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Resilience of multiphoton entanglement under losses
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We analyze the resilience under photon loss of the bipartite entanglement present in multiphoton states
produced by parametric down-conversion. The quantification of the entanglement is made possible by a
symmetry of the states that persists even under polarization-independent losses. We examine the approach of
the states to the set of positive partial transpose states as losses increase, and calculate the relative entropy of
entanglement. We find that some bipartite distillable entanglement persists for arbitrarily high losses.
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I. INTRODUCTION along two directionsa andb. To a good approximation the

. . . Hamiltonian in the interaction picture in a four-mode de-
Parametric down-conversion has been used in many ex-

periments[1] to create polarization entangled photon pairs cription is given by
[2]. Recent experiment#B,4] and theoretical5—7] work has H=e%(a/b - a'b) + e¢x(ash, — a,by). (1)
studied the creation of strong entanglement of large numbers ) ) ) )
of photons. The states under consideration are entanglede real coupling constamtis proportional to the amplitude
pairs of light pulses such that the polarization of each pulsé?f .the pump field and to the relevant nonlinear optical coef-
is completely undetermined, but the polarizations of the twdicient of the crystal, and) denotes the phase of the pump
pulses are always anticorrelated. Such states are the polariZig!d- Photons are created into the four modes with annihila-
tion equivalent of approximate singlet states of two potenfion operatorsa,, a,, by, b,, whereh andv denote horizontal
tially very large spins[8]. An application of the states for and vgrucal polfar_lza_tlon. Note that poth the modes a_nd the
quantum key distribution has been suggestd associated annihilation operators will be denpted w!th the
In any realistic experiment photons will be lost during Same symbol. In the absence of losses, this Hamiltonian
propagation. It is therefore of great practical interest to anal@ds to a state vector of the forf§,6]
lyze the resilience of the multiphoton entanglement under o
loss. A priori this seems like a very difficult task, because it |y =eH0) = 1 > én+1tanf 7y,  (2)
requires the quantification of the entanglement present in costt 75
mixed quantum states of high or actually even infinite di- _ L L
mensionality. However, the multiphoton states introduced ifVhere7=«t is the effective interaction time and

the above work exhibit very high symmetry—in the absence 1 1

of losses they are spin singlets. The related symmetry under |¢2) = ’, —|(a,T1bI - albﬁ)”|0>

joint polarization transformations on both pulses is preserved vn+1n

even in the presence of polarization-independent losses. This 1 0

makes it possible to apply the concepts of “entanglement = — > (- 1)m|n—m>ah|m>av|m>b In-m), . (3)
under symmetry” developed in Refi@-13 to the quantifi- v+ 1m=o " ’

cation of the multiphoton entanglement in the presence o{
losses. We calculate the degree of entanglement for the r
sulting states of high symmetry, as quantified in terms of th
relative entropy of entanglement. We show that s¢distill-
able entanglement remains for arbitrarily high losses.

n experiments the pump phase is typically unknown, and
Yata is collected over time intervals much longer than the
%ump field coherence time. We will therefore consider the
statep obtained from the state vector E@) by uniformly
averaging over the pump phage= [0, 27):

Il. SYMMETRY OF THE STATES IN THE PRESENCE 1 . n
= +
OF LOSSES P COSHl Tngo (n :I.)’[Elnh'Z T|W_><¢[_]| . (4)

_ Inthe above-mentioned experiments and proposals & N0Re HamiltonianH is invariant under any joint polarization
linear crystal is pumped with a strong laser pulse, and gansformation in the spatial modesandb. That is, if one
three-wave mixing effect leads to the creation of phmo”%lefinesa:(ah,av) andb=(by,,b,), thenH is invariant under
the joint application of the same unitaty from SU?2) to
both vectorsa— Ua and b+—Ub. This invariance oH is
*Electronic address: gabriel.durkin@qubit.org inherited by the multiphoton states created through the action
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of H on the vacuum. This symmetry can be expressed as Losses lead to the appearance of terms with 8. The
statep’ =L, (p) after losses now has the form
V(U)pV(U) = p () ’

for all U e SU(2), whereV(U)=€™, and the real vectan is ) ” @f)

specified byU=€""’?, ¢ denoting the vector of Pauli matri- p = 2_ P(a, B)p" ", (10)
ces. Here the angular momentum operdtoan be written as «p=0

J=J,+J,. The components ofl, associated with spatial
modea are given by the familiar quantum Stokes parameter
Ja,x=(a1a+-aii)/2, Ja,y:(ajiai_a-:af)/zy and ‘]a,z:(aaah

whereP(«, B) is the probability to have photon numbexs
%mdﬁ in the a and b modes respectively, and®# is the

T ) a | _ ? . corresponding state. In the state before losses, the terms
~8,,)/2, witha.=(ap+a,)/y2 corresponding to light thatis () are maximally entangled statéfr «# 0), denoted by
linearly polarized at +45°, and,=(a,tia,)/v2 to leftand | =y in the notation of Eq(3). Losses reduce this en-

right-hand circularly polarized light. Analogous relations tanglement, but do not make the state become separable, as
hold for spatial modé. will be seen below.

In the present work we are interested in the states created The state vectolay, )| Bn, B,) corresponds to a spin
by H in the presence of losses. These losses will be modeleg ;e vector|ja,ma>|jb,mbu> with ”ja:(ah+a )12, ma=(a,
by four beam splitters of transmittivityy [0, 1], one for —a,)/2, jb=(Bn+B,)12, m=(B,—B,)/2. Note that in this

each of the modea,a, by, b,, where the modes are mixed ¢resentation a single photon corresponds to a spin-1/2 sys-
with vacuum modes. Explicitly, the operatiod, corre-  tom A state with fixed photon numbessand 3 thus corre-
sponding to losses characterized Byacting on a single sponds to a state of two fixed general spjgsa/2 andj,

modea is given by =BI2.
o The key feature of the lossy channg), of Eq. (9) is that
L3(p) = > L3(LA)T, (6) it does not destroy the symmetry described by &jy. We
K n=0 have that
A .
with Ly being given by V(U),C,](p)V(U)TZE,](p) (11)
1 U
Lp= - n)"2ayt22a, (7)  for all lossesn and allU e SU(2). To sketch the argument
Vit why this symmetry is retained we will resort to the Heisen-
One can easily verify that these operators satisfy berg picture. Polarization-independent loss in ghenodes

can be described by the map

aytp a— _
ngo (bota=1, © ar>a’=\pa+\1-7c, (12)
required for trace preservation. In this paper we are interwherec=(c;,,c,) is a vector of unpopulated modes that are

ested in the situation where an equal amount of loss occurs ifoupled into the system due to the loss. Applyikh
all four modes. We will denote the corresponding quantume SU(2) to a’ gives

operation by
~ a—
_ a b b, a’=Ua’ =vyUa+ 1 - gUc. (13
L,=Lr@ LYo Lhe LY. (9) 7 7

It is not difficult to apply this loss channel to the statef  On the other hand, applying firkt and then the loss opera-

Eq. (4). However, the resulting expression is quite unwieldy,tion gives

and quantifying the entanglement present in the state seems _ J—

like a hopeless task at first sight. We will now discuss gen- a’'=vyUa+ 1 -7y, (14

eral properties of the resulting state that allow a simple pa-

rametrization and as a consequence the determination of its which the last term is different. However, this term just

entanglement. corresponds to a coupling in of unpopulated modes with a
In the absence of losses, all components of the state creoefficient y1-7. The resulting lossy channel is invariant

ated by the action dfl have an equal number of photons in under the mag+— Uc, since these modes are unpopulated.

thea modes and in the modes, since photons are created inThis implies that the state after application of the loss opera-

pairs. The state vectdy) of Eq. (2) is a superposition of tion L, has the same symmetry as before. Note that for this

terms corresponding to different total photon numbers. Foargument to hold, the amount of loss in theand b modes

any given term we will denote the number of photons in thedoes not have to be the same, since the transformations are

amodes bya= o+ «,, Wheregy, is the number of photons in - applied independently to each afandb. However, within

modea,, etc. Analogously, the number of photons in thhe each spatial mode, losses must be polarization insensitive.

modes is denoted bg=p,+B,. The relative phase between  The identification of the above symmetry dramatically

terms with different values o or 8 depends on the pump simplifies the description of the resulting states. The most

phaseg. The corresponding coherences in the density matrixgeneral state'®# with fixed value ofa and 8 for which

are removed when averaging over the pump phase. V(U)p@PV(U)T=pl@P for all U e SU(2) is of the form
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Jatib For example, fore=B=1, the single independent param-
pP= 3 PP, (15 eteruy is given by
i=lia=il
3
wherej,=a/2, j,=B/2 [13], essentially as a consequence of utV=1 ~5[p(1,0,1,0 +p(0,1,0,3/P(1,1), (17)

Schur’s lemmg14]. Here, the,u(“"” form a probability dis-
tribution for all («,8) in the alfowed values foj. In turn, where as  before P(1,1)=p(1,0,1,0+p(1,0,0,)
Q*# is up to normalization to unit trace a projection onto +p(0,1,1,0+p(0,1,0,3. This gives

the space of total spip(for fixed j,=a/2, j,=8/2). That is,

1,1 _ 2 2
Q§“'3)=J1Jf“’ﬂ)/(2j+1), where Jl}""ﬁ) is equal to the identity po "= (1+E72I(1+ 26, (18)
when acting on the space labeled by B, andj, and zero To quantify the entanglement present in the total state,
otherwise[13,15. one can proceed by considering eath® separately. There

As an example, let us consider the case with exactly onés no unique measure of entanglement for mixed states. In-
photon in each spatial mode, i.ex=8=1. Then there are stead, there are several inequivalent ones, each of which is
just two terms in the expansion of E(L5), proportional to  associated with a different physical operational interpretation
Y and QY. The stateQ\"? is the projector onto the [16,17. The relative entropy of entanglemefit8], which
two-photon singlet state with state vecto[(a,ﬁb;r will be employed in the present paper specifies to which
—aifbﬁ)/v"2]|0), while Q(llvl) is the normalized projector onto €Xxtent a given state can be operationall_y dist_inguished from
the spin-1 triplet. The trace conditiqmgl'l>+ﬂ(ll'l):1 means the c_Iosest state that is regarded as belng d|se_\ntangled. The
that the set of all invariant statg&-? is characterized by just "elative entropy of entanglement of a statés defined as
one parameter. Note that the most general state with exactly Ex(p) = inf S(pll o), (19)
one photon in each spatial mode would be characterized by oeD

15 parameters. where S(pllo)=tr{plogp-plog o] denotes the quantum

IIl. QUANTIFYING THE ENTANGLEMENT relative entropy of the state relative to the stater. HereD
is taken to be the set of states with positive partial transpose

In order to quantify the entanglement in a given physical[19] (PPT states This set of states includes the set of sepa-
situation, one has to determine the coefficié?ta, 8) of Eq.  rable states, but in general also contains bound entangled
(10) and,u]?“'ﬁ) of Eq.(15), which may be calculated from the states{20]. The relative entropy of entanglement is an upper
polarization ~dependent photon counting probabilitiesbound to the distillable entanglemejiie], providing a mea-
p(an, @, , B, B,)- These in turn can be determined by explic- sure of the entanglement available as a resource for quantum
itly applying the loss channet,, of Eq. (9) to the state of ~ information purposeg21]. _ o
Eq. (4). One finds The symmetry of the states dramatically simplifies the
calculation of the relative entropy of entanglement. As fol-
lows immediately from the convexity of the relative entropy

)

na+ﬁ(1 _ 7]) atf

Plan @y, B By) = 41 1B 1A | > and the invariance under joint unitary operations, the closest
[cosixt) "an! ! Br! B! emgn=ng
PPT state can always be taken to be a state of the same
[(1 - p)tank( xt) ™M (ml)2(nt)? symmetry[10,13. Hence, the closest PPT state is character-
(m=ap)!(m=B ) (n=a)(n=pBp!" ized by the same small number of parameters. For simplicity

of notation, we will denote the subset of state space corre-
(16) sponding to specific numbersy, B of photons as
wheremy=max s, 3,) andny=maxa,, 8,). The probabili-  (a.B)-photon space. In thel,1)-photon space let us denote
tiesP(a, B) are obtained by summing this expression over allthe closest PPT state as
an, @, Bn, B, With an+a,=a and B+ B,=B. 1Y = MDD 4 (1 — ALD) LD, (20)
The coefficients;ﬁ“’ﬁ) may be written as linear combina- o 0 0 !
tions of thep(ay, @, Bn. B,) Via the Clebsch-Gordan coeffi- Forming the partial transpose of this state, a_nd demanding
cients[14] by means of the standard procedure of “couplingthat the resulting operator be non-negative, gives the condi-
spins.” Polarization-sensitive photon counting in the spatiafion £y <1/2. In this simplest space, all symmetric states
modesa and b corresponds to the basis spanned by thdie on the straight line segmemgl'l) €[0,1] with the PPT
liamib, My, While the MJ?“'B) and 0'*? are defined in region extending from the origin to the midpoiisee Fig. 1.
terms of the total spin, corresponding to the lap&ince the In general, for higher photon numbersand s, the set of
,u,}“’ﬁ) characterize the normalized stat€¢?, they only de- Symmetric states are represented by a simplex in a
pend on the relative probabilities of the different values oflmin(a, B)+1]-dimensional space, the coordinates of which
an a,, B B, for given a and 8. Equation(16) then implies  are denoted b)u(“‘ﬁ). In turn, the PPT criterion gives rise to
that they depend on the interaction timmand the transmis- a number of linear inequalities, such that the set of invariant
sion 7 only via the combinatioré=(1-#n)tanh«t) [0, 1], operators with a positive partial transpose corresponds again
which ranges from zero for perfect transmission less in- to a simplex. The intersection of the two simplices corre-
terestingly, zero interaction timiéo one in a limit of com-  sponds to the invariant PPT states, and the coordinates are
plete loss and infinite interaction time. denoted byg}“’ﬁ) [22].
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FIG. 2. Lower bounds to the relative entropy of entanglement
for down-conversion states with initial average photon numbers of
0.5(solid), 1 (dashegl and 3(dotted ling subject to loss, evaluating
(122 pe7u) the sum of Eq(21) up to a truncation o, B<5. This gives a good

approximation to the total entanglement for average photon num-
bers before loss up to about 3.

3.3
H =1

outside the PPT set for any nonvanishtrand for arbitrarily
high losses. Therefore, the above results show that there is
always some entanglement in the down-conversion state, as
guantified in terms of the relative entropy of entanglement.
As a corollary, which one can already infer from the lowest
dimensional subspacéy,@)=(1,1), there is actually distill-
able entanglement in the down-conversion state, regardless
FIG. 1. The simplices of symmetric states for the cases off NOW lossy the transmission from the source to the detector.
(a,B), a=B=1,2,3,respectively. The equilateral triangle has been ~ We now proceed to quantify the entanglement in the states
marked with contour lines, on each of which one of the parameter§ore explicitly. SinceEg is convex and the set of symmetric
is constant. The set of PPT states is indicated by the grey lin€PT states is conve, finding the closest sta@mounts to
segment in the top graph, the shaded area of2i® triangle, and  Solving a convex optimisation problem. For different values
the filled polygon which obscures the>¥=1 vertex in the(3,3 ~ of a, B the quantitiesS(p“#|lo'*#) have been evaluated,
tetrahedral space. In all graphs only the projector of highest spin isvhereo!®? denotes the PPT state which is the unique global
within the PPT set. For all three cases, the set of all possible dowmminimum in the convex optimization problem, i.e., the PPT
conversion states is a curve ending at the boundary of the PPT sedtate closest to the down-conversion state. For generic states,
shown by the solid black line for the,1) space, and by the dotted this optimization problem would still be convex, yet, the
curves for thg2,2) and(3,3) spaces. The position of the state on the dimensionality of state space grows &s+ 1)2('3+ 1)2-1.
curve is determined by the parameter(1-7)tanh(«t). The symmetry dramatically reduces the dimensionality of the

The situation witha==1,2,3 isdepicted explicitly in constraint set to searched to rfing), and thus makes the

Fig. 1. The simplex corresponding to symmetric states, cha@uantification of thg entanglement a feasible _task. For in-
acterized by the condition that t «B form a probability stance, for a state with three photons on each side, one has to

distribution, is in these three cases a straight line segment, nsider pnly three objective vanable:s |r_1$tead of 255. The
equilateral triangle, and a regular tetrahedron, respectivel)}?taI relative entropy of entanglement is given by the expres-
The vertices of the simplex represent the normalized projecz'°"

tors Q' States in the interior of the simplex are convex

M Ho*

combinations of all the allowed projectors. The PPT set with *
the same symmetry is clearly marked. Er(p) = > Pa, B)Er(p' ). (21
Figure 1 also shows the curves traced by the down- a,3=0

conversion states when they are subject to loss. As discussed

above, the position of the states on the curve is determineg,, average photon number before Ioss related to the
by the single parametef. For perfect transmission corre- ;o action timet as N=2 sinf(xt). The average photon

sponc?gng_tonzl the quantum state in an=,8 photon SPACe  humber after loss is= yN. Figure 2 shows the relative en-
has p; =1 for all values oft, corresponding to maximal o5y of entanglement calculated as described aboveNfor

entanglement. As losses are increased the state migrate$) 5 N=1 andN=3. One sees that significant entanglement
through the parameter space towards the PPT boundary. It }%ma’ins e\’/en for substantial losses.
an important immediate consequence of E@) that for all

(a,a)

lossesn> 0, the numbeg,“ is always greater than 1/2 for

any finitet and for all . For any finitet, ,ug“'“)—>1/2 asé V. CONCLUSIONS
—1 (which corresponds to a limit of zero transmission time
and infinite interaction time This holds true for(«, ) We have shown how symmetry considerations make pos-

=(1,1), but also for higher values aok: the state remains sible the quantification of entanglement for states produced
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