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Entanglement dynamics in the Lipkin-Meshkov-Glick model
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The dynamics of the one-tangle and the concurrence is analyzed in the Lipkin-Meshkov-Glick model which
describes many physical systems such as the two-mode Bose-Einstein condensates. We consider two different
initial states which are physically relevant and show that their entanglement dynamics are very different. A
semiclassical analysis is used to compute the one-tangle which measures the entanglement of one spin with all
the others, whereas the frozen-spin approximation allows us to compute the concurrence using its mapping
onto the spin squeezing parameter.
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I. INTRODUCTION study, we investigate the time evolution of two peculiar

In recent years, the interplay between entanglement angfat€s which are relevant in the BEC context since they cor-
guantum phase transitions has been the subject of many stug@spond to situations where all atoms are either in one of the
ies. Since the pioneering works on the Ising model in a transtwo modes or equally distributed between both modes. For
verse magnetic fielgil,2] exhibiting the key role played by these two states, we discuss the entanglement dynamics
entanglement in quantum critical phenomena, lots of efforthrough two observables: namely, the one-tangle which
have been devoted to characterize the intricate structure eheasures the entanglement of one spin with all others and
the ground state in spin systeii$s-27 as well as in electron the concurrence which quantifies the two-spin entanglement.
models[23-25. All these studies show that entanglement, aln the next section, we introduce the LMG model and discuss
genuine quantum property, can be used to probe the pha#s phase diagram. In Sec. Ill, we define the entanglement
diagram of a system and especially to detect quantum phageeasures used throughout this paper and give several ca-
transitions. Unfortunately, such analyses are often restrictedionical examples. The ground-state entanglement properties
to one-dimensionallD) systems where exact solutions exist [34—3§ are briefly recalled in Sec. IV. The quantum dynam-
and allow one to deal with the thermodynamical limit. Usu-ics is presented in Sec. V for the two states mentioned above.
ally, higher-dimensional systems require a numerical treatWwe show that the one-tangle and the concurrence have com-
ment which is limited by the Hilbert space dimension whichpletely different behaviors depending on the initial state.
grows exponentially with the number of degrees of freedomThese characteristics can be understood in several limiting
However, when the Hamiltonian has a large symmetry grougases that we discuss in detail.
as is here the case, it is still possible to study the |&tge-
limit.

In the present paper, we considérmutually interacting
spins 1/2 embedded in a magnetic field. The restriction of We consider a system of mutually interacting spins 1/2
this model to the fully symmetric subspace can be mappecsmbedded in a magnetic field described by the following
via the Schwinger representation, onto interacting bosons iklamiltonian introduced by LMG26—2§ in a more general
a two-level system coupled by a tunneling term. Thus, alform:
though it has initially been introduced by Lipkin, Meshkov,
and Glick(LMG) [26—28 in nuclear physics, this model is H=-— 52 da-h> o (1)
also relevant to describe the Josephson effect or two-mode NS T
Bose-Einstein condensatBEC). This ubiquity in very dif-
ferent domains is certainly one of the reason why it has been 2N A
periodically rediscovere@see, for example, Ref§29-31). =- W§ -2hS + > 2
Its integrability has even recently been proven in a series of A
papers(see Ref[32] for a review and a complete solution where theo,’s are the Pauli matrices arf§,==;0" /2. The
has been derived using the algebraic Bethe ar{83z The  prefactor 1N is necessary to get a finite free energy per spin
ground-state entanglement properties of this model havi the thermodynamical limit. The Hamiltonids preserves
been analyzed for both ferromagnef8#,35 and antiferro-  the magnitude of the total spin and does not couple states
magnetic couplind36] using the concurrenci87] (see be- having a different parity of the number of spins pointing in
low for detailg. Here, our goal is to analyze the entangle-the magnetic field directiorspin-flip symmetry. namely,
ment dynamics which has, so far, been mostly investigated in

II. THE LIPKIN-MESHKOV-GLICK MODEL

i<j

1D spin system$38,39. [H,s7]=0, 3
The possibility of experiments in BEC’s has led several

groups to study the dynamics in the LMG model but en- [HH (]'iz:| =0. (4)

tanglement has been discussed only recddl-43. In this i
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The phase diagram of this model can be easily derived 1 [
using a semiclassical descripti80]. For a ferromagnetic
coupling(\ >0), the system undergoes a second-order quan-
tum phase transition at the critical fielg=\, whereas for
antiferromagnetic interactions, a first-order quantum phase
transition occurs at zero field.

<o,
I1l. ENTANGLEMENT MEASURES

To analyze the entanglement dynamics, we focus here or
two commonly used quantities: the one-tangle which mea-
sures the entanglement of one spin with the others and the
concurrence which measures the two-spin entanglement. Fc
a given pure statg)), both quantities are computed from the

density matrixp=|y){y]. FIG. 1. Rescaled concurrence of the ground statenfor1
The one-tangle is defined as follows: (thin line) and A=-1 (thick line) (N=10° sping. In both cases,
Cr=0 for h=0.
r=4detpV =1~ (a,)?, (5
a 1
|GHZ>:|¢>=T§(|TTT>+|lll>), 9
\‘\‘

wherepi(l) is the one-spin reduced density matrix obtained
from p by tracing out over all spins except spimnd where has a maximum one-tangle=1) and a vanishing concur-
<A>:Tl‘[pi(l)A]. The one-tangle; ranges between 0 and 1. It rence(C=0). It is thus important to keep in mind that these
vanishes for a state such the#=|¢); ® | ) and reaches 1 for measures only give partial information about the entangle-
maximally entangled states such as the famous Einsteirment of the state.

Podolsky-RoseiEPR) state[44]

1 IV. GROUND-STATE ENTANGLEMENT
|EPR>=E(|TL>-|H>)- (6)

We recall in this section the main features of the ground-

state entanglement and we refer the reader to R&#s-3G
To measure the two-spin entanglement, we consider thgyr 5 detailed discussion.

concurrenceC introduced by Wootterg37]. This quantity is As explained in Sec. Il, the ground state ldfis well
computed from the two-spin reduced density maffixob-  described by a mean-field approach showing that in the ther-
tained by tracing oup over all spins except spinsandj.  modynamical limit the ground state is given by a product
Next, we introduce the spin-flipped density maffix=oy  state [30] for which 7=C=0. However, in the symmetric
® ayp; joy® oy Where P. is the complex conjugate qfi ;.  phasg\ >0 andh<\), we underline that the ground state is
The concurrence is then defined by twofold degenerate in the thermodynamical limit, whereas at
X finite N, it is unique(except forh=0). In the degenerate case,
Cij=maxX0,uy — up— 3 — mat =max0,C;;}, (7))  one must consider the thermal density matrix at zero tem-
perature[34] to compute the entanglement properties. This
where the,uk’s are the square roots of the four real eigenval-implies in particular that the one-tangle in this phase is given
ues ofp; jp; j and whereu; = u;.,. The concurrence vanishes, by r=1- (h/\)? and thatC=0 in the largeN limit. However,
for example, for any statg))=|x); ©|¢);®|¢) and reaches the finiteN corrections to this separable asymptotic form al-
its maximum valueC=1 for states such d&PR. low one to capture a nontrivial behavior of the rescaled con-
Let us also mention that and C are related through the currenceCr=(N-1)C. This rescaling is actually the coordi-
Coffman-Kundu-Wootters(CKW) conjecture [45] stating nation number of each site and takes into account the fact

that that the two-site entanglement, as measured by the concur-
rence, is, in this model, equally shared between all sites.
= CiZj_ (8) For a ferromagnetic coupling. > 0), Cy displays a cusp-
jri like behavior at the critical poirti.=\ (see Fig. 1 whereCg

goes to 1 in the thermodynamical limit.

Note that for pure two-spin states, we have an exact equality. In the antiferromagnetic cas€g is a smoothly decreasing
In the present study, we have systematically checked that thisinction ofh but is discontinuous di=0 where a first-order
conjecture(8) was always verified. transition occurgsee Fig. 1L Forh=0*, Cg reaches 1 in the

Finally, we would like to stress that tracing out the densitythermodynamical limit, but forh=0, the ground state is
matrix p can induce or destroy some correlations betweemgiven by zero total spin states for whi€g=0.
spins. For instance, a nonseparable state, such as the Except for this very special point, the ground state always
Greenberger-Horne-ZeilingéGHZ) state[46] lies in the maximum spin sect&=N/2 for any\. Moreover,
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at finite N and in the large-field limit, the ground state is the 1 .

fully polarized state in the direction, i , ‘ J \
o9 it ‘H‘ IWWWM"MH i !

oy =12) = ®L4|1), (10) 0.8

for which one also ha€z=0.

. . . 0.7

In the antiferromagnetic case, the entanglement propertie: ,,

of the ground statérestricted to the maximum spin sector £ 45 | i
S=N/2) have also been analyzed by Hiretsal. [40] through
the von Neumann entrody(h) for bipartite systems. In BEC 0.5 i J
language, the two subsystems correspond to the two compc
nents of the condensate—i.e., to the states polarized inthe +
direction. This quantity has thus nothing to do with the con- 0.3 ! ! ! ! I I I
currence and its behavior is indeed very differéhtanishes 0 20 80 40 50 60 70 80
for h=0 (since |y =|X)) whereasCg is maximum(in this "
spin sector and E is maximum in the large-field limit FIG. 2. Behavior ofry as a function ofu=4xt/N for different

whereasCr vanishes. _values of the fielth=0.5, 0.55, 0.8, 1 from bottom to tap=+1
More recently, another entrof(h) has been analyzed in andnN=1c).

the LMG model[47]. This entropy is based on a bipartite
decomposition in two subsytems of sizeand N-L. Here

0.4

h has b found to b . he critical pdini tum effects become important, some revivals of the wave-
S(h) has een foun to be maximum at the critica p@mm packet are observed, and the latter approach fails. It is thus in
agreement with a recent conjecture proposed by H#te8. s regime that interesting and nontrivial entanglement prop-

[48]. Moreover, a logarithmic scaling has been observed angies must be analyzed. Consequently, we always consider a
may reveal an underlying 1D conformal field the@dy] for  gimensionless rescaled time=4xt/N which allows us to

the LMG model. investigate the dynamics and to easily compare the results
for variousN. Of course, we have checked in each situation

V. QUANTUM DYNAMICS that the time-averaged results were weakly sensitive to the

time range chosen provided this latter was sufficiently large.

O \We must also mention recent studj®2,53 which reveal

CEfnultiple time scales in the LMG modétalled the boson-

Hubbard dimer model in these paperslowever, the range

6t validity of these results is confined to<\/N (small-

In this section, we analyze the quantum dynamics of tw
initial states belonging to the maximum spin subspa
S=N/2: (i) the statg]X) fully polarized in thex direction
which corresponds, in BEC language, to a state where th

a:otm|szafre”all Icicqllzzd_ mthonedpf t?_e twoh.mr:)des ﬂn}jthz tunneling-amplitude regime in boson languagdich is not
state|Z) fully polarized in thez direction which corresponds, the regime considered here. Yet we cannot exclude larger

in BEC language, to a state where the atoms are equallé(haracteristic time scales but such a study is beyond the

d|s§_r;]buted b;atwesn bOth mo??rs]atllket stat@: tes h | cope of the present paper and we shall leave this question
e quantum dynamics of these two states have alrea bart in the following.

been widely studied for this model in the BEC context
[40,41,49-5% Here, we focus on the entanglement dynam-
ics by studying the time evolution of(h,t) and Cg(h,t),
which do not depend on the spins kept in the trace operation It is clear that the entanglement properties of [(Kestate
since states belonging to the subsp&e\/2 are invariant are insensitive to the transformatign——h. Thus, as ex-
under the permutation group. This implies in particular that plained in Appendix A, one can, in this case, restrict our
and Cg only depend on the magnetizati¢s,) and on the analysis toA=0 andh=0.
correlation functiongS,S,) [55]. (i) For h=0, the [X) state is an eigenstate &f so that
7«(h=0)=0 andCy(h=0)=0 for all timet.
(i) For A=0, H is completely separable and thus bath
and Cy vanish. However, for this state, this limit is highly
As explained in Ref[56], the spectrum oH remains singular since, for any finite coupling, the large-field limit
discrete in the thermodynamical limit; i.e., the mean levelleads to nontrivial entanglement properties— 1) as can be
spacing remains finite whel goes to infinity. For equidis- seen in Fig. 2.
tant levels, we would expect to have a Poincaré time that Apart from these limiting cases, we have been unable to
does not depend oM. However, it turns out that the get analytical expressions of the one-tangle for this state. We
Poincaré time scales here linearly with As noticed by have displayed in Figs. 2 and 3 the behaviorgfor differ-
Milburn et al. [54], the semiclassical dynami¢see below  ent values of the magnetic field as a functionwof
mimics very well the quantum dynamics up to a given time For h<\, the characteristic energy scale driving the dy-
scalet,, which is of the order of the Poincaré time. For timesnamics is\/N and hencer is almost periodic inu with
smaller thantg, the system thus remains nonentangled, angeriod 27 [Fig. 3 (bottom)]. In this regime, quantum fluctua-
in the largeN limit, it is described by the classical equations tions are weak and is a smooth function ofu. When u
of motion (see Appendix B For times larger thaiy, quan- increases, the depth of the hollows which corresponds to a

B. |X) state

A. Time scales
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For an initial state polarized in the direction, these equa-
tions can be exactly solved following Eilbeek al. [57] and
one gets

St = gcn(th|k2), (12)

St =- gdn(Zhﬂ K)sn(2ht]k?), (12)

NA
S = Esnz(Zhﬂkz), (13
FIG. 3. Same as Fig. 2 fdi=0.2, 0.3, 0.4, 0.45 from bottom

to top. where cn, dn, and sn are the Jacobi elliptic functions and

wherek=\/2h (see Appendix B for detailsTheseS’s are
revival of the wave packet decreases and eventually goes fferiodic functions with a period KKk?)/h for k¥<1 and
zero in the |al‘qu limit so that, in this ||m|t, TX is almost 2K(k2)/)\ for k2>1 whereK denotes a Comp|ete e|||pt|c in-
constant. Wherh increases, quantum fluctuations becometegra| of the first kind. Note that the cak®=1 is singular
more and more important angk becomes more and more gjnce the upper and lower limits do not coincide.

‘noisy.” The maximum of these fluctuations is reached for  of course, if we compute the one-tangle using these semi-
h=\/2 which corresponds to the critical field of the semi- ¢|assjcal expressions, we trivially find

classical dynamic§41,54. Below (abovg this critical field,
(S (which represents the difference of population between . 4 5
the two wells in the BEC probleyoscillates around a non- x =1 ‘@2 (8)?=0 (14
vanishing(vanishing value. In the other limith>X\, where “
the magnetic field dominatesy goes to 1 and displays a
pseudoperiodic behavior i@ with period 47 as can already
be inferred forh=N\ in Fig. 2 (top). At large times, the depth | _ : : p)
of the cusplike behavior present far=0[47] decreases and E ?S/S_%.ZThus, assuming thag is constant, we replacs,)
7 is also almost constant. To go beyond this qualitative de- Y 9™
scription, we have computed the time-averaged value of the o 4 4 o
one-tanglery as a function oh. As shown in Fig. 4, the large =1- @2 (S2=1- @E (S92, (15)
N limit of 7 can be partially captured by a simple semiclas- a a
sical approach, especially when quantum fluctuations ar
weak—i.e., far fromh=\/2.

For a detailed discussion of this approach, we refer th
reader to Refs[41,54. The main idea is to compute the
solution of the semiclassical equations for the quarty

and, consequently,_§:0 for all h. However, as said above,
the fluctuations ofry are pretty weak at least away from

8bviously, this crude approximation is to be justified only
éor constantS,) andS;;, provided the semiclassical descrip-
tion is meaningful—i.e., in the largi- limit. After time-
averaging theS;°s over one period, we thus get a “semiclas-
sical time-averaged one-tangle.” This quantity is depicted in
Fig. 4, and as expected it is in excellent agreement away
_ _ from h=\/2. Near this point, since the quantum fluctuations
— Classical T . . . .
L Z — 500 T | are very strong, the approximatigh5) fails and the discrep-
08 | T T § ancy is large. In the large-field limit, one h&%=0 for all «

and thusr¢=1.

1 T T T T T T T T T

0.6 . Let us now discuss the concurrence dynamics for|Xje
o state whose behavior is depicted in Figs. 5 and 6 for different
= 04l | value§ of the magnetic field. At small fiefld<<\/2 (see Fig.
5)], Cxr_ is most often negative but displays some peaks
(wherec;yR> 0) which coincides with the hollows imy and
0.2 -

7 whose amplitude goes to zero whgrincreases. As a result,
at large times, the rescaled concurreriggz always van-
! ! ! ! ishes. Wherh increases, this phenomenon is amplified and,
°© o1 0z 03 o4 01-15 06 07 08 09 1 asfor the one-tangleCy  fluctuates more and more until
h=N/2 where it reaches its minimum value. Above this criti-
FIG. 4. Time-averaged value of as a function of the magnetic cal field, Cy ¢ increases whei increases, but remains al-
field h for N=800, 1600(\=+1). The solid line is obtained from Ways negative at large times. Note that at short times there is,
the “(sem) classical time-averaged one-tangle” as explained in thdor anyh, a “peak of concurrence” for whic8y i, is positive,
text. but as time goes on, it is always negative.

0
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FIG. 5. Behavior OC;VR as a function ofu=4At/N for different
values of the fielcdh=0.3, 0.4, 0.45 from top to bottoiga=+1 and
N=10%). The grey line corresponds to the thresh@ld0.

To summarize, at sufficiently large times and for any val-

ues of the magnetic fielth, the rescaled concurrencgy r
always vanishes.

C. |Z) state
The|Z) state is an eigenstate of the operﬁbbjZ which

MODEL PHYSICAL REVIEW A 70, 062304(2004)

Caalh =00 = 5(cosu)" 2~ 1 +{[cog )2~ 1F

+[4 cogu/2)NZsin(ui2) 12, (18

where, as previouslyg=4\t/N. The expression foC; g(h
=0,t) given above is obtained by noting that the condition
2p@ < \pZpd + | (19
is always satisfied. Thus in the largehimit, 7, is equal to 1
except foru=0[27] wherer,=0 and, as expected, the con-
currence vanishes for ajt. However, if one considers the
rescaled concurrence, a close inspection of expregdion
shows that a periodic pulse also occurs for0[27] whose
width becomes sharper and shapeNaacreases and whose
maximum height goes to 1 in the lardehimit.

At this stage, it is interesting to note that andC, ¢ are
strongly correlated in the sense that, when the one-spin en-
tanglement is larg€éand here maximuim the two-spin en-
tanglement is small except far=0[27]. This is a relatively
surprising result which is also encountered in other regimes
(see below Indeed, usually the trace operation destroys
some correlations and one expects that the absence of two-
spin entanglement might not be able to generate one-spin
entanglement. Nevertheless, as discussed in Sec. lll, this
phenomenon is met for th&HZ) state, but here it is en-

commutes withH. As a consequence, at all times, one hasgountered for a nonstationary state which preserves this fea-

(S9=(§)=0, so that

4

N (16)

T7= 1-

In addition and contrary to thiX) state, it is obvious that
the direction of the magnetic field plays a role in the dy-
namics of|Z). Thus, to investigate all possible situations, we
consider the case=0 for all h, the region\ <0 being ob-
tained by transformations discussed in Appendix A.

(i) For h=0, H is trivially solvable as well as the time
evolution of the|Z) state. As detailed in Ref55], one finds,
in this case,

m(h=0,) =1 - cogu/2)2ND, (17

50 |

o

)

c

XR

-100

-150 | | | | 1 | |

FIG. 6. Same as Fig. 5 foh=0.5, 0.8, 1, 2 from bottom
to top.

ture as time goes on.

(i) For A=0, the|Z) state is an eigenstate éf so that
72(N=0)=0 andC,(\=0)=0 for all timet. Contrarily to the
|X) state, the limit\=0 coincides with the high-field regime
at finite \. Indeed, as discussed in Rg34], the|Z) state is
the ground state dfl for h>\ in the thermodynamical limit,
so thatmz(h>\)=0 andC,(h>\)=0.

However, the rescaled concurrence has a nontrivial behav-
ior that can be captured due to its relation with the spin
squeezing paramet§bs]

A4S )

2
3 N (20

which measures the spin fluctuations of a correlated quantum
state[58]. The subscripfi, refers to an axis perpendicular to

the mean spifS) where the minimal value of the variance is
obtained.

Indeed, as shown in Refg59,60, for any state belonging
to the subspac8=N/2 and eigenstate of the operafdyo),
one has

£=1-Cg, (21)

provided the reduced density matrix elements of the state
considered verifyp(122| >p(222). We have checked that actually
this inequality is always satisfied for aryand for all the
times under investigation.

(iii) The relation(21) thus allows us to deduce the res-
caled concurrence using the frozen-spin approximation used
in Ref.[49] to computeé? in two different regimes.

(@ For h>\, as explained above, th@&) state is the
ground state oH in the infiniteN limit. So, even at finiteN,
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1 T I T
08| |
06| |
N
04f |
| |
0.2 W Wm M [ m
0 | | | | | | |
g W 20 30 400 {0 B0 70 80 0 01 02 03 04 05 06 07 08 09 1
H h
FIG. 7. Behavior ofr; as a function ofu=4At/N for h=0.01 FIG. 8. Time-averaged value e} as a function of the magnetic
(grey) andh=0.9 (black (\=+1 andN=10%). field h for N=400,800, 1600\ = +1).

one expectdS) to be almost constant in this region. The As for the|X) state, we could have tried to reproduce this

: o . _ "~ behavior by a classical analysis, but unfortunately, |fe
so-called frozen-spin approximation precisely consists in regiaie is a fixed point of the classical equations of mot&®)
placing, in the Heisenberg equatid(t) by its initial value  534(B9). Thus, one must in this case use a real semiclassical
N/2. Then, following Ref[49] and using Eq(21), one gets  treatment analogous to that presented in REf} which con-

an analytical expression for the rescaled concurrence,  sists in averaging over classical trajectories near this fixed
point. However, as shown in Fig. 7; is a strongly oscillat-
w? ing function so that the approximatigi5) is not valid and
Czr=1-|co(wt) + —siri(wt) |, (22) ; DPTOX ) 5
: 4h we did not compute the “semiclassical time-averaged one-

tangle” for the|Z) state.
with w=2\h(h-X\). We now focus on the concurrence dynamics for fhe
(b) For h<0, the situation is, in fact, similar. Indeed, as state, whose behavior is shown in Fig. 10 fer5\. As can
shown in Ref.[36], the |Z) state is the ground state of be seen, the frozen-spin approximation is, in this case, in
H(\<0,h>0) in the thermodynamical limit. As detailed in good agreement with the exa¢humerica) results. For
Appendix A, this implies that it is the highest-energy state ofh € [0,\], C;,R is always negative so th&@t; g=0. It is worth
H(A>0,h<0). Thus, the frozen-spin approximation can noting that there is once again an “anticorrelation” between
also be used in the regidh<0) and, according to Ref49],  the one-tangle and the rescaled concurrence sigce0
one then obtains when C;g=0 for he[0,\], whereas for he
]=%,0]U[\, [, one hasry=0 andC,r+# 0. Indeed, in this
4_hz latter region wheréZ) becomes an eigenstate in the thermo-
WA dynamical limit, one always has a nonvanishing rescaled
concurrence as can be seen in Fig. 11 where we have dis-
Of course, this approximation is more and more valid inplayed the time-averaged value®f i as a function oh. At
these regiongh<<0 and h>X\) when N increases. Con- large h| the frozen-spin approximation allows us to extract

Crr=1-| cof(wt) + —sini(wt) |. (23)

versely, at fixed\, it is safe for eitheh>\ or h<0. the asymptotic behavidE; g~ [\ /h|.
The only region where thZ) state is not an eigenstate of ;

H in the thermodynamical limit is & h<\. We have plotted T

in Fig. 7 the behavior ofr, as a function of the rescaled

dimensionless timeuw=4At/N for different values of the 08 I

magnetic fieldh in this range.

As explained aboves;=0 for h<<0 and h>\ since, 06 K
there,|Z) is an eigenstate dfl in the largeN limit. By con- \\

trast, forh e [0,\], 75 is an oscillating function of. with an 0 7& R —

R —

average value that is nonvanishing as can be seen in Fig. 7 . e —

The time-averaged value of, for different N is shown in b

Fig. 8. o 02 ’
As can be seeny; is a decreasing function & at fixedh R —

except forh=0 as discussed above. To determine its laxge- g E— ‘

behavior, we have computeg for severah, as a function of 0 1000 2000 N 3000 4000 5000

N, up to N=5000. The results displayed in Fig. 9 do not
allow us to extract an asymptotic value but it is likely that for ~ FIG. 9. Behavior ofr, as a function ofN for h=0 (top) to 1
he[0,\], limy_. 7z#0. (bottom) with a stepAh=10"1 (A\=+1).
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0.2

We wish to emphasize that some experiments may be pos-
sible to investigate these dynamical entanglement, especially
the concurrence. Indeed, as explained in Sec. V C, the res-
caled concurrence can be related to the spin squeezing pa-
rameter as established in Ref59,60. Thus, the behavior of
the Cr as a function of the field should, in principle, be
measured for both the ground state a#id)). Nevertheless,
such an exciting perspective is of course conditioned by the
possibility to measure the squeezing parameter. Bose-
Einstein condensates are certainly the best candidates for
such experiments since it has already been possible to mea-
sure the angular momentum in such systg61g.

0.15 |- .
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APPENDIX A: SPECTRUM SYMMETRIES AND THEIR
VI. CONCLUSION AND OUTLOOKS IMPLICATIONS FOR THE DYNAMICS
We have analyzed the one-spin and two-spin entangle-

ment dynamics for two different states. In the case of a state Let us consider an eigenstate of the Hamiltorkn

fully polarized in thex direction, we have found a nontrivial 2N-1
behavior of the one-tangle whose time-averaged value in- |y = > i), (A1)
creases monotonically when the magnetic field increases i=0

whereas it has a vanishing concurrence fohaBy contrast,
for an initial state fully polarized in the direction, the one-
tangle is nonvanishing only fd!| e[0 ,')\] where its concur- H(\,h)|¢) = E| ). (A2)
rence vanishes. Apart from this region, the one-tangle van- )

ishes in the thermodynamical limisince |2) is then an Itis then straightforward to show that

such that

eigenstate oH) but the rescaled concurrence has a nontrivial oN_p
time-averaged value which can be understood using the _ ;

; o . = 1|l A3
frozen-spin approximation introduced in R§49]. ) g’, a1l (A3)

Contrary to the ground-state entanglement, we did not
find a nontrivial singularity at the critical poifit=X\ but only ~ satisfies
some enhanced fluctuations néar\ /2 for the|X) state. For
the |2) state, we have not detected any peculiarity at this
point except thaty, = seems to be minimum there whereas
JnTy IS maximum. HO\ = h)g) = Efe). (AS)
Here, we have used a natural coding of the Hilbert space
states where the numbie¢and its associated stafi¢) is in a
one-to-one correspondence with its binary decomposition ex-
pressed in terms df (1) or | (0) spins. These identities show
that the spectrum oH is odd under the transformation
A——\ and even undeh— —h. Moreover, they also imply
that

H(=X\, +h)|e) = - Ele), (A4)

0.6 T T T T T T T

0.5

0.4

L;N" 0.3
H(=\,—h)|¢) = -E|#), (A6)

so thatH(+\, +h) andH(-\,-h) have the same eigenstates
but with opposite eigenenergies.

Let us now consider a state) whose spectral decompo-
sition on the eigenstates éf reads

0.2

0.1

oN-1

FIG. 11. Time-averaged value 6% as a function of the mag- )= ].;0 3j|dy), (A7)
netic fieldh for N=800,1600(A=+1). The solid line corresponds
to both brancheéh< 0 andh> 1) of the frozen-spin approximation where all theg’s are real numbers, and an observable

(FSA). satisfying
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(y/|Al ) = (i| Al 1), (A8) From now on, we consider the initial conditiorg(0)
o =1 and #(0)=0 which describe a state polarized in the -
for all (j,j’). Then from Eq(A6) one has direction—i.e., the classical counterpart of theX) state.
(P sO|A g (D) = (b (DAl (1)), (A9) This state is not the one considered in Sec. V B since it lies

in the opposite direction, but for clarity, we have used the
same notation as in Reffb4,57. One thus has
E(alv 0) == )\1

APPENDIX B: SEMICLASSICAL APPROACH .
) ] ] _so that from the energy conservati@®10), one gets
The Heisenberg equations for the spin operators are given

by

where|i, .(t)) =eHENE g - In addition, it is clear that the

density matrix matricep., . andp_ _ are identical.
(B12)

A
cosf=—a,(1-a))*2. (B13)

h

S.=2hs, (B1)
Next, using Eq(B8) and settinga3=(1+y)/2, it is straight-
. 2\ forward to show that
§=- 25+ T(SS+SS), (82) o
(2—yh> S1-K+(2R- 1y - Ky, (Bl4)
. 2\
5= W(S‘/Sﬂ S&). (B3) wherek=\/(2h). The solution of this equation is the Jacobi

These equations cannot be solved exactly for @ny) and elliptic function

any initial conditions. To investigate the spin dynamics, we y(t) =cn(2ht|k?), (B15)
follow Milburn et al. [54] and consider the semiclassical | .

dynamics(mean-field approximatignassociated with these Which yields

equations by considering the “double-well” parametrization N N

(Schwinger-likg for the spin variables which reads S(t) = 5(1 -2aj) =~ ECH(Zhﬂ k?), (B16)

N
S5<=E(|bz|2‘|b1|2)’ (B4)
iN * *
5,= - (B, = bib)), (B5)
N * *
S, = E(ble +Dbyb,). (B6)

The complex variableb, andb, satisfy the constrairjb,|?
+|b,/>=1 and obey

for j=1,2. This type of equation has been studied in detail
by Eilbecket al. so that we only sketch here the main lines

of the solutions and refer the reader to R&f7] for details.
Setting bj:aje'ai (for j=1,2) and =6,—6,, the latter non-
linear equation systertB7) is rewritten as

a,=h(1-a)*?sing, (B8)
. hcosé
- 2
6=2(a- 1)(27\ "ol —a§)1/2> . (B9)

Then, using the conservation of energy,
E(ay,6) = —\[1 - 2a3(1 -a))] - 2hay(1 -a))*? cosé,
(B10)

=%[H(a1,0)—)\/2—m] (B11)

2

we can eliminated to get a closed equation fa¥.

S,/(t) = - Nayay/h= gdn(Zhﬂkz )sn(2htlk?), (B17)

NA NA
S() = ?af(l -ay)?= Esnz(Zhﬂkz ).  (B18)

Finally, since we are not interested in theX) but in the
|X) state, we just have to change the sign correctly and we
get the expression given in Sec. V B.

APPENDIX C: ONE-SPIN AND TWO-SPIN REDUCED
DENSITY MATRICES OF FULLY SYMMETRIC STATES
Let us consider a state

+N/2

W= 2 aylN2,M),

M=-N/2

(Cy

where{|S,M)} is an eigenbasis &? andS,, and its density
matrix p=|#)(¢{. Here, we restrict our discussion to states
belonging to the maximum spin sect&=N/2 which are
relevant for BEC.

In this subspace, all states are invariant under the permu-
tation groupSy, so that one can easily compute the matrix
elements of the reduced density matri@éjé and pi(zj). Note
that the permutation symmetry implies thﬁt) does not de-
pend oni and thatpi(?.) does not depend drandj, so that we
omit these indices In the following.

As is well known, the one-spin reduced density matrix is
easily expressed in terms of the one-spin correlation func-
tions or, more precisely, in terms of tie,)’s. In the eigen-

062304-8
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basis{|1), ||)} of o5, a straightforward calculation gives

M
PH=5 +E el (C2
M
<1>-——E IaMI2 (C3)
i
. V(N=2M + 2)(N +2M)
P(llz) - 2 M A\ +1 2N ) (CH
with p —p(ll

expressed in terms of the two-spin correlation functitsese
Ref. [60]). In the eigenbasi$|11), [T]), [L1), [L1)}, one has

2M)(N + 2M - 2)
AN(N - 1) ’

N

#2=3 law

(CH)

The two -spin reduced density matrix can also be easily

PHYSICAL REVIEW A 70, 062304(2004)

E ey (N+2M = 2)

Pz = AN(N - 1) ’
(Co)
P =2 amayV(N+2M)(N+2M - 2)
M
" V(N=2M +2)(N-2M + 4) | -
AN(N - 1)
\ [(N=2M + 2)(N + 2M
(242 = % ay aM+l(N - 2M) \( 4N(N _)(1) ) ’
(C9
_ L(N=2M)(N +2M)
B %“ NN (€9
L,(N=2M)(N - 2M - 2)
44—E| ap| AN(N-1) , (C10

@_ 2 - 2_ 2 (2_ (2

. (2)*
With p13=p15, P23 =P33= P22+ Pag =Pos:

and pIJ =p;
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