
Energy as an entanglement witness for quantum many-body systems

Mark R. Dowling,* Andrew C. Doherty, and Stephen D. Bartlett
School of Physical Sciences, The University of Queensland, Queensland 4072, Australia

(Received 30 August 2004; published 30 December 2004)

We investigate quantum many-body systems where all low-energy states are entangled. As a tool for quan-
tifying such systems, we introduce the concept of theentanglement gap,which is the difference in energy
between the ground-state energy and the minimum energy that a separable(unentangled) state may attain. If
the energy of the system lies within the entanglement gap, the state of the system is guaranteed to be entangled.
We find Hamiltonians that have the largest possible entanglement gap; for a system consisting of two inter-
acting spin-1/2 subsystems, the Heisenberg antiferromagnet is one such example. We also introduce a related
concept, theentanglement-gap temperature: the temperature below which the thermal state is certainly en-
tangled, as witnessed by its energy. We give an example of a bipartite Hamiltonian with an arbitrarily high
entanglement-gap temperature for fixed total energy range. For bipartite spin lattices we prove a theorem
demonstrating that the entanglement gap necessarily decreases as the coordination number is increased. We
investigate frustrated lattices and quantum phase transitions as physical phenomena that affect the entangle-
ment gap.
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I. INTRODUCTION

Understanding and quantifying the properties of quantum
many-body systems is a central goal of theoretical condensed
matter physics. Progress is often hindered by an incomplete
understanding of the highly nonclassical entangled states that
occur naturally as the ground and thermal states of many
systems. Entanglement is perhaps the most counterintuitive
feature of quantum mechanics and results in stronger corre-
lations than can be present in any classical system[1,2].
Recently, entanglement has been recognized as an important
resource in the emerging field of quantum information sci-
ence[3], which has led to new tools that may enhance our
understanding of the role of entanglement in quantum many-
body systems.

Much recent work has focused on quantifying the en-
tanglement naturally present in the ground state of standard
models of coupled quantum systems, particularly spin
chains. In [4–10] the role of entanglement in aquantum
phase transition[11] is investigated. In one-dimensional
chains, the amount of entanglement between a length of
spins and the rest of the chain appears to depend only on the
universality class of the model at the phase transition[6,7].
Various quantities associated with entanglement have been
shown to display universal scaling behavior at phase transi-
tions in one dimension[4,5,8]. Also, it appears that proper-
ties of entanglement between spins, such as the entanglement
length defined in[12], are sometimes able to characterize
phases of the system better than any correlation length[13].

Restricting to many-body systems where each system in-
teracts with only a finite local neighborhood(which we refer
to aslocal interactions) very strongly constrains the quantum
states that must be considered. For example, there exist
quantum states that are far from the ground state of any

local-interaction Hamiltonian[14]. For finite systems with
local interactions and an energy gap it was shown in[15] that
there are strong bounds on both the correlations and en-
tanglement in the ground state. The fact that local interac-
tions strongly limit the entanglement that can occur for
Hamiltonian systems with local interactions on a line or a
plane has been used to develop new approximation schemes
for simulating quantum dynamics[16–21]. There is now a
large literature on the entanglement properties of the ground
states of Hamiltonian systems; we refer the reader to[22–27]
and references therein.

Although the ground state plays an essential role in un-
derstanding physical systems, at finite temperature it is the
thermal state that is of the greatest interest. The nature of
entanglement in the thermal state of condensed matter sys-
tems was first studied by Nielsen[28], who investigated how
entanglement in the thermal state varied with temperature
and other parameters of simple systems consisting of two
coupled spins. Subsequent work has investigated similar
questions for quantum many-body systems[29–35]. A recent
experiment demonstrates that entanglement can affect ther-
modynamic properties of a system at high temperature[36].

Thus, it seems that many physical phenomena involving
just the ground or thermal states in condensed matter systems
may be associated with the nature of entanglement in the
system, and it is important to investigate new techniques for
understanding and quantifying the role of entanglement in
such systems. Desirable features of these techniques include
that they be easily computable, even for large systems, that
they be applicable at finite temperature, and that they be in
principle easy to measure and related to known physics. Be-
cause most quantum systems are described by mixed states,
these criteria lead naturally to the theory of mixed state en-
tanglement.

Surprisingly, even the question of whether a mixed state
of a quantum system is entangled or not is a difficult and
much studied question. We refer the reader to the many re-
views for the literature on the so-called separability problem*Electronic address: dowling@physics.uq.edu.au
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[37–39]. The difficulty of this problem is one of the reasons
why computing measures of entanglement can be so chal-
lenging and why it is important to find more tractable ways
of understanding the entanglement in real physical systems.
In this work we apply results from the theory of the separa-
bility problem to study the entanglement of quantum many-
body systems. This investigation leads both to an under-
standing of the kind of Hamiltonians possessing strongly
entangled thermal and low-energy states and also to interest-
ing connections with properties of spin systems studied in
more conventional condensed matter approaches.

The specific concept that we use from the theory of sepa-
rability is that of anentanglement witness: an observable
whose expectation value is positive if the state of interest is
not entangled but for which a negative expectation value
indicates that the state is entangled. An example of such an
observable is the Bell observable which describes the out-
comes of a test for the violation of Bell inequalities. In this
paper we explore the idea of interpreting Hamiltonians with
entangled ground states as entanglement witnesses. This
point of view has attracted interest recently. During the
preparation of this paper, related investigations appeared by
Brukner and Vedral[40] and by Tóth[41] in which this type
of entanglement witness is studied. As emphasized by
Brukner and Vedral[40], because energy is a macroscopic
thermodynamic property, it is reasonable to expect that it
could be measured in experiment.

In this paper, we develop the idea of using energy as an
entanglement witness for quantum many-body systems. We
introduce two related concepts inspired by the theory of en-
tanglement witnesses and discuss their relevance to both
ground-state and finite-temperature properties of quantum
many-body systems. The first is theentanglement gap: the
difference in energy between the ground-state energy and the
minimum energy that any separable(unentangled) state may
attain. If the entanglement gap of a system is nonzero, then
the entanglement of certain mixed states is detected simply
by measuring their energy to be below this threshold.
Roughly speaking, if the entanglement gap is small, then a
separable state can be a good approximation to the ground
state, and we expect approximation schemes based on sepa-
rable states to produce reliable results. We investigate how
large this gap can be for two-spin systems and how this gap
depends on the coordination number for lattices of coupled
spins.

One advantage of using ideas from studies of mixed-state
entanglement is that it is possible to investigate systems at
finite temperature. The second concept we introduce is the
use of temperature as an indicator of entanglement in the
thermal state. By comparing the thermal energy with the en-
tanglement gap we obtain a temperature threshold, the
entanglement-gap temperature,below which the thermal
state is certainly entangled and we may expect entanglement
to influence thermodynamic properties. We show that this
temperature can become arbitrarily large as the dimension of
two interacting spins increases even if the energy range of
the system is kept fixed.

We begin in Sec. II with the observation that Hamilto-
nians with entangled ground states may be viewed as en-
tanglement witnesses. We introduce the notion of entangle-

ment gap and provide necessary and sufficient conditions for
this gap to be nonzero. We construct a one-to-one mapping
between Hamiltonians with nonzero entanglement gap and
entanglement witnesses. We prove a theorem that identifies a
set of Hamiltonians with the largest possible gap; for spin-
1/2 particles, one such Hamiltonian is the Heisenberg anti-
ferromagnet. We then formally define the entanglement-gap
temperature and investigate conditions that lead to a high
value of this temperature. Somewhat counterintuitively, the
Hamiltonians with the largest entanglement gap do not have
the largest entanglement-gap temperature in general.

In Sec. III we study the entanglement gap in many-body
systems, in particular spin models on lattices. We prove a
general result that the entanglement gap must go to zero with
increasing coordination number on a bipartite lattice with a
fixed local interaction. This result is suggestive of a relation-
ship to the success of mean-field theory on lattices with high
coordination number. In Sec. IV, we conclude by investigat-
ing the dependence of the entanglement gap on frustration
for the Heisenberg antiferromagnet. We show that for such
systems it is possible to determine that the system is en-
tangled even when the reduced state of nearest-neighbor
spins is not entangled. We also investigate how the entangle-
ment gap behaves near the quantum phase transition in the
XY model and discuss its relationship to previous studies of
entanglement at this transition.

II. HAMILTONIANS AS ENTANGLEMENT WITNESSES

In this section we establish a formal connection between
Hamiltonians with the property that all low-energy states up
to a certain energy are entangled and entanglement wit-
nesses.

A multipartite mixed state ofn subsystems is said to be
separableif it can be expressed as a convex combination of
pure product states:

r = o
i

piuci
1lkci

1u ^ uci
2lkci

2u ^ ¯ ^ uci
nlkci

nu, s1d

where uci
jl are pure states in the Hilbert spaceH j of sub-

systemj andpi .0, oipi =1. If a state can be decomposed in
this way, then all correlations are purely classical; if not, then
there exist truly quantum correlations and we say that the
state isentangled.

An entanglement witnessZEW on a multipartite system is
a Hermitian operator(observable) with the properties that its
expectation value in any separable state is greater than or
equal to zero,

trfZEWrsepg ù 0, ∀ rsepP S, s2d

whereS is the set of all separable states, and that there exists
an entangled staterent such that

trfZEWrentg , 0. s3d

We say thatZEW witnesses the entanglement ofrent.
For a multipartite HamiltonianH, we define theminimum

separable energy
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Esep= min
rsepPS

trfHrsepg. s4d

Due to the convexity of the set of separable states, this mini-
mum can always be achieved by a pure separable state. Note
that there may be many separable states achieving this mini-
mum separable energyEsep.

If Esep is strictly greater than the ground-state energyE0,
there is a finite energy range over which all states are en-
tangled. We refer to the size of this energy range as the
entanglement gap.

Definition.For any multipartite HamiltonianH, we define
the entanglement gap

GE = Esep− E0, s5d

whereE0 is the ground-state energy ofH. The entanglement
gap is the energy gap between the ground-state energy and
the minimum energy that a separable state can attain.

If H has an entangled nondegenerate ground stateuE0l,
then any separable state written in terms of the eigenstates of
the Hamiltonian must contain contributions from higher-
energy states and must therefore have higher energy thanE0.
If the ground state is degenerate, the same argument requires
that the entanglement gap be greater than zero if there is no
state in the ground-state manifold that is a pure product state.
Conversely a nonzero entanglement gap requires thatEsep
.E0 and so there can be no pure product state in the ground-
state manifold because such a state would have energyE0.
So whether or not the entanglement gap is zero depends only
on the ground-state manifold.A Hamiltonian H has a non-
zero entanglement gap if and only if no ground state of H is
separable.

Constructing Hamiltonians with a nonzero entanglement
gap is straightforward. Every entanglement witness can be
regarded as a Hamiltonian for a multipartite quantum system.
For such Hamiltonians,Esep=0 andE0 is the minimum ei-
genvalue ofZEW. The definition of entanglement witnesses
implies thatE0,0 and thus the entanglement gap is nonzero.

Every Hamiltonian with a positive entanglement gapGE
.0 defines an entanglement witness

ZEW= H − EsepI , s6d

where I is the identity on the total Hilbert space. Because
Esep is the lowest possible energy for a separable state, we
have trfZEWrsepg=trfHrsepg−Esepù0. On the other hand, if
r0 is a state in the ground-state manifold, we have
trfZEWrsepg=E0−Esep,0, soZEW is an entanglement witness.
Note that if H8 and H differ only by an additive constant,
they lead to the same entanglement witness. We regard such
Hamiltonians as equivalent.

In summary,there is a one-to-one map between entangle-
ment witnesses and the equivalence classes of Hamiltonians
with nonzero entanglement gap.

The entanglement gap quantifies the range of energies
over which all states are necessarily entangled. Note, how-
ever, that higher-energy states may still be entangled. So, for
example, the thermal state forH must be entangled for all

temperatures such that the thermal energy is belowEsep but
at higher temperatures the thermal state may or may not be
entangled.

In Appendix A we describe an efficient numerical proce-
dure, a sequence of semidefinite programs, for evaluating the
entanglement gap and discuss the concept of bound entangle-
ment in this context.

A. Hamiltonians that maximize the entanglement gap

Having defined the entanglement gap it is natural to iden-
tify Hamiltonians that have the largest possible entanglement
gap for a given multipartite quantum system. We proceed by
proving two lemmas: one that the entanglement gap is invari-
ant under local unitary transformations of the Hamiltonian
and the other regarding the optimal arrangement of the en-
ergy levels. We use these two lemmas to prove the main
theorem of this section, which is that a set of Hamiltonians
with maximum possible entanglement gap are those with a
nondegenerate maximally entangled ground state and all
other eigenstates at equal energy.

Lemma 1.Given a multipartite HamiltonianH and a local
unitary Ulocal=U1 ^ U2 ^ ¯ ^ UN acting on each subsystem,
the HamiltonianH8=UlocalHUlocal

† has the same entanglement
gap asH.

Proof. From the cyclic property of the trace, we have
trfH8rsep8 g=trfHrsepg, wherersep=Ulocal

† rsep8 Ulocal is also sepa-
rable. That is, for eachrsep with a certain energy underH
there is a separable statersep8 with the same energy underH8.
ThereforeEsep=Esep8 . Also, becauseH andH8 are related by
conjugation by a unitary, they have the same spectrum and,
in particular, the same ground-state energy. HenceH andH8
have equal entanglement gap. j

We now determine which Hamiltonians have the largest
entanglement gap. For a comparison of gaps to be sensible,
we need to scale by the overall energy range of the system.
We define thescaled entanglement gap gE as

gE = GE/Etot, s7d

whereEtot=Emax−E0 is the total energy range andEmax is the
highest energy eigenvalue.

Lemma 2.For any Hamiltonian with scaled entanglement
gap gE, the HamiltonianH8= I − uE0lkE0u, where uE0l is a
ground state forH, has a scaled entanglement gapgE8 greater
than or equal togE.

Proof. We scale the Hamiltonian so that its lowest eigen-
value is zero and its highest eigenvalue is one, and thus the
energy eigenvalues lie in the range 0øEi ø1, i =0,… ,dT
−1, wheredT is the dimension of the total Hilbert space. The

entanglement gapGE of the scaled HamiltonianH̄ is equal to
the scaled entanglement gapgE of the original Hamiltonian
H. Note that the HamiltonianH8 is already scaled in this
manner—i.e.,gE8 =GE8.

To prove the lemma, it is sufficient to show the stronger

result trfH̄rgø trfH8rg , ∀ r; i.e., all states have higher en-

ergy underH8 than underH̄. To this end,
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trfrH̄g = o
i=0

dT−1

EikEiuruEil ø o
i=1

dT−1

kEiuruEil = trfH8rg, s8d

as required. The inequality follows from the assumed range
of energies 0øEi ø1 ∀ i (whereE0=0) and the fact that 0
ø kcuruclø1 for any density operatorr and any stateucl
(because 0ørø I). ThereforeEsep8 is necessarily greater than
Esep(even if the minimum-energy separable states are differ-
ent), and becauseE08=E0=0 and both Hamiltonians are
scaled appropriately, we havegE8 ùgE, as required. j

Using the geometric measure of entanglement for multi-
partite systems defined in[42], we consider multipartite pure
states that are maximally entangled in the sense that they
haveminimal overlap with any pure product state—i.e., that
they maximize the entanglement measure

MsuCld = 1 − max
rsepPS

kCursepuCl. s9d

Let Mmax=MsuCmeld be the maximum value of this measure,
achievable by a maximally entangled stateuCmel.

Theorem 1.The largest possible scaled entanglement gap
of a multipartite system isgE

max=Mmax and can be achieved
by any Hamiltonian of the formH8= I − uCmelkCmeu, where
uCmel is a maximally entangled state by the measure of
Eq. (9).

Proof. The proof follows from the definition of the en-
tanglement gap,

gE = 1 − max
rsepPS

kE0ursepuE0l, s10d

and from Lemma 2. j
Although we do not present the result here, it is also pos-

sible to show[43] that all Hamiltonians that have this maxi-
mum entanglement gap are of this form.

For multipartite systems it is not known which states are
maximally entangled according to the measureM. However,
in [42] examples of highly entangled states are given, which
place lower bounds on the maximum size of the scaled en-
tanglement gap. For example, if each of then subsystems are
d dimensional, there exists a symmetrized stateuSsn,ddl such
that M(uSsn,ddl) approaches 1 asd−2n in the n→` limit. If
each of then subsystems aren dimensional, there is an an-
tisymmetrized stateuAsndl such thatM(uAsndl)=1−1/n!. It is
clear that entanglement gap can be a very large fraction of
the total energy range for large numbers of coupled systems.

Bipartite entanglement is much better understood than
multipartite entanglement, and the following corollary gives
an explicit form for the maximally entangled ground state
and the corresponding maximum possible scaled entangle-
ment gap for bipartite systems.

Corollary. The largest scaled entanglement gap for a bi-
partite system HA ^ HB is gE=1−1/d, where d
=minsdA,dBd is the smaller dimension of the two subsystems
and is achieved by any Hamiltonian of the formH8= I
− ufdlkfdu, whereufdl=s1/Îddoi=1

d uiAluiBl andhuiA/Blj are or-
thonormal bases forHA/B.

Proof. It follows from the convexity of the set of sepa-
rable density matrices that the maximum overlap between a

pure ground state and a separable state is achieved by apure
product state rsep= uAlkAu ^ uBlkBu, where uAlPHA, uBl
PHB. In fact, the maximum is achieved by settinguAl
= u1Al , uBl= u1Bl,

max
rsepPS

kE0ursepuE0l = l1
2, s11d

where the Schmidt decomposition[3] for uE0l is uE0l
=oi=1

d liuiAluiBl andl1 is the largest Schmidt coefficient.
Thus, the largest scaled entanglement gap results from

finding uE0l with the smallest possiblel1. Normalization
soili

2=1d requires thatl1
2ù1/d andl1

2=1/d is achieved by
any maximally entangled bipartite stateuE0l= ufdl. Thus, the
HamiltonianH= I − ufdlkfdu achieves the maximum possible
scaled entanglement gapgE=1−1/d. j

For dA=dB=2, the HamiltonianH= I − uf2lkf2u, where
uf2l=oi=1

2 uiAluiBl /Î2 is any maximally entangled state, has
the largest entanglement gap. If the Hilbert space corre-
sponds physically to two spin-1/2 systems, then a particu-
larly enlightening example of a Hamiltonian of this form is a
shifted and scaled version of the antiferromagnetic Hamil-
tonian, H=sW A·sW B, wheresW i , i =A,B, is the vector of Pauli
matrices onHi. It is straightforward to show that

H = I − uc−lkc−u = ssW A · sW B + 3Id/4,

whereuc−l=su0lAu1lB− u1lAu0lBd /Î2 is the singlet state.

B. Entanglement-gap temperature

In the following, we investigate the temperature at which
the thermal state reaches the minimum separable energy. We
find the temperature below which the thermal state is guar-
anteed to be entangled; this temperature also provides a non-
trivial lower bound on the temperature above which the ther-
mal state is guaranteed to be separable.

A quantum system with HamiltonianH in thermal equi-
librium at temperatureT is described by the thermal state

rT = exps− bHd/Z, s12d

where b=1/kBT is the inverse temperature,kB is Boltz-
mann’s constant, andZ=trfexps−bHdg is the partition func-
tion. The energy of the thermal state, thethermal energy,is
given by

UsTd = trfHrTg = −
1

Z

] Z

] b
. s13d

Definition. Given a system with an entanglement gap
greater than zero,GE.0, we define theentanglement-gap
temperature TE to be the temperature at which the thermal
energy equals the minimum separable energy,UsTEd=Esep.

The thermal energy is a monotonically decreasing func-
tion of b (i.e., it decreases as the temperature decreases). By
definition, all states with energy less thanEsepare guaranteed
to be entangled, and thus the system is certainly entangled
below the entanglement-gap temperature. That is, if we cool
our system down below the entanglement-gap temperature,
we know it must be in an entangled state. The thermal energy
of the system, which depends only on the temperature, be-
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comes a witness to the entanglement of the thermal state.
In order to compare Hamiltonians with different total en-

ergy rangesEtot, it is sensible to define ascaled temperature
t as

t = kBT/Etot. s14d

The correspondingscaled entanglement-gap temperatureis
tE=kBTE/Etot.

For the class of Hamiltonians identified in Theorem 1
with maximal entanglement gap—i.e.,H= I − uCmelkCmeu,
where uCmel is a maximally entangled state by the measure
(9)—it is straightforward to calculate the entanglement-gap
temperature. The thermal energy is given by

Ustd =
sdT − 1dexps− bd

1 + sdT − 1dexps− bd
. s15d

SettingUstEd=Esep=Mmax gives

tE = Floge
sdT − 1ds1 − Mmaxd

Mmax G−1

. s16d

As an example, we consider the entanglement-gap tem-
perature of a bipartite system(each subsystem of dimension
d), with Hamiltonian H= I − ufdlkfdu and scaled entangle-
ment gapgE=1−1/d. The scaled entanglement-gap tempera-
ture for this system is

tE = flogesd + 1dg−1. s17d

Note that the entanglement-gap temperature decreases with
increasing dimension despite the fact that the entanglement
gap increases. This behavior is due to the fact that the num-
ber of eigenstates with energy one increases quadratically
with d, while the ground state remains nondegenerate.

C. Hamiltonians of bipartite systems possessing large
entanglement-gap temperature

It is natural to ask which Hamiltonians have the highest
(scaled) entanglement-gap temperature. Somewhat counter-
intuitively it is not the Hamiltonians with the largest en-
tanglement gap. In fact, there are Hamiltonians with arbi-
trarily high entanglement-gap temperature. To provide an
example, we restrict our attention to the case where the two
subsystems of the bipartite system have the same dimension,
dA=dB=d. The projectors onto the symmetric and antisym-
metric subspaces ofHA ^ HB are PS=sI +VsA,Bdd /2 andPA

=sI −VsA,Bdd /2, respectively, whereVsA,Bd is the permutation
operator on the two subsystems, defined byVsA,BduclAuflB

= uflAuclB for all ucl , ufl. The antisymmetric subspace con-
tains only entangled states. Thus, if we define a Hamiltonian
as the projector onto the symmetric subspace

H = PS, s18d

then all symmetric states have energy 1, all antisymmetric
states have energy 0, and there is a finite entanglement gap.
We find the gap by directly calculating the energy of a pure
separable state,uAluBl,

kAukBuHuAluBl = s1 + ukAuBlu2d/2. s19d

From this expression it is clear that the minimum energy of
1/2 is achieved by any pure separable state such that
kAuBl=0. The entanglement gap isGE=1/2, independent of
d.

For the symmetric-projector Hamiltonian the thermal en-
ergy is given by

Ustd =
dsd + 1dexps− bd

dsd − 1d + dsd + 1dexps− bd
. s20d

Using Esep=1/2 we find

tE = FlogeSd + 1

d − 1
DG−1

. d/2 for d @ 1. s21d

Remarkably, for this Hamiltonian the scaled entanglement-
gap temperature increases without bound as the dimension of
the subsystems increases.

Thus, for Hamiltonians that only have eigenvalues 0 or 1,
there is a trade-off between ground-state degeneracy and the
entanglement gap in determining the entanglement-gap tem-
perature. Even though the Hamiltonian with a nondegenerate
maximally entangled ground state has a larger entanglement
gap, the symmetric-projector Hamiltonian has a higher
entanglement-gap temperature due to its large ground-state
degeneracy.

In Appendix B, we investigate other Hamiltonians with
ground-state manifolds containing only entangled states and
present evidence that no other bipartite Hamiltonian with a
two-level energy spectrum possesses an entanglement-gap
temperature greater than the Hamiltonian(18). In Appendix
C, we investigate the entanglement temperature of two-qubit
systems and provide evidence that the Heisenberg antiferro-
magnetic Hamiltonian has the highest entanglement-gap
temperature.

We note that Tóth[41] gives an example of a multiparty
Hamiltonian, the Heisenberg interaction between all pairs of
n spin-1/2 particles, whose entanglement-gap temperature
increases linearly withn; i.e., it is arbitrarily high for arbi-
trarily large systems. However, unlike our example, the total
energy range also increases linearly withn. The scaled
entanglement-gap temperature of their Hamiltonian therefore
approaches a constant asn→`. By contrast, the
entanglement-gap temperature of our example is arbitrarily
high despite the fact that the total energy range is bounded.

III. ENTANGLEMENT GAP OF QUANTUM
MANY-BODY SYSTEMS

In this section, we investigate the entanglement gap for
quantum systems arranged on some graph or lattice that in-
teract with some local neighborhood. Because we are only
considering finite-dimensional systems, the subsystems can
always be thought of as spins of some total angular momen-
tum, so we use the terms “subsystem” and “spin” inter-
changeably. For a particular type of coupling—bipartite
lattices—we provide an explicit method for calculating the
entanglement gap, which applies to various spin systems of-
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ten considered in the condensed matter literature. We also
prove that, as the coordination number grows, the entangle-
ment gap per interaction must decrease to zero. This result
makes use of the fact that as the number of equivalent spins
connected to a given spin in the lattice increases there does
not exist a global state of the system for which each inter-
acting pair is strongly entangled.

A. Entanglement gap of 2-local Hamiltonians

We now consider multipartite systems with only two-body
interactions. The Hamiltonian for such a system can be de-
fined by a set of coupling HamiltoniansHij that act as the
identity on all the spins other thani and j and a graph or
lattice where the vertices represent spins and edges represent
an interaction between the spins on the two sites. We refer to
each two-body interaction, or edge on the graph, as abond.
The Hamiltonian for the entire system is

H = o
ki,jl

Hij , s22d

where oki,jl indicates a sum over vertices connected by an
edge—i.e., a sum over bonds. We refer to such a Hamil-
tonian as2-local. It follows that the energy of a 2-local
Hamiltonian depends only on the reduced density matrices of
each interacting pair; see, e.g.,[10]. Thus, the energy for any
global stater is

E = trfHrg = o
ki,jl

trfHijri jg, s23d

whereri j is the reduced state of the interacting pair of spins
ki , jl. In the following we consider only systems where each
of the coupling HamiltoniansHij is equal.

We note that the reduced statesri j are not completely
arbitrary if they are to be consistent with a global stater for
the whole system. In particular, the ground state of the graph
or lattice cannot simply be constructed from the reduced
states that minimize the energy of each bondstrfHijri jgd, be-
cause these reduced states may not be consistent with a glo-
bal state. As we demonstrate below, this situation can occur
when there is a nonzero entanglement gap for the coupling
HamiltonianHij . Motivated by the results of Sec. II as well
as its importance in condensed matter physics, we use the
Heisenberg antiferromagnet as our standard example.

A bipartite graph or lattice is one for which the vertices
can be divided into two setsA and B, such that the edges
only connect vertices fromA with vertices fromB. Examples
of bipartite lattices include the square lattice(see Fig. 1) and
the hexagonal lattice on the plane. An even number of verti-
ces arranged in a ring is also bipartite.

For bipartite graphs or lattices, we now demonstrate how
to construct a separable state with the lowest possible energy.
First, consider a minimum-energy separable stateuAluBl for a
pair of spins under the interaction Hamiltonian and construct
a global statê iAPAuAliA

^ iBPBuBliB
, such that all the spins on

the subsetA are in the stateuAl and likewise forB. By Eq.
(23) the energy per bond of this state is the same as the
energy Esep of the stateuAluBl, and it provides an upper
bound on the minimum separable energy per bond of the full

Hamiltonian (22). To see that there is no global separable
state with lower energy, suppose that such a state exists.
Then all of the nearest-neighbor reduced density matricesri j
must be separable and by Eq.(23) at least one of them must
have a lower energy under the interaction Hamiltonian than
uAluBl: a contradiction. Therefore, the statê iAPAuAliA
^ iBPBuBliB

is indeed a minimum-energy separable state of
the entire system.

Given this result, we can determine the lowest possible
energy of a separable state for the Hamiltonian(22) on any
bipartite graph or lattice simply by solving the problem for a
single pair of spins. Finding the entanglement gap for such
systems reduces to finding the entanglement gap of the two-
body interaction and the ground-state energyE0 of the over-
all system. This important fact was noted by Tóth[41] who
provided a slightly different argument.

Consider a bipartite graph with HamiltonianH. Then our
argument proves that the operatorH−NEsep is an entangle-
ment witness, whereN is the number of bonds. Note that we
can express this entanglement witness as a sum over bonds,

H − NEsep= o
ki,jl

sHij − Esepd, s24d

where each term in the sum is a bipartite entanglement wit-
ness. As a result the expectation value depends only on the
bipartite reduced density matrices of nearest neighbors and
can only be negative if these reduced density matrices are
entangled. This result can be extended to apply to lattices
(with N→`) as well. So, while the ground-state energy is
certainly a global quantity, this construction is only sufficient
to detect the existence of bipartite entanglement between in-
teracting pairs in a bond.

In a similar way we can calculate the entanglement gap
for n-partite graphs or lattices that are formed by groups ofn
spins each having an “all-to-all” interaction graph. We first
construct a minimum-energy separable state of a single

FIG. 1. Examples ofn-partite lattices.(a) Square latticesn=2d,
(b) triangular lattice sn=3d, (c) kagomé latticesn=3d, and (d)
checkerboard latticesn=4d. The n different markers indicate then
subsets that the vertices of then-partite lattice may be divided into
so that there are only interactions between distinct subsets.

DOWLING, DOHERTY, AND BARTLETT PHYSICAL REVIEW A 70, 062113(2004)

062113-6



group of n spins with an all-to-all interaction graph. This
state extends to a minimum-energy separable state of the
entire lattice as depicted in Fig. 1. We then compare the
minimum-separable energy per bond to the ground-state en-
ergy per bond to find the entanglement gap per bond. For
example, on the tripartite triangular and kagomé lattices(see
Fig. 1), it is possible to calculate the entanglement gap from
the ground-state energy and the minimum separable energy
of three spins having an all-to-all interaction graph(a single
triangle). We describe the nature of the entanglement that can
be witnessed in these systems in Sec. IV B.

B. Entanglement gap and coordination number

The coordination numberof a lattice is the number of
edges incident on each lattice site—i.e., the number of other
systems that each spin interacts with via the coupling Hamil-
tonianHij . As we are now considering lattices, our assump-
tion that all interactionsHij are equal implies translational
symmetry. We now investigate how the entanglement gap
varies with the coordination number of the lattice. The basic
idea stems from the fact that, as a result of the translational
symmetry, the ground states of our 2-local Hamiltonians
have equal reduced density matrices for interacting pairs.1 As
the coordination number increases, this equality requires that
every spin share the same reduced density matrix with an
increasing number of other spins. The results of[44–46] then
preclude the reduced density matrices from being strongly
entangled. Building on these results, we prove a theorem
stating that, as the coordination number of the lattice grows,
the entanglement gap decreases to zero. We then investigate
this behavior in the specific case of the Heisenberg antifer-
romagnet.

In order to prove results about the maximum possible en-
tanglement gap in Sec. II A it was natural to use the scaled
entanglement gap. However, in what follows it is more con-
venient to use theentanglement gap per bond, GE/N, where
N is the total number of bonds.(Note that this entanglement
gap per bond is well defined even for lattices withN→`.)
These two methods of scaling are roughly equivalent be-
cause the total energy range of the system tends to scale
linearly with the number of sites.

We begin by considering a restricted set of graphs which
we will use to prove results that bound the entanglement gap
on any bipartite lattice. We define astar graph as a bipartite
graph where there is only a single vertex, thecenter,in one
subset,A=hA0j, andk vertices, thepoints,in the other subset,
B=hBi , i =0,… ,k−1j, and where edges connect each point
and the center.

A strictly positiveentanglement witnessZEW is a Hermit-
ian operator whose average is strictly positive on separable
states trfZEWrsepg.0, ∀ rsepPS, but which has at least one
negative eigenvalue.

Before stating and proving our main theorem we present
the following lemma.

Lemma 3.Let ZEW be a strictly positive entanglement wit-

ness acting onHA0
^ HB0

. Then there exists a positive integer
k such that

o
i=0

k−1

VsB0,Bid
sZEW^ i=1

k−1IBi
dVsB0,Bid

† ù 0, s25d

whereVsB0,Bid
is the self-adjoint unitary operator that swaps

the Hilbert spacesHB0
andHBi

.
This lemma is a straightforward modification of Theorem

2 of [44] and the proof follows similarly.2

Using the general mapping between entanglement wit-
nesses and Hamiltonians with nonzero entanglement gap dis-
cussed in Sec. II, this result on strictly positive entanglement
witnesses bounds the entanglement gap for Hamiltonians on
star graphs.

Theorem 2.For any coupling HamiltonianHA0B0
and any

e.0 there exists a positive integerk such that the entangle-
ment gap per interaction for the Hamiltonian(22) on a star
graph withk points is less thane.

Proof.The nontrivial case occurs whenHA0B0
has nonzero

entanglement gap. Note that the total Hamiltonian on the star
graph may be written as

Hstar= o
i=0

k−1

VsB0,Bid
sHA0B0

^ i=1
k−1IBi

dVsB0,Bid
† . s26d

We define a strictly positive entanglement witness onHA0
^ HB0

as

ZEW= HA0B0
− EsepI + eI , s27d

whereEsep is the energy of the minimum-energy separable
state ofHA0B0

and, by addinge.0, ZEW is guaranteed to be
a strictly positive entanglement witness. From Lemma 3,
there exists ak such that

o
i=0

k−1

VsB0,Bid
fsHA0B0

− Esep+ ed^ i=1
k−1IBi

gVsB0,Bid
† ù 0,

and so HstarùksEsep−ed. Because the energy of the
minimum-energy separable state ofHstar is kEsep, this implies
that the entanglement gap of the total Hamiltonian satisfies
GE

starøke. Thus, given anye.0 there exists ak such that
GE

star/køe, as claimed. j
As an illustration of this theorem we consider the spin-

1/2 Heisenberg antiferromagnetic Hamiltonian on a star
graph. Recall that the coupling Hamiltonian isHij =sW i ·sW j;
the entanglement gap of this coupling Hamiltonian was in-
vestigated in Sec. II A. The ground state is the singlet, with
energy −3, and the three triplet states all have energy +1. The
minimum-energy separable states are of the formuAluBl such
that kAuBl=0, with energy −1.

1If there is spontaneous symmetry breaking, a mixture of the
symmetry-broken ground states will be translationally invariant.

2The key difference between this proof and the one found in[44]
is that, here, mixing with the operatorsVsB0,Bid forces the resulting
entanglement witness to be block diagonal in the irreducible repre-
sentations of the symmetric group, rather than projecting into the
fully symmetric representation of this group as in[44].
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Using the permutation symmetry amongst the points of
the Hamiltonian on the star graph it is possible to calculate
its ground-state energy exactly[47], E0=−sk+2d. The coor-
dination number of the center of the graph is the number of
points,k. The energy of any minimum-energy separable state
is Esep=−k. In Table I we present the entanglement gap per
bond and the scaled entanglement gap for comparison with
other lattices below.

Although the Heisenberg antiferromagnet has the largest
entanglement gap for two qubits, we have not proved that it
has the largest entanglement gap per bond on a star graph.
However, we have calculated the entanglement gap per bond
for numerous common spin models such as theXXZ model
andXY model, all of which have a smaller entanglement gap
per bond. Therefore we conjecture that the Heisenberg anti-
ferromagnet has the largest entanglement gap per bond on a
star graph. If this were true, it would provide an upper bound
of Os1/kd on the approach to zero of the entanglement gap
per bond implied by Theorem 2.

In order to determine the entanglement gap on a bipartite
lattice, we require the ground-state energy of the lattice as
well as the lowest energy achievable by a separable state of a
single pair of spins, as noted above. The ground-state energy
of a star graph can be used to bound the ground-state energy
of a bipartite lattice with the same coordination number as
follows.

Lemma 4.The ground-state energy per bond of any cou-
pling Hamiltonian on a bipartite lattice with coordination
numberk is greater than or equal to the ground-state energy
per bond of the same Hamiltonian on a star graph withk
points.

Proof. The essential idea is to divide the expression for
ground-state energy on the lattice into a sum over star graphs
with k points wherek is the coordination number of the
lattice. Let r0 denote the translationally invariant ground
state of the entire lattice. Consider the star graph consisting
of a particular lattice site(the center) and those sites con-
nected to it by a coupling(the points). The reduced state on
the star graph is obtained by tracing out all sites not in the
star:

rstar= tri¹hstarjfr0g. s28d

This state is independent of the lattice site chosen as the
center (due to the translational invariance ofr0), and the
energy per bond of this reduced state is the same as the
ground-state energy per bond of the lattice. The ground-state
energy is then

E0 = trfHr0g = o
i

trfHstarrstarg/k. s29d

Furthermore, the energy ofrstar can only be greater than the
energy of a ground stateuE0lstar of the star Hamiltonian:

trfHstarrstarg ù trfHstaruE0lstarkE0ug. s30d

It follows that the ground-state energy per bond of the bipar-
tite lattice is greater than or equal to the ground-state energy
per bond of the star graph. j

We note that a similar argument is used in[48] to bound
the ground-state energy of the Heisenberg antiferromagnet.

Using this bound for the ground-state energy, it is
straightforward to bound the entanglement gap on bipartite
lattices, which is the main result of this section.

Theorem 3.Given anye.0 there exists a positive integer
k such that the entanglement gap per bond for an arbitrary
coupling Hamiltonian on any bipartite lattice with coordina-
tion numberk is less thane.

Proof.Because the bipartite lattice and star graph are both
bipartite, they have the same minimum separable energy
per bond. The result now follows from Theorem 2 and
Lemma 4. j

To illustrate this theorem, we calculate the entanglement
gap per bond of the spin-1/2 Heisenberg antiferromagnet on
simple bipartite lattices with varying coordination number. In
Table II we present the ground-state energy, taken from the
literature, and thus the entanglement gap per bond and scaled
entanglement gap for a Heisenberg antiferromagnet on a one-
dimensional(1D) chain, honeycomb, square, and cubic lat-
tice (all bipartite), as well as some nonbipartite lattices to be
discussed in Sec. IV B. It can be seen that the entanglement
gap per bond does decrease with increasing coordination
number for the bipartite case and is always less than that of
the corresponding star graph in Table I, as proved by Lemma
4. The entanglement gap per bond appears to decrease with
coordination number on tripartite lattices as well, thus pro-
viding evidence that this behavior is not confined to bipartite
lattices.

IV. DISCUSSION

In this section, we discuss some of the implications of our
results and explore the connections with other results from
the condensed matter literature. We also discuss frustrated
lattices and quantum phase transitions and their effect on the
entanglement gap.

The energy gap between the ground-state energy and the
lowest energy achieved by a separable state has been dis-
cussed in the quantum magnetism literature using a slightly
different terminology[49]. There, separable states are asso-
ciated with “classical configurations,” arrangements of clas-

TABLE I. Properties of star graphs with the Heisenberg antifer-
romagnetic Hamiltonian as a function of coordination numberk.
The ground-state energy, minimum separable energy, and entangle-
ment gap are allper bond—i.e., energies divided byk. The scaled
entanglement gap is the entanglement gap divided by the total en-
ergy range of the system.

Coord.
No. k

E0

per bond
Esep

per bond
Ent. gap
per bond

Scaled
ent. gap

1 −3 −1 2 0.5

2 −2 −1 1 0.333

3 −1.667 −1 0.667 0.25

4 −1.5 −1 0.5 0.2

5 −1.4 −1 0.4 0.167

6 −1.333 −1 0.333 0.143
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sical spin vectors minimizing the energy of the appropriate
classical Heisenberg spin model. The reduction in ground-
state energy below this point is typically ascribed to “quan-
tum fluctuations.” As a result, Table II is essentially drawn
directly from the review by Lhuillier and Misguich[49]. Our
results show that, in this context at least, the term “quantum
fluctuations” as discussed in the condensed matter literature
can be identified precisely with entanglement as discussed in
the quantum information literature, and the associated reduc-
tion of ground-state energy in antiferromagnets can be di-
rectly related to the theory of mixed state entanglement
[37–39].

Note that the entanglement gap is well over a quarter of
the total energy range for Heisenberg antiferromagnet on a
line and is a very significant fraction of the total energy
range for the majority of the lattices considered. This large
entanglement gap reinforces the argument made by Brukner
and Vedral[40] that the entanglement witnesses resulting
from the energy of appropriate spin models can have macro-
scopic expectation values.

A. Bipartite lattices and mean-field theory

Mean-field theoryis a term used to describe a variety of
techniques in condensed matter physics for finding an ap-
proximation to the ground state of a quantum many-body
system. Typically such techniques correspond to searching
for a separable state that approximates the ground state. It is
a well-known observation that mean-field theory is more ac-
curate in higher dimensions and, because coordination num-
ber typically increases with the dimension, for higher coor-
dination number. So, for example, dynamical mean-field
theory for fermion systems is known to be exact in infinite
dimensions[52].

In the context of our present work, we expect mean-field
theory to work well when the entanglement gap is small,
because there exists a separable state that has energy close to
the ground-state energy and thus a variational approach in-
volving separable states might be expected to be accurate.
Theorem 3 demonstrates in a precise way that the entangle-

ment gap decreases to an arbitrarily small value with increas-
ing coordination number on bipartite lattices, independent of
the particular coupling Hamiltonian. This result is therefore
suggestive of a quantitative connection between entangle-
ment and the improvement of mean-field theory with dimen-
sion.

The work of Raggio and Werner[45] aimed to develop a
rigorous mean-field theory for Hamiltonian models on star
graphs with a large number of points. Our results are ulti-
mately based on a characterization of bipartite separable
states proven there and in Ref.[46], subsequently used in
Ref. [44] to prove a result closely related to our Lemma 3.
The proofs in Ref.[45] are technically very difficult, because
they apply not only to finite-dimensional spin systems but to
any quantum system defined on a separable Hilbert space.
These results may provide a more direct route to our Theo-
rem 2 for star-shaped graphs, which could then be used to
prove the result for bipartite lattices in more generality; how-
ever, we have preferred to give a simple derivation valid for
finite-dimensional spin systems.

B. Frustrated lattices and multipartite entanglement

Lattices that are not bipartite lead to spin systems that are
often referred to asfrustrated in condensed matter physics
[53]. This terminology arises from the fact that the
minimum-energy separable state for two neighboring sites on
such a lattice is not equal to the minimum-energy separable
for the two sites coupled alone. As a result the energy per
bond on such a lattice is higher than the energy of a single
pair for the same interaction.3 The physics of frustrated quan-
tum and classical spin systems have been a subject of inten-
sive research in recent years; we refer the reader to[53] for a
review. In the following, we briefly consider the effect of
frustration on the entanglement gap.

3Dawson and Nielsen[27] derive a bound on the ground-state
entanglement based on the frustration of thequantumHamiltonian,
not the frustration of its classical counterpart.

TABLE II. Entanglement gap for the Heisenberg antiferromagnet for various bipartite and frustrated
lattices with different coordination numbers. Ground-state energies taken from[49].

Lattice Coord. No. E0 per bond Esep per bond Ent. gap per bond Scaled ent. gap

Single bond 1 −3 −1 2 0.5

1D chain 2 −1.772 −1 0.772 0.279

Hexagonal 3 −1.452 −1 0.452 0.184

Square 4 −1.338 −1 0.338 0.145

Cubic 6 −1.194a −1 0.194 0.088

Single triangle 2 −1 −0.5 0.5 0.25

Kagomé 4 −0.874 −0.5 0.374 0.200

Triangular 6 −0.726 −0.5 0.226 0.131

Single tetrahedron 3 −1 −0.333 0.667 0.333

Checkerboard 6 −0.67b −0.333 0.34 0.20

aFrom linear spin-wave theory[50].
bFrom [51].
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Further motivation for studying lattices that are not bipar-
tite comes from considering the nature of the entanglement
detected by the Hamiltonian. On bipartite lattices, entangle-
ment is only detected when the reduced density matrices as-
sociated with each bond are entangled. So, for example,
states which are multipartite entangled but contain no bipar-
tite entanglement, such as the three-party GHZ state, will
never have lower energy than the minimum separable energy
on a bipartite graph for any interaction Hamiltonian. On non-
bipartite lattices it is sometimes possible for a coupling
Hamiltonian to witness the entanglement of such states.

A simple example of a nonbipartite lattice is the regular
triangular lattice, which is tripartite but not bipartite. We con-
sider two other nonbipartite lattices in two dimensions: the
kagomé lattice, which is made up of corner-sharing triangles,
and the checkerboard lattice. These lattices are depicted in
Fig. 1.

Again we consider the Heisenberg interaction. In order to
find the lowest separable energy for the triangular and
kagomé lattices, we first find a minimum-energy separable
state for a single triangle, as described in Sec. III A. The total
Hamiltonian for a single triangle is

H = sW 1 · sW 2 + sW 2 · sW 3 + sW 3 · sW 1. s31d

Its spectrum and minimum-energy separable states may be
found by standard symmetry methods(for example,[54]).
The ground state is fourfold degenerate with energyE0=−3.
For the Heisenberg antiferromagnet ofn spins with an all-to-
all coupling, it is straightforward to show that a minimum-
energy separable state is given by any configuration of spins
where the total spin vector is zero[53]. For the triangle, a
minimum-energy separable state is

u↑l1 ^ su↑l2 + Î3u↓l2d/2 ^ su↑l3 − Î3u↓l3d/2, s32d

which corresponds to a classical configuration of spins at an
angle of 2p /3 from each other in the plane having a total
spin zero(the “Mercedes star” configuration in[54]). This
state has energyEsep=−3/2. The maximum-energy manifold
is spanned by the states with all spins parallel and has energy
Emax=3.

From these results we can calculate the entanglement gap
per bond and the scaled entanglement gap for the Heisenberg
interaction on the triangle, shown in Table II. Also shown are
the entanglement gaps for the kagomé and triangular lattices,
calculated fromEsep for the triangle, and the ground-state
energy of the entire lattice, taken from[49]. Note that, as for
bipartite lattices, the entanglement gap per bond appears to
decrease with coordination number. We have also considered
the checkerboard lattice(see Fig. 1) which is made up of
corner-sharing tetrahedra and has a coordination number of
six. We obtain the ground-state energy of this model from
Ref. [51], where it is estimated from exact diagonalization of
small samples.

The reduced density matrices associated with bonds of the
lattice in the ground state are not entangled for these frus-
trated systems. Note that the symmetries of the Heisenberg
model guarantee that these bipartite reduced density matrices
are so-called Werner states[55], invariant under any local
unitary rotation of the formU ^ U. These states are entirely

characterized by the fraction of the population that is in the
singlet state, and when this fraction is less than a half, the
state is separable[55]. Therefore the reduced density matrix
associated with each bond is separable whenever the ground-
state energy per bond is above the minimum separable en-
ergy of the Heisenberg Hamiltonian for a single pair of spins.
With the ground-state energy per bond from Table II, it is
clear that there is no bipartite entanglement of nearest-
neighbor spins for the Heisenberg model on the triangular,
kagomé, or checkerboard lattices(becauseE0 per bond is
greater than −1). The entanglement gap for these systems is
associated with the entanglement of the reduced states of the
triangles or tetrahedrons that make up the lattice. Thus, the
Hamiltonian serves as a witness for multipartite entangle-
ment in these systems.

It appears that as the frustration of the classical spin
model increases, so does the entanglement gap. For a coor-
dination number of 6 the entanglement gap as a fraction of
the overall energy range of the Hamiltonian increases from
0.088 on the bipartite cubic lattice to 0.131 on the tripartite
triangular lattice and finally to around 0.2 on the checker-
board lattice. It would be interesting to understand this be-
havior in more detail. It is a feature of frustrated classical
spin models that they have a large number of configurations
achieving the lowest possible energy, which may be a con-
tributing factor to this observed larger entanglement gap.

C. Entanglement gap in a simple quantum
phase transition

The role of entanglement inquantum phase transitions
[11] is currently of considerable interest[4–6,10]. Perhaps
the simplest model to exhibit a quantum phase transition,
used in many of these studies, is the 1D infinite-lattice trans-
verse fieldXY model with Hamiltonian

H = o
j=0

N−1 S1 + g

2
s j

xs j+1
x +

1 − g

2
s j

ys j+1
y + ls j

zD , s33d

whereg is the anisotropy in thex-y plane,l is an external
magnetic field,N is the total number of lattice sites, and
cyclic boundary conditions are imposed so that a subscriptN
is identified with 0. Forg=1 the transverse field Ising model
is recovered.

It is of interest to see how this phase transition affects the
entanglement gap. Here we calculate the entanglement gap
of the 1DXY model as a function ofsg ,ld in the thermody-
namicsN→`d limit. Because a 1D lattice is bipartite(for N
even), given knowledge of the ground-state energy it is suf-
ficient to calculate the entanglement gap for the coupling
Hamiltonian in order to calculate the entanglement gap of the
entire system, as described in Sec. III. In this case the cou-
pling Hamiltonian may be chosen to be

Hij
XY =

1 + g

2
si

xs j
x +

1 − g

2
si

ys j
y +

l

2
ssi

z + s j
zd, s34d

where the factor of 1/2 in front of the magnetic field ac-
counts for the fact that each site is involved in two interac-
tions. In Appendix D we calculate the minimum separable
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energy for this coupling Hamiltonian, Eq.(D4).
The XY model on a 1D chain, Eq.(33), is well known to

be exactly solvable via the Jordan-Wigner transformation;
see, e.g.,[11]. We obtain the ground-state energy from this
method.

In Fig. 2 we plot the scaled entanglement gap as a func-
tion of sg ,ld in the thermodynamic limit. The quantum
phase transition in this model occurs atl=1 for gÞ0. Pre-
vious studies have indicated that the ground state becomes
highly entangled at this point, and this behavior is manifest
in a sudden rise in the entanglement gap about this point.
Intuitively one might expect that the more entangled the
ground state, the larger the entanglement gap. While qualita-
tively true, this connection cannot be exact because the en-
tanglement gap is a property of the whole Hamiltonian; it
can depend on all energy eigenstates and their energies and is
not just a property of the ground state.

Nevertheless, given the discussion in Sec. II A it is rea-
sonable to consider a connection between the ground-state
entanglement as measured byMsuCld of Eq. (9) and the
entanglement gap. The entanglement of the ground state un-
der this measure has been investigated in theXY model in
recent work by Weiet al. [8]. This measure depends only on
the maximum overlap of the entangled stateuCl with a sepa-
rable state. One might expect that the minimum-energy sepa-
rable state is one which has the maximum overlap with the
ground state. However, in order to achieve maximum overlap
with the ground state it may also be necessary for a separable
state to have large overlap with high-energy eigenstates.
Therefore a separable state may achieve lower energy by
having less overlap with the ground state but considerably
more overlap with low-lying excited states.

In Ref. [8] the derivative of the global entanglement with
respect to the external field was found to contain a singular-
ity at the critical point consistent with the universality class
of the model. Although we see a qualitatively similar peak
near the critical point, there is no singularity in the derivative
of the entanglement gap. Again, such a singularity may not
have been expected because the entanglement gap is not sim-
ply a property of the ground state.

D. Summary

We have studied entanglement in quantum many-body
systems from the point of view of the Hamiltonian as an
entanglement witness. We introduced two related concepts
useful in studying the role of entanglement in the ground and
thermal states of multipartite quantum systems. The first is
the entanglement gap, which is the difference in energy be-
tween the ground-state energy and the minimum energy that
any separable state can attain. If the energy of the system lies
within the entanglement gap range, the state of the system is
guaranteed to be entangled. The second concept is the
entanglement-gap temperature: the temperature at which the
energy of the thermal state is equal to the minimum sepa-
rable energy and below which the thermal state must be en-
tangled. The entanglement-gap temperature provides a
threshold for deducing the thermal state of the system to be
entangled, based on its energy.

For multipartite, finite-dimensional quantum systems we
proved that Hamiltonians possessing a nondegenerate maxi-
mally entangled ground state(according to a global measure
of entanglement) and all other energy eigenstates degenerate
maximize the entanglement gap. The related question of
which Hamiltonians have the highest entanglement gap tem-
perature is more challenging; substantial evidence is given
that the Heisenberg antiferromagnetic Hamiltonian has the
largest entanglement temperature for two qubits.

On bipartite lattices—i.e., those lattices for which there
are only interactions between two disjoint subsets of the
vertices—we proved that the entanglement gap decreases to
zero as the coordination number increases. This result sug-
gests a quantitative reason why approximation schemes
based on separable states, such as various forms of mean-
field theory, appear to give more reliable results at higher
coordination number.

On frustrated lattices—i.e., those that are not
bipartite—we noted that the Hamiltonian can act as an en-
tanglement witness for multipartite entanglement, even when
there is no bipartite entanglement present. Finally, we calcu-
lated the entanglement gap near a simple quantum phase
transition and showed that, although it does not follow any
universal scaling law, it does increase near the quantum
phase transition, as may have been expected from previous
studies in which the ground state was found to become
highly entangled at that point.
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APPENDIX A: SEMIDEFINITE PROGRAMS
FOR THE ENTANGLEMENT GAP

We will now describe efficient numerical procedures for
evaluating the entanglement gap of a given Hamiltonian us-
ing semidefinite programs.

Semidefinite programs are a type of convex optimization
problem[56,57], which are appealing because they have ef-
ficient numerical implementations. With the view of Hamil-

FIG. 2. Entanglement gap as a function of anisotropyg and
transverse fieldl for XY Hamiltonian on a 1D lattice in the ther-
modynamic limit.
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tonians as entanglement witnesses, and following methods
described in[44,58,59] it is possible to express the problem
of finding the minimum separable energy as a sequence of
semidefinite programs, whose solutions converge toEsep.
The simplest program, which applies for bipartite systems
with Hilbert spaceHA ^ HB, is

maxe,

subject to H − eI = P + QTA,

P ù 0,

Q ù 0, sA1d

whereTA denotes the partial transpose over systemA. Let
di =dimsHid , i =A, B. WhendA=2 anddB=2 or 3 the maxi-
mum e obtained from this program corresponds to the mini-
mum separable energyEsep. The optimum valuee* of the
semidefinite program gives an entanglement witnessZEW
=H−e* I and a lower bound on the entanglement gap equal
to the largest magnitude negative eigenvalue ofZEW. The
entanglement witness produced by Eq.(A1) is referred to as
decomposablebecause it can be writtenZEW=H−e* I =P
+QTA for Pù0, Qù0 and can only detect entangled states
with nonpositive partial transpose.

If the subsystems are of higher dimension, it is possible
for an entangled state to have a positive partial transpose.
Such states arebound entangled[60], and the semidefinite
program(A1) only finds the gap between the ground-state
energy and the minimum-energy positive partial transpose
state. This solution provides a lower bound onEsep, and it is
possible to devise a nested sequence of programs that pro-
vide increasingly tighter bounds[44].

As all entanglement witnesses may be viewed as Hamil-
tonians with entangled low-energy states, one way of pro-
ducing bound entangled states suggests itself: as thermal
states. An example of a Hamiltonian for which there are
bound entangled states which achieve lower energy than any
separable state may be derived from the Choi form, as de-
scribed in [44,60]. This Hamiltonian, which acts on the
minimal-dimension system on which bound entangled states
exist—i.e., dimsHAd=dimsHBd=3—is

H = 2su00lk00u + u11lk11u + u22lk22ud + u02lk02u + u10lk10u

+ u21lk21u − 3uc+lkc+u, sA2d

where uc+l=s1/Î3doi=0
2 uii l. The ground-state energy of this

Hamiltonian is −1, the minimum separable energy is 0, and
there are bound entangled states with energy as low ass3
−2Î3d /3.−0.1547. AlthoughEsep=0 the semidefinite pro-
gram (A1) would return −0.1547 for this Hamiltonian, the
energy of the minimum-energy positive partial transpose
state. Implementing higher-order programs as per[44] would
give more and more accurate estimates of the true minimum
separable energyEsep=0. Furthermore, there is a small range
of temperatures, 1.256&kBT&1.271, over which the thermal
state has energy less than zero, so it is certainly entangled,
but has positive partial transpose. Over this range of tem-

peratures the Hamiltonian witnesses the bound entanglement
of the thermal state.

Examples of Hamiltonians whereall low-energy states are
bound entangled may be constructed fromunextendable
product bases[61]: a set of product states for which the
orthogonal complement contains no product states. To con-
struct the Hamiltonian we let the unextendable product basis
span the excited-state manifold and its orthogonal comple-
ment the ground-state manifold. In this extreme example, all
thermal states with energy within the entanglement gap are
bound entangled.

APPENDIX B: ENTANGLEMENT-GAP TEMPERATURE
OF BIPARTITE SYSTEMS

In this appendix, we investigate the entanglement-gap
temperature of bipartite Hamiltonians. For this purpose, we
define acompletely entangledsubspace of a multipartite Hil-
bert space as one that contains no separable states. The anti-
symmetric subspace of two systems is an example. One
might wonder whether it is possible to find a Hamiltonian
with a completely entangled ground-state manifold that is
larger than the antisymmetric subspace so as to achieve a
higher entanglement-gap temperature than the symmetric
projector (18). In [62] the maximum dimension of a com-
pletely entangled subspace of many parties was investigated:
for two d-dimensional systems a basis was given for a com-
pletely entangled subspace of maximum possible dimension
d2−2d+1. This subspace contains the antisymmetric sub-
space.

A natural candidate for a Hamiltonian with a high
entanglement-gap temperature is thus the Hamiltonian with
such a subspace at energy zero and its orthogonal comple-
ment at the highest energy. To find its entanglement gap we
could, in principle, use a sequence of semidefinite programs
as described in Appendix A. However, as the dimension in-
creases we need to implement increasingly higher-order tests
to ensure convergence and computer memory requirements
become prohibitive. These programs always return alower
boundon the entanglement gap. Alternatively, we can bound
the gap from above by choosing random pure product states4

and evaluating their energies. The lowest energy of a large
number of trial states provides anupper boundon the en-
tanglement gap and thus on the entanglement-gap tempera-
ture.

Figure 3 compares the behavior of the entanglement gap
temperature as a function ofd for the three Hamiltonians
considered above,Hme= I − ufdlkfdu , HS=PS, and Hces= I
−Pces, wherePces is the projector onto the completely en-
tangled subspace of maximum dimension. We see that the
entanglement-gap temperature ofHces= I −Pces is generally
comparable to that ofHme= I − ufdlkfdu. This result is due to
the fact that the entanglement gap forHcesis quite small, thus

4To create random pure quantum states we draw the components
from Ns0,1d—i.e., a normal distribution with mean 0 and variance
1—and normalize the state. This sampling is equivalent to choosing
states according to the Haar measure(see, for example, Appendixes
A and B of Ref.[63]).

DOWLING, DOHERTY, AND BARTLETT PHYSICAL REVIEW A 70, 062113(2004)

062113-12



resulting in low entanglement-gap temperature despite the
large ground-state degeneracy.

Another method for constructing completely entangled
subspaces is as the orthogonal complement ofunextendable
product bases[61]. We have constructed Hamiltonians with
completely entangled ground-state manifolds from a number
of known unextendable product bases and have always found
entanglement-gap temperatures significantly lower than that
of the symmetric-projector Hamiltonian.

We thus have good evidence that the symmetric-projector
Hamiltonian has the highest entanglement-gap temperature
of Hamiltonians with all energy eigenvalues either 0 or 1.
The completely general case where there can be intermediate
energies as well is beyond the scope of this work.

APPENDIX C: MAXIMUM ENTANGLEMENT-GAP
TEMPERATURE FOR TWO QUBITS

In this appendix we investigate the entanglement tempera-
ture of two-qubit systems and provide evidence that the
Heisenberg antiferromagnetic Hamiltonian has the highest
scaled entanglement-gap temperature. We scale all two-qubit
Hamiltonians so that the ground-state energy is 0, the maxi-
mum energy is 1, and there are two intermediate energies,
0øE1øE2ø1. The antiferromagnet has the singlet at en-
ergy 0 and all triplet states at energy 1; its scaled entangle-
ment gap and entanglement-gap temperature aregE=1/2 and
tE=1/ loges3d.

We present two lemmas leading to a theorem that any
Hamiltonian with a maximally entangled ground state has an
entanglement-gap temperature lower than that of the Heisen-
berg antiferromagnet.

Lemma 5.Let H andH8 be two multipartite Hamiltonians
with entanglement gap temperaturesTE andTE8, respectively.
If there is a separable state,rsep such that

trfH8rsepg ø U8sTEd, sC1d

whereU8sTd is the thermal energy ofH8, thenTE8 øTE.

Proof. trfH8rsepg is an upper bound on Esep8
=minrsepPStrfH8rsepg. By definition U8sTE8d=Esep8 , so the re-
sult follows from the fact thatU8sTd is a monotonically in-
creasing function ofT. j

Lemma 6.Any Hamiltonian H8 with E1ø1/4 has an
entanglement-gap temperature less than that of the Heisen-
berg antiferromagnet.

Proof. We use the fact that, for two qubits, all two-
dimensional subspaces contain a separable state[62]. Thus,
there must be a separable state in the subspace spanned by
uE0l and uE1l, and this separable state must have energy less
than or equal toE1.

We now apply Lemma 5 with this separable statersep.
BecauseE1 is the lower of the two intermediate energies, the
HamiltonianH9 with the same eigenstates and eigenenergies
asH8, except thatE2=E1 will certainly have a lower thermal
energy at any particular temperature thanH8 , U9sTd
øU8sTd , ∀T. The thermal energyU9sTd is easily calculated;
with it, we find a value ofE1 that satisfies the condition

E1 ø U9„TE = 1/loges3d… ⇒ E1 ø 1/4. sC2d

Thus, if E1ø1/4, then trfH8rsepgøU9(TE=1/ loges3d)
øU8(TE=1/ loges3d), so H8 has a lower entanglement-gap
temperature than the Heisenberg antiferromagnet, as re-
quired. j

Theorem 4.Any Hamiltonian H8 with a maximally en-
tangled ground state has an entanglement-gap temperature
less than that of the Heisenberg antiferromagnet.

Proof. Given a Hamiltonian with a maximally entangled
ground state we can use local unitaries to transform to a
Hamiltonian with the singlet as its ground stateuE0l
=su0lu1l− u1lu0ld /Î2. By Lemma 1 and the invariance of the
spectrum under any unitary, this Hamiltonian has the same
entanglement-gap temperature. The excited eigenstates for
this Hamiltonian all lie in the symmetric(triplet) subspace.
We express the excited states in their Schmidt decomposi-
tions asuEil=liu0ilu0il+Î1−li

2u1ilu1il, wherei =1, 2, 3.
We present two separable states, one of which has energy

less than the threshold for any Hamiltonian. The first is
rsep= uAlkAu ^ uBlkBu where

uAl = su01l + u11ld/Î2, uBl = su01l − u11ld/Î2. sC3d

The energy of this state is at most trfH8rsepg=sE1+1d /4. For
a givenE1 this energy will be less thanU8sTEd for E2 greater
than a certain lower bound,E2

lb. E2
lbsE1d is defined implicitly

by

trfH8rsepg = U8„TE = 1/loges3d…. sC4d

This equation is transcendental and so it is not possible to
find an explicit functional form forE2

lbsE1d.
The second low-energy separable state that we consider is

rsep= uAlkAu ^ uBlkBu where uAl= u03l and uBl= u13l. The en-
ergy of this state is at most trfH8rsepg=E2/2. This energy
will be less thanU8(TE=1/ loges3d) for E2 less than a maxi-
mum valueE2

ubsE1d, defined by

FIG. 3. Comparison of entanglement-gap temperature as a func-
tion of dimension of the subsystems for the three bipartite Hamil-
tonians: crosses correspond toHme= I − ufdlkfdu, pluses toHS=PS,
and bounding bars toHces= I −Pces.
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E2/2 = U8„TE = 1/loges3d…. sC5d

We numerically solve the two equations(C4) and (C5) for
E2

lbsE1d andE2
ubsE1d, respectively. From Lemma 5 it is only

possible thatTE8 .TE=1/ loges3d if E1.1/4. However, it is
straightforward to calculate numericallyE2

lbsE1døE2
ubsE1d in

this region, so that for anysE1,E2d, there is a separable state
with energy less thanU8(TE=1/ loges3d). Lemma 6 requires
thatTE8 øTE, so the Heisenberg antiferromagnet has the high-
est entanglement-gap temperature of any bipartite Hamil-
tonian with a maximally entangled ground state. j

A generic two-qubit Hamiltonian has a nonmaximally en-
tangled ground state, so it is still possible that such a Hamil-
tonian possesses a higher entanglement-gap temperature than
the Heisenberg antiferromagnet. To provide numerical evi-
dence that such a Hamiltonian does not exist, we generated
random Hamiltonians by drawing the two intermediate en-
ergy levels from a uniform distribution. Because no bound
entangled states exist for two qubits, the semidefinite pro-
gram of Appendix A produces the entanglement gap. We
then calculated the entanglement-gap temperature numeri-
cally. We generated 108 random Hamiltonians and calculated
their entanglement-gap temperature in this way. None were
found to have an entanglement-gap temperature higher than
that of the Heisenberg antiferromagnet, providing strong evi-
dence that it possesses the highest possible entanglement-gap
temperature.

APPENDIX D: TRANSVERSE FIELD XY MODEL

The transverse fieldXY model is defined by the coupling
Hamiltonian, Eq.(34). To find the minimum-energy sepa-
rable stateuAluBl we parametrize the two factors as

u jl = cosu ju↑l + eif jsinu ju↓l, j = A,B, sD1d

where 0øu j øp /2 , 0øf j ,2p. We then calculate the en-
ergy of the product stateuAluBl as a function of the four
parameters:

kAukBuHAB
XYuAluBl =

l

2
scos 2uA + cos 2uBd

+ S1 + g

2
DcosfAsin 2uAcosfBsin 2uB

+ S1 − g

2
DsinfAsin 2uAsinfBsin 2uB,

sD2d

and optimize over this space to find the lowest-energy sepa-
rable state. The result is

u jl = 5Î1 + g + l

2s1 + gd
u↑l ±Î1 + g − l

2s1 + gd
u↓l, l ø 1 + g,

u↓l, l ù 1 + g,
6
sD3d

where the ± corresponds toj =A,B, with energy

Esep
XY = 5−

s1 + gd2 + l2

2s1 + gd
, l ø 1 + g,

− l, l ù 1 + g.
6 sD4d

Incidentally, by calculating the spectrum ofHAB
XY we can iden-

tify a curvel2+g2=1 on which there is a separable state in
the degenerate ground-state manifold. The entanglement gap
is therefore zero on this curve, and this result remains true
for the XY model on an arbitrary bipartite lattice(with the
appropriate magnetic field in the coupling Hamiltonian).
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