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Several proposed techniques for distinguishing between optical coherent states are analyzed under a physi-
cally realistic model of photodetection. Quantum error probabilities are derived for the Kennedy receiver, the
Dolinar receiver, and the unitary rotation scheme proposed by Sasaki and Hirota for subunity detector effi-
ciency. Monte Carlo simulations are performed to assess the effects of detector dark counts, dead time, signal
processing bandwidth, and phase noise in the communication channel. The feedback strategy employed by the
Dolinar receiver is found to achieve the Helstrom bound for subunity detection efficiency and to provide
robustness to these other detector imperfections making it more attractive for laboratory implementation than
previously believed.
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I. INTRODUCTION

Communication is subject to quantum mechanical indeter-
minism even when the transmitted information is entirely
classical. This potentially counterintuitive property results
from the fact that information must be conveyed through a
physical medium—acommunication channel—that is un-
avoidably governed by quantum mechanics. From this per-
spective, thesenderencodes information by preparing the
channel into a well-defined quantum stater̂ selected from a
predetermined alphabetA;hr̂0, . . . ,r̂Mj of codewords. The
receiver, following any relevant signal propagation, performs
a measurement on the channel to ascertain which state was
transmitted by the sender.

A quantum mechanical complication arises when the
states inA are not orthogonal, as no measurement can dis-
tinguish between overlapping quantum states without some
ambiguity[1–4]. This uncertainty in determining the channel
state translates into a nonzero probability that the receiver
will misinterpret the transmitted codeword and produce a
communication error. While it would seem obvious that the
sender should simply adopt an alphabet of orthogonal states,
it is rarely practicable to communicate under such ideal con-
ditions[5,6]. Even when it is possible for the sender to trans-
mit orthogonal codewords, inevitable imperfections in the
channel including decoherence and energy dissipation
quickly damage that orthogonality. In some cases, the classi-
cal information capacity of a noisy channel is actually maxi-
mized by a nonorthogonal alphabet[7].

When developing a communication system to operate at
the highest feasible rate given fixed channel properties and a
constrained capability for state preparation, the objective is
to minimize the communication error by designing a “good”
receiver. Distinguishing between nonorthogonal states is a
pervasive problem in quantum information theory[8,9] ad-
dressed mathematically by optimizing a state-determining
measurement over all positive operator valued measures
(POVMs) [3,10,11]. This general approach can be applied to

communication; however, arbitrary POVMs are rarely
straightforward to implement in the laboratory. Therefore, a
“good” receiver must balance quantum mechanical optimal-
ity with implementability and robust performance under re-
alistic experimental conditions.

For example, the optical field produced by a laser pro-
vides a convenient quantum system for carrying information.
Of course, optical coherent states are not orthogonal and can-
not be distinguished perfectly by photodetection. While the
overlap between different coherent states can be reduced by
employing large amplitudes, power limitations often restrict
A to the small-amplitude regime where quantum effects
dominate. This is especially true in situations(such as optical
fibers) where the communication medium behaves nonlin-
early at high power, as well as for long distance communi-
cation where signals are substantially attenuated, including
deep space transmission.

Motivated by these experimental considerations, optimiz-
ing a communication process based on small-amplitude op-
tical coherent states and photodetection has been an active
subject since the advent of the laser[6,12–14]. Kennedy ini-
tially proposed a receiver based on simple photon counting
to distinguish between two different coherent states[12].
However, the Kennedy receiver error probability lies above
the quantum mechanical minimum[3] (or Helstrom bound)
and this prompted Dolinar to devise a measurement scheme
capable of achieving the quantum limit[13]. Dolinar’s re-
ceiver, while still based on photon counting, approximates an
optimal POVM by adding a local feedback signal to the
channel; but, this procedure has often been deemed imprac-
tical [15] due to the need for real-time adjustment of the
local signal following each photon arrival. As a result, Sasaki
and Hirota later proposed an alternative receiver that applies
an open-loop unitary transformation to the incoming coher-
ent state signals to render them more distinguishable by
simple photon counting[6,15,16].

However, recent experimental advances in real-time
quantum-limited feedback control[17–19] suggest that the
Dolinar receiver may be more experimentally practical than
previously believed. The opinion that feedback should be
avoided in designing an optical receiver is grounded in the
now antiquated premise that real-time adaptive quantum*Electronic mail: jgeremia@Caltech.EDU
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measurements are technologically inaccessible. Most argu-
ments in favor of passive devices have been based on ideal-
ized receiver models that assume, for example, perfect pho-
ton counting efficiency. A fair comparison between open-
and closed-loop receivers should take detection error into
account—feedback generally increases the robustness of the
measurement device in exchange for the added complexity.

Here, we consider the relative performance of the
Kennedy, Dolinar, and Sasaki-Hirota receivers underrealis-
tic experimental conditions that include(1) subunity quan-
tum efficiency, where it is possible for the detector to mis-
count incoming photons,(2) nonzero dark counts, where the
detector can register photons even in the absence of a signal,
(3) nonzero dead time, or finite detector recovery time after
registering a photon arrival,(4) finite bandwidth of any sig-
nal processing necessary to implement the detector, and(5)
fluctuations in the phase of the incoming optical signal.

II. BINARY COHERENT STATE COMMUNICATION

An optical binary communication protocol can be imple-
mented via the alphabet consisting of two pure coherent
statesr̂0= uC0lkC0u andr̂1= uC1lkC1u. Without loss of gener-
ality, we will assume that logical 0 is represented by the
vacuum,

C0std = 0, s1d

and that logical 1 is represented by

C1std = c1stdexpf− isvt + wdg + c.c., s2d

where v is the frequency of the optical carrier andw is
(ideally) a fixed phase. The envelope functionc1std is nor-
malized such that

E
0

T

uc1stdu2dt = N̄, s3d

where N̄ is the mean number of photons to arrive at the
receiver during the measurement interval 0ø tøT. That is,
"vuc1stdu2 is the instantaneous average power of the optical
signal for logical 1.

This alphabetA=hr̂0, r̂1j is applicable to both amplitude
and phase-shift keyed communication protocols as it is al-
ways possible to transform between the two by combining
the incoming signal with an appropriate local oscillator. That
is, amplitude keying withA=hu0l , ualj (for some coherent
stateual with amplitudea) is equivalent to the phase-shift

keyed alphabethu−1
2al , u 1

2alj via a displacement,D̂f−1
2ag

;expf−1
2saâ†−a* âdg, whereâ† and â are the creation and

annihilation operators for the channel mode. Similarly, if
uC0lÞ u0l, a simple displacement can be used to restoreuC0l
to the vacuum state.

A. The quantum error probaility

The coherent statesr̂0 and r̂1 are not orthogonal, so it is
impossible for a receiver to identify the transmitted state
without sometimes making a mistake. That is, the receiver

attempts to ascertain which state was transmitted by per-
forming a quantum measurement,Y, on the channel.Y is
described by an appropriate POVM represented by a com-
plete set of positive operators[20],

o
n

Ŷn = 1̂, Ŷn ù 0, s4d

where n indexes the possible measurement outcomes. For
binary communication, it is always possible(and optimal)
for the receiver to implement the measurement as a decision
between two hypotheses:sH0d, that the transmitted state is
r̂0, selected when the measurement outcome corresponds to

Ŷ0, andsH1d, that the transmitted state isr̂1, selected when

the measurement outcome corresponds toŶ1.

Given the positive operators,Ŷ0+Ŷ1= 1̂, there is some
chance that the receiver will select the null hypothesisH0
when r̂1 is actually present,

psH0ur̂1d = trfŶ0r̂1g = trfs1̂ − Ŷ1dr̂1g, s5d

and it will sometimes selectH1 when r̂0 is present,

psH1ur̂0d = trfŶ1r̂0g. s6d

The total receiver error probability depends upon the choice

of Ŷ0 and Ŷ1 and is given by

pfŶ0,Ŷ1g = j0psH1ur̂0d + j1psH0ur̂1d. s7d

Here,j0=p0sr̂0d andj1=p0sr̂1d are the probabilities that the
sender will transmitr̂0 and r̂1 respectively; they reflect the
prior knowledge that enters into the hypothesis testing pro-
cess implemented by the receiver, and in many casesj0=j1
=1/2.

Minimizing the receiver measurement over POVMs(over

Ŷ0 and Ŷ1) leads to a quantity known as thequantum error
probability,

PH ; min
Ŷ0,Ŷ1

pfŶ0,Ŷ1g, s8d

also referred to as the Helstrom bound.PH is the smallest
physically allowable error probability, given the overlap be-
tweenr̂0 and r̂1.

The Helstrom bound

Helstrom demonstrated that minimizing the receiver error
probability

pfŶ0,Ŷ1g = j0trfŶ1r̂0g + j1trfs1̂ − Ŷ1dr̂1g s9d

=j1 + trfŶ1sj0r̂0 − j1r̂1dg s10d

is accomplished by optimizing

min
Ŷ1

trfŶ1Ĝg, Ĝ = j0r̂0 − j1r̂1, s11d

over Ŷ1 subject to 0øŶ1ø 1̂ [3]. Given the spectral decom-
position
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Ĝ = o
n

lnunlknu, s12d

where theln are the eigenvalues ofĜ, the resulting Helstrom
bound can be expressed as[21]

PH = j1 + o
ln,0

ln. s13d

For pure states, wherer̂0= uC0lkC0u andr̂1= uC1lkC1u, Ĝ has
two eigenvalues of which only one is negative,

l− =
1

2
s1 −Î1 – 4j0j1zkC0uC1lz2d − j1 . 0, s14d

and the quantum error probability is therefore[3]

PH =
1

2
s1 −Î1 – 4j0j1zkC1uC0lz2d . s15d

The Helstrom bound is readily evaluated for coherent
states by employing the relation[22]

ual = e−uau2/2o
n=0

`
an

În!
unl, s16d

to compute the overlap betweenuC1l and uC0l [3,22],

c0 ; kC1uC0l = e−N̄/2. s17d

It is further possible to evaluate the Helstrom bound for im-
perfect detection. Coherent states have the convenient prop-
erty that subunity quantum efficiency is equivalent to an
ideal detector masked by a beam splitter with transmission
coefficienthø1, to give

PHshd =
1

2
s1 −Î1 – 4j0j1c0

2hd . s18d

This result and Eq.(15) indicate that there is a finite quantum
error probability for all choices ofuC1l, even when an opti-
mal measurement is performed.

B. The Kennedy receiver

Kennedy proposed a near-optimal receiver that simply
counts the number of photon arrivals registered by the detec-
tor betweent=0 andT. It decides in favor ofH0 when the
number of clicks is zero, otherwiseH1 is chosen. This hy-
pothesis testing procedure corresponds to the measurement
operators

Ŷ0 = u0lk0u, s19d

Ŷ1 = o
n=1

`

unlknu, s20d

where unl are the eigenvectors of the number operator

N̂= â†â.
The Kennedy receiver has the property that it always cor-

rectly selectsH0 when the channel is inr̂0, since the photon
counter will never register photons when the vacuum state is

present(ignoring background light and detector dark counts
for now). Therefore,psH1u r̂0d=0; however,

psH0ur̂1d ; trfŶ0r̂1g = zk0uC1lu2 s21d

is nonzero due to the finite overlap of all coherent states with
the vacuum. The Poisson statistics of coherent state photon
numbers allows for the possibility that zero photons will be
recorded even whenr̂1 is present.

Furthermore, an imperfect detector can misdiagnoser̂1 if
it fails to generate clicks for photons that do arrive at the
detector. The probability for successfully choosingH1 when
r̂1 is present is given by

phsH1ur̂1d = o
n=1

`

o
k=1

`

psn,kdzknualu2 s22d

where the Bernoulli distribution

psn,kd =
n!

k ! sn − kd!
hks1 − hdn−k s23d

gives the probability that a detector with quantum efficiency
h will registerk clicks when the actual number of photons is
n. The resulting Kennedy receiver error

PKshd = 1 − phsH1ur̂1d = j1c0
2h s24d

asymptotically approaches the Helstrom bound for large sig-
nal amplitudes, but is larger for small photon numbers.

C. The Sasaki-Hirota receiver

Sasaki and Hirota proposed that it would be possible to
achieve the Helstrom bound using simple photon counting
by applying a unitary transformation to the incoming signal
states prior to detection[6,15,16]. They considered rotations

Ûfug = expfusuC08lkC18u − uC18lkC08udg, s25d

generated by the transformed alphabetA8,

uC08l = uC0l, uC18l =
uC1l − c0uC0l

Î1 − c0
2

, s26d

obtained from Gram-Schmidt orthogalization ofA. The ro-
tation angleuPR is a parameter that must be optimized in
order to achieve the Helstrom bound.

Application of Ûfug on the incoming signal states(which
belong to the original alphabet,A) leads to the transformed
states

ÛfuguC0l = Scosu +
c0 sin u

Î1 − c0
2 DuC0l −

sin u

Î1 − c0
2
uC1l

s27d

and

ÛfuguC1l =
sin u

Î1 − c0
2
uC0l +

cosuÎ1 − c0
2 − c0 sin u

Î1 − c0
2

uC1l.

s28d

DISTINGUISHING BETWEEN OPTICAL COHERENT… PHYSICAL REVIEW A 70, 062303(2004)

062303-3



SinceuC08l is the vacuum state, hypothesis testing can still
be performed by simple photon counting. However, unlike
the Kennedy receiver, it is possible to misdiagnoser̂0 since

ÛfuguC0l contains a nonzero contribution fromuC1l. The
probability for a false-positive detection by a photon counter
with efficiency,h, is given by

ph
usH1ur̂0d = o

n=1

`

o
k=1

`

psn,kdzknuÛfuguC0lz2 s29d

=
c0

2h − 1

c0
2 − 1

sin2 u, s30d

which is evaluated by recognizing that

knuÛfuguC0l = Fcosu +
c0 sin u

Î1 − c0
2Gdn,0 −

c0an sin u

În ! s1 − c0
2d

,

s31d

wherea is the(complex) amplitude ofuC1l. The probability
for correct detection can be similarly obtained to give

ph
usH1ur̂1d = o

n=1

`

o
k=1

`

psn,kdzknuÛfuguC1l s32d

=
c0

2h − 1

c0
2 − 1

fc0 sin u − Î1 − c0
2 cosug2 s33d

by employing the relationship

knuÛfuguC1l = Fc0 cosu −
c0

2an sin u

În ! s1 − c0
2d
G +

sin u

Î1 − c0
2
dn,0.

s34d

The total Sasaki-Hirota receiver error is given by the
weighted sum

PSHsh,ud = j0ph
usH1ur̂0d + j1f1 − ph

usH1ur̂1dg s35d

and can be minimized overuPR to give

u = − tan−1ÎÎ1 – 4j0j1c0
2 − 1 + 2j1c0

2

Î1 – 4j0j1c0
2 + 1 – 2j1c0

2
. s36d

For perfect detection efficiency,h=1, Eq.(35) is equivalent
to the Helstrom bound; however, forh,1, it is larger.

D. The Dolinar receiver

The Dolinar receiver takes a different approach to achiev-
ing the Helstrom bound with a photon counting detector; it
utilizes an adaptive strategy to implement a feedback ap-
proximation to the Helstrom POVM[13,23]. Dolinar’s re-
ceiver operates by combining the incoming signalCstd with
a separate local signal,

Ustd = ustdexpf− isvt + fdg + c.c., s37d

such that the detector counts photons with total instantaneous
mean rate

Fstd = ucstd + ustdu2. s38d

Here, cstd=0 when the channel is in the stater̂0, and cstd
=c1std when the channel is inr̂1 [refer to Eqs.(1) and (2)].

The receiver decides between hypothesesH0 and H1 by
selecting the one that is more consistent with the record of
photon arrival times observed by the detector given the
choice ofustd. H1 is selected when the ratio of conditional
arrival time probabilities,

L =
phfr̂1ut1, . . . ,tn,ustdg
phfr̂0ut1, . . . ,tn,ustdg

, s39d

is greater than 1; otherwise it is assumed thatr̂0 was trans-
mitted. The conditional probabilitiesphfr̂i u t1, . . . ,tn,ustdg re-
flect the likelihood thatn photon arrivals occur precisely at
the timesht1, . . . ,tnj, given that the channel is in the stater̂i,
the feedback amplitude isustd, and the detector quantum
efficiency ish.

We see that this decision criterion based onL is immedi-
ately related to the error probabilities

L =
phfH1ur̂1,ustdg
phfH1r̂0,ustdg

=
1 − phfH0ur̂1,ustdg

phfH1ur̂0,ustdg
s40d

whenL.1 (i.e., the receiver definitely selectsH1), and

L =
phfH0ur̂1,ustdg
phfH0ur̂0,ustdg

=
phfH0ur̂1,ustdg

1 − phfH1ur̂0,ustdg
s41d

when L,1 (i.e., the receiver definitely selectsH0). Simi-
larly, the likelihood ratioL can be reexpressed in terms of
the photon counting distributions frequently encountered in
quantum optics by employing Bayes’ rule,

L =
phft1, . . . ,tnur̂1,ustdgp0sr̂1d
phft1, . . . ,tnur̂0,ustdgp0sr̂0d

s42d

=
j1

j0

phft1, . . . ,tnur̂1,ustdg
phft1, . . . ,tnur̂0,ustdg

, s43d

where thephft1, . . . ,tnu r̂i ,ustdg are the exclusive counting
densities

phft1, . . . ,tnur̂i,ustdg = p
k=1

n+1

whftkur̂i,ustdg. s44d

Here, t0=0, tn+1=T, and whftku r̂i ,ustdg is the exponential
waiting time distribution

wftkur̂i,ustdg = hFstkdexpS− hE
tk−1

k

Fst8ddt8D s45d

for optical coherent states, or the probability that a photon
will arrive at time tk and that it will be the only click during
the half-closed intervalstk−1,tkg [22].

1. Optimal control problem

The Dolinar receiver error probability
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PDfustdg = j0phfH1ur̂0,ustdg + j1phfH0ur̂1,ustdg s46d

depends upon the amplitude of the locally applied feedback
field, so the objective is to minimizePD over ustd. This op-
timization can be accomplished[23] via the technique of
dynamic programming[24], where we adopt an effective
state-space picture given by the conditional error probabili-
ties

pstd = SphfH1ur̂0,ustdgstd
phfH0ur̂1,ustdgstd

D s47d

and define the control cost as

Jfustdg ; PDfustdg = jTp. s48d

The optimal control policyu*std is identified by solving
the Hamilton-Jacobi-Bellman equation

min
ustd

F ]

] t
Jfustdg + =pJfustdgT ]

] t
pstdG = 0, s49d

which is a partial differential equation forJ based on the
requirement thatpstd and ustd are smooth(continuous and
differentiable) throughout the entire receiver operation.
However, like all quantum point processes, our conditional
knowledge of the system state evolves smoothly onlybe-
tweenphoton arrivals.

When a click is recorded by the detector, the system prob-
abilities p can jump in a nonsmooth manner. Therefore, the
photon arrival times divide the measurement interval 0ø t
øT into segments that are only piecewise continuous and
differentiable. Fortunately, the dynamic programmingopti-
mality principle [24] allows us to optimizeustd in a piece-
wise manner that begins by minimizingJfustdg on the final
segmentftn,Tg. Of course, the system state at the beginning
of this segmentpstnd depends upon the detection history at
earlier times and therefore the choice ofustd in earlier inter-
vals. As such, the Hamilton-Jacobi-Bellman optimization for
the final segment must hold for all possible starting states
pstndPRf0,1g

2 . Once this is accomplished,ustd can be opti-
mized on the preceding segmentftn−1,tnd with the assurance
that any final state for that segment will be optimally con-
trolled on the next intervalftn,Tg. This procedure is iterated
in reverse order for all of the measurement segments until the
first interval t=f0,t1d, where the initial valueps0d=s1 0dT

can be unambiguously specified.
Solving the Hamilton-Jacobi-Bellman equation in each

smooth segment between photon arrivals requires the time
derivativesṗstd which assume a different form whenL.1
versus whenL,1. Using Eqs.(40) and (41), the coherent
state waiting time distribution, and

Fstd ; SF0std
F1std

D = S ustd
ustd + c1std

D , s50d

we see that the smooth evolution ofpstd between photon
arrivals is given by

ṗ0std = hp0stdF d

dt
ln F0std − F0stdG ,

ṗ1std = hp1stdFF1std −
d

dt
ln F1stdG s51d

whenL.1 and

ṗ0std = hp0stdFF0std −
d

dt
ln F0stdG ,

ṗ1std = hp1stdF d

dt
ln F1std − F1stdG s52d

whenL,1.
Performing the piecewise minimization in Eq.(49) over

each measurement segment with initial states provided by
the iterative point-process probabilities in Eq.(44) and com-
bining the intervals(this is straightforward but eraser de-
manding) leads to the control policy

u1
*std = − c1stdS1 +

Jfu1
*stdg

1 – 2Jfu1
*stdgD s53d

for L.1, wherephfH0u r̂1,u1
*stdg=0 and

Jfu1
*stdg = j1phfH1ur̂0,u1

*stdg =
1

2
s1 −Î1 – 4j0j1e

−hn̄stdd.

s54d

Here, n̄std represents the average number of photons ex-
pected to arrive at the detector by timet when the channel is
in the stater̂1,

n̄std =E
0

t

uc1st8du2dt8. s55d

Conversely, the optimal control takes the form

u0
*std = c1stdS Jfu0

*stdg

1 – 2Jfu0
*stdgD s56d

for L,1, wherephfH1u r̂0,u0
*stdg=0 and

Jfu0
*stdg = j1phfH0ur̂1,u0

*stdg =
1

2
s1 −Î1 – 4j0j1e

−hn̄stdd.

s57d

2. Dolinar hypothesis testing procedure

The Hamilton-Jacobi-Bellman solution leads to a concep-
tually simple procedure for estimating the state of the chan-
nel. The receiver begins att=0 by favoring the hypothesis
that is more likely based on the prior probabilitiesp0s0d
=j0 and p1s0d=j1.

1 Assuming thatj1ùj0 (for j0.j0, the
opposite reasoning applies), the Dolinar receiver always se-
lectsH1 during the initial measurement segment. The prob-
ability of deciding onH0 is exactly zero prior to the first
photon arrival such that an error only occurs when the chan-
nel is actually inr̂0.

1If j0=j1, then neither hypothesis isa priori favored and the
Dolinar receiver is singular withPD=1/2.
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To see what happens when a photon does arrive at the
detector, it is necessary to investigate the behavior ofLstd at
the boundary between two measurement segments. Substitut-
ing the optimal control policyu*std, which alternates be-
tweenu1

*std and u0
*std, into the photon counting distribution

leads to

pst1, . . . ,tnur̂id = hnp
k=0

n+1

Fi†uku2s0,t1g‡

3 expS− hE
0

t1

Fi†u1stk−18 ,tk8g‡dt8

− ¯ − hE
tn

T

Fi†unu2stn8,T8g‡dt8D . s58d

This expression can be used to show that the limit ofLstd
approaching a photon arrival timetk from the left is the re-
ciprocal of the limit approaching from the right,

lim
t→tk

−
Lstd = F lim

t→tk
+
LstdG−1. s59d

That is, if L.1 such thatH1 is favored during the measure-
ment interval ending attk, the receiver immediately swaps its
decision to favorH0 when the photon arrives. Evidently, the
optimal control policyu*std engineers the feedback such that
the photon counter is least likely to observe additional clicks
if it is correct based on its best knowledge of the channel
state at that time. Each photon arrival invalidates the current
hypothesis and the receiver completely reverses its decision
on every click. This result implies thatH1 is selected when
the number of photonsn is even(or zero) andH0 when the
number of photons is odd.

Despite the discontinuities in the conditional probabilities
phfH1u r̂0,u*stdg and phfH0u r̂1,u*stdg at the measurement
segment boundaries, the total Dolinar receiver error prob-
ability

PDsh,td =
1

2
s1 −Î1 − j0j1e

−hn̄stdd s60d

evolves smoothly since

lim
t→tk

−
Jfu*stdg = lim

t→tk
+
Jfu*stdg s61d

at the boundaries. Recognizing thatn̄std=N̄ leads to the final
Dolinar receiver error

PDshd =
1

2
s1 −Î1 – 4j0j1c0

2hd, s62d

which is equal to the Helstrom bound for all values of the
detector efficiency 0,hø1.

III. SIMULATIONS

Monte Carlo simulations of the Kennedy, Sasaki-Hirota,
and Dolinar receivers were performed to verify the above
quantum efficiency analysis and to analyze the effects of

additional detector imperfections. Figure 1 shows benchmark
simulation results for perfect photodetection. The three re-
ceivers perform as expected in the small-amplitude regime;
both the Sasaki-Hirota and Dolinar protocols achieve the
Helstrom bound while the Kennedy receiver is approxi-
mately a factor of 2 worse, at the shot-noise limit.2 Statistics
were accumulated for 10 000 Monte Carlo samples in which
r̂0 and r̂1 were randomly selected withj0=j1=1/2.

Detector imperfections, however, will degrade the perfor-
mance of each of the three receivers, and here we investigate
the relative degree of that degradation for conditions to be
expected in practice. The analysis is based on the observation
that single photon counting in optical communications is of-
ten implemented with an avalanche photodiode(APD), as
APDs generally provide the highest detection efficiencies. In
the near infrared, for example, high-gain silicon diodes pro-
vide a quantum efficiency ofh,50%. Additional APD non-
idealities include a dead time following each detected photon
during which the receiver is unresponsive, dark counts in the
absence of incoming photons due to spontaneous breakdown
events in the detector medium, a maximum count rate above
which the detector saturates(and can be damaged), and oc-
casional ghost clicks following a real photon arrival—a pro-
cess referred to as “after pulsing.” For the Dolinar receiver,
which requires high-speed signal processing and actuation in
order to modulate the adaptive feedback field, delays must
also be considered. That is, the optical modulators used to
adjust the phase and amplitude of the feedback signal as well
as the digital signal processing technology necessary[25] for
implementing all real-time computations display finite band-
widths.

2In some contexts, Eq.(24) is referred to as thestandard quantum
limit despite the fact that there is no measurement back action as
âual=aual. We prefer the termshot-noise limitin order to avoid
such confusion.

FIG. 1. Monte Carlo simulation of the Kennedy, Dolinar, and
Sasaki-Hirota receivers as a function of the signal amplitude for
perfect photon counting withj0=j1=1/2. Asexpected, the Dolinar
and Sasaki-Hirota protocols both achieve the Helstrom bound while
the Kennedy receiver is approximately a factor of 2 worse.
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Figure 2 compares the error probabilities of the three re-
ceivers for subunity quantum efficiency but otherwise ideal
detection. The mean photon number of the signal,C1std, in

this simulation isN̄=1 with C0std=0 andj0=j1=1/2. Data
points in the figure were generated by accumulating statistics
for 10 000 Monte Carlo simulations of the three receivers,
and the dotted lines correspond to the error probabilities de-
rived in Sec. II. The simulations agree well with the analytic
expressions and it is evident that the Dolinar receiver is ca-
pable of achieving the Helstrom bound forh,1 while the
Sasaki-Hirota receiver performance lies between that of the
Kennedy and Dolinar receivers.

Figure 3 compares the error probabilities for the three
receivers with the additional detector and feedback nonide-
alities taken into account. Based on the performance data of
the Perkin-Elmer SPCM-AQR-13 Si APD single photon
counting module, we assumed a maximum count rate of
107 photons/s, a detector dead time of 50 ns, a dark count
rate of 250 clicks/s, and an after-pulsing probability of 1%.
For the Dolinar receiver, it was assumed that there was a
100 ns feedback delay resulting from a combination of digi-
tal processing time and amplitude/phase modulator band-
width. The data points in Fig. 3 correspond to the error prob-
abilities generated from 10 000 Monte Carlo simulations
with j0=j1=1/2. Thelower dotted line indicates the appro-
priate Helstrom bound as a function of the mean photon

numberN̄ for a detector with quantum efficiencyh=0.5, and
the upper curve indicates the analogous Kennedy receiver
error. Evidentally, technical imperfections can have a large
negative effect on the performance of passive detection pro-
tocols like the Kennedy and Sasaki-Hirota receivers while
the Dolinar receiver is more robust.

Unlike open-loop procedures, however, the feedback na-
ture of the Dolinar receiver additionally requires precise

knowledge of the incoming signal phasew, so thatU*std can
be properly applied. Fluctuations in the index of refraction of
the communication medium generally lead to some degree of
phase noise in the incoming signalCstd. Adequately setting
the phase ofUstd necessarily requires that some light from
the channel be used for phase-locking the local oscillator—a
task that reduces the data transmission bandwidth. Therefore,
operating a communication system based on the Dolinar re-
ceiver at the highest feasible rate requires that the number of
photons diverted from the data stream to track phase varia-
tions in the channel be minimized. This optimization in turn
requires knowledge of how signal phase noise propagates
into the receiver error probability.

Figure 4 shows the error probabilityPDsdwd as a function
of the phase differencedw between the incoming signal and
the local oscillator. Data points correspond to results from
10 000 Monte Carlo simulations per photon number and
phase angle, and the solid curves reflect numerical fits to the
Monte Carlo points. An exact comparison between the open-
loop and Dolinar receivers requires information regarding
the specific phase-error density function for the actual com-
munication channel being utilized. However, we do note that

at N̄=1 photon, the phase of the local oscillator could be as
large asdw,25° before its error probability increased to that
of the Kennedy receiver. Additionally, it appears that the
slope of PDsdwd is zero atdw=0 which implies that the
Dolinar receiver conveniently displays minimal sensitivity to
small phase fluctuations in the channel.

IV. DISCUSSION AND CONCLUSIONS

The Dolinar receiver was found to be robust to the types
of detector imperfections likely to exist in any real imple-
mentation of a binary communication scheme based on op-
tical coherent state signaling and photon counting. This ro-

FIG. 2. Performance of the Kennedy, Sasaki-Hirota, and Dolinar
receivers as a function of the detector quantum efficiencyh. The
simulations were performed forj0=j1=1/2 anddata points reflect
the result of Monte Carlo simulations of the three receivers. Dotted
lines correspond to the analytic results derived in Sec. II and illus-
trate that the Dolinar receiver achieves the Helstrom bound even for
subunity quantum efficiency.

FIG. 3. Performance of the Kennedy, Sasaki-Hirota, and Dolinar
receivers as a function of the mean number of photons in the signal
under realistic experimental conditions, including a quantum effi-
ciency of 50%, a dark-count rate of 250 clicks/s, an after-pulsing
probability of 1%, and feedback delays of 100 ns.
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bustness seemingly results from the fact that the Dolinar
receiver can correct itself after events that cause an open-
loop receiver to irreversibly misdiagnose the transmitted
state. For example, imperfect detection efficiency introduces
a failure mode where the probabilitypsH0u r̂1d is increased
above the value set by quantum mechanical vacuum fluctua-
tions. However, the optimal structure of the Dolinar receiver
feedback insures that it still achieves the quantum mechani-
cal minimum because it has control over the counting rate.
That is, if the Dolinar receiver selects the wrong hypothesis
at some intermediate timetk,T, the structure of the feed-
back ensures that the receiver achieves the highest allowable
probability for invalidating that incorrect decision during the
remainder of the measurementtk, tøT.

In the opposite situation, where dark counts or back-
ground light produce detector clicks when there is no signal
light in the channel, open-loop receivers will decide in favor
of r̂1 without any possibility for self-correction. This type of

error leads to an irreparable open-loop increase inpsH1u r̂0d.
But the Dolinar receiver has the potential to identify and fix
such a mistake since selecting the wrong hypothesis at inter-
mediate times increases the probability that a future click
will invalidate the incorrect decision. When background light
is present, poor phase coherence between stray optical fields
and the signal provides no enhanced open-loop discrimina-
tion as there is no local oscillator to establish a phase refer-
ence; a received photon is a received photon(assuming that
any spectral filtering failed to prevent the light from hitting
the detector). The Dolinar receiver is better immune to such
an error since incoherent addition of the stray field to the
local oscillator will generally reduce the likelihood of a de-
tector click, and even if so, that click will be inconsistent
with the anticipated counting statistics.

Despite the previous belief that the Dolinar receiver is
experimentally impractical due to its need for real-time feed-
back, we have shown that it is rather attractive for experi-
mental implementation. Particularly, quantum efficiency
scales out of a comparison between the Dolinar receiver er-
ror and the Helstrom bound, while this is not the case for
known unitary rotation protocols. These results strongly sug-
gest that real-time feedback, previously cited as the Dolinar
receiver’s primary drawback, in fact offers substantial ro-
bustness to many common imperfections that would be
present in a realistic experimental implementation. Most im-
portantly, simulations under these realistic conditions suggest
that the Dolinar receiver can outperform the Kennedy re-
ceiver with currently available experimental technology,
making it a viable option for small-amplitude, minimum-
error optical communication.
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