measures distillable entanglement and entanglement cost

specify certain optimal conversion rates: these are the rates
that can be achieved in an asymptotic extraction of and prepa-
ration procedure starting from maximally entangled qubit
pairs. These procedures are thought to be implemented by em-
ploying local quantum operations and classical communication
(LOCC) only [10,17].

[17] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K.
Wootters, Phys. Rev. A54, 3824(1996).

[18] V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight, Phys.
Rev. Lett. 78, 2275(1997); V. Vedral and M. B. Plenio, Phys.
Rev. A 57, 1619(1998); J. Eisert, C. Simon, and M. B. Plenio,
J. Phys. A35, 3911(2002).

[19] This is the transposition with respect to one part of a bipartite
quantum system. If the resulting partial transpose is a positive
operator, then the original state is said to have a positive partial
transpose. See A. Peres, Phys. Rev. Lett.77, 1413(1996).

[20] M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Rev.
Lett. 80, 5239(1998).

[21] With the methods of Refs.[12], the asymptotic versions
E`srd=limn→`ERsr^nd /n would in principle also be accessible
for this class of states.

[22] The set of bipartite PPT states with SUs2d symmetry has been
investigated independently by B. Hendriks(Diploma thesis,
University of Braunschweig, 2002) under the supervision of R.
F. Werner.

RESILIENCE OF MULTIPHOTON ENTANGLEMENT… PHYSICAL REVIEW A 70, 062305(2004)

062305-5


