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Energy as an entanglement witness for quantum many-body systems
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We investigate quantum many-body systems where all low-energy states are entangled. As a tool for quan-
tifying such systems, we introduce the concept of ¢émanglement gapwhich is the difference in energy
between the ground-state energy and the minimum energy that a separaditanglegistate may attain. If
the energy of the system lies within the entanglement gap, the state of the system is guaranteed to be entangled.
We find Hamiltonians that have the largest possible entanglement gap; for a system consisting of two inter-
acting spin-1/2 subsystems, the Heisenberg antiferromagnet is one such example. We also introduce a related
concept, theentanglement-gap temperaturithe temperature below which the thermal state is certainly en-
tangled, as witnessed by its energy. We give an example of a bipartite Hamiltonian with an arbitrarily high
entanglement-gap temperature for fixed total energy range. For bipartite spin lattices we prove a theorem
demonstrating that the entanglement gap necessarily decreases as the coordination humber is increased. We
investigate frustrated lattices and quantum phase transitions as physical phenomena that affect the entangle-
ment gap.
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[. INTRODUCTION local-interaction Hamiltoniarj14]. For finite systems with
] o . local interactions and an energy gap it was showfij that
Understanding and quantifying the properties of quantumhere are strong bounds on both the correlations and en-
many-body systems is a central goal of theoretical condensaginglement in the ground state. The fact that local interac-
matter physics. Progress is often hindered by an incompletgons strongly limit the entanglement that can occur for
understanding of the highly nonclassical entangled states thatamiltonian systems with local interactions on a line or a
occur naturally as the ground and thermal states of manplane has been used to develop new approximation schemes
systems. Entanglement is perhaps the most counterintuitivier simulating quantum dynamidd 6—21. There is now a
feature of quantum mechanics and results in stronger corrdarge literature on the entanglement properties of the ground
lations than can be present in any classical sysf&/#].  States of Hamiltonian systems; we refer the read¢22e-27
Recently, entanglement has been recognized as an importa@itd references therein.
resource in the emerging field of quantum information sci- Although the ground state plays an essential role in un-
ence[3], which has led to new tools that may enhance ourderstanding physical systems, at finite temperature it is the

body systems. entanglement in the thermal state of condensed matter sys-

Much recent work has focused on quantifying the en-tems was first studied by Niels¢8], who investigated how

tanglement naturally present in the ground state of standasgt@nglement in the thermal state varied with temperature
-nand other parameters of simple systems consisting of two

models of coupled quantum systems, particularly spi coupled spins. Subsequent work has investigated similar
Bhase transtion[L1] is mvestigated. In_ one-dimensional 0USSOS for quantum many-body systei28-33. A recernt

ph . h [ 2 t ent ? .t bet lenath xperiment demonstrates that entanglement can affect ther-
chains, d eh amounf % er;] anglemen e(\;veen (;" elng N odynamic properties of a system at high temperat8ég
Spins and the rest of the chain appears to depend only on the Thus, it seems that many physical phenomena involving

unlyersallty CI"."TQ’S of the model at the phase transif@]. ¢ the ground or thermal states in condensed matter systems
Various quantities associated with entanglement have be ay be associated with the nature of entanglement in the

shown to display universal scaling behavior at phase transis «iom and it is important to investigate new techniques for
tions In one dimensiof,5,9. Als_o, it appears that proper- understanding and quantifying the role of entanglement in
ties of enta}nglement between SpIns, such as the entanglgmesndch systems. Desirable features of these techniques include
length defined in[12], are sometimes able to. characterlzethat they be easily computable, even for large systems, that
phases of the system better than any correlation Iefigih — yhey e applicable at finite temperature, and that they be in
Restricting to many-body systems where each system ingininje easy to measure and related to known physics. Be-

teracts Wit.h only a finite local neighborho@hich we refer cause most quantum systems are described by mixed states,
to aslocal interactions very §trong|y constrains the quantum these criteria lead naturally to the theory of mixed state en-
states that must be considered. For example, there ex'?énglement

gquantum states that are far from the ground state of any Surprisingly, even the question of whether a mixed state

of a quantum system is entangled or not is a difficult and
much studied question. We refer the reader to the many re-
*Electronic address: dowling@physics.ug.edu.au views for the literature on the so-called separability problem
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[37—-39. The difficulty of this problem is one of the reasons ment gap and provide necessary and sufficient conditions for
why computing measures of entanglement can be so chathis gap to be nonzero. We construct a one-to-one mapping
lenging and why it is important to find more tractable waysbetween Hamiltonians with nonzero entanglement gap and
of understanding the entanglement in real physical systemgntanglement witnesses. We prove a theorem that identifies a
In this work we apply results from the theory of the separaset of Hamiltonians with the largest possible gap; for spin-
bility problem to study the entanglement of quantum many-1/2 particles, one such Hamiltonian is the Heisenberg anti-
body systems. This investigation leads both to an undefterromagnet. We then formally define the entanglement-gap
standing of the kind of Hamiltonians possessing stronglyemperature and investigate conditions that lead to a high
entangled thermal and low-energy states and also to interestz e of this temperature. Somewhat counterintuitively, the

ing connections with properties of spin systems studied inyamijonians with the largest entanglement gap do not have

o caneet e vos e oty of sepale 1GeSt entanglement gap emperatre in generl
P P Y P& n Sec. 1l we study the entanglement gap in many-body

rability is that of anentanglement witnes@an observable stems. in particular spin models on latices. We brove a
whose expectation value is positive if the state of interest isY , N particu P! Ices. prove
not entangled but for which a negative expectation Va|uegeneral result that the entanglement gap must go to zero with

indicates that the state is entangled. An example of such afjcreasing coordination number on a bipartite lattice with a
observable is the Bell observable which describes the outiX€d local interaction. This result is suggestive of a relation-
comes of a test for the violation of Bell inequalities. In this ShiP 0 the success of mean-field theory on lattices with high
paper we explore the idea of interpreting Hamiltonians withcoordination number. In Sec. IV, we conclude by investigat-
entangled ground states as entanglement witnesses. THRY the dependence of the entanglement gap on frustration
point of view has attracted interest recently. During thefor the Heisenberg antiferromagnet. We show that for such
preparation of this paper, related investigations appeared [yStéms it is possible to determine that the system is en-
Brukner and Vedral40] and by T6th[41] in which this type tangle_d even when the reducgd state of nearest-neighbor
of entanglement witness is studied. As emphasized byPINs is not entangled. We also investigate how the. gnta_ngle—
Brukner and Vedra[40], because energy is a macroscopicMent gap behaves near the quantum phase transition in the
thermodynamic property, it is reasonable to expect that itXY model and dISC'USS its rglatlonshlp to previous studies of
could be measured in experiment. entanglement at this transition.

In this paper, we develop the idea of using energy as an
entanglement witness for quantum many-body systems. We||. HAMILTONIANS AS ENTANGLEMENT WITNESSES
introduce two related concepts inspired by the theory of en- ) . ) )
tanglement witnesses and discuss their relevance to both IN this section we establish a formal connection between
ground-state and finite-temperature properties of quanturhiamiltonians with the property that all low-energy states up
many_body Systems_ The first is tMtang]ement gap:he to a certain energy are entangled and entanglement wit-
difference in energy between the ground-state energy and tH¥eSSes.
minimum energy that any Separa[ﬁ@entang'eﬂstate may A mUIUparUte mixed state oh Subsystems is Sai.d tO be
attain. If the entanglement gap of a system is nonzero, thefeparableif it can be expressed as a convex combination of
the entanglement of certain mixed states is detected simpljure product states:
by measuring their energy to be below this threshold.
Roughly speaking, if the entanglement gap is small, then a p=2 pludXuil @ [dXufl @ - @ [yl (1)
separable state can be a good approximation to the ground ‘

state, and we expect appro_ximation SChemeS. base_d on Se%ﬁerehpj) are pure states in the Hilbert spagg of sub-
rable states to produce reliable results. We investigate ho‘é’ystemj :amdp<>0 S.p=1. If a state can be decomposed in
1 ' M= =

?éggrfg'ss 3?%?20%?;% ;tt\ilgcr)]_iﬁ:nmgﬁ?o??a?t?cde?oov: (t:g'j ?:‘Ehis way, then all correlations are purely classical; if not, then
P Pehere exist truly quantum correlations and we say that the

spins. .
o . . state isentangled.
One advantage of using ideas from studies of mixed-state An entanglement witnesg.,, on a multipartite system is

entanglement is that it is possible to investigate systems aat Hermitian operatofobservablewith the properties that its

finite temperature. The secpnq concept we introduce IS thSxpectation value in any separable state is greater than or
use of temperature as an indicator of entanglement in thgqual to zero

thermal state. By comparing the thermal energy with the en-
tanglement gap we obtain a temperature threshold, the -
entanglement-gap temperaturbelow which the thermal M Zewpsepl =0, Dpscpe S, @
state is certainly entangled and we may expect entanglemefheres is the set of all separable states, and that there exists
to influence thermodynamic properties. We show that thisyn entangled statg,,, such that
temperature can become arbitrarily large as the dimension of
two interacting spins increases even if the energy range of tr[ Zewpend < O. (3)
the system is kept fixed.

We begin in Sec. Il with the observation that Hamilto- We say thaZg, withesses the entanglement @,
nians with entangled ground states may be viewed as en- For a multipartite Hamiltoniaid, we define theminimum
tanglement witnesses. We introduce the notion of entangleseparable energy
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Esep= Min tTHpgel. (4) temperatures such that the thermal energy is betgyybut
PsepsS at higher temperatures the thermal state may or may not be
entangled.

Due to the convexity of the set of separable states, this mini- |n Appendix A we describe an efficient numerical proce-
mum can always be achieved by a pure separable state. Nai@re, a sequence of semidefinite programs, for evaluating the
that there may be many separable states achieving this minéntanglement gap and discuss the concept of bound entangle-

mum sep.arablle enerdyse, ment in this context.
If Esepis strictly greater than the ground-state enefgy

there is a finite energy range over which all states are en-
tangled. We refer to the size of this energy range as the A. Hamiltonians that maximize the entanglement gap
entanglement gap.

Definition. For any multipartite Hamiltoniai, we define
the entanglement gap

Having defined the entanglement gap it is natural to iden-
tify Hamiltonians that have the largest possible entanglement
gap for a given multipartite quantum system. We proceed by
proving two lemmas: one that the entanglement gap is invari-
ant under local unitary transformations of the Hamiltonian
and the other regarding the optimal arrangement of the en-
ergy levels. We use these two lemmas to prove the main
Wgorem of this section, which is that a set of Hamiltonians
with maximum possible entanglement gap are those with a
nondegenerate maximally entangled ground state and all
Bther eigenstates at equal energy.

G = Egep— Eo, (5

whereE, is the ground-state energy bf. The entanglement
gap is the energy gap between the ground-state energy al
the minimum energy that a separable state can attain.

If H has an entangled nondegenerate ground $Epe
then any separable state written in terms of the eigenstates

the Hamiltonian must contain contributions from higher- " 1 Given a multipartite Hamiltoniakt and a local

energy states and must therefore have higher energyBhan unitarv U, .=U.® U.® - -- ® Uy, acting on each subsystem
If the ground state is degenerate, the same argument requir. Y Clocal= 1% L2 N d ystem,

. . ;) — T
that the entanglement gap be greater than zero if there is fffe HamiltoniarH’ = UjocaHUjucq as the same entanglement
state in the ground-state manifold that is a pure product state.
Conversely a nonzero entanglement gap requires Eqat
> E, and so there can be no pure product state in the groun
state manifold because such a state would have ertgygy
So whether or not the entanglement gap is zero depends o ereforeE o = Eéep Also. becauséi andH’ are related by

on the ground-state manifold Hamiltonian H has a non- . ) .
. . . conjugation by a unitary, they have the same spectrum and,
zero entanglement gap if and only if no ground state of H is . ,
separable In particular, the same ground-state energy. Heth@ndH
P . I . ave equal entanglement gap. |
Constructing Hamiltonians with a nonzero entanglemen . . I
; X ; We now determine which Hamiltonians have the largest
gap is straightforward. Every entanglement witness can be

regarded as a Hamiltonian for a multipartite quantum Systemgntanglement gap. For a comparison of gaps to be sensible,

For such HamiltoniansE..;=0 andE, is the minimum ei- we negd to scale by the overall energy range of the system.
genvalue ofZg,,. The definition of entanglement withesses We define thescaled entanglement gag: s
implies thatE; <0 and thus the entanglement gap is nonzero.
Every Hamiltonian with a positive entanglement gap O = Gg/Egots (7)
>0 defines an entanglement witness

Proof. From the cyclic property of the trace, we have
ITH’ pegd =t Hpsegl, wherepse= U,’[mlpge,p,ocm is also sepa-
able. That is, for eaclpse, with a certain energy unde
rﬁpﬁre is a separable staig with the same energy under .

whereE;,=E .~ Eo is the total energy range afigl,, is the

Zew=H~Esed, (6)  highest energy eigenvalue.
) ) ] ] Lemma 2For any Hamiltonian with scaled entanglement
wherel is the identity on the total Hilbert space. Becausegap g, the HamiltonianH’=1-|Eo)(E,|, where |Ey) is a

Esepis the lowest possible energy for a separable state, Wgyond state foH, has a scaled entanglement ggpgreater
have tfZgwpsel =tr[Hpsed =Esep™=0. On the other hand, if on or equal tmg.

po IS a Etate in the groun_d-state manifold, we have  proof. We scale the Hamiltonian so that its lowest eigen-
tZewpser] =Eo~Esep< 0, S0Zgyyis an entanglement witness. ya|ye is zero and its highest eigenvalue is one, and thus the
Note that if H" and H differ only by an additive constant, energy eigenvalues lie in the range<& <1,i=0,...,d;

they lead to the same entanglement witness. We regard such  whered; is the dimension of the total Hilbert space. The

Hamiltonians as equ.|valent. entanglement ga@g of the scaled Hamiltoniahl is equal to
In summarythere is a one-to-one map between entangle-,

ment witnesses and the equivalence classes of Hamiltoniart1he scaled entanglement ggp of the original Hamiltonian
. q ¥ Note that the Hamiltoniam’ is already scaled in this
with nonzero entanglement gap.

The entanglement gap quantifies the range of ener ierganner—i.e.gé:G,’E.
; 9 gap q ; 9 9€S 14 prove the lemma, it is sufficient to show the stronger
over which all states are necessarily entangled. Note, how-

ever, that higher-energy states may still be entangled. So, fégsult ttHp]<tr[H’p], O p; i.e., all states have higher en-
example, the thermal state fét must be entangled for all ergy undeH’ than unded. To this end,
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_ dr1 dr-1 pure ground state and a separable state is achievegbsea
tlpH]= X E(E[plE) < 2 (Eilp|E) =t{H'p], (8)  product state pee=|A)A|@ [B)(B|, where |A) e Ha, |B)
i=0 i=1 e Hg. In fact, the maximum is achieved by setting)
as required. The inequality follows from the assumed range:|1A>' B)=[1g),
of energies GsE;=<1 0 i (whereEy=0) and the fact that 0 max{Eq|p dEo) =)\2 (11)
<(ylp|yy=<1 for any density operatop and any state) Peopes ’

(because &p=I). ThereforeE;epis necessarily greater than
Esep(€ven if the minimum-energy separable states are differ
end), and becauseEj=E,=0 and both Hamiltonians are
scaled appropriately, we hagg = gg, as required. |
Using the geometric measure of entanglement for multi

where the Schmidt decompositiof8] for |Ey) is |Ep)
=39 \ilia)lig) and), is the largest Schmidt coefficient.

Thus, the largest scaled entanglement gap results from
finding |Ep) with the smallest possibla,;. Normalization
. . . i ZN?=1) requires thad?=1/d and\?=1/d is achieved by
partite systems defined [42], we consider multipartite pure any maximally entangled bipartite stdf)=|c). Thus, the

states that are maximally entangled in the sense that th S _ . ! :
o ; : amiltonianH=1-|¢g){(¢4| achieves the maximum possible
haveminimal overlap with any pure product state—i.e., that _
scaled entanglement ggg=1-1/d. |

they maximize the entanglement measure

For dy=dg=2, the HamiltonianH=1-|¢,)(¢,|, where
M(|¥)) =1 - max(¥|psed¥). 9 |dp=22lialig}/ V2 is any maximally entangled state, has
Psepe.s the largest entanglement gap. If the Hilbert space corre-

sponds physically to two spin-1/2 systems, then a particu-
" larly enlightening example of a Hamiltonian of this form is a
shifted and scaled version of the antiferromagnetic Hamil-
Ronian, H=G,- g, Wherea;, i=A,B, is the vector of Pauli
matrices orfH;. It is straightforward to show that

Let M™*=M(|¥ o)) be the maximum value of this measure
achievable by a maximally entangled stiig,o.

Theorem 1The largest possible scaled entanglement ga
of a multipartite system igg*=M™* and can be achieved
by any Hamiltonian of the fornH'=1-|¥ ,)(V.d, where
¥, is a maximally entangled state by the measure of H=I1—- |y X |=(ops- 05+ 314,
Eq. (9).

Proof. The proof follows from the definition of the en-
tanglement gap,

ge=1- maX<EO|psedE0>: (10) . . . .
Psepes In the following, we investigate the temperature at which
the thermal state reaches the minimum separable energy. We
find the temperature below which the thermal state is guar-
sible to show[43] that all Hamiltonians that have this maxi- f‘f‘t.e‘ff' to bebentadngle(tjr;] tht's temp?rat““; also pﬁ?‘ﬂ‘iﬁs anon-
mum entanglement gap are of this form. r|V||a totvvgr oun otn det et;npera ureb? ove which the ther-
For multipartite systems it is not known which states argM@ stale IS guaranteed 1o be separable. .
A quantum system with HamiltoniaH in thermal equi-

maximally entangled according to the meashMreHowever, . ° . .
in [42] examples of highly entangled states are given, whicH'b”um at temperaturd is described by the thermal state

place lower bounds on the maximum size of the scaled en- pr=exp—- BH)/Z, (12

tanglement gap. For example, if each of theubsystems are _ ) )

d dimensional, there exists a symmetrized sfgte,d)) such ~ Where =1/kgT is the inverse temperaturég is Boltz-

that M(|S(n,d))) approaches 1 a&2" in the n—oc limit. If ~ Mann’s constant, and=trlexp(~AH)] is the partition func-

each of then subsystems are dimensional, there is an an- tion. The energy of the thermal state, termal energyis

tisymmetrized stateA(n)) such thaM(|A(n)))=1-1/n!. Itis ~ 9iven by

clear that entanglement gap can be a very large fraction of 9z

the total energy range for large numbers of coupled systems. U(T) =tr{Hp7] = - 238" (13
Bipartite entanglement is much better understood than Ip

multipartite entanglement, and the following corollary gives  Definition. Given a system with an entanglement gap

an explicit form for the maximally entangled ground stategreater than zeroGg >0, we define theentanglement-gap

and the corresponding maximum possible scaled entanglgemperature  to be the temperature at which the thermal

ment gap for bipartite systems. energy equals the minimum separable enethfflg) =Ee,
Corollary. The largest scaled entanglement gap for a bi- The thermal energy is a monotonically decreasing func-

partite system Ha®Hg is Qge=1-1/d, where d tjon of g (i.e., it decreases as the temperature decrpaBgs

=min(da,dg) is the smaller dimension of the two subsystemsdefinition, all states with energy less thig,,are guaranteed

where |7y =(|0)a|1)s=|1)a/0)g) /2 is the singlet state.

B. Entanglement-gap temperature

and from Lemma 2.
Although we do not present the result here, it is also pos

and is achieved by any_HadmiI.ton.ian of the forA=1  to be entangled, and thus the system is certainly entangled
= |pa)(pdl, Where|pg)=(1/Vd)ZL,linlig) and{|iyg)} are or-  below the entanglement-gap temperature. That is, if we cool
thonormal bases fak y/g. our system down below the entanglement-gap temperature,

Proof. It follows from the convexity of the set of sepa- we know it must be in an entangled state. The thermal energy
rable density matrices that the maximum overlap between af the system, which depends only on the temperature, be-
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comes a witness to the entanglement of the thermal state. (A(B|H|A)B) = (1 +|(AB)[)/2. (19
In order to compare Hamiltonians with different total en-

ergy range<,,,, it is sensible to define scaled temperature From this expression it is clear that the minimum energy of

1/2 is achieved by any pure separable state such that

t as
(A|B)=0. The entanglement gap &=1/2, independent of
t =kgT/Eior. (149 d.
. . For the symmetric-projector Hamiltonian the thermal en-

The correspondingcaled entanglement-gap temperatise A

= ergy is given by
te=KgTg/Eor

For the class of Hamiltonians identified in Theorem 1 d(d+ Dexp(- B8)
with maximal entanglement gap—i.eH=1-|¥ (¥, u) = dd-1) +dd+ Dexd-3)" (20

where| Vo is @ maximally entangled state by the measure ' '
(9)—it is straightforward to calculate the entanglement-gapJsing Ese=1/2 we find

temperature. The thermal energy is given by d+1\12
te= 100l —— =d/2 ford>1. 21
(dr - Dexp(- B) : [ g‘*(d— 1)] v
ut) = . (15)
1+(dr—Dexp-B) Remarkably, for this Hamiltonian the scaled entanglement-

gap temperature increases without bound as the dimension of
the subsystems increases.
(dr = 1)(1 —M™) |- Thqs, for Hamiltonians that only have eigenvalues 0 or 1,
. (16) there is a trade-off between ground-state degeneracy and the
entanglement gap in determining the entanglement-gap tem-
As an example, we consider the entanglement-gap tenferature. Even though the Hamiltonian with a nondegenerate
perature of a bipartite systefeach subsystem of dimension maximally entangled ground state has a larger entanglement

SettingU(tg) =Ese= M™® gives

tg= I e V| max

d), with Hamiltonian H=1-|¢4)(¢q and scaled entangle- gap, the symmetric-projector Hamiltonian has a higher
ment gapge=1-1/d. The scaled entanglement-gap tempera-entanglement-gap temperature due to its large ground-state
ture for this system is degeneracy.
In Appendix B, we investigate other Hamiltonians with
te = [loge(d + 1)]72. (17 ground-state manifolds containing only entangled states and

present evidence that no other bipartite Hamiltonian with a
Note that the entanglement-gap temperature decreases Wifjjo-level energy spectrum possesses an entanglement-gap
increasing dimension despite the fact that the entanglemefémperature greater than the Hamilton{d8). In Appendix
gap increases. This behavior is due to the fact that the nune e investigate the entanglement temperature of two-qubit
ber of eigenstates with energy one increases quadraticallystems and provide evidence that the Heisenberg antiferro-

with d, while the ground state remains nondegenerate. magnetic Hamiltonian has the highest entanglement-gap
temperature.
C. Hamiltonians of bipartite systems possessing large We note that T6tH41] gives an example of a multiparty
entanglement-gap temperature Hamiltonian, the Heisenberg interaction between all pairs of

n spin-1/2 particles, whose entanglement-gap temperature

It is natural to ask which Hamiltonians have the highest .o seg linearly witm; i.e., it is arbitrarily high for arbi-

(scaled entanglement-gap temperature. Somewhat CounteEFarin large systems. However, unlike our example, the total

lcgtrt“tllt\aﬁgnltt 'Z noltnt?aectH?gllgoginiggntgggrﬁr%ts; Z:Ei_energy range also increases linearly with The scaled
giement gap. ’ ; entanglement-gap temperature of their Hamiltonian therefore
trarily high entanglement-gap temperature. To provide a

example, we restrict our attention to the case where the twnélpproaChes a constant as—c. By contrast, the
subsystems of the bipartite system have the same dimensi ntanglement-gap temperature of our example is arbitrarily

Si , .
da=dg=d. The projectors onto the symmetric and antisym%gh despite the fact that the total energy range is bounded.

metric subspaces df,® Hg arellg=(1+V(ag)/2 andll,

=(I —V(A'B))/Z, respectively, Whel’@l(A’B) is the permutation lIl. ENTANGLEMENT GAP OF QUANTUM
operator on the two subsystems, defined\tyg|¢)al$)s MANY-BODY SYSTEMS
=|p)alih)g for all [), |p). The antisymmetric subspace con-

tains only entangled states. Thus, if we define a Hamiltonian In this section, we investigate the entanglement 9ap fc_)r
as the projector onto the symmetric subspace quantum systems arranged on some graph or lattice that in-
teract with some local neighborhood. Because we are only

H=1Ilg, (18)  considering finite-dimensional systems, the subsystems can

always be thought of as spins of some total angular momen-
then all symmetric states have energy 1, all antisymmetritcum, so we use the terms “subsystem” and “spin” inter-
states have energy 0, and there is a finite entanglement gaghangeably. For a particular type of coupling—bipartite
We find the gap by directly calculating the energy of a purelattices—we provide an explicit method for calculating the

separable statéd)|B), entanglement gap, which applies to various spin systems of-
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ten considered in the condensed matter literature. We alsc
prove that, as the coordination number grows, the entangle
ment gap per interaction must decrease to zero. This resul
makes use of the fact that as the number of equivalent spin:
connected to a given spin in the lattice increases there doe
not exist a global state of the system for which each inter-

acting pair is strongly entangled. Y A U

A. Entanglement gap of 2-local Hamiltonians

We now consider multipartite systems with only two-body
interactions. The Hamiltonian for such a system can be de-
fined by a set of coupling Hamiltoniartg;; that act as the
identity on all the spins other thanand j and a graph or
lattice where the vertices represent spins and edges represe
an interaction between the spins on the two sites. We refer tc(c)

. . d
each two-body interaction, or edge on the graph, asrad. @
The Hamiltonian for the entire system is FIG. 1. Examples ofi-partite lattices(a) Square latticgn=2),
(b) triangular lattice (n=3), (c) kagomé lattice(n=3), and (d)
H= E Hij, (22) checkerboard latticén=4). The n different markers indicate the
\BY subsets that the vertices of thepartite lattice may be divided into

WhereE<i i indicates a sum over vertices connected by arfo that there are only interactions between distinct subsets.
edge—i.e., a sum over bonds. We refer to such a Hamil-

tonian as2-local. It follows that the energy of a 2-local Hamiltonian(22). To see that there is no global separable
Hamiltonian depends only on the reduced density matrices gitate with lower energy, suppose that such a state exists.
each interacting pair; see, e.fL0]. Thus, the energy for any Then all of the nearest-neighbor reduced density matgiges

global statep is must be separable and by E@3) at least one of them must
have a lower energy under the interaction Hamiltonian than
E=t[Hp]= > trH;py], (23)  |A)B): a contradiction. Therefore, the state;, _alA),
@ ®iBeB|B>iB is indeed a minimum-energy separable state of

wherep;; is the reduced state of the interacting pair of spinsthe entire system.
(i,j). In the following we consider only systems where each Given this result, we can determine the lowest possible
of the coupling Hamiltoniansi;; is equal. energy of a separable state for the Hamiltonia®) on any

We note that the reduced statpg are not completely bipartite graph or lattice simply by solving the problem for a
arbitrary if they are to be consistent with a global stafer ~ Single pair of spins. Finding the entanglement gap for such
the whole system. In particular, the ground state of the grapRYystems reduces to finding the entanglement gap of the two-
or lattice cannot simply be constructed from the reducedPody interaction and the ground-state enefgyof the over-
states that minimize the energy of each betifH;p;; 1), be-  all system. This important fact was noted by T¢#1] who
cause these reduced states may not be consistent with a glovided a slightly different argument.
bal state. As we demonstrate below, this situation can occur Consider a bipartite graph with Hamiltonih Then our
when there is a nonzero entanglement gap for the couplingrgument proves that the operatér-NEsis an entangle-
HamiltonianH;;. Motivated by the results of Sec. Il as well Ment witness, wherdl is the number of bonds. Note that we
as its importance in condensed matter physics, we use tHén express this entanglement witness as a sum over bonds,
Heisenberg antiferromagnet as our standard example.

A bipartite graph or lattice is one for which the vertices H = NEsep= 2 (Hij ~ Esep, (24)
can be divided into two setd and B, such that the edges @
only connect vertices frorA with vertices fromB. Examples  where each term in the sum is a bipartite entanglement wit-
of bipartite lattices include the square lattisee Fig. Jand  ness. As a result the expectation value depends only on the
the hexagonal lattice on the plane. An even number of vertibipartite reduced density matrices of nearest neighbors and
ces arranged in a ring is also bipartite. can only be negative if these reduced density matrices are

For bipartite graphs or lattices, we now demonstrate hoventangled. This result can be extended to apply to lattices
to construct a separable state with the lowest possible energywith N— ) as well. So, while the ground-state energy is
First, consider a minimum-energy separable gtaB) fora  certainly a global quantity, this construction is only sufficient
pair of spins under the interaction Hamiltonian and constructo detect the existence of bipartite entanglement between in-
a global stat@iAEA\A)iA®iseB|B)iB, such that all the spins on teracting pairs in a bond.
the subsef are in the statéA) and likewise forB. By Eq. In a similar way we can calculate the entanglement gap
(23) the energy per bond of this state is the same as th#r n-partite graphs or lattices that are formed by groups of
energy Eg, Of the state|A)|B), and it provides an upper spins each having an “all-to-all” interaction graph. We first
bound on the minimum separable energy per bond of the fultonstruct a minimum-energy separable state of a single
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group of n spins with an all-to-all interaction graph. This ness acting Oftt 5, © Hp,- Then there exists a positive integer
state extends to a minimum-energy separable state of thesuch that
entire lattice as depicted in Fig. 1. We then compare the
minimum-separable energy per bond to the ground-state en- K1 N
ergy per bond to find the entanglement gap per bond. For E V(BO,BQ(ZE\IV@i:l'Bi)V(BO,Bi) =0, (25
example, on the tripartite triangular and kagomé lattises =0

Fig. 1, itis possible to calculate the entanglement gap fromwhereVg g is the self-adjoint unitary operator that swaps
the ground-state energy and the minimum separable energie Hilbert :'spaceg{B andHg.
0 i

OT three spins having an all-to-all interaction grahsingle This lemma is a straightforward modification of Theorem
triangle). We describe the nature of the entanglement that cap ¢ [44] and the proof follows similarlg.

be witnessed in these systems in Sec. IV B. Using the general mapping between entanglement wit-
nesses and Hamiltonians with nonzero entanglement gap dis-
B. Entanglement gap and coordination number cussed in Sec. |, this result on strictly positive entanglement
The coordination numberof a lattice is the number of Witnesses bounds the entanglement gap for Hamiltonians on
edges incident on each lattice site—i.e., the number of othe¥tar graphs. . o
systems that each spin interacts with via the coupling Hamil- Theorem 2For any coupling Hamiltoniair, 5  and any
tonianH;;. As we are now considering lattices, our assump-é> 0 there exists a positive integkrsuch that the entangle-
tion that all interactiondH;; are equal implies translational ment gap per interaction for the Hamiltonig2?2) on a star
symmetry. We now investigate how the entanglement gagraph withk points is less thas.
varies with the coordination number of the lattice. The basic Proof. The nontrivial case occurs whét) g has nonzero
idea stems from the fact that, as a result of the translation&ntanglement gap. Note that the total Hamiltonian on the star
symmetry, the ground states of our 2-local Hamiltoniansgraph may be written as
have equal reduced density matrices for interacting ﬁa\s
the coordination number increases, this equality requires that Hster= Sy Y k1 Wi
every spin share the same reduced density matrix with an - = (BO'Bi)( AgBo®i=1 Bi) (Bo.Bj)*
increasing number of other spins. The resultfdf-49 then .
preclude the reduced density matrices from being stronglyve define a strictly positive entanglement witness7eR
entangled. Building on these results, we prove a theorem 7, as
stating that, as the coordination number of the lattice grows, 0

k-1

k-1
(26)

the entanglement gap decreases to zero. We then investigate Zew=Hagp, ~ Esed * €l (27)
this behavior in the specific case of the Heisenberg antifer-
romagnet. where Eq, is the energy of the minimum-energy separable

In order to prove results about the maximum possible enstate ofHAOBO and, by addings>0, Zg,y is guaranteed to be
tanglement gap in Sec. Il A it was natural to use the scale@ strictly positive entanglement witness. From Lemma 3,
entanglement gap. However, in what follows it is more con-there exists & such that
venient to use thentanglement gap per bond B\, where
N is the total number of bondgNote that this entanglement el ot
gap per bond is well defined even for lattices with- °.) 2_: V(BoBﬂ[(HAoBo_ Esept E)®i=1|Bi]V(Bo,Bi) =0,

These two methods of scaling are roughly equivalent be- =
cause the total energy range of the system tends to scal;yd so HSt'= k(Ese;—€). Because the energy of the
linearly with the number of sites. minimum-energy separable statet¥®'is kEs,, this implies

We begin by considering a restricted set of graphs whichhat the entanglement gap of the total Hamiltonian satisfies
we will use to prove results that bound the entanglement gagstar< ke, Thus, given anye>0 there exists & such that
on any bipartite lattice. We definesdiar graph as a bipartite GYk=e, as claimed. ]
graph where there is only a single vertex, trenter,in one As an illustration of this theorem we consider the spin-
subsetA={Ao}, andk vertices, thepoints,in the other subset, 1,2 Heisenberg antiferromagnetic Hamiltonian on a star
B=1B;,i=0,...,k=1}, and where edges connect each pointgraph. Recall that the coupling Hamiltonian k=3, -5;;
and the center. the entanglement gap of this coupling Hamiltonian was in-

A strictly positiveentanglement witnesgy is @ Hermit-  yestigated in Sec. Il A. The ground state is the singlet, with
ian operator whose average is strictly positive on separablgnergy -3, and the three triplet states all have energy +1. The
states fiZewpsed >0, U psepe S, but which has at least one  minimum-energy separable states are of the f@B) such
negative eigenvalue. that (A|B)=0, with energy -1.

Before stating and proving our main theorem we present
the following lemma.

Lemma 3Let Zg,, be a strictly positive entanglement wit-

k-1

“The key difference between this proof and the one founff
is that, here, mixing with the operatovgg g forces the resulting
- entanglement witness to be block diagonal in the irreducible repre-
4t there is spontaneous symmetry breaking, a mixture of thesentations of the symmetric group, rather than projecting into the
symmetry-broken ground states will be translationally invariant.  fully symmetric representation of this group as[].
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TABLE l. Propertigs of star graphs with the H.eise.nberg antifer- Pstar= 1; ¢{star}[p0]' (28
romagnetic Hamiltonian as a function of coordination numker
The ground-state energy, minimum separable energy, and entangl&his state is independent of the lattice site chosen as the
ment gap are alper bond—i.e., energies divided bk. The scaled center(due to the translational invariance pf), and the
entanglement gap is the entanglement gap divided by the total eenergy per bond of this reduced state is the same as the
ergy range of the system. ground-state energy per bond of the lattice. The ground-state
energy is then

Coord. Ep Esep Ent. gap Scaled
No. k perbond  perbond  perbond  ent. gap Eo = tHpol = > trHstapsiad/K. (29
i

1 -3 -1 2 0.5
2 2 1 1 0333 Furthermore, the energy @f;,, can only be greater than the

) energy of a ground stat&),, of the star Hamiltonian:
3 -1.667 -1 0.667 0.25 O/star '
4 -1.5 -1 0.5 0.2 tr[Hstapstal;l = tr[Hstall E0>star<EO|]- (30)
2 —14 -1 0.4 0.167 It follows that the ground-state energy per bond of the bipar-

-1.333 -1 0.333 0.143 tjte lattice is greater than or equal to the ground-state energy
per bond of the star graph. [ |
We note that a similar argument is used 48] to bound

Using the permutation symmetry amongst the points Oghe ground-state energy of the Heisenberg antiferromagnet.

the Hamiltonian on the star araph it i ible t lculate Using this bound for the ground-state energy, it is
the Hamifionian on the star grap S possible 1o calc straightforward to bound the entanglement gap on bipartite
its ground-state energy exacii7], E,=—(k+2). The coor-

o2 ) lattices, which is the main result of this section.
dination number of the center of the graph is the number of  Thaorem 3Given anye>0 there exists a positive integer

points,k. The energy of any minimum-energy separable stat§ sych that the entanglement gap per bond for an arbitrary
is Ese=—k. In Table | we present the entanglement gap pelcoupling Hamiltonian on any bipartite lattice with coordina-
bond and the scaled entanglement gap for comparison witfion numberk is less thare.
other lattices below. Proof. Because the bipartite lattice and star graph are both
Although the Heisenberg antiferromagnet has the largessipartite, they have the same minimum separable energy
entanglement gap for two qubits, we have not proved that iper bond. The result now follows from Theorem 2 and
has the largest entanglement gap per bond on a star grapgtemma 4. |
However, we have calculated the entanglement gap per bond To illustrate this theorem, we calculate the entanglement
for numerous common spin models such asX& model  gap per bond of the spin-1/2 Heisenberg antiferromagnet on
andXY model, all of which have a smaller entanglement gapsimple bipartite lattices with varying coordination number. In
per bond. Therefore we conjecture that the Heisenberg antiFable 1l we present the ground-state energy, taken from the
ferromagnet has the largest entanglement gap per bond onligerature, and thus the entanglement gap per bond and scaled
star graph. If this were true, it would provide an upper boundentanglement gap for a Heisenberg antiferromagnet on a one-
of O(1/k) on the approach to zero of the entanglement gaglimensional(1D) chain, honeycomb, square, and cubic lat-
per bond implied by Theorem 2. tice (all bipartite), as well as some nonbipartite lattices to be
In order to determine the entanglement gap on a bipartiteliscussed in Sec. IV B. It can be seen that the entanglement
lattice, we require the ground-state energy of the lattice agap per bond does decrease with increasing coordination
well as the lowest energy achievable by a separable state ofrmimber for the bipartite case and is always less than that of
single pair of spins, as noted above. The ground-state energlge corresponding star graph in Table I, as proved by Lemma
of a star graph can be used to bound the ground-state enerdy The entanglement gap per bond appears to decrease with
of a bipartite lattice with the same coordination number ascoordination number on tripartite lattices as well, thus pro-
follows. viding evidence that this behavior is not confined to bipartite
Lemma 4. The ground-state energy per bond of any cou-lattices.
pling Hamiltonian on a bipartite lattice with coordination

numberk is greater than or e.qual_ to the ground-state energy IV, DISCUSSION
per bond of the same Hamiltonian on a star graph With
points. In this section, we discuss some of the implications of our

Proof. The essential idea is to divide the expression forresults and explore the connections with other results from
ground-state energy on the lattice into a sum over star graphlibe condensed matter literature. We also discuss frustrated
with k points wherek is the coordination number of the lattices and quantum phase transitions and their effect on the
lattice. Let pg denote the translationally invariant ground entanglement gap.
state of the entire lattice. Consider the star graph consisting The energy gap between the ground-state energy and the
of a particular lattice sitéthe center and those sites con- lowest energy achieved by a separable state has been dis-
nected to it by a couplingthe point3. The reduced state on cussed in the quantum magnetism literature using a slightly
the star graph is obtained by tracing out all sites not in thelifferent terminology[49]. There, separable states are asso-
star: ciated with “classical configurations,” arrangements of clas-
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TABLE II. Entanglement gap for the Heisenberg antiferromagnet for various bipartite and frustrated
lattices with different coordination numbers. Ground-state energies taken[#@m

Lattice Coord. No. Eg per bond Egepper bond  Ent. gap per bond  Scaled ent. gap
Single bond 1 -3 -1 2 0.5
1D chain 2 -1.772 -1 0.772 0.279
Hexagonal 3 -1.452 -1 0.452 0.184
Square 4 -1.338 -1 0.338 0.145
Cubic 6 -1.193 -1 0.194 0.088
Single triangle 2 -1 -0.5 0.5 0.25
Kagomé 4 -0.874 -0.5 0.374 0.200
Triangular 6 -0.726 -0.5 0.226 0.131
Single tetrahedron 3 -1 -0.333 0.667 0.333
Checkerboard 6 -0.67 -0.333 0.34 0.20

4From linear spin-wave theorg0.
PErom [51].

sical spin vectors minimizing the energy of the appropriatement gap decreases to an arbitrarily small value with increas-
classical Heisenberg spin model. The reduction in grounding coordination number on bipartite lattices, independent of
state energy below this point is typically ascribed to “quan-the particular coupling Hamiltonian. This result is therefore
tum fluctuations.” As a result, Table Il is essentially drawnsuggestive of a quantitative connection between entangle-
directly from the review by Lhuillier and Misguicf#9]. Our  ment and the improvement of mean-field theory with dimen-
results show that, in this context at least, the term “quantunsion.
fluctuations” as discussed in the condensed matter literature The work of Raggio and Werng45] aimed to develop a
can be identified precisely with entanglement as discussed ingorous mean-field theory for Hamiltonian models on star
the quantum information literature, and the associated redugraphs with a large number of points. Our results are ulti-
tion of ground-state energy in antiferromagnets can be dimately based on a characterization of bipartite separable
rectly related to the theory of mixed state entanglemenstates proven there and in R¢#6], subsequently used in
[37-39. Ref. [44] to prove a result closely related to our Lemma 3.
Note that the entanglement gap is well over a quarter offhe proofs in Ref[45] are technically very difficult, because
the total energy range for Heisenberg antiferromagnet on they apply not only to finite-dimensional spin systems but to
line and is a very significant fraction of the total energy any quantum system defined on a separable Hilbert space.
range for the majority of the lattices considered. This largeThese results may provide a more direct route to our Theo-
entanglement gap reinforces the argument made by Brukneem 2 for star-shaped graphs, which could then be used to
and Vedral[40Q] that the entanglement witnesses resultingprove the result for bipartite lattices in more generality; how-
from the energy of appropriate spin models can have macreever, we have preferred to give a simple derivation valid for
scopic expectation values. finite-dimensional spin systems.

A. Bipartite lattices and mean-field theory B. Frustrated lattices and multipartite entanglement

Mean-field theoryis a term used to describe a variety of
techniques in condensed matter physics for finding an a;));s
proximation to the ground state of a quantum many-bod ; . ;
system. Typically such techniques correspond to searchin%?’]: This terminology blanste? ffror;n the. Lath .that.t the
for a separable state that approximates the ground state. It INimum-énergy separable state for two neighboring sites on

a well-known observation that mean-field theory is more ac-SUCh a lattice is not equal to the minimum-energy separable

curate in higher dimensions and, because coordination nurrﬁgr the two sites coupled alone. As a result the energy per

ber typically increases with the dimension, for higher coor-bo.nd on such a Igttice igogwr:gher than the energy of a single
dination number. So, for example, dynamical mean-field?a" for the same interactiotiThe physics of frustrated quan-

theory for fermion systems is known to be exact in infinite U™ and class_|cal spin systems have been a subject of inten-
dimensions[52]. sive research in recent years; we refer the readgs3pfor a

Oreview. In the following, we briefly consider the effect of
frustration on the entanglement gap.

Lattices that are not bipartite lead to spin systems that are
ften referred to asdrustratedin condensed matter physics

In the context of our present work, we expect mean-fiel
theory to work well when the entanglement gap is small,
because there exists a separable state that has energy close to
the ground-state energy and thus a variational approach in-pawson and Nielsefi27] derive a bound on the ground-state
volving separable states might be expected to be accuratentanglement based on the frustration of da@ntumHamiltonian,
Theorem 3 demonstrates in a precise way that the entangleet the frustration of its classical counterpart.
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Further motivation for studying lattices that are not bipar-characterized by the fraction of the population that is in the
tite comes from considering the nature of the entanglemerginglet state, and when this fraction is less than a half, the
detected by the Hamiltonian. On bipartite lattices, entanglestate is separablg5]. Therefore the reduced density matrix
ment is only detected when the reduced density matrices aassociated with each bond is separable whenever the ground-
sociated with each bond are entangled. So, for examplestate energy per bond is above the minimum separable en-
states which are multipartite entangled but contain no biparergy of the Heisenberg Hamiltonian for a single pair of spins.
tite entanglement, such as the three-party GHZ state, wilWith the ground-state energy per bond from Table I, it is
never have lower energy than the minimum separable energslear that there is no bipartite entanglement of nearest-
on a bipartite graph for any interaction Hamiltonian. On non-neighbor spins for the Heisenberg model on the triangular,
bipartite lattices it is sometimes possible for a couplingkagomé, or checkerboard latticélsecauseE, per bond is
Hamiltonian to witness the entanglement of such states. greater than —jl The entanglement gap for these systems is

A simple example of a nonbipartite lattice is the regularassociated with the entanglement of the reduced states of the
triangular lattice, which is tripartite but not bipartite. We con- triangles or tetrahedrons that make up the lattice. Thus, the
sider two other nonbipartite lattices in two dimensions: theHamiltonian serves as a witness for multipartite entangle-
kagomé lattice, which is made up of corner-sharing trianglesment in these systems.
and the checkerboard lattice. These lattices are depicted in It appears that as the frustration of the classical spin
Fig. 1. model increases, so does the entanglement gap. For a coor-

Again we consider the Heisenberg interaction. In order tadination number of 6 the entanglement gap as a fraction of
find the lowest separable energy for the triangular andhe overall energy range of the Hamiltonian increases from
kagomé lattices, we first find a minimum-energy separabld®.088 on the bipartite cubic lattice to 0.131 on the tripartite
state for a single triangle, as described in Sec. Il A. The totatriangular lattice and finally to around 0.2 on the checker-
Hamiltonian for a single triangle is board lattice. It would be interesting to understand this be-
havior in more detail. It is a feature of frustrated classical
spin models that they have a large number of configurations
Its spectrum and minimum-energy separable states may kehieving the lowest possible energy, which may be a con-
found by standard symmetry metho@sr example,[54]).  tributing factor to this observed larger entanglement gap.
The ground state is fourfold degenerate with endegy —3.

For the Heisenberg antiferromagnetro$pins with an all-to- C. Entanglement gap in a simple quantum
all coupling, it is straightforward to show that a minimum- phase transition

energy separable state is given by any configuration of spins . .
where the total spin vector is zef63]. For the triangle, a The role of entanglement iquantum phase transitions

minimum-energy separable state is [11] i; currently of conside_rqble interept—6,1Q. Perhap.s.
the simplest model to exhibit a quantum phase transition,

D@ (12+V3[1))2@ (13- 3|1)a)/2,  (32)  used in many of these studies, is the 1D infinite-lattice trans-

verse fieldXY model with Hamiltonian
which corresponds to a classical configuration of spins at an

angle of 27/3 from each other in the plane having a total 1+y y

spin zero(the “Mercedes star” configuration ifp4]). This H= E ( —ojolg t o) ]+1+)\al> (33
state has energf.=—-3/2. The maximum-energy manifold j=0

is spanned by the states with all spins parallel and has energ/yherey is the anisotropy in the-y plane,\ is an external

Emax=3. magnetic field,N is the total number of lattice sites, and

Fgomdtheze r:esultsl vge can c?lculate the fentahnglenjentt? clic boundary conditions are imposed so that a subshipt
per bond and the scaled entanglement gap for the Heisenb&igeniified with 0. Fory=1 the transverse field Ising model
interaction on the triangle, shown in Table II. Also shown areig (acovered.

the entanglement gaps for the kagomé and triangular lattices, 1 is of interest to see how this phase transition affects the
calculated fromEse, for the triangle, and the ground-state onianglement gap. Here we calculate the entanglement gap
energy of the entire lattice, taken frg#9]. Note that, as for of the 1DXY model as a function ofy,\) in the thermody-

bipartite lattices, the entanglement gap per bond appears mic(N— ) limit. Because a 1D lattice is bipartitéor N

decrease with coordination number. We have also considere
the checkerboard latticésee Fig. 1 which is made up of even), given knowledge of the ground-state energy it is suf-

corner-sharing tetrahedra and has a coordination number ficient to calculate the entanglement gap for the coupling
9 amiltonian in order to calculate the entanglement gap of the
six. We obtain the ground-state energy of this model from

entire system, as described in Sec. Ill. In this case the cou-

Ref. [51], where it is estimated from exact diagonalization ofpllng Hamiltonian may be chosen to be
small samples.

The reduced density matrices associated with bonds of the xy_ L1+ y 1-y A
lattice in the ground state are not entangled for these frus- Hij = 0)(0)(+ 2 y01y+ E(O‘iZJr U,Z) (34)
trated systems. Note that the symmetries of the Heisenberg
model guarantee that these bipartite reduced density matricégere the factor of 1/2 in front of the magnetic field ac-
are so-called Werner stat¢s5], invariant under any local counts for the fact that each site is involved in two interac-
unitary rotation of the formJ ® U. These states are entirely tions. In Appendix D we calculate the minimum separable

H:&l'&2+&2'&3+&3'&1' (31)
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D. Summary

We have studied entanglement in quantum many-body

L ‘ - systems from the point of view of the Hamiltonian as an
0124 - 8 entanglement witness. We introduced two related concepts
e useful in studying the role of entanglement in the ground and

01 N L . N thermal states of multipartite quantum systems. The first is

% mo.os—\\\;\: i A & : , the entanglement gap, which is the difference in energy be-
0’0 064 : tween the ground-state energy and the minimum energy that
' 77 any separable state can attain. If the energy of the system lies
0.04+ Z s 7 1 within the entanglement gap range, the state of the system is
A Z 27 guaranteed to be entangled. The second concept is the
0.02- « o5 entanglement-gap temperature: the temperature at which the
0~ W & energy of the thermal state is equal to the minimum sepa-

0 1 2 "" 0 rable energy and below which the thermal state must be en-

2 tangled. The entanglement-gap temperature provides a
threshold for deducing the thermal state of the system to be
FIG. 2. Entanglement gap as a function of anisotrgpwynd entangled, based on its energy.
transverse field\ for XY Hamiltonian on a 1D lattice in the ther- For multipartite, finite-dimensional quantum systems we
modynamic limit. proved that Hamiltonians possessing a nondegenerate maxi-
. : I mally entangled ground stafaccording to a global measure
energy for this coupling Hamiltonian, E¢D4). of entanglementand all other energy eigenstates degenerate

The XY model on a 1D chain, Eq33), is well known to imize th tanal i Th lated " f
be exactly solvable via the Jordan-Wigner transformation/@XIMmiz€ he entangiement gap. 1he related question o

see, e.g.[11]. We obtain the ground-state energy from this Which Hamiltonians have the highest entanglement gap tem-
method. perature is more challenging; substantial evidence is given
In Fig. 2 we plot the scaled entanglement gap as a functhat the Heisenberg antiferromagnetic Hamiltonian has the
tion of (y,\) in the thermodynamic limit. The quantum largest entanglement temperature for two qubits.
phase transition in this model occursat1 for »y¢ 0. Pre- On blpartlte |attlceS—I.e., those lattices for which there
vious studies have indicated that the ground state becomé@s€ only interactions between two disjoint subsets of the
highly entangled at this point, and this behavior is manifesvertices—we proved that the entanglement gap decreases to
in a sudden rise in the entanglement gap about this poingero as the coordination number increases. This result sug-
Intuitively one might expect that the more entangled thegests a quantitative reason why approximation schemes
ground state, the larger the entanglement gap. While qualitdsased on separable states, such as various forms of mean-
tively true, this connection cannot be exact because the effield theory, appear to give more reliable results at higher
tanglement gap is a property of the whole Hamiltonian; itcoordination number.
can depend on all energy eigenstates and their energies and isOn  frustrated lattices—i.e., those that are not
not just a property of the ground state. bipartite—we noted that the Hamiltonian can act as an en-
Nevertheless, given the discussion in Sec. Il A it is reatanglement witness for multipartite entanglement, even when
sonable to consider a connection between the ground-stagere is no bipartite entanglement present. Finally, we calcu-
entanglement as measured M/(|¥)) of Eq. (9) and the |ated the entanglement gap near a simple quantum phase
entanglement gap. The entanglement of the ground state utransition and showed that, although it does not follow any
der this measure has been investigated inXiYemodel in  universal scaling law, it does increase near the quantum
recent work by Weet al. [8]. This measure depends only on phase transition, as may have been expected from previous
the maximum overlap of the entangled sta#® with a sepa-  studies in which the ground state was found to become
rable state. One might expect that the minimum-energy sepdighly entangled at that point.
rable state is one which has the maximum overlap with the
ground state. However, in order to achieve maximum overlap
with the ground state it may also be necessary for a separable
state to have large overlap with high-energy eigenstates. We thank Jennifer Dodd, Aram Harrow, Michael Nielsen,
Therefore a separable state may achieve lower energy tand Ben Powell for helpful discussions.
having less overlap with the ground state but considerably
more overlap with low-lying excited states. , APPENDIX A: SEMIDEFINITE PROGRAMS
In Ref. [8] the derlvat|.ve of the global entang!emer!t with FOR THE ENTANGLEMENT GAP
respect to the external field was found to contain a singular-
ity at the critical point consistent with the universality class We will now describe efficient numerical procedures for
of the model. Although we see a qualitatively similar peakevaluating the entanglement gap of a given Hamiltonian us-
near the critical point, there is no singularity in the derivativeing semidefinite programs.
of the entanglement gap. Again, such a singularity may not Semidefinite programs are a type of convex optimization
have been expected because the entanglement gap is not sipneblem[56,57, which are appealing because they have ef-
ply a property of the ground state. ficient numerical implementations. With the view of Hamil-
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tonians as entanglement witnesses, and following methodseratures the Hamiltonian witnesses the bound entanglement
described iM44,58,59 it is possible to express the problem of the thermal state.

of finding the minimum separable energy as a sequence of Examples of Hamiltonians whegedl low-energy states are
semidefinite programs, whose solutions convergetsg, bound entangled may be constructed framextendable
The simplest program, which applies for bipartite systemgroduct baseg61]: a set of product states for which the

with Hilbert spaceH ,® Hg, is orthogonal complement contains no product states. To con-
struct the Hamiltonian we let the unextendable product basis
maxe, span the excited-state manifold and its orthogonal comple-
ment the ground-state manifold. In this extreme example, all
subject to H-el =P +Q'», thermal states with energy within the entanglement gap are
bound entangled.
P=0,
APPENDIX B: ENTANGLEMENT-GAP TEMPERATURE
Q=0, (A1) OF BIPARTITE SYSTEMS
where T, denotes the partial transpose over systeniet In this appendix, we investigate the entanglement-gap

di=dim(H,), i=A, B. Whend,=2 andds=2 or 3 the maxi- temperature of bipartite Hamiltonians. For this purpose, we
mum e obtained from this program corresponds to the mini-d€fine acompletely entanglesubspace of a multipartite Hil-
mum separable energi,, The optimum valuee* of the bert space as one that contains no separable states. The anti-
semidefinite program gives an entanglement witnBsg ~ SYMMEtric subspace of two systems is an example. One
=H-¢*1 and a lower bound on the entanglement gap equa’l“'ght wonder whether it is possible to find a Hamiltonian

to the largest magnitude negative eigenvalueZgf, The With & completely entangled ground-state manifold that is

entanglement witness produced by EAL) is referred to as Iqrger than the antisymmetric subspace so as to achieve_a
decomposablébecause it can be writtedg,=H-e* | =P higher entanglement-gap temperature than the symmetric

+Q™a for P=0, Q=0 and can only detect entangled statesProjector (18). In [62] the maximum dimension of a com-
with nonpositive partial transpose. pletely entgngleq subspace of many parties was investigated:

If the subsystems are of higher dimension, it is possibld®r tWo d-dimensional systems a basis was given for a com-
for an entangled state to have a positive partial transposd?éete'y entangled subspace of maximum possible dimension
Such states arbound entangled60], and the semidefinite @ —2d+1. This subspace contains the antisymmetric sub-
program(A1) only finds the gap between the ground-stateSPace-

energy and the minimum-energy positive partial transpose A natural candidate for a Hamiltonian with a high
state. This solution provides a lower bound&g, and it is entanglement-gap temperature is thus the Hamiltonian with

possible to devise a nested sequence of programs that pradch @ subspace at energy zero and its orthogonal comple-
vide increasingly tighter boundg4]. ment at the highest energy. To find its entanglement gap we

As all entanglement witnesses may be viewed as Hamilcould, in principle, use a sequence of semidefinite programs
tonians with entangled low-energy states, one way of pro@S described in Appendix A. However, as the dimension in-
ducing bound entangled states suggests itself: as therm@i€ases we need to implement increasingly higher-order tests
states. An example of a Hamiltonian for which there arel® €nsure convergence and computer memory requirements
bound entangled states which achieve lower energy than arfgcome prohibitive. These programs always retuiloveer
separable state may be derived from the Choi form, as gdoundon the entanglement gap. Alternatively, we can bound
scribed in [44,60. This Hamiltonian, which acts on the the gap from above by choosing random pure product States
minimal-dimension system on which bound entangled state@nd €valuating their energies. The lowest energy of a large

exist—i.e., dinfH ) =dim(Hg)=3—is number of trial states provides ampper boundon the en-
’ tanglement gap and thus on the entanglement-gap tempera-
H = 2(/00)(00) +[11)(11] +[22)(22]) +[02)(02 +[10)(10]  ture.
Figure 3 compares the behavior of the entanglement gap
+ 2121 = 3 )yl (A2) temperature as a function af for the three Hamiltonians

where|y,)=(1/\3)32 ii). The ground-state energy of this considered aboveHme=1~[¢g)(ddl, Hs=Ils and Hee|
Hamiltonian is —1, the minimum separable energy is 0, and lces Wherellesis the projector onto the completely en-
there are bound entangled states with energy as lowas tangled subspace of maximum dimension. We see that the
-2y/3)/3=-0.1547. AlthoughE,=0 the semidefinite pro- entanglement-gap temperature fe=1~Ilce is generally
gram (A1) would return —0.1547 for this Hamiltonian, the comparable to that dfime=1~|ba)(¢d T,h's rgsult is due to
energy of the minimum-energy positive partial transposd€ fact that the entanglement gap Fgsis quite small, thus
state. Implementing higher-order programs as[@é} would

give more and more accurate estimates of the true minimum“yg create random pure quantum states we draw the components
separable enerdgys.,~0. Furthermore, there is a small range from A(0, 1)—i.e., a normal distribution with mean 0 and variance
of temperatures, 1.256kgT=1.271, over which the thermal 1—and normalize the state. This sampling is equivalent to choosing
state has energy less than zero, so it is certainly entangleghates according to the Haar measisee, for example, Appendixes
but has positive partial transpose. Over this range of temA and B of Ref.[63]).
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s5f ' ' ' ' ' ' ' + Proof. tr[H'pse] is an upper bound on Egep
a5k 4 | :mi”psepe strlH" psel- By definition U.’(T,’E):Eéep S0 the re-
sult follows from the fact thatl’(T) is a monotonically in-

4 + 1 creasing function of. [

3.5¢ + ] Lemma 6.Any Hamiltonian H’ with E;<1/4 has an

3 n | entanglement-gap temperature less than that of the Heisen-
berg antiferromagnet.
U250 + ] Proof. We use the fact that, for two qubits, all two-
ol + i dimensional subspaces contain a separable g&te Thus,

15 | there must be a separable state in the subspace spanned by
| + |Eo) and|E,), and this separable state must have energy less
1T % ] than or equal tde;.

05 >_< X x o _ We now apply Lemma 5 With_this sep_arable statgy

= I I T T T T Becauset, is the lower of the two intermediate energies, the
or . . . . . . . . L] HamiltonianH” with the same eigenstates and eigenenergies
2 3 4 5 g 7 8 9 10 asH’, except thaE,=E; will certainly have a lower thermal

energy at any particular temperature tha#', U"(T)
FIG. 3. Comparison of entanglement-gap temperature as a func=U’(T), OT. The thermal energy”(T) is easily calculated,;
tion of dimension of the subsystems for the three bipartite Hamil-with it, we find a value ofE; that satisfies the condition
tonians: crosses correspondHig,.=1—|dg{ ¢y, pluses toHg=TIg,
and bounding bars tbl =11l g E, < U"(Tg=1/log«(3)) 0 E; < 1/4. (C2

resulting in low entanglement-gap temperature despite thehys, if E;<1/4, then trH’ pse < U"(Te=1/10g(3))

large ground-state degeneracy. <U'(Tg=1/log(3)), so H' has a lower entanglement-gap
Another method for constructing completely entanglediemperature than the Heisenberg antiferromagnet, as re-
subspaces is as the orthogonal complementneixtendable 4 ireq. u

product baseg61]. We have constructed Hamiltonians with * Thaorem 4Any HamiltonianH’ with a maximally en-

completely entangled ground-state manifolds from a ”Umbe{angled ground state has an entanglement-gap temperature
of known unextendable product bases and have always foundss than that of the Heisenberg antiferromagnet.

entanglement-gap temperatures significantly lower than that pyqof Given a Hamiltonian with a maximally entangled
of the symmetric-projector Hamiltonian. _ __ground state we can use local unitaries to transform to a
We thus have good evidence that the symmetric-projectofjgmiltonian with the singlet as its ground statEy)

Hamiltonian has the highest entanglement-gap temperatur:_e(|o>|1>_|1>|O>)/\;§_ By Lemma 1 and the invariance of the
of Hamiltonians with all energy eigenvalues either 0 or 1

Th letel | here th be int d.éz ectrum under any unitary, this Hamiltonian has the same
€ completely general case where there can be intermed tanglement-gap temperature. The excited eigenstates for
energies as well is beyond the scope of this work.

this Hamiltonian all lie in the symmetrigtriplet) subspace.

APPENDIX C: MAXIMUM ENTANGLEMENT-GAP We express the excited states in their Schmidt decomposi-
TEMPERATURE FOR TWO QUBITS tions as|E;)=\;|0)|0)+ V1-N|1)| 1), wherei=1, 2, 3.

We present two separable states, one of which has energy

In this appenc!ix we investigate the gntang_lement teMPergass than the threshold for any Hamiltonian. The first is
ture of two-qubit systems and provide evidence that the Sep=|A>(A|®|B><B| where

Heisenberg antiferromagnetic Hamiltonian has the highe
scaled entanglement-gap temperature. We scale all two-qubit _ = _ =
Hamiltonians so that the ground-state energy is 0, the maxi- A= (|0p) +[1)/V2,  [B)= (|0 = [1))V2.  (CI)

mum energy is 1, and there are two intermediate energie . . _
0<E,<E,=<1. The antiferromagnet has the singlet at en-si‘h‘? energy of this state is at mOS[HrPs,eu]‘(El“Ll)M- For
givenE; this energy will be less thad’(Tg) for E, greater

ergy 0 and all triplet states at energy 1; its scaled entangle? : b b ' , 2 91=a
ment gap and entanglement-gap temperaturggzred./2 and than a certain lower boun&;. E7(E,) is defined implicitly

te=1/log(3). by
We present two lemmas leading to a theorem that any
Hamiltonian with a maximally entangled ground state has an trlH’ psegd = U' (Te = 1/10G(3)) . (C4)
entanglement-gap temperature lower than that of the Heisen- o o )
berg antiferromagnet. This equation is transcendental aﬁd SO it is not possible to
Lemma 5Let H andH’ be two multipartite Hamiltonians  find an explicit functional form foiE3'(E,).
with entanglement gap temperatuisandT¢, respectively. The second low-energy separable state that we consider is
If there is a separable staf@s,such that psep=|Af><¢1\|_® B)(B| where |A>=[l:)3> and'|5552|113:>h- The en-
, , ergy of this state is at most[H’'pse=E,/2. This energy
UH poe < U'(Te), (CD will be less thanJ’(Tg=1/log«(3)) foﬁEz less than a maxi-
whereU’(T) is the thermal energy dfi’, thenTE<Tg. mum valueESX(E,), defined by
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E,/2=U’"(Tg = 1/l0g(3)). (C5) |iy=cos@j|1) +€%sing]]), j=AB, (D1)

where O< 6;<m/2, 0= ¢;<2m7. We then calculate the en-
ergy of the product statbA>|B> as a function of the four
parameters:

We numerically solve the two equatio€4) and (C5) for
EP(E,) and EY®E,), respectively. From Lemma 5 it is only
possible thaffg>Tg=1/logy(3) if E;>1/4. However, it is

straightforward to calculate numericalsf(E;) < ES’(E,) in (AIBIHXYAYB) = A(cos W + COS W)
this region, so that for anfE,,E,), there is a separable state 2

with energy less thab)’(Tg=1/log.(3)). Lemma 6 requires 1+y
that T < T, so the Heisenberg antiferromagnet has the high- + (T)COS¢ASin 20,c0s ¢gsin 26g
est entanglement-gap temperature of any bipartite Hamil-
tonian with a maximally entangled ground state. | v\ . ) , ,
A generic two-qubit Hamiltonian has a nonmaximally en- + > Sin ¢paSiN 26,Sin ¢gsin 26z,

tangled ground state, so it is still possible that such a Hamil-

tonian possesses a higher entanglement-gap temperature than (D2)

the Heisenberg antiferromagnet. To provide numerical eviand optimize over this space to find the lowest-energy sepa-

dence that such a Hamiltonian does not exist, we generatadble state. The result is

random Hamiltonians by drawing the two intermediate en-

ergy levels from a uniform distribution. Because no bound — N+ 1+y- 7\|l> <1+,

entangled states exist for two qubits, the semidefinite pro- i) = 2(1+7y) 2(1+vy)

gram of Appendix A produces the entanglement gap. We 1), A=1+y,

then calculated the entanglement-gap temperature numeri-

cally. We generated fdandom Hamiltonians and calculated

their entanglement-gap temperature in this way. None werg/here the + corresponds f&A, B, with energy

found to have an entanglement-gap temperature higher than 2.\
. ; - . (1+y)°+X

that of the Heisenberg antiferromagnet, providing strong evi- wy =, A<1+y,

dence that it possesses the highest possible entanglement-gap Esep™ 2(1+y) (D4)

temperature. -\, A=1+y.

1+y+A\

(D3)

Incidentally, by calculating the spectrum iy we can iden-
APPENDIX D: TRANSVERSE FIELD XY MODEL tify a curve\?++2=1 on which there is a separable state in
the degenerate ground-state manifold. The entanglement gap
The transverse fielY model is defined by the coupling is therefore zero on this curve, and this result remains true
Hamiltonian, Eq.(34). To find the minimum-energy sepa- for the XY model on an arbitrary bipartite lattiqgvith the

rable statdA)|B) we parametrize the two factors as appropriate magnetic field in the coupling Hamiltorjian
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