PHYSICAL REVIEW A 70, 062303(2004)

Distinguishing between optical coherent states with imperfect detection
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Several proposed techniques for distinguishing between optical coherent states are analyzed under a physi-
cally realistic model of photodetection. Quantum error probabilities are derived for the Kennedy receiver, the
Dolinar receiver, and the unitary rotation scheme proposed by Sasaki and Hirota for subunity detector effi-
ciency. Monte Carlo simulations are performed to assess the effects of detector dark counts, dead time, signal
processing bandwidth, and phase noise in the communication channel. The feedback strategy employed by the
Dolinar receiver is found to achieve the Helstrom bound for subunity detection efficiency and to provide
robustness to these other detector imperfections making it more attractive for laboratory implementation than
previously believed.
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I. INTRODUCTION communication; however, arbitrary POVMs are rarely
L _ o straightforward to implement in the laboratory. Therefore, a
_Communication is subject to quantum mechanical indeter«g64” receiver must balance quantum mechanical optimal-
minism even when the transm|tte.d |r)format|on is entlrelyity with implementability and robust performance under re-
classical. This potentially counterintuitive property resultsgjistic experimental conditions.
from the fact that information must be conveyed through a For example, the optical field produced by a laser pro-
physical medium—acommunication channelthat is un-  vides a convenient quantum system for carrying information.
avoidably governed by quantum mechanics. From this perof course, optical coherent states are not orthogonal and can-
spective, thesenderencodes information by preparing the not be distinguished perfectly by photodetection. While the
channel into a well-defined quantum statselected from a  overlap between different coherent states can be reduced by
predetermined alphabet={py, ... ,pu} Of codewords. The employing large amplitudes, power limitations often restrict
receiver following any relevant signal propagation, performs A to the small-amplitude regime where quantum effects
a measurement on the channel to ascertain which state wgdeminate. This is especially true in situatiqissich as optical
transmitted by the sender. fibery wh_ere the communication medium_ behaves nonlin_—
A quantum mechanical complication arises when thegarly at high power, as well as for long distance communi-
states inA are not orthogonal, as no measurement can discation where signals are substantially attenuated, including

tinguish between overlapping quantum states without som@€P Space transmission. . . .
ambiguity[1—4]. This uncertainty in determining the channel . Motivated by these experimental considerations, optimiz-
state translates into a nonzero probability that the receive'd & Communication process based on small-amplitude op-
will misinterpret the transmitted codeword and produce ats|cal_ coh(_arent states and photodetection has been an active
communication error. While it would seem obvious that the -UbJeCt since the adve_nt of the Ia$6r12—14. Kennedy ini- :

. : tially proposed a receiver based on simple photon counting
sender should simply adopt an alphabet of orthogonal states, distinguish between two different coherent stateg].

g.{.s rare5ly prEcUcablr(]a tolfpmmumbclat? urt'Eier suzh |(3e<';1l ConHowever, the Kennedy receiver error probability lies above
'.LonStL 6. \I/en\év en IdIS poss_lt EI or the sfent_er O.raPhs'the guantum mechanical minimuf8] (or Helstrom bouny
mit orthogonal codewords, Inevitable IMPertections N e,y g prompted Dolinar to devise a measurement scheme

channel including decoherence and energy dissipatio i o N
quickly damage that orthogonality. In some cases, the cIa:ss{!:gl-apabIe of achieving the quantum linjit3]. Dolinar's re

Linf i ity of . h i tuall eiver, while still based on photon counting, approximates an
cal infermation capacity ol'a noisy channet IS actually maX"optimal POVM by adding a local feedback signal to the
mized by a nonorthogonal alphalj&.

. s hannel; but, this procedure has often been deemed imprac-
When developing a communication system to operate

. . . . X ical [15] due to the need for real-time adjustment of the
the highest feasible rate given fixed channel properties and_ Bcal signal following each photon arrival. As a result, Sasaki

fons.”?"f?ed tclf]apabmty for si_ate prepabrat:jon,. th? ObJ?,Ct'V%,fﬁnd Hirota later proposed an alternative receiver that applies
0 minimize the communication error by designing a 'good,, open-loop unitary transformation to the incoming coher-

receivgr. Distinguishing between nonorj[hogonal states is 8nt state signals to render them more distinguishable by
pervasive problem in quantum information the¢8y9] ad- simple photon countingb, 15,18

dressed mathematically by_(_)pt|m|2|ng a state-determining However, recent experimental advances in real-time
measurement over all positive operator valued measure

. . cfuantum-limited feedback contrgl7-19 suggest that the
(POVMSs) [3,10.11. This general approach can be applied ©Dolinar receiver may be more experimentally practical than

previously believed. The opinion that feedback should be
avoided in designing an optical receiver is grounded in the
*Electronic mail: jgeremia@Caltech.EDU now antiquated premise that real-time adaptive quantum
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measurements are technologically inaccessible. Most argattempts to ascertain which state was transmitted by per-
ments in favor of passive devices have been based on idedbrming a quantum measuremei, on the channelY is

ized receiver models that assume, for example, perfect phalescribed by an appropriate POVM represented by a com-
ton counting efficiency. A fair comparison between open-plete set of positive operatofg0],

and closed-loop receivers should take detection error into L

account—feedback generally increases the robustness of the 2Y,=1, Y,=0, (4)
measurement device in exchange for the added complexity. n

Here, we consider the relative performance of theyheren indexes the possible measurement outcomes. For
Kennedy, Dolinar, and Sasaki-Hirota receivers uneatis- binary communication, it is always possibland optimaj
tic experimental conditions that includ&) subunity quan-  for the receiver to implement the measurement as a decision

tum ef_ficiengy, where it is possible for the detector to mis-penyveen two hypothesegt,), that the transmitted state is
count incoming photong2) nonzero dark counts, where the sejected when the measurement outcome corresponds to

detector can register photons even in the absence of a signaj, . R
(3) nonzero dead time, or finite detector recovery time after © and(H,), that the transmitted state 1%, selected when

registering a photon arriva{4) finite bandwidth of any sig- the measurement outcome correspondy {0

nal processing necessary to implement the detector(%nd Given the positive operatory+Y=1, there is some

fluctuations in the phase of the incoming optical signal. chance that the receiver will select the null hypothesjs
whenp, is actually present,

II. BINARY COHERENT STATE COMMUNICATION D(Ho|f71) =t Yop ] =tl(1 = Ypil, (5)

An opupal binary communication protocol can be imple- 44 it will sometimes seledd; whenp, is present,
mented via the alphabet consisting of two pure coherent

stfates;60=|‘1{0><llf0| and,31=|llfl><_\lfl|. Wi_thout loss of gener- p(Hpo) = tT¥ 10]. (6)
ality, we will assume that logical 0 is represented by the ] . .
vacuum, The total receiver error probability depends upon the choice
fY Y is gi
Wyt)=0, 1) of YqandY; and is given by
and that logical 1 is represented by pLYo,Y 1] = &P(H1lpo) + £p(Holpy) - (7
W (1) = gy (Dexd—i(wt + ¢)] +c.c., 2) Here, &=po(po) and & =py(p1) are the probabilities that the

_ . _ . sender will transmifp, and p; respectively; they reflect the
where w is the frequency of the optical carrier anglis  prior knowledge that enters into the hypothesis testing pro-
(ideally) a fixed phase. The envelope functigi(t) is nor-  cess implemented by the receiver, and in many cégses;

malized such that =1/2.
T o Minimizing the receiver measurement over POV\ser
f lyn(t)[?dt=N, (3) Yy andY,) leads to a quantity known as tlygiantum error
0 probability,
where N is the mean number of photons to arrive at the Py = min p[?o,?ﬂ, (8)

receiver during the measurement intervatO<T. That is,
fiw|yn(t)|? is the instantaneous average power of the optical
signal for logical 1. also referred to as the Helstrom bouri is the smallest
This alphabetd={py, p,} is applicable to both amplitude Physically allowable error probability, given the overlap be-
and phase-shift keyed communication protocols as it is alfWeenpo andp;.
ways possible to transform between the two by combining
the incoming signal with an appropriate local oscillator. That
is, amplitude keying with4={|0),|a)} (for some coherent Helstrom demonstrated that minimizing the receiver error
state|a) with amplitude«) is equivalent to the phase-shift Probability
keyed alphabef|-3a),|3a)} via a displacementD[-3a] T g S o
Eexd—%(aé’f—a*é)], wherea' and & are the creation and PLY0, Ya] = &t Yapol + &4trl(1 = Y)pn] ©
annihilation operators for the channel mode. Similarly, if A R
| W) # |0), a simple displacement can be used to restbgg =& + Y 1(&po = €1p1)] (10
to the vacuum state.

Yo Y1

The Helstrom bound

is accomplished by optimizing

A. The quantum error probaility mintr{Y, '], T'=&po— &p1, (11
Y
The coherent statgs) and p; are not orthogonal, so it is !

impossible for a receiver to identify the transmitted s;tateover\?1 subject to Gé?lsfl [3]. Given the spectral decom-
without sometimes making a mistake. That is, the receiveposition
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=> ' 12 present(ignoring backgrognd light and detector dark counts
2 Ml (12 for now). Therefore p(H;|pg) =0; however,

where the\, are the eigenvalues f the resulting Helstrom p(Hglp1) = tr[Yo;}l] =|(0|W,)|? (21

bound can be expressed [@4. . - .
P @] is nonzero due to the finite overlap of all coherent states with

Pu=&+ 2 Ay (13  the vacuum. The Poisson statistics of coherent state photon
An<O numbers allows for the possibility that zero photons will be
. recorded even whepy, is present.
For pure states, whei@=|V XV andp,=|V}¥,|, T has Furthermore, an imperfect detector can misdiagrgsié
two eigenvalues of which only one is negative, it fails to generate clicks for photons that do arrive at the

1 detector. The probability for successfully choostigwhen
A= S(1-1-466(Po[ W) - &,>0, (14  Puis presentis given by

2
and the quantum error probability is theref¢s3 p,(Halpy) = > > p(n,k(n|a)? (22)
n=1k=1
1
Ph= 5(1 — V1 — 4508 (W, [ WO)?). (15 where the Bernoulli distribution
The Helstrom _ bound is r_eadily evaluated for coherent p(n,k) = _n (L= gk (23)
states by employing the relatig@2] k! (n-k)!
O an gives the probability that a detector with quantum efficiency
la) = gl > ?|n>, (16) 7 will registerk clicks when the actual number of photons is
n=0 \n! n. The resulting Kennedy receiver error
to compute the overlap betweé# ;) and|¥,) [3,22, P(m)=1- Py,(H1|f)1) = §1Cc2)” (24)
Co= (VW) = ‘N’2 (17 asymptotically approaches the Helstrom bound for large sig-

. . nal amplitudes, but is larger for small photon numbers.
It is further possible to evaluate the Helstrom bound for im- P g P

perfect detection. Coherent states have the convenient prop-
erty that subunity quantum efficiency is equivalent to an C. The Sasaki-Hirota receiver
ideal detector masked by a beam splitter with transmission

coefficient n<1, to give Sasaki and Hirota proposed that it would be possible to

achieve the Helstrom bound using simple photon counting

1 ’ by applying a unitary transformation to the incoming signal
Pr(7) = 2(1 - V1 - 4ge£,c27) (18)  states prior to detectiof6,15,16. They considered rotations

This result and Eq15) indicate that there is a finite quantum INE exd oW (W] = [WiIXWiD], (25
error probability for all choices of¥,), even when an opti-
mal measurement is performed. generated by the transformed alphalzg{
"= WD) - e o)
B. The Kennedy receiver [Po)=[Wo), [W])= y/rcg ; (26)
Kennedy proposed a near-optimal receiver that simply

counts the number of photon arrivals registered by the dete@btained from Gram-Schmidt orthogalization .4f The ro-
tor betweert=0 andT. It decides in favor oH, when the tation angled e R is a parameter that must be optimized in
number of clicks is zero, otherwige, is chosen. This hy- Order to achieve the Helstrom bound.
pothesis testing procedure corresponds to the measurementApplication ofU[b’] on the incoming signal statéa/hich

operators belong to the original alphabet]) leads to the transformed
. states
Yo=10)0], (19) sin ¢ sin ¢
. OL6]1wo) = (cose+ h)l‘l’& e
~ \ - 0
Y1=2 [nxnl, (20) 27
n=1

where |n) are the eigenvectors of the number operator"’lnd
Ata / 2 .
N=a"a. sin 6 cos1-c5—Copsinf
The Kennedy receiver has the property that it always cor- Lol = /1—|‘I’o> T-a
rectly selectdH, when the channel is i, since the photon Vi=G
counter will never register photons when the vacuum state is (28
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Since|W ) is the vacuum state, hypothesis testing can still
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D(t) = [y(t) + u()|*. (39

be performed by simple photon counting. However, unlike

the Kennedy receiver, it is possible to misdiagnpgesince
U[6]|¥y) contains a nonzero contribution frof¥,). The

probability for a false-positive detection by a photon counter

with efficiency, », is given by

PY(Hilpo) = 2 X p(n, KU 6] W)

(29)
n=1k=1
2n _
C 1
="5— sir? ¢, (30)
which is evaluated by recognizing that
- Co Sin 6 Co" sin @
(n[U[ G| Wy =| cosf+ ——— -,
LLol¥o Vi-&2 | ™ Int@-cd
(31)

wheree is the(compley amplitude of/¥,). The probability
for correct detection can be similarly obtained to give

PY(Hlpy) = > > p(n,K(n/O[6]]¥,)

(32
n=1k=1
27 _
c7-1 —
= (?2 ) [co sin #- V1 -cj cos 9]2 (33
0
by employing the relationship
2. N i H
~ Coar' Sin @ Sin
(n[ULO][Wy) = | ¢y cos O~ i > = 0%h0-
vnl(l-cp | Vl-cj
(34)

The total Sasaki-Hirota receiver error is given by the

weighted sum

Psi(7,60) = £opl(Halpo) + &[1 - pi(Halp)]  (35)
and can be minimized oveéte R to give
11— 4go&,c2 - 1 + 26,62
0= —tan‘l\/w/ Kok 2 %y g. (36)
V1—4géic+ 1-26Ch

For perfect detection efficiency;=1, Eq.(35) is equivalent

to the Helstrom bound; however, far<1, it is larger.

D. The Dolinar receiver

The Dolinar receiver takes a different approach to achiev-
ing the Helstrom bound with a photon counting detector; it
utilizes an adaptive strategy to implement a feedback ap-

proximation to the Helstrom POVM13,23. Dolinar’s re-
ceiver operates by combining the incoming sigWdt) with
a separate local signal,

Ut) =u)exd-i(wt+ ¢)]+c.c., (37)

such that the detector counts photons with total instantaneous

mean rate

Here, ¢(t)=0 when the channel is in the statg and i(t)
=¢;(t) when the channel is ip, [refer to Egs(1) and(2)].

The receiver decides between hypotheldgsand H; by
selecting the one that is more consistent with the record of
photon arrival times observed by the detector given the
choice ofu(t). H, is selected when the ratio of conditional
arrival time probabilities,

A= p?][ﬁlltli ree 1tnyu(t)]
p,Lpolts, - Lo u(®)]’

is greater than 1; otherwise it is assumed fhatvas trans-
mitted. The conditional probabilitigs,[pi|t;, ... ,tn,u(t)] re-
flect the likelihood than photon arrivals occur precisely at
the times{ty, ... t,}, given that the channel is in the state
the feedback amplitude is(t), and the detector quantum
efficiency is 7.

We see that this decision criterion based/ois immedi-
ately related to the error probabilities

— pr][Hl|ﬁ1!u(t)] — 1 - pn[HO|ﬁl!u(t)]
P, [H1po,u(t)] P, LH1lpo u(v)]
whenA>1 (i.e., the receiver definitely seledt), and

— pn[HO|bl!u(t)] - pn[H0|ﬁ1!u(t)]
pn[HO|bOi U(t)] 1- pﬂ[Hl|£)0! U(t)]

when A <1 (i.e., the receiver definitely selectdy). Simi-
larly, the likelihood ratioA can be reexpressed in terms of
the photon counting distributions frequently encountered in
gquantum optics by employing Bayes’ rule,

(39

(40)

(41)

A= pn[tlv T 1tn|%llu(t)]p0(l:)1) (42)
Pt - talPo, u(t) Ipo(po)
&Pt o) s
&op,Ltas - tolPo,u(t)]

where thep,[t;, ..
densities

talpisu(t)] are the exclusive counting

n+l

pn[tL s 1tn|f3iau(t)] = kH Wn[tk|ﬁi1u(t)] . (44)
=1

Here, t,=0, t,.;=T, and w,[t|p;,u(t)] is the exponential
waiting time distribution

k
W[tklﬁi,u(t)]=n<1>(tk)exp<- y J <1>(t’)dt’) (45)
-1

for optical coherent states, or the probability that a photon
will arrive at timet, and that it will be the only click during
the half-closed intervalt,_q,t,] [22].

1. Optimal control problem

The Dolinar receiver error probability
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Polu(t)] = &p,[H1lpo,u(t)] + &p,[Holpy,u(t)]  (46)

. d

p1(t) = ﬂpl(t)[d%(t) gl <1>1(t)} (51)
depends upon the amplitude of the locally applied feedback
field, so the objective is to minimizBp overu(t). This op-  \whenA>1 and
timization can be accomplishef@3] via the technique of

dynamic programming?24], where we adopt an effective - _ _ d

state-space picture given by the conditional error probabili- Polt) = npO(t)[q)O(t) dtIn (DO(t)]

ties
(0= (pr;[H1|PO:U(t)](t)) ) pa(t) = npl(t)[d%m Oy(t) - d)l(t)} (52)

p,[Holp, u(®)](t)
, whenA <1.

and define the control cost as Performing the piecewise minimization in E@9) over

Ju®] = Pplu(t)]= £ p. (48)  each measurement segment with initial states provided by

_ L » _ the iterative point-process probabilities in £44) and com-
The optimal control policyu (1) is identified by solving  bining the intervals(this is straightforward but eraser de-

the Hamilton-Jacobi-Bellman equation manding leads to the control policy
J 0 *
in| —J[ut)]+Vv 1 —p(t ] -0, 49 “o Ju; (0]
run(:?|: (?t~7[u( )] + pj[U( )] &tp( ) ( ) ul(t) = ¢1(t)<1 + —1 - Zj[u;-(t)] (53)

which is a partial differential equation fof based on the for A>1. wherep.[Hdl5- U’ (t)1=0 and

requirement thap(t) and u(t) are smooth(continuous and ’ P[Ho|p1, 1y ()]

differentiablg throughout the entire receiver operation. % R T

However, like all quantum point processes, our conditional JIUi(t)]= &1p,[Hilpo. Uy (V] = 5(1 ~V1-456e ™).

knowledge of the system state evolves smoothly ddy

tweenphoton arrivals. (54)
When a click is recorded by the detector, the System prObHere, ﬁ(t) represents the average number of photons ex-

abilities p can jump in a nonsmooth manner. Therefore, thepected to arrive at the detector by timehen the channel is
photon arrival times divide the measurement intervalt0 i the statep,,

<T into segments that are only piecewise continuous and

differentiable. Fortunately, the dynamic programmiogti- — ! , ,

mality principle [24] a||0V\)I/S us toyoptiming(t)gin a p?ge- n(y = fo [t dt. (59
wise manner that begins by minimizingu(t)] on the final

segmenft,, T]. Of course, the system state at the beginningConversely, the optimal control takes the form

of this segmenp(t,) depends upon the detection history at T

earlier times and therefore the choiceutf) in earlier inter- ug(t) = ,pl(t)(—o*) (56)
vals. As such, the Hamilton-Jacobi-Bellman optimization for 1-271uy(V)]

the final segment must hold for all possible starting state
p(t,) eR[zoyl]. Once this is accomplishedyt) can be opti-
mized on the preceding segméiyt 4,t,) with the assurance £ S | e —r
that any final state for that segment will be optimally con- To®]= &, [Holp, U0 = oL VI 4he” ).
trolled on the next intervdlt,, T]. This procedure is iterated (57)
in reverse order for all of the measurement segments until the
first intervalt=[0,t,), where the initial valug(0)=(1 0)T

can be unambiguously specified.

Solving the Hamilton-Jacobi-Bellman equation in each The Hamilton-Jacobi-Bellman solution leads to a concep-
smooth segment between photon arrivals requires the timglally simple procedure for estimating the state of the chan-
derivativesp(t) which assume a different form when>1  nel. The receiver begins a£0 by favoring the hypothesis
versus whem\ < 1. Using Eqgs(40) and (41), the coherent that is more likely based on the prior probabilitipg(0)

Yor A<1, wherep,][H1|f>o,ug(t)]:0 and

2. Dolinar hypothesis testing procedure

state waiting time distribution, and =& and py(0)=&,." Assuming thaté, = &, (for &> &, the
opposite reasoning appligghe Dolinar receiver always se-
D(t) = (rbo(t)> :( u(t) ) (50) lectsH; during the initial measurement segment. The prob-
d,(t) u(t) + g (t) /)’ ability of deciding onH, is exactly zero prior to the first

photon arrival such that an error only occurs when the chan-

we see that the smooth evolution ptt) between photon nel is actually inpo.

arrivals is given by

d 1 _ : P
0 (t) = )| —In dy(t) - Dy(1) |, If &=¢&;, then neither hypothesis ia priori favored and the
Polt) = 7ol ){ dt oV ol )] Dolinar receiver is singular witfPp=1/2.
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To see what happens when a photon does arrive at th ®.
detector, it is necessary to investigate the behaviagk (of at sl n m Kennedy Receiver | |
the boundary between two measurement segments. Substitu A © Sasaki-Hirota Receiver
ing the optimal control policyu’(t), which alternates be- S n, A Dolinar Receiver
tween u*l(t) and u;(t), into the photon counting distribution & “o__‘ A =y
leads to (i S— -
) A o
n+1 ; 20 o a Shotnoise
~ = 30r Limit
p(ty, ... talp) = 711 D;i[uy(0,t4]] 3 A o/
k=0 8 /.Q.‘ T
g% Helstrom 1. T
E s Bound o -
<exp = 7| Pl tlldt & 2o} oo g
0 ‘.'O’*A
T 15} "°-~.A,_°
—my J <I>i[un2<t,:,T']]dt') . (59) o
n 0 0.I1 Oj2 Oj3 0.I4 0.I5 0:6 0.I7 0:8 019 1
This expression can be used to show that the limit\¢f) Mean Photon Number (N)
approaching a photon arrival tintg from the left is the re- Y Carlo simulati  the K dv. Doli d
ciprocal of the limit approaching from the right, - 1. Monte Carlo simulation of the Kennedy, Dolinar, an
Sasaki-Hirota receivers as a function of the signal amplitude for
limA(t) = | limA(t) -1 (59 perfect photon counting wity=¢,=1/2. Asexpected, the Dolinar
t—ty t—ty and Sasaki-Hirota protocols both achieve the Helstrom bound while

o ) ] the Kennedy receiver is approximately a factor of 2 worse.
That is, if A>1 such thaH, is favored during the measure-

ment interval ending at, the receiver immediately swaps its additional detector imperfections. Figure 1 shows benchmark
decision to favoH, when the photon arrives. Evidently, the simulation results for perfect photodetection. The three re-
optimal control policyu’(t) engineers the feedback such that ceivers perform as expected in the small-amplitude regime;
the photon counter is least likely to observe additional clicksPoth the Sasaki-Hirota and Dolinar protocols achieve the
if it is correct based on its best knowledge of the channeHelstrom bound while the Kennedy receiver is approxi-
state at that time. Each photon arrival invalidates the currerfifately a factor of 2 worse, at the shot-noise lifn@itatistics
hypothesis and the receiver completely reverses its decisioffére accumulated for 10 000 Monte Carlo samples in which
on every click. This result implies that; is selected when po andp; were randomly selected witky=£,=1/2.
the number of photons is even(or zerg andH, when the Detector imperfections, however, will degrade the perfor-
number of photons is odd. mance of each of the three receivers, and here we investigate
Despite the discontinuities in the conditional probabilitiesthe relative degree of that degradation for conditions to be
pn[H1|ﬁo,U*(t)] and py,[Ho|l31,ll*(t)] at the measurement expec_ted in pract|ce.Th<—;- an_aIyS|s_|s based on _the .obse.rvauon
segment boundaries, the total Dolinar receiver error probthat single photon counting in optical communications is of-

ability ten implemented with an avalanche photodigéé’D), as
APDs generally provide the highest detection efficiencies. In
1  ——— oY the near infrared, for example, high-gain silicon diodes pro-
= — -/ — ”n(t) 4 !
Po(7.) 2(1 VI-£o6e™) (60) vide a quantum efficiency of~ 50%. Additional APD non-

idealities include a dead time following each detected photon
during which the receiver is unresponsive, dark counts in the
lim J[u’ (1] = lim AU’ ()] (61) absencg of incoming photo_ns due to spontaneous breakdown
oty - events in the detector medium, a maximum count rate above
. which the detector saturatéand can be damaggdand oc-
at the boundaries. Recognizing timét)=N leads to the final ~casional ghost clicks following a real photon arrival—a pro-

evolves smoothly since

Dolinar receiver error cess referred to as “after pulsing.” For the Dolinar receiver,
1 which requires high-speed signal processing and actuation in
| der to modulate the adaptive feedback field, delays must
Po(7) = =(1 =1 — 456,627, 62 O _ P \ , gelay
o(7) 2( V1 - 4obico”) (62) " Liso be considered, That is, the optical modulators used to

adjust the phase and amplitude of the feedback signal as well
as the digital signal processing technology necesgyfor
implementing all real-time computations display finite band-
widths.

which is equal to the Helstrom bound for all values of the
detector efficiency & p=<1.

Ill. SIMULATIONS

) . o %In some contexts, Eq24) is referred to as thetandard quantum
Monte Carlo simulations of the Kennedy, Sasaki-Hirota,|imit despite the fact that there is no measurement back action as

and Dolinar receivers were performed to verify the abovegja)=ala). We prefer the termshot-noise limitin order to avoid
quantum efficiency analysis and to analyze the effects o§uch confusion.
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FIG. 2. Performance of the Kennedy, Sasaki-Hirota, and Dolinar

receivers as a function of the detector quantum efficiencirhe
simulations were performed fa@p=¢;=1/2 anddata points reflect
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FIG. 3. Performance of the Kennedy, Sasaki-Hirota, and Dolinar
receivers as a function of the mean number of photons in the signal
under realistic experimental conditions, including a quantum effi-

the result of Monte Carlo simulations of the three receivers. DottecFiency of 50%, a dark-count rate of 250 clicks/s, an after-pulsing

PHYSICAL REVIEW A 70, 062303(2004)

40F

% o Kennedy Receiver
= § © Sasaki-Hirota Receiver
. E A Dolinar Receiver
. § Quantum Efficiency (n) = 0.5
] Signal Duration (T) = 50 us
§ _ § Dark Count Rate = 250 / s
E % Dead Time =50 ns
§ _§ Shotnoise
Limit
Helstrom / § § /
Bound . § ) E
g 3 9
= 2
0.2 0.4 0.6 0.8 1.0 1.2 14 1.6 1.8 2.0

Average Photon Number, N

lines correspond to the analytic results derived in Sec. Il and illusProbability of 1%, and feedback delays of 100 ns.
trate that the Dolinar receiver achieves the Helstrom bound even for

subunity quantum efficiency.

ceivers for subunity quantum efficiency but otherwise ideal
detection. The mean photon number of the sigHalt), in

this simulation isN=1 with Wy(t)=0 and&,=¢,=1/2. Data

points in the figure were generated by accumulating statisti
for 10 000 Monte Carlo simulations of the three receivers, . S .
and the dotted lines correspond to the error probabilities de2perating a communication system based on the Dolinar re-
rived in Sec. Il. The simulations agree well with the analytic
expressions and it is evident that the Dolinar receiver is ca

pable of achieving the Helstrom bound fgr< 1 while the

knowledge of the incoming signal phageso thatU*(t) can
Figure 2 compares the error probabilities of the three repe properly qppl-ied. Fluqtuations in the index of refraction of
the communication medium generally lead to some degree of
phase noise in the incoming sigr(t). Adequately setting
the phase ofJ(t) necessarily requires that some light from
the channel be used for phase-locking the local oscillator—a

CPask that reduces the data transmission bandwidth. Therefore

photons diverted from the data stream to track phase varia-
tions in the channel be minimized. This optimization in turn

ceiver at the highest feasible rate requires that the number of

Sasaki-Hirota receiver performance lies between that of thEeauires knowledge of how signal phase noise propagates

Kennedy and Dolinar receivers.

into the receiver error probability.
Figure 4 shows the error probabiliBy(5¢) as a function

Figure 3 compares the error probabilities for the three

receivers with the additional detector and feedback nonideof the phase differencé between the incoming signal and
alities taken into account. Based on the performance data éR€ local oscillator. Data points correspond to results from
the Perkin-Elmer SPCM-AQR-13 Si APD single photon 10000 Monte Carlo simulations per photon number and
counting module, we assumed a maximum count rate opPhase angle, and the solid curves reflect numerical fits to the
10 photons/s, a detector dead time of 50 ns, a dark courlfonte Carlo points. An exact comparison between the open-
rate of 250 clicks/s, and an after-pulsing probability of 1%./00p and Dolinar receivers requires information regarding
For the Dolinar receiver, it was assumed that there was H'€ specific phase-error density function for the actual com-
100 ns feedback delay resulting from a combination of digi-Munication channel being utilized. However, we do note that
tal processing time and amplitude/phase modulator bandat N=1 photon, the phase of the local oscillator could be as
width. The data points in Fig. 3 correspond to the error probiarge aség~ 25° before its error probability increased to that
abilities generated from 10000 Monte Carlo simulationsof the Kennedy receiver. Additionally, it appears that the
with &=¢,=1/2. Thelower dotted line indicates the appro- slope of Pp(8¢) is zero atde=0 which implies that the
priate Helstrom bound as a function of the mean photorDolinar receiver conveniently displays minimal sensitivity to

numberN for a detector with quantum efficieney=0.5, and

the upper curve indicates the analogous Kennedy receiver
error. Evidentally, technical imperfections can have a large
negative effect on the performance of passive detection pro-

tocols like the Kennedy and Sasaki-Hirota receivers while The Dolinar receiver was found to be robust to the types

the Dolinar receiver is more robust.

of detector imperfections likely to exist in any real imple-
Unlike open-loop procedures, however, the feedback namentation of a binary communication scheme based on op-
ture of the Dolinar receiver additionally requires precisetical coherent state signaling and photon counting. This ro-
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small phase fluctuations in the channel.

IV. DISCUSSION AND CONCLUSIONS
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error leads to an irreparable open-loop increasg(Hy | po).

eor —o—1 But the Dolinar receiver has the potential to identify and fix
ﬁ: such a mistake since selecting the wrong hypothesis at inter-
50 78”‘" 0~ mediate times increases the probability that a future click
o Jx__o——c,——o—"’jg / N ~.02 will invalidate the incorrect decision. When background light

40 rad P o is present, poor phase coherence between stray optical fields

y,// /‘,/"/ /°/ N~ 1 and the signal provides no enhanced open-loop discrimina-

ol S | tion as there is no local oscillator to establish a phase refer-
//Q—"“’_M ence; a received photon is a received phatmssuming that

/}: any spectral filtering failed to prevent the light from hitting

/7 | the detector The Dolinar receiver is better immune to such

B
=
-
jA
o
q
z [
=
©
Q2
[
o
= 20}
g
L

an error since incoherent addition of the stray field to the
e local oscillator will generally reduce the likelihood of a de-
N~2 tector click, and even if so, that click will be inconsistent
"""""""""""""""""""""""""" with the anticipated counting statistics.
2060 80 100 120 140 160 180 Despite the previous belief that the Dolinar receiver is
Phase Error (degrees) experimentally impractical due to its need for real-time feed-
_ _ _ back, we have shown that it is rather attractive for experi-
FIG. 4. Error pr(_)babllltl_es for the Dolinar receiver as af_unctlon mental implementation. Particularly, quantum efficiency
of the phase error in the signal state corresponding tp logical 1 fogcales out of a comparison between the Dolinar receiver er-
e o o e o e or and the Helsttam bound. whie (i s ot th case fo
: ' known unitary rotation protocols. These results strongly sug-
are a fit to the data. . . . .
gest that real-time feedback, previously cited as the Dolinar
bustness seemingly results from the fact that the Dolinareceiver’s primary drawback, in fact offers substantial ro-
receiver can correct itself after events that cause an opeipustness to many common imperfections that would be
loop receiver to irreversibly misdiagnose the transmittedoresent in a realistic experimental implementation. Most im-
state. For example, imperfect detection efficiency introducegportantly, simulations under these realistic conditions suggest
a failure mode where the probabilitf(Ho|p,) is increased that the Dolinar receiver can outperform the Kennedy re-
above the value set by quantum mechanical vacuum fluctuaeiver with currently available experimental technology,
tions. However, the optimal structure of the Dolinar receivermaking it a viable option for small-amplitude, minimum-
feedback insures that it still achieves the quantum mechanerror optical communication.
cal minimum because it has control over the counting rate.
That is, if. the Dolinar rgceiver selects the wrong hypothesis ACKNOWLEDGMENTS
at some intermediate timg<T, the structure of the feed-
back ensures that the receiver achieves the highest allowable | would like to thank Hideo Mabuchi for countless in-
probability for invalidating that incorrect decision during the sightful comments and suggestions regarding this work and
remainder of the measuremdpt<T. to acknowledge helpful discussions with S. Dolinar and V.
In the opposite situation, where dark counts or back-Vilnrotter. This work was supported by the Caltech MURI
ground light produce detector clicks when there is no signaCenter for Quantum Network&rant No. DAAD-19-00-1-
light in the channel, open-loop receivers will decide in favor0374 and the NASA Jet Propulsion Laboratory. For more
of p; without any possibility for self-correction. This type of information please visit http://minty.Caltech.edu
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