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The dynamics of the one-tangle and the concurrence is analyzed in the Lipkin-Meshkov-Glick model which
describes many physical systems such as the two-mode Bose-Einstein condensates. We consider two different
initial states which are physically relevant and show that their entanglement dynamics are very different. A
semiclassical analysis is used to compute the one-tangle which measures the entanglement of one spin with all
the others, whereas the frozen-spin approximation allows us to compute the concurrence using its mapping
onto the spin squeezing parameter.
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I. INTRODUCTION

In recent years, the interplay between entanglement and
quantum phase transitions has been the subject of many stud-
ies. Since the pioneering works on the Ising model in a trans-
verse magnetic field[1,2] exhibiting the key role played by
entanglement in quantum critical phenomena, lots of effort
have been devoted to characterize the intricate structure of
the ground state in spin systems[3–22] as well as in electron
models[23–25]. All these studies show that entanglement, a
genuine quantum property, can be used to probe the phase
diagram of a system and especially to detect quantum phase
transitions. Unfortunately, such analyses are often restricted
to one-dimensional(1D) systems where exact solutions exist
and allow one to deal with the thermodynamical limit. Usu-
ally, higher-dimensional systems require a numerical treat-
ment which is limited by the Hilbert space dimension which
grows exponentially with the number of degrees of freedom.
However, when the Hamiltonian has a large symmetry group
as is here the case, it is still possible to study the large-N
limit.

In the present paper, we considerN mutually interacting
spins 1/2 embedded in a magnetic field. The restriction of
this model to the fully symmetric subspace can be mapped,
via the Schwinger representation, onto interacting bosons in
a two-level system coupled by a tunneling term. Thus, al-
though it has initially been introduced by Lipkin, Meshkov,
and Glick (LMG) [26–28] in nuclear physics, this model is
also relevant to describe the Josephson effect or two-mode
Bose-Einstein condensate(BEC). This ubiquity in very dif-
ferent domains is certainly one of the reason why it has been
periodically rediscovered(see, for example, Refs.[29–31]).
Its integrability has even recently been proven in a series of
papers(see Ref.[32] for a review) and a complete solution
has been derived using the algebraic Bethe ansatz[33]. The
ground-state entanglement properties of this model have
been analyzed for both ferromagnetic[34,35] and antiferro-
magnetic coupling[36] using the concurrence[37] (see be-
low for details). Here, our goal is to analyze the entangle-
ment dynamics which has, so far, been mostly investigated in
1D spin systems[38,39].

The possibility of experiments in BEC’s has led several
groups to study the dynamics in the LMG model but en-
tanglement has been discussed only recently[40–43]. In this

study, we investigate the time evolution of two peculiar
states which are relevant in the BEC context since they cor-
respond to situations where all atoms are either in one of the
two modes or equally distributed between both modes. For
these two states, we discuss the entanglement dynamics
through two observables: namely, the one-tangle which
measures the entanglement of one spin with all others and
the concurrence which quantifies the two-spin entanglement.
In the next section, we introduce the LMG model and discuss
its phase diagram. In Sec. III, we define the entanglement
measures used throughout this paper and give several ca-
nonical examples. The ground-state entanglement properties
[34–36] are briefly recalled in Sec. IV. The quantum dynam-
ics is presented in Sec. V for the two states mentioned above.
We show that the one-tangle and the concurrence have com-
pletely different behaviors depending on the initial state.
These characteristics can be understood in several limiting
cases that we discuss in detail.

II. THE LIPKIN-MESHKOV-GLICK MODEL

We consider a system of mutually interacting spins 1/2
embedded in a magnetic field described by the following
Hamiltonian introduced by LMG[26–28] in a more general
form:

H = −
l

N
o
i, j

sx
i sx

j − ho
i

sz
i s1d

=−
2l

N
Sx

2 − 2hSz +
l

2
, s2d

where thesa’s are the Pauli matrices andSa=oisa
i /2. The

prefactor 1/N is necessary to get a finite free energy per spin
in the thermodynamical limit. The HamiltonianH preserves
the magnitude of the total spin and does not couple states
having a different parity of the number of spins pointing in
the magnetic field direction(spin-flip symmetry): namely,

fH,S2g = 0, s3d

FH,p
i

sz
iG = 0. s4d
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The phase diagram of this model can be easily derived
using a semiclassical description[30]. For a ferromagnetic
couplingsl.0d, the system undergoes a second-order quan-
tum phase transition at the critical fieldhc=l, whereas for
antiferromagnetic interactions, a first-order quantum phase
transition occurs at zero field.

III. ENTANGLEMENT MEASURES

To analyze the entanglement dynamics, we focus here on
two commonly used quantities: the one-tangle which mea-
sures the entanglement of one spin with the others and the
concurrence which measures the two-spin entanglement. For
a given pure stateucl, both quantities are computed from the
density matrixr= uclkcu.

The one-tangle is defined as follows:

ti = 4 detri
s1d = 1 −o

a

ksa
i l2, s5d

where ri
s1d is the one-spin reduced density matrix obtained

from r by tracing out over all spins except spini and where
kAl=Trfri

s1dAg. The one-tangleti ranges between 0 and 1. It
vanishes for a state such thatucl= ufli ^ uwl and reaches 1 for
maximally entangled states such as the famous Einstein-
Podolsky-Rosen(EPR) state[44]

uEPRl =
1
Î2

su↑↓l − u↓↑ld. s6d

To measure the two-spin entanglement, we consider the
concurrenceC introduced by Wootters[37]. This quantity is
computed from the two-spin reduced density matrixri,j ob-
tained by tracing outr over all spins except spinsi and j .
Next, we introduce the spin-flipped density matrixr̃i,j =sy
^ syri,j

* sy ^ sy where ri,j
* is the complex conjugate ofri,j.

The concurrenceC is then defined by

Ci,j = maxh0,m1 − m2 − m3 − m4j ; maxh0,Ci,j
* j, s7d

where themk’s are the square roots of the four real eigenval-
ues ofri,jr̃i,j and wheremi ùmi+1. The concurrence vanishes,
for example, for any stateucl= uxli ^ ufl j ^ uwl and reaches
its maximum valueC=1 for states such asuEPRl.

Let us also mention thatt andC are related through the
Coffman-Kundu-Wootters(CKW) conjecture [45] stating
that

ti ù o
jÞi

Ci,j
2 . s8d

Note that for pure two-spin states, we have an exact equality.
In the present study, we have systematically checked that this
conjecture(8) was always verified.

Finally, we would like to stress that tracing out the density
matrix r can induce or destroy some correlations between
spins. For instance, a nonseparable state, such as the
Greenberger-Horne-Zeilinger(GHZ) state[46]

uGHZl = ucl =
1
Î2

su↑↑↑l + u↓↓↓ld, s9d

has a maximum one-tanglest=1d and a vanishing concur-
rencesC=0d. It is thus important to keep in mind that these
measures only give partial information about the entangle-
ment of the state.

IV. GROUND-STATE ENTANGLEMENT

We recall in this section the main features of the ground-
state entanglement and we refer the reader to Refs.[34–36]
for a detailed discussion.

As explained in Sec. II, the ground state ofH is well
described by a mean-field approach showing that in the ther-
modynamical limit the ground state is given by a product
state [30] for which t=C=0. However, in the symmetric
phase(l.0 andh,l), we underline that the ground state is
twofold degenerate in the thermodynamical limit, whereas at
finite N, it is unique(except forh=0). In the degenerate case,
one must consider the thermal density matrix at zero tem-
perature[34] to compute the entanglement properties. This
implies in particular that the one-tangle in this phase is given
by t=1−sh/ld2 and thatC=0 in the large-N limit. However,
the finite-N corrections to this separable asymptotic form al-
low one to capture a nontrivial behavior of the rescaled con-
currenceCR=sN−1dC. This rescaling is actually the coordi-
nation number of each site and takes into account the fact
that the two-site entanglement, as measured by the concur-
rence, is, in this model, equally shared between all sites.

For a ferromagnetic couplingsl.0d, CR displays a cusp-
like behavior at the critical pointhc=l (see Fig. 1) whereCR
goes to 1 in the thermodynamical limit.

In the antiferromagnetic case,CR is a smoothly decreasing
function ofh but is discontinuous ath=0 where a first-order
transition occurs(see Fig. 1). For h=0+, CR reaches 1 in the
thermodynamical limit, but forh=0, the ground state is
given by zero total spin states for whichCR=0.

Except for this very special point, the ground state always
lies in the maximum spin sectorS=N/2 for anyl. Moreover,

FIG. 1. Rescaled concurrence of the ground state forl= +1
(thin line) and l=−1 (thick line) sN=103 spinsd. In both cases,
CR=0 for h=0.
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at finiteN and in the large-field limit, the ground state is the
fully polarized state in thez direction,

uc0l = uZl = ^ i=1
N u↑l, s10d

for which one also hasCR=0.
In the antiferromagnetic case, the entanglement properties

of the ground state(restricted to the maximum spin sector
S=N/2) have also been analyzed by Hineset al. [40] through
the von Neumann entropyEshd for bipartite systems. In BEC
language, the two subsystems correspond to the two compo-
nents of the condensate—i.e., to the states polarized in the ±x
direction. This quantity has thus nothing to do with the con-
currence and its behavior is indeed very different:E vanishes
for h=0 (since uc0l= uXl) whereasCR is maximum(in this
spin sector) and E is maximum in the large-field limit
whereasCR vanishes.

More recently, another entropySshd has been analyzed in
the LMG model[47]. This entropy is based on a bipartite
decomposition in two subsytems of sizeL and N−L. Here
Sshd has been found to be maximum at the critical pointhc in
agreement with a recent conjecture proposed by Hineset al.
[48]. Moreover, a logarithmic scaling has been observed and
may reveal an underlying 1D conformal field theory[47] for
the LMG model.

V. QUANTUM DYNAMICS

In this section, we analyze the quantum dynamics of two
initial states belonging to the maximum spin subspace
S=N/2: (i) the stateuXl fully polarized in thex direction
which corresponds, in BEC language, to a state where the
atoms are all localized in one of the two modes and(ii ) the
stateuZl fully polarized in thez direction which corresponds,
in BEC language, to a state where the atoms are equally
distributed between both modes(catlike state).

The quantum dynamics of these two states have already
been widely studied for this model in the BEC context
[40,41,49–54]. Here, we focus on the entanglement dynam-
ics by studying the time evolution oftsh,td and CRsh,td,
which do not depend on the spins kept in the trace operation
since states belonging to the subspaceS=N/2 are invariant
under the permutation group. This implies in particular thatt
and CR only depend on the magnetizationkSal and on the
correlation functionskSaSbl [55].

A. Time scales

As explained in Ref.[56], the spectrum ofH remains
discrete in the thermodynamical limit; i.e., the mean level
spacing remains finite whenN goes to infinity. For equidis-
tant levels, we would expect to have a Poincaré time that
does not depend onN. However, it turns out that the
Poincaré time scales here linearly withN. As noticed by
Milburn et al. [54], the semiclassical dynamics(see below)
mimics very well the quantum dynamics up to a given time
scaletsc, which is of the order of the Poincaré time. For times
smaller thantsc, the system thus remains nonentangled, and
in the large-N limit, it is described by the classical equations
of motion (see Appendix B). For times larger thantsc quan-

tum effects become important, some revivals of the wave-
packet are observed, and the latter approach fails. It is thus in
this regime that interesting and nontrivial entanglement prop-
erties must be analyzed. Consequently, we always consider a
dimensionless rescaled timem=4lt /N which allows us to
investigate the dynamics and to easily compare the results
for variousN. Of course, we have checked in each situation
that the time-averaged results were weakly sensitive to the
time range chosen provided this latter was sufficiently large.

We must also mention recent studies[52,53] which reveal
multiple time scales in the LMG model(called the boson-
Hubbard dimer model in these papers). However, the range
of validity of these results is confined toh!l /N (small-
tunneling-amplitude regime in boson language) which is not
the regime considered here. Yet we cannot exclude larger
characteristic time scales but such a study is beyond the
scope of the present paper and we shall leave this question
apart in the following.

B. zX‹ state

It is clear that the entanglement properties of theuXl state
are insensitive to the transformationh↔−h. Thus, as ex-
plained in Appendix A, one can, in this case, restrict our
analysis tolù0 andhù0.

(i) For h=0, the uXl state is an eigenstate ofH so that
tXsh=0d=0 andCXsh=0d=0 for all time t.

(ii ) For l=0, H is completely separable and thus bothtX
and CX vanish. However, for this state, this limit is highly
singular since, for any finite couplingl, the large-field limit
leads to nontrivial entanglement properties(tX→1) as can be
seen in Fig. 2.

Apart from these limiting cases, we have been unable to
get analytical expressions of the one-tangle for this state. We
have displayed in Figs. 2 and 3 the behavior oftX for differ-
ent values of the magnetic field as a function ofm.

For h!l, the characteristic energy scale driving the dy-
namics isl /N and hencet is almost periodic inm with
period 2p [Fig. 3 (bottom)]. In this regime, quantum fluctua-
tions are weak andt is a smooth function ofm. When m
increases, the depth of the hollows which corresponds to a

FIG. 2. Behavior oftX as a function ofm=4lt /N for different
values of the fieldh=0.5, 0.55, 0.8, 1 from bottom to top(l= +1
andN=103).
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revival of the wave packet decreases and eventually goes to
zero in the largem limit so that, in this limit,tX is almost
constant. Whenh increases, quantum fluctuations become
more and more important andtX becomes more and more
“noisy.” The maximum of these fluctuations is reached for
h=l /2 which corresponds to the critical field of the semi-
classical dynamics[41,54]. Below (above) this critical field,
kSxl (which represents the difference of population between
the two wells in the BEC problem) oscillates around a non-
vanishing(vanishing) value. In the other limith@l, where
the magnetic field dominates,tX goes to 1 and displays a
pseudoperiodic behavior inm with period 4p as can already
be inferred forh=l in Fig. 2 (top). At large times, the depth
of the cusplike behavior present form=0f4pg decreases and
t is also almost constant. To go beyond this qualitative de-
scription, we have computed the time-averaged value of the
one-tangletX as a function ofh. As shown in Fig. 4, the large
N limit of tX can be partially captured by a simple semiclas-
sical approach, especially when quantum fluctuations are
weak—i.e., far fromh=l /2.

For a detailed discussion of this approach, we refer the
reader to Refs.[41,54]. The main idea is to compute the
solution of the semiclassical equations for the quantitySa.

For an initial state polarized in thex direction, these equa-
tions can be exactly solved following Eilbecket al. [57] and
one gets

Sx
scstd =

N

2
cns2htuk2d, s11d

Sy
scstd = −

N

2
dns2htuk2dsns2htuk2d, s12d

Sz
scstd =

Nl

4h
sn2s2htuk2d, s13d

where cn, dn, and sn are the Jacobi elliptic functions and
wherek=l /2h (see Appendix B for details). TheseSa

sc’s are
periodic functions with a period 2Ksk2d /h for k2,1 and
2Ksk2d /l for k2.1 whereK denotes a complete elliptic in-
tegral of the first kind. Note that the casek2=1 is singular
since the upper and lower limits do not coincide.

Of course, if we compute the one-tangle using these semi-
classical expressions, we trivially find

tX
sc= 1 −

4

N2o
a

sSa
scd2 = 0 s14d

and, consequently,tX
sc=0 for all h. However, as said above,

the fluctuations oftX are pretty weak at least away from
h=l /2. Thus, assuming thattX is constant, we replacekSal2

by sSa
scd2:

tX = 1 −
4

N2o
a

kSal2 . 1 −
4

N2o
a

sSa
scd2. s15d

Obviously, this crude approximation is to be justified only
for constantkSal andSa

sc, provided the semiclassical descrip-
tion is meaningful—i.e., in the large-N limit. After time-
averaging theSa

sc’s over one period, we thus get a “semiclas-
sical time-averaged one-tangle.” This quantity is depicted in
Fig. 4, and as expected it is in excellent agreement away
from h=l /2. Near this point, since the quantum fluctuations
are very strong, the approximation(15) fails and the discrep-
ancy is large. In the large-field limit, one hasSa

sc=0 for all a
and thustX=1.

Let us now discuss the concurrence dynamics for theuXl
state whose behavior is depicted in Figs. 5 and 6 for different
values of the magnetic field. At small field[h,l /2 (see Fig.
5)], CX,R

* is most often negative but displays some peaks
(whereCX,R

* .0) which coincides with the hollows intX and
whose amplitude goes to zero whenm increases. As a result,
at large times, the rescaled concurrenceCX,R always van-
ishes. Whenh increases, this phenomenon is amplified and,
as for the one-tangle,CX,R

* fluctuates more and more until
h=l /2 where it reaches its minimum value. Above this criti-
cal field, CX,R

* increases whenh increases, but remains al-
ways negative at large times. Note that at short times there is,
for anyh, a “peak of concurrence” for whichCX,R

* is positive,
but as time goes on, it is always negative.

FIG. 3. Same as Fig. 2 forh=0.2, 0.3, 0.4, 0.45 from bottom
to top.

FIG. 4. Time-averaged value oftX as a function of the magnetic
field h for N=800, 1600sl= +1d. The solid line is obtained from
the “(semi) classical time-averaged one-tangle” as explained in the
text.
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To summarize, at sufficiently large times and for any val-
ues of the magnetic fieldh, the rescaled concurrenceCX,R
always vanishes.

C. zZ‹ state

The uZl state is an eigenstate of the operatorPisz
i which

commutes withH. As a consequence, at all times, one has
kSxl=kSyl=0, so that

tZ = 1 −
4

N2kSzl2. s16d

In addition and contrary to theuXl state, it is obvious that
the direction of the magnetic fieldh plays a role in the dy-
namics ofuZl. Thus, to investigate all possible situations, we
consider the caselù0 for all h, the regionl,0 being ob-
tained by transformations discussed in Appendix A.

(i) For h=0, H is trivially solvable as well as the time
evolution of theuZl state. As detailed in Ref.[55], one finds,
in this case,

tZsh = 0,td = 1 − cossm/2d2sN−1d, s17d

CZ,Rsh = 0,td =
1

4
„cossmdN−2 − 1 + hfcossmdN−2 − 1g2

+ f4 cossm/2dN−2sinsm/2dg2j1/2
…, s18d

where, as previously,m=4lt /N. The expression forCZ,Rsh
=0,td given above is obtained by noting that the condition

2r22
s2d , Îr11

s2dr44
s2d + ur14

s2du s19d

is always satisfied. Thus in the large-N limit, tZ is equal to 1
except form=0f2pg wheretZ=0 and, as expected, the con-
currence vanishes for allm. However, if one considers the
rescaled concurrence, a close inspection of expression(19)
shows that a periodic pulse also occurs form=0f2pg whose
width becomes sharper and shaper asN increases and whose
maximum height goes to 1 in the large-N limit.

At this stage, it is interesting to note thattZ andCZ,R are
strongly correlated in the sense that, when the one-spin en-
tanglement is large(and here maximum), the two-spin en-
tanglement is small except form.0f2pg. This is a relatively
surprising result which is also encountered in other regimes
(see below). Indeed, usually the trace operation destroys
some correlations and one expects that the absence of two-
spin entanglement might not be able to generate one-spin
entanglement. Nevertheless, as discussed in Sec. III, this
phenomenon is met for theuGHZl state, but here it is en-
countered for a nonstationary state which preserves this fea-
ture as time goes on.

(ii ) For l=0, the uZl state is an eigenstate ofH so that
tZsl=0d=0 andCZsl=0d=0 for all time t. Contrarily to the
uXl state, the limitl=0 coincides with the high-field regime
at finite l. Indeed, as discussed in Ref.[34], the uZl state is
the ground state ofH for h.l in the thermodynamical limit,
so thattZsh.ld.0 andCZsh.ld.0.

However, the rescaled concurrence has a nontrivial behav-
ior that can be captured due to its relation with the spin
squeezing parameter[58]

j2 =
4sDSnW'

d2

N
, s20d

which measures the spin fluctuations of a correlated quantum
state[58]. The subscriptnW' refers to an axis perpendicular to

the mean spinkSWl where the minimal value of the variance is
obtained.

Indeed, as shown in Refs.[59,60], for any state belonging
to the subspaceS=N/2 and eigenstate of the operatorPisz

i ,
one has

j2 = 1 −CR, s21d

provided the reduced density matrix elements of the state
considered verifyur14

s2duùr22
s2d. We have checked that actually

this inequality is always satisfied for anyh and for all the
times under investigation.

(iii ) The relation(21) thus allows us to deduce the res-
caled concurrence using the frozen-spin approximation used
in Ref. [49] to computej2 in two different regimes.

(a) For h.l, as explained above, theuZl state is the
ground state ofH in the infinite-N limit. So, even at finiteN,

FIG. 5. Behavior ofCX,R
* as a function ofm=4lt /N for different

values of the fieldh=0.3, 0.4, 0.45 from top to bottom(l= +1 and
N=103). The grey line corresponds to the thresholdC=0.

FIG. 6. Same as Fig. 5 forh=0.5, 0.8, 1, 2 from bottom
to top.
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one expectskSzl to be almost constant in this region. The
so-called frozen-spin approximation precisely consists in re-
placing, in the Heisenberg equation,Szstd by its initial value
N/2. Then, following Ref.[49] and using Eq.(21), one gets
an analytical expression for the rescaled concurrence,

CZ,R = 1 −Fcos2svtd +
w2

4h2sin2svtdG , s22d

with v=2Îhsh−ld.
(b) For h,0, the situation is, in fact, similar. Indeed, as

shown in Ref. [36], the uZl state is the ground state of
Hsl,0,h.0d in the thermodynamical limit. As detailed in
Appendix A, this implies that it is the highest-energy state of
Hsl.0,h,0d. Thus, the frozen-spin approximation can
also be used in the regionsh,0d and, according to Ref.[49],
one then obtains

CZ,R = 1 −Fcos2svtd +
4h2

w2 sin2svtdG . s23d

Of course, this approximation is more and more valid in
these regions(h,0 and h.l) when N increases. Con-
versely, at fixedN, it is safe for eitherh@l or h!0.

The only region where theuZl state is not an eigenstate of
H in the thermodynamical limit is 0,h,l. We have plotted
in Fig. 7 the behavior oftZ as a function of the rescaled
dimensionless timem=4lt /N for different values of the
magnetic fieldh in this range.

As explained above,tZ.0 for h,0 and h.l since,
there,uZl is an eigenstate ofH in the large-N limit. By con-
trast, forhP f0,lg, tZ is an oscillating function ofm with an
average value that is nonvanishing as can be seen in Fig. 7.
The time-averaged value oftZ for different N is shown in
Fig. 8.

As can be seen,tZ is a decreasing function ofN at fixedh
except forh=0 as discussed above. To determine its large-N
behavior, we have computedtZ for severalh, as a function of
N, up to N=5000. The results displayed in Fig. 9 do not
allow us to extract an asymptotic value but it is likely that for
hP f0,lg, limN→` tZÞ0.

As for the uXl state, we could have tried to reproduce this
behavior by a classical analysis, but unfortunately, theuZl
state is a fixed point of the classical equations of motion(B8)
and(B9). Thus, one must in this case use a real semiclassical
treatment analogous to that presented in Ref.[41] which con-
sists in averaging over classical trajectories near this fixed
point. However, as shown in Fig. 7,tZ is a strongly oscillat-
ing function so that the approximation(15) is not valid and
we did not compute the “semiclassical time-averaged one-
tangle” for theuZl state.

We now focus on the concurrence dynamics for theuZl
state, whose behavior is shown in Fig. 10 forh=5l. As can
be seen, the frozen-spin approximation is, in this case, in
good agreement with the exact(numerical) results. For
hP f0,lg, CZ,R

* is always negative so thatCZ,R=0. It is worth
noting that there is once again an “anticorrelation” between
the one-tangle and the rescaled concurrence sincetXÞ0
when CZ,R=0 for hP f0,lg, whereas for hP
g−` ,0gø fl ,`f, one hastX=0 andCZ,RÞ0. Indeed, in this
latter region whereuZl becomes an eigenstate in the thermo-
dynamical limit, one always has a nonvanishing rescaled
concurrence as can be seen in Fig. 11 where we have dis-
played the time-averaged value ofCZ,R as a function ofh. At
large uhu the frozen-spin approximation allows us to extract
the asymptotic behaviorCZ,R,ul /hu.

FIG. 7. Behavior oftZ as a function ofm=4lt /N for h=0.01
(grey) andh=0.9 (black) (l= +1 andN=103).

FIG. 8. Time-averaged value oftZ as a function of the magnetic
field h for N=400,800,1600sl= +1d.

FIG. 9. Behavior oftZ as a function ofN for h=0 (top) to 1
(bottom) with a stepDh=10−1 sl= +1d.
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VI. CONCLUSION AND OUTLOOKS

We have analyzed the one-spin and two-spin entangle-
ment dynamics for two different states. In the case of a state
fully polarized in thex direction, we have found a nontrivial
behavior of the one-tangle whose time-averaged value in-
creases monotonically when the magnetic field increases
whereas it has a vanishing concurrence for allh. By contrast,
for an initial state fully polarized in thez direction, the one-
tangle is nonvanishing only forhP f0,lg where its concur-
rence vanishes. Apart from this region, the one-tangle van-
ishes in the thermodynamical limit(since uZl is then an
eigenstate ofH) but the rescaled concurrence has a nontrivial
time-averaged value which can be understood using the
frozen-spin approximation introduced in Ref.[49].

Contrary to the ground-state entanglement, we did not
find a nontrivial singularity at the critical pointh=l but only
some enhanced fluctuations nearh=l /2 for theuXl state. For
the uZl state, we have not detected any peculiarity at this
point except that]htZ seems to be minimum there whereas
]htX is maximum.

We wish to emphasize that some experiments may be pos-
sible to investigate these dynamical entanglement, especially
the concurrence. Indeed, as explained in Sec. V C, the res-
caled concurrence can be related to the spin squeezing pa-
rameter as established in Refs.[59,60]. Thus, the behavior of
the CR as a function of the field should, in principle, be
measured for both the ground state anduZstdl. Nevertheless,
such an exciting perspective is of course conditioned by the
possibility to measure the squeezing parameter. Bose-
Einstein condensates are certainly the best candidates for
such experiments since it has already been possible to mea-
sure the angular momentum in such systems[61].
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APPENDIX A: SPECTRUM SYMMETRIES AND THEIR
IMPLICATIONS FOR THE DYNAMICS

Let us consider an eigenstate of the HamiltonianH,

ufl = o
i=0

2N−1

aiuil, sA1d

such that

Hsl,hdufl = Eufl. sA2d

It is then straightforward to show that

uwl = o
i=0

2N−1

a2N−1−iuil sA3d

satisfies

Hs− l, + hduwl = − Euwl, sA4d

Hsl,− hduwl = Euwl. sA5d

Here, we have used a natural coding of the Hilbert space
states where the numberi (and its associated stateuil) is in a
one-to-one correspondence with its binary decomposition ex-
pressed in terms of↑ (1) or ↓ (0) spins. These identities show
that the spectrum ofH is odd under the transformation
l→−l and even underh→−h. Moreover, they also imply
that

Hs− l,− hdufl = − Eufl, sA6d

so thatHs+l , +hd andHs−l ,−hd have the same eigenstates
but with opposite eigenenergies.

Let us now consider a stateucl whose spectral decompo-
sition on the eigenstates ofH reads

ucl = o
j=0

2N−1

ajuf jl, sA7d

where all theai’s are real numbers, and an observableA
satisfying

FIG. 10. Behavior ofCZ,R as a function ofm=4lt /N for h=5
(l= +1 andN=103). Dots are obtained from the exact numerical
diagonalizations and the solid line is computed with the frozen-spin
approximation(22).

FIG. 11. Time-averaged value ofCZ,R as a function of the mag-
netic fieldh for N=800,1600sl= +1d. The solid line corresponds
to both branches(h,0 andh.1) of the frozen-spin approximation
(FSA).
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kf j8uAuf jl = kf juAuf j8l, sA8d

for all s j , j8d. Then from Eq.(A6) one has

kc+,+stduAuc+,+stdl = kc−,−stduAuc−,−stdl, sA9d

whereuc±,±stdl=e−iHs±l,±hdtucl. In addition, it is clear that the
density matrix matricesr+,+ andr−,− are identical.

APPENDIX B: SEMICLASSICAL APPROACH

The Heisenberg equations for the spin operators are given
by

Ṡx = 2hSy, sB1d

Ṡy = − 2hSx +
2l

N
sSzSx + SxSzd, sB2d

Ṡz = −
2l

N
sSySx + SxSyd. sB3d

These equations cannot be solved exactly for anysl ,hd and
any initial conditions. To investigate the spin dynamics, we
follow Milburn et al. [54] and consider the semiclassical
dynamics(mean-field approximation) associated with these
equations by considering the “double-well” parametrization
(Schwinger-like) for the spin variables which reads

sx =
N

2
sub2u2 − ub1u2d, sB4d

sy = −
iN

2
sb1

*b2 − b1b2
*d, sB5d

sz =
N

2
sb1

*b2 + b1b2
*d. sB6d

The complex variablesb1 andb2 satisfy the constraintub1u2
+ ub2u2=1 and obey

ḃj = ihb3−j + 2ilubju2bj , sB7d

for j =1,2. This type of equation has been studied in detail
by Eilbecket al. so that we only sketch here the main lines
of the solutions and refer the reader to Ref.[57] for details.
Settingbj =aje

iu j (for j =1,2) and u=u1−u2, the latter non-
linear equation system(B7) is rewritten as

ȧ1 = hs1 − a1
2d1/2 sinu, sB8d

u̇ = 2sa1
2 − 1dS2l −

h cosu

a1s1 − a1
2d1/2D . sB9d

Then, using the conservation of energy,

Esa1,ud = − lf1 − 2a1
2s1 − a1

2dg − 2ha1s1 − a1
2d1/2 cosu,

sB10d

=
1

N
FHsa1,ud − l/2 −

lN

2
G , sB11d

we can eliminateu to get a closed equation fora1.

From now on, we consider the initial conditionsa1s0d
=1 andus0d=0 which describe a state polarized in the −x
direction—i.e., the classical counterpart of theu−Xl state.
This state is not the one considered in Sec. V B since it lies
in the opposite direction, but for clarity, we have used the
same notation as in Refs.[54,57]. One thus has

Esa1,ud = − l, sB12d

so that from the energy conservation(B10), one gets

cosu =
l

h
a1s1 − a1

2d1/2. sB13d

Next, using Eq.(B8) and settinga1
2=s1+yd /2, it is straight-

forward to show that

S ẏ

2h
D2

= 1 −k2 + s2k2 − 1dy2 − k2y4, sB14d

wherek=l / s2hd. The solution of this equation is the Jacobi
elliptic function

ystd = cns2htuk2ud, sB15d

which yields

Sxstd =
N

2
s1 − 2a1

2d = −
N

2
cns2htuk2ud, sB16d

Systd = − Na1ȧ1/h =
N

2
dns2htuk2udsns2htuk2ud, sB17d

Szstd =
Nl

h
a1

2s1 − a1d2 =
Nl

4h
sn2s2htuk2ud. sB18d

Finally, since we are not interested in theu−Xl but in the
uXl state, we just have to change the sign correctly and we
get the expression given in Sec. V B.

APPENDIX C: ONE-SPIN AND TWO-SPIN REDUCED
DENSITY MATRICES OF FULLY SYMMETRIC STATES

Let us consider a state

ucl = o
M=−N/2

+N/2

aMuN/2,Ml, sC1d

wherehuS,Mlj is an eigenbasis ofS2 andSz, and its density
matrix r= uclkcu. Here, we restrict our discussion to states
belonging to the maximum spin sectorS=N/2 which are
relevant for BEC.

In this subspace, all states are invariant under the permu-
tation groupSN, so that one can easily compute the matrix
elements of the reduced density matricesri

s1d andri,j
s2d. Note

that the permutation symmetry implies thatri
s1d does not de-

pend oni and thatri,j
s2d does not depend oni and j , so that we

omit these indices in the following.
As is well known, the one-spin reduced density matrix is

easily expressed in terms of the one-spin correlation func-
tions or, more precisely, in terms of theksal’s. In the eigen-
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basis{u↑l, u↓l} of sz, a straightforward calculation gives

r11
s1d =

1

2
+ o

M

uaMu2
M

N
, sC2d

r22
s1d =

1

2
− o

M

uaMu2
M

N
, sC3d

r12
s1d = o

M

aMaM+1
*

ÎsN − 2M + 2dsN + 2Md
2N

, sC4d

with ri j
s1d=r ji

s1d* .
The two-spin reduced density matrix can also be easily

expressed in terms of the two-spin correlation functions(see
Ref. [60]). In the eigenbasis{u↑↑l, u↑↓l, u↓↑l, u↓↓l}, one has

r11
s2d = o

M

uaMu2
sN + 2MdsN + 2M − 2d

4NsN − 1d
, sC5d

r12
s2d = o

M

aMaM+1
* sN + 2M − 2d

ÎsN − 2M + 2dsN + 2Md
4NsN − 1d

,

sC6d

r14
s2d = o

M

aMaM+2
* ÎsN + 2MdsN + 2M − 2d

3
ÎsN − 2M + 2dsN − 2M + 4d

4NsN − 1d
, sC7d

r24
s2d = o

M

aMaM+1
* sN − 2Md

ÎsN − 2M + 2dsN + 2Md
4NsN − 1d

,

sC8d

r22
s2d = o

M

uaMu2
sN − 2MdsN + 2Md

4NsN − 1d
, sC9d

r44
s2d = o

M

uaMu2
sN − 2MdsN − 2M − 2d

4NsN − 1d
, sC10d

with r13
s2d=r12

s2d, r23
s2d=r33

s2d=r22
s2d, r34

s2d=r24
s2d, andri j

s2d=r ji
s2d* .
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