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I. INTRODUCTION

The root mean square(rms) radius is used in many fields
of physics to characterize the size of quantum systems; this
observable is thus of special interest. In the case of two-body
systems, the rms radius and the energy of one eigenstate
determine the depth and the range of the central potential
which binds the particles provided that the number of bound
states supported by the potential is also known. A simple
example is the naive description of the deuteron by a square-
well potential(see, for example, Ref.[1]). The depthV0 and
the rangeR can be adjusted to reproduce the rms radius and
the binding energy of the deuteron. This adjustment is not
unique except if the number of bound states in the potential
is fixed to one. Obviously, these quantities are not sufficient
to infer the shape of the potential. Indeed, the same simple
description of the deuteron could be achieved with an expo-
nential potential, for example. However, if information on
the shape of the potential is obtained by other means, then
constraints on the rms radius, on the energy, and on the num-
ber of bound states yield strong restrictions on the potential.
Consequently, upper and lower limits on these quantities are
interesting tools to obtain easily constraints on the interac-
tion.

There exists a fairly large number of upper and lower
limits on the energy of eigenstates in the literature[2–10] as
well as on the number of bound states supported by central
potentials[3,11–17]. Similar results concerning the rms ra-
dius are scarcer. A first general inequality gives a lower limit
on the rms radius of an,-wave state in terms of the average
kinetic energys"=2m=1d ([18], p. 73)

kr2l ù
s2, + 3d2

4kTl
. s1d

This relation is, however, not very useful except in the case
of power-law potentials,Vsrd=sgnspdgrp sp.−2d, for which
the virial theorem gives a simple relation between the energy,
E, of the ,-wave state and the average kinetic energy:kTl
=pE/ sp+2d. In this case, the relation(1) simply reads

kr2l ù s2, + 3d2p + 2

4pE
. s2d

In the case of a vanishing angular momentum,,=0, an-
other restriction is given by the Bertlmann-Martin inequality
[19]

kr2l,=0 ø
3

E,=1 − E,=0
. s3d

This simple relation is actually also applicable to systems
composed byN.2 identical particles provided that no sym-
metry is required for the wave function[20]. However, this
formula yields restrictions only on the size of the ground
state of the system, and the energy of two levels needs to be
known.

In Sec. II, we propose several rigorous upper and lower
limits on the rms radius applicable to systems composed by
two bodies bound by a central potential. Some of these limits
are applicable to arbitrary eigenstates of the systems(any
value of the radial quantum number,n, and of the angular
momentum,,). These limits involve the energy of the eigen-
state considered as well as the potential itself. Upper and
lower limits on the energy of the eigenstate can then be used
to obtain upper and lower limits on the rms radius as a func-
tion of the potential only and to infer constraints on the val-
ues of its parameters. In Sec. III, as a simple application of
the results obtained in this work, we use a lower bound on
the rms radius to study weakly bound systems(quantum halo
states) and to find a criterion for the occurrence of such
states. Some tests of the other limits are reported in Sec. IV.
Finally, we present some conclusions in Sec. V.

II. UPPER AND LOWER LIMITS ON THE RMS RADIUS

To obtain various upper and lower limits on the rms ra-
dius, we consider the Schrödinger equation with a central
potential

u9srd = FVsrd +
,s, + 1d

r2 − EGusrd, s4d

whereusrd=rRsrd and Rsrd is the radial wave function; the
angular part is obviously given by the spherical harmonics
Y,msu ,wd. For simplicity of the notations, we do not write*Electronic address: fabian.brau@umh.ac.be
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the indicesn and, on the functionusrd and on the energyE,
except if this is necessary for the clarity of the formula. The
negative part of the potential is supposed to be less singular
than r−2 at the origin and the potential is supposed to be
piecewise continuous elsewhere.

To obtain the relation from which each limit will be de-
rived in this work, we multiply the relation(4) by r2usrd and
we integrate to obtain

E
0

`

dr r2usrdu9srd =E
0

`

dr r2Vsrdusrd2 + ,s, + 1d − Ekr2l.

s5d

Integration by parts of the normalization condition of the
wave functionusrd, e0

`drusrd2=1, leads to

2E
0

`

dr rusrdu8srd = − 1. s6d

In all cases throughout this paper, it is easy to verify that the
boundary terms of all integration by parts are vanishing if the
energyE and the rms radiuskr2l have a sense. Integration by
parts of the left-hand side of the relation(5) together with
Eq. (6) leads to

− Ekr2l + ,s, + 1d = 1 −E
0

`

dr r2Vsrdusrd2

−E
0

`

dr r2u8srd2. s7d

With the help of the equality(7), it is possible to obtain
various upper and lower limits on the rms radius. We give
these limits in the next sections.

A. Simple upper limit

The first upper limit we present is directly obtained from
the relation(7). Sincee0

`dr r2u8srd2ù0, we have

− Ekr2l ø 1 −E
0

`

drr2Vsrdusrd2 − ,s, + 1d

ø 1 + sup
0ør,`

f− r2Vsrdg − ,s, + 1d. s8d

We still need to show that the right-hand side of the last
inequality of Eq.(8) is finite, to have nontrivial results, and
positive for nonvanishing values of the angular momentum.
This last inequality is finite only if the negative part of the
potential decreases asr−2 at infinity or faster. It is well
known that the class of potentials characterized by a negative
part which decrease faster thanr−2 at infinity supports only a
finite number of bound states[21]. Consequently, there exists
a maximal value,L, of the angular momentum,,, above
which no bound state exists. IfL+ is defined by the relation

sup
0ør,`

f− r2Vsrdg = SL+ +
1

2
D2

, s9d

then it is also well known thatL+ is an upper limit onL,
LøL+ [17,21]. The upper limit(8) then takes the form

− Ekr2l ø
5

4
+ sL+d2 − ,2 + L+ − ,, s10d

which proves that its right-hand side is indeed positive.
Potentials characterized by negative parts which decrease

exactly ascr−2 at infinity are at the borderline between po-
tentials which possess a finite number of bound states and
potentials for which this number is infinite. It has been
proved that these potentials support only a finite number of
bound states ifc is small enough[22]. Thus in this case,
there exists a maximal value,L, of the angular momentum.
The upper limitL+ is expected to be valid and the relation
(10) proves that the right-hand side of Eq.(8) is positive.
However, to be completely rigorous, one should study this
class of potentials in detail and prove that indeed the upper
limit L+ is correct.

The simple upper limit(8) shows that the product of the
absolute value of the energy by the mean square radius can-
not increase faster than linearly with the depth of the poten-
tial.

This upper limit will be significantly improved in the next
section. We have presented this result because it is very
simple and the discussion about the positivity of the right-
hand side of the inequality(8) will be useful later.

B. Main results

The result(8) obtained in the previous section can be
improved provided we take into account the contribution of
the last term of Eq.(7). Such a contribution is easily ob-
tained. An integration by parts leads to the equality

E
0

`

dr r2u8srd2 = −
2

3
E

0

`

dr r3u8srdu9srd. s11d

The second derivative of the wave function which appears in
Eq. (11) can be replaced using the Schrödinger equation(4).
A second integration by parts yields the desired result

E
0

`

dr r2u8srd2 =
1

3
E

0

`

drfr3Vsrdg8usrd2 +
,s, + 1d

3
− Ekr2l.

s12d

The relation(7) together with the identity(12) leads to

− 2Ekr2l +
4

3
,s, + 1d = 1 +

1

3
E

0

`

drWsrdusrd2, s13d

where

Wsrd = − f6Vsrd + rV8srdgr2. s14d

The upper limit on the rms radius simply reads

− Ekr2l ø
1

2
+

1

6
supfWsrdg −

2

3
,s, + 1d. s15d

This upper limit(15) is nontrivial if the negative part of the
potential decreases asr−2 at infinity or faster and if the posi-
tive part of the potential is less repulsive thanr−6 at the
origin. The positivity of the right-hand side of the upper limit
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(15) is simple to prove. In Sec. II A, we have obtained that
the quantity supf−r2Vsrdg−,s,+1d [see Eq.(8)] is positive.
In contrast, we now need to show that the quantity
supfWsrdg /4−,s,+1d is positive. For this purpose, it is suf-
ficient to prove that the inequality supf−r2Vsrdg
øsupfWsrdg /4 is verified. Suppose that the supremum of the
function −r2Vsrd is reached forr = r̄. At this point, we have

−
1

4
r̄3V8sr̄d =

1

2
r̄2Vsr̄d. s16d

This infers that value of the supremum of −r2Vsrd is equal to
the value ofWsrd /4 at this point: −r̄2Vsr̄d=Wsr̄d /4. Thus the
two functions have a crossing atr = r̄, implying that the su-
premum ofWsrd /4 cannot be smaller than the supremum of
−r2Vsrd.

Similarly, the lower limit obtained from Eq.(13) reads

− Ekr2l ù
1

2
+

1

6
inffWsrdg −

2

3
,s, + 1d. s17d

The inequality(17) is nontrivial if the positive part of the
potential decrease asr−2 at infinity or faster and is less sin-
gular thanr−2 or more singular thanr−6 at the origin. For
potentials less singular thanr−2 at the origin, we have
Ws0d=0 yielding inffWsrdgø0. Consequently, the lower
limit is only nontrivial for S-wave states in this case. More-
over, if the infimum ofWsrd is negative, the lower limit
becomes trivial for a depth of the potential large enough.

A case where the lower limit(17) leads certainly to non-
trivial results concernsS-wave states, and potentials such as
Wsrd are non-negative. In this case, we obtain the simple
lower limit

− 2E,=0kr2l,=0 ù 1. s18d

This relation is used in Sec. III to obtain a criterion for the
occurrence ofS-wave quantum halo states. We show that this
criterion is still efficient even if the functionWsrd associated
to the potential is somewhere slightly negative. Note also
that the lower limit(18) has been obtained previously but for
a more restrictive class of potentials composed of potentials
of finite range,Vsr .Rd=0, which are less singular thanr−2

at the origin[23].
It is interesting to note that, contrary to Eq.(8), the upper

and lower limits(15) and(17) are best possible in the sense
that there exists a potential which turns these inequalities
into equalities. Such potential is obtained fromWsrd=c,
wherec is a constant. The potential is then given by

Vsrd = aSR

r
D6

− bSR

r
D2

s19d

andc=4bR2.

C. Upper limit for the lowest ø-wave states

To conclude this section devoted to the derivation of up-
per and lower limits on the rms radius, we present an upper
limit applicable to the lowest,-wave states(no node in the
wave function). This upper limit yields in general less re-

strictive constraints on the rms radius than the upper limits
(8) and (15), except possibly for weakly bound systems.

We begin with the inequality

r2u2srd = FE
0

r

dtftustdg8G2

ø rFE
0

`

dthftustdg8j2G = rE
0

`

dt t2u8std2, s20d

where the Cauchy-Schwarz inequality is used. The inequality
(20) together with the relation(7) yield

− Ekr2l ø 1 +IE
0

`

dr r2u8srd2 − ,s, + 1d, s21d

where

I = − 1 +E
0

`

dr rV−srd, s22d

with V−srd=max(0,−Vsrd). The Jost-Pais necessary condi-
tion [24] implies thatI is positive if the potential supports at
least one bound state. The quantityI does not diverge if the
potential decreases faster thanr−2 at the infinity. Now, we
consider the following inequality:

u8srd = −E
r

`

dt u9std,

= −E
r

`

dtFVstd +
,s, + 1d

t2
− EGustd,

ø E
r

`

dtV−stdustd +E
r

`

dtFE −
,s, + 1d

t2
Gustd,

, E
r

`

dtV−stdustd. s23d

The last inequality in Eq.(23) is valid only for wave func-
tions without a node, i.e., the lowest,-wave states. The
Cauchy-Schwarz inequality together with the inequality(23)
yield

u82srd , E
r

`

dtfV−stdg2E
r

`

dtustd2,

, E
r

`

dtfV−stdg2. s24d

We obviously suppose that the integral, from 0 to`, of the
square of the negative part of the potential exists. This last
inequality can be used with the relation(21), and after an
integration by parts we obtain

− Ekr2l , 1 +
I
3
E

0

`

dr r3fV−srdg2 − ,s, + 1d, s25d

whereI is defined by Eq.(22). The right-hand side of the
inequality (25) behaves as a third power of the strength of
the potential. Clearly, for large values of the strength this
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upper limit yields a poor constraint on the rms radius but for
values of the strength close to the critical value(value at
which a first,-wave bound state appears), and if this critical
value is small enough, we show in Sec. IV that this upper
limit is better than those reported in Secs. II A and II B.

III. CRITERION FOR THE OCCURRENCE
OF HALOS

In this section, we use the lower limit(18) to obtain a
criterion for the occurrence ofS-wave quantum halo states.
These states are threshold phenomena characterized by large
mean square radii and small binding energies. They occur in
nuclear physics as halo nuclei(see, for example, Refs.
[25–29]) and in molecular physics as weakly bound dimers
(see, for instance, Refs.[30–32]). For quantum halo states,
the separation energy of the two bodies of the system(a
nucleus and a nucleon or two atoms) is much smaller than
the mean binding energy of the particles which compose
eventually these bodies. These many-body systems can then
be treated as two-body systems interacting through a poten-
tial.

The idea of the criterion is the following: knowing the
two bodies which compose the system as well as the central
interaction, we determine for which binding energies quan-
tum halo states exist. The application presented in this sec-
tion is somewhat complementary to previous studies found
in the literature(see, for example, Refs.[33–37]).

Quantum halo states are characterized by an extension far
out into the classical forbidden region. We consider that a
state with an energyE is a halo state if its rms radius is larger
than its classical radius

kr2l1/2 ù sr0, s26d

with E=Vsr0d. The value ofs can be estimated if we con-
sider that in a quantum halo state, the probability of finding
the particles with an interdistance greater than the classical
interdistance is greater than 50%(see, for example, Refs.
[27,28]). The value ofs obtained with this definition varies
from 1.37 for the square well to 1.68 for a potential which
decreases asr−3 at the infinity. In this work, we takes=2 in
all numerical calculations for simplicity.

With the lower limit (18) and the constraint(26), we can
write

kr2l ù
1

− 2E
=

1

− 2Vsr0d
ù s2r0

2. s27d

Thus we are in the halo regime if −2s2r0
2Vsr0dø1.

We can now obtain the criterion for the occurrence of halo
states. We write the potential in the convenient form
Vsrd=−gR−2vsr /Rd. Notice that the number of bound states
in the potential and the critical value of the strengthg at
which new bound states appear do not depend onR. We first
search for the largest solution,x0, of the equation

x0
2vsx0d =

1

2s2gc
N , s28ad

where x0=r0/R and where the coupling constantg is re-
placed by its critical valuegc

N for which theNth eigenstate

has a vanishing binding energy. Sincegùgc
N, we obtain a

value ofx0 slightly underestimated, which leads to a slightly
lower value of the energyEH above which quantum halo
states appear. This effect will be attenuated(suppressed in
practice) if we use upper limits ongc

N. Accurate upper and
lower limits on the value ofgc

1 and ongc
N.1, involving only

the potential, can be found in the literature[3,11–17,38–40].
The energyEH is then given by

EH = − gc
NR−2vsx0d = −

R−2

2ssx0d2 . s28bd

Consequently, states characterized by an energyE larger than
EH are characterized by a rms radius satisfying the inequality
(26).

Relevant information about the occurrence of quantum
halo sates is obtained with the criterion(28) only if the en-
ergies at which these states appear are obtained with reason-
able accuracy. In other words, the inequality(26) should be
verified and reasonably close to saturation. Two tests are per-
formed below.

Several remarks are in order.
(i) Since the inequalitiesgc

1,gc
2, ¯ ,gc

N are always
verified, x0 is larger for an excited state than for the ground
state[see Eq.(28)a]. Consequently, the energyEH is greater
for excited states than for ground states. This clearly indi-
cates that halo states are likely to be ground states instead of
excited states. This conclusion may be incorrect for poten-
tials which vanish identically beyond a given radiusx*
=r * / R. In this case,x0 could stay constant for all values of
N if the radiusx* is small enough. This is the case for a
square-well potential as discussed below.

(ii ) From the relation(28b), halos states have the best
chance to appear in potentials with a small rangeR. Indeed,
when R varies, the quantitiesgc

Nvsx0d or x0 remain un-
changed. This result is simple to understand: bothkr2l1/2 and
r0 scale likeR, consequently their ratio is independent ofR
but the energyE scales likeR−2. Consequently, the energy
for which the system is characterized by a given value of the
ratio kr2l1/2/ r0 scales likeR−2.

(iii ) When the two constituents of the halo are character-
ized by a finite size, like atoms or nuclei, halo states have the
best chance to appear for small sizes and for small reduced
masses of these constituents(if a repulsion exists for a small
interdistance).

To illustrate the last affirmation, we consider the follow-
ing interaction:

Vsrd = gR−2FSR

r
D2sn−1d

− SR

r
DnG . s29d

The repulsive part of the potential takes roughly into account
the Pauli repulsion andR is then linked with the sizes of the
particles interacting through this potential. The attractive part
describes various kinds of interactions depending on the
value ofn. The interaction of a charge and an induced dipole
corresponds ton=4; bothn=6 andn=7 correspond to van
der Waals forces, of London and Casimir-Polder type, re-
spectively. Forn=6, we have a Lennard-Jones(10, 6) poten-
tial. The particular form of the interaction(29) is simply
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chosen to allow analytical calculations and is not intended to
describe physical systems accurately but instead to get in-
sights into the gross characteristics of some physical sys-
tems.

The functionWsrd [see Eq.(14)] is positive fornù4 and
the lower limit (18) and then the criterion(28) can be used.
An estimation of the critical valuegc

N of the strengthg is
obtained with the formula

gc
N ø sNpd2FE

0

`

dxÎv−sxdG−2

, s30d

which is applicable fornù4 [39]. This leads to

gc
N ø f2Nsn − 2dg2. s31d

The quantityx0 is obtained easily,

x0
n−2 =

1 +Î1 − 4g

2g
>

1

g
− 1, s32d

whereg=1/s2s2gc
Ndø0.0078, which justifies the expansion

aroundg=0. The square root in the relation(32) imposes
gc

Nù1/2. This is always verified since the simple lower
bound gc

Nù2Nsn−2d can be obtained with the Bargmann-
Schwinger inequality[3,11]. The relations(28b), (31), and
(32) lead to

EH = −
f2n+4s2nN2sn − 2d4g−1/sn−2d

2mR2 , s33d

where the reduced mass of the system,m, has been written
explicitly. The energyEH decreases whenn grows, giving
more of a chance for halo states to exist. For fixed value ofn,
EH increases withm andR and also withN.

We can calculateEH with the formula(33) for n=6 and
R=2.640 Å [41]. This model could be used to describe
roughly the helium dimer 4He2. We find that
EH=−0.82meV, while the experimental energy is found to
be around −0.095meV [42]. In this model, the helium dimer
is a halo state. Actually the value ofR used in this simple
calculation was adjusted for a Lennard-Jones(12, 6) poten-
tial [41]. If this last potential is used, instead of a Lennard-
Jones(10, 6) potential, we find a slightly modified value
EH=−0.89meV.

We can also study how the energyEH is sensitive to the
asymptotic behavior of the potential. We simply choose the
potential

Vsrd = −
gR−2

1 + sr/Rdn . s34d

For nù4, the formula(30) can be used to obtain an upper
bound on the critical coupling constant. We have

gc
N ø

N2p3

G2S1

2
−

1

n
DG2S1 +

1

n
D , s35d

whereGsxd is the Euler gamma function. To find the quantity
x0, we need to solve

x0
n =

x0
2

g
− 1 >

x0
2

g
, s36d

with g=1/s2s2gc
Nd. This leads to

x0 > s2s2gc
Nd1/sn−2d. s37d

The energy at which halo states appear is given by

EH > − R−2s2s2dn/s2−ndsgc
Nd2/s2−nd, s38d

>− R−2ssN,nd. s39d

Before we draw some conclusions about the influence of
the asymptotic behavior of the potential on the energyEH,
we mention that, as expected, the rms radius satisfies the
inequality(26) if the energy is larger thanEH. If the energy is
chosen to be equal toEH for N=1, an exact numerical cal-
culation shows that the value of the ratio of the rms radius
over the classical radius is, for example, 2.44 forn=5,2.47
for n=10,2.44 for n=20,2.41 for n=50, and 2.40 forn
=100. The same calculation forN=2 leads to the following
values for the same ratio: 2.29 forn=5,2.38 for n
=10,2.42 forn=20, 2.40 forn=50, and 2.40 forn=100.
These results indicate that even if the functionWsrd com-
puted with the potential(34) is partially negative forn.6,
the criterion stays applicable for large values ofn since the
inequality (26) is always verified.

Figure 1 indicates clearly that halos could exist more eas-
ily when n is large, since in this case the energy at which
they appear,EH, is smaller(keepingR constant obviously). It
is also clear that halos have more of a chance to exist as
ground states than as excited states. However, this last con-
clusion is only partially correct since we have
limn→`ssN,nd=1/s2s2d for all values ofN. In this limit, the
potential(34) reduces to a square-well potential. This prop-
erty can be verified with an exact calculation, i.e., for a
square-well potential, the energy at which halo states appears
is almost the same for the ground state and for excited states.
For example, with the potentialVsrd=−V0 exps−r /RdusR
−rd, halo states have even marginally more of a chance to
exist as excited states than as ground states. It is also clear in
Fig. 1 that the ratio of the energyEH for the ground states
over the energyEH for the first excited states,EHsN
=1d /EHsN=2d, decreases asn grows. The values of this ratio
are, for example, 4 forn=4, 2 for n=6, and 1.41 forn=10.

The same study could be performed with the potential
Vsrd=−gR−2 expf−sr /Rdng. The same qualitative behaviors of
EH as those obtained with the potential(34) are observed.
The ratioEHsN=1d /EHsN=2d also decreases asn grows, but
the values of this ratio are now smaller: 2.15 forn=1, 1.35
for n=2, and 1.12 forn=5.

We can also study how the energyEH is sensitive to the
details of the repulsive potential near the origin. We simply
choose the potential
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Vsrd = gR−2FSR

r
Dn

− SR

r
D4G . s40d

For this potential, the functionWsrd is positive fornù6. For
nù5, the formula(30) can be used to obtain an upper bound
on the critical coupling constant. We obtain

gc
N ø 4N2psn − 4d2G2S3n − 10

2n − 8
DG−2S 1

n − 4
D . s41d

To find the quantityx0, we need to solve

gx0
2 = 1 −x0

4−n > 1, s42d

with g=1/s2s2gc
Nd. This leads to

x0 > s2s2gc
Nd1/2. s43d

The energy at which halo states appear is given by

EH > − R−2 1

s2s2d2gc
N , s44d

>− R−2tsN,nd. s45d

Figure 2 indicates that the existence of halo states is not
very sensitive to the details of the repulsive potential. For the
ground state, the energyEH increases by a factor of 2 forn
going from 5 to 25, whereas in the previous case, see Fig. 1,
the increase was by a factor of 10 in the same interval ofn.

Application to nuclear halos is possible. For this purpose,
we consider a Woods-Saxon potential as an interaction be-
tween the nucleon and the nucleus,

Vsrd = −
V0

1 + expfsr − Rd/ag
, s46d

with V0=ga−2, R=r0A
1/3, r0=1.27 fm, anda=0.67 fm [43].

For this potential, the functionWsrd is (slightly) partially
negative, whereas the criterion rigorously applies only to the
potential yielding a functionWsrd everywhere positive. In
Table I, we report a comparison between exact results and
results obtained with the formulas(28) which prove that the
criterion is applicable.

FIG. 1. ssN,nd as a function ofn for several
values ofN.

FIG. 2. tsN,nd as a function ofn for several
values ofN.
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The critical coupling constant of the potential(46) is sim-
ply estimated with the WKB formula

gc
N > F sN − 1/4dp

a + 2 arcsinh 1
G2

, s47d

with a=R/a>1.9 A1/3. The quantityx0 is obtained with the
Lagrange inversion formula

x0 > asa2/g − 1d1/a, s48d

with g=1/s2s2gc
1d. We restrict the calculation to the case

N=1 for which the formula(48) is quite accurate. Taking
into account the reduced mass of the system, we finally ob-
tain

EH > − 1.6hsAdA−2/3 MeV, s49d

where

hsAd =
A + 1

Asa2/g − 1d2/a . s50d

For a square-well potential, the energyEH scales almost ex-
actly asA−2/3; for a Woods-Saxon potential, there is a cor-
rection. Indeed, taking the limitn→` of the relation(38),
and taking into account the reduced mass of the system, we
obtain for a square wellEH>−1.6fsA+1d /AgA−2/3 MeV (in

agreement with a previous result[34]). The functionhsAd is
slightly increasing [hs1d>0.16 and hs225d>0.55] and
the modulus of the energyEH decreases slower than
A−2/3. A numerical fit of the formula (49) leads to
EH>−0.22A−2/5 MeV. This last expression depends obvi-
ously on the value ofs. If instead of s=2 we chooses
=1.5, the fit becomesEH>−0.25A−1/2 MeV.

In Table I, to test the criterion(28) applied to nuclear
halos, we compare the value of the energyEH given by the
formula (49) with the exact energyEex at which kr2l1/2

=sr0, with s=2. We also give the exact value of the ratio
kr2l1/2/ r0 at energyEH. This ratio is almost constant; it in-
creases slowly with the atomic numberA. In any case, the
inequality (26) is satisfied.

IV. TESTS

In this section, we propose to test, only for the ground
state, the various upper and lower limits reported in Sec. II
with two simple potentials

V1srd = −
gR−2

1 + sr/Rd3 s51d

and

V2srd = − gR−1exps− r/Rd
r

. s52d

In Tables II and III, we compare the exact value of the
quantity −Ekr2l, for the potentialV1srd and for ,=0 and 1,

TABLE I. Comparison between the energyEH given by Eq.(49)
with the exact energyEex at whichkr2l1/2=2r0 for several values of
the atomic numberA. The ratiokr2l1/2/ r0 at energyEH is also given.
The energies are given in MeV.

A −Eex −EH

kr2l1/2

r0

1 0.30 0.26 2.11

5 0.14 0.11 2.20

10 0.11 0.087 2.23

15 0.10 0.075 2.25

20 0.097 0.067 2.27

25 0.089 0.062 2.28

50 0.069 0.047 2.30

100 0.053 0.035 2.32

TABLE II. Comparison between the exact value of the quantity −Ekr2l for the ground state and various
upper and lower limits reported in Sec. II for the potentialV1srd and for,=0.

g −Ekr2l Eq. (8) Eq. (15) Eq. (17) Eq. (25)

1.35 0.51418 1.7143 1.0063 0.5 1.1549

1.4 0.55325 1.7407 1.025 0.5 1.1825

1.5 0.61348 1.7937 1.0625 0.5 1.2460

1.75 0.74037 1.9259 1.1563 0.5 1.4592

2 0.85531 2.0582 1.25 0.5 1.7623

3 1.26746 2.5873 1.625 0.5 4.1773

4 1.63531 3.1164 2 0.5 9.2480

5 1.97341 3.6455 2.375 0.5 17.949

TABLE III. Same as Table II but for,=1.

g −Ekr2l Eq. (8) Eq. (15) Eq. (25)

6.945 0.06045 2.6746 1.771 46.942

6.95 0.09321 2.6773 1.7729 47.045

7 0.23641 2.7037 1.7917 48.142

7.5 0.74323 2.9683 1.9792 59.982

8 1.0652 3.2328 2.1667 73.583

9 1.5923 3.7619 2.5417 106.55

10 2.0529 4.291 2.9167 148.03
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respectively, with the various upper and lower limits reported
in Sec. II. As expected, the upper limit(15) yields the stron-
gest restrictions and is always better than the formula(8) by
construction. However, for,=1, the constraints are poor for
states characterized by a weak binding energy. As explained
in Sec. II C, the upper limit(25) yields its best restrictions
for the coupling constantg close to the critical valuegc
(1.3326,gc,1.3403 [13,40]). Useful restrictions are ob-
tained only if this critical value is small enough. For,=1,
we havegc>6.94 (6.9221,gc,6.9535[13,40]) and the re-
lation (25) gives poor restrictions. Ifgc is smaller than 1, the
upper limit (25) could be better than Eq.(15) for g close
enough to gc; this is the case for the potential
Vsrd=−gR−3r exps−r /Rd. For the potentialV1srd, the lower
limit (17) yields nontrivial results only for,=0. In this case,
since the infimum ofWsrd is equal to 0, the lower limit is a
constant and is quite restrictive for values ofg close to the
critical value gc. In general, this lower limit yields strong
restrictions when the binding energy of the system is small.
This explains the good accuracy of the criteria obtained in
Sec. III.

In Tables IV and V, we compare the exact value of the
quantity −Ekr2l, for the potentialV2srd and for ,=0 and 1,
respectively, with the various upper and lower limits reported
in Sec. II. For this potential, the upper limit(25) is not ap-
plicable and the lower limit(17) yields nontrivial results only
for ,=0. Again, as expected, the upper limit(15) yields the
strongest restrictions and is obviously always better than the
formula (8). The lower limit (17) is again very accurate for
weak binding energy.

V. CONCLUSIONS

In this paper, several rigorous upper and lower limits on
the rms radius have been obtained for systems governed by
central potentials. Some of these limits are applicable to

eigenstates with arbitrary radial quantum number and angu-
lar momentum. Some of these limits yield in general strong
restrictions on the rms radius as shown in Sec. IV. The
simple lower limit (18) is used to obtain a criterion for the
occurrence ofS-wave halo states. This criterion gives the
energy, calledEH, above which the eigenstate is character-
ized by a large rms radius compared to the classical radius,
kr2l1/2ùsr0, and is thus qualified as quantum halo states.
The relevance of the criterion has been tested with various
potentials and we found that accurate information is ob-
tained. It is worth noting that the various formulas derived in
Sec. III are applicable for arbitrary values ofs, but the vari-
ous numerical values reported in the text and in the tables are
computed for s=2 for simplicity. This value could be
changed for practical uses. However, the conclusions ob-
tained in this work, and summarized below, do not depend on
the precise value ofs, contrary, of course, to the energyEH.

With this criterion, we have shown that halo states are
likely to be ground states and not radial excitations(except
possibly for potentials which vanish identically beyond a
given radius, like the square-well potential, for which the
converse could be true). This conclusion completes other re-
sults obtained previously which proved that halo states areS-
or P-wave states. We have shown that, when the two con-
stituents of the halo are characterized by a finite size, like
atoms or nuclei, halo states have the best chance to appear
for small sizes and for small reduced masses of these con-
stituents(if a repulsion exists for small interdistance). The
criterion is also used to confirm that halo state have more of
a chance to exist in potentials which tend rapidly to zero
asymptotically. We have also shown that, if the potential has
a repulsive part near the origin, the existence of a halo is not
very sensitive to the details of this repulsive part.
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TABLE IV. Same as Table II but for the potentialV2srd and ,
=0.

g −Ekr2l Eq. (8) Eq. (15) Eq. (17)

1.7 0.50948 1.6254 0.92778 0.49575

1.75 0.53314 1.6438 0.94036 0.49563

1.8 0.55699 1.6622 0.95294 0.4955

1.9 0.60473 1.699 0.97810 0.49525

2 0.65199 1.7358 1.0033 0.495

3 1.0558 2.1036 1.2549 0.4925

4 1.3429 2.4715 1.5065 0.49

5 1.55389 2.8394 1.7582 0.4875

TABLE V. Same as Table II but for the potentialV2srd and
,=1.

g −Ekr2l Eq. (8) Eq. (15)

9.085 0.03585 2.3422 1.4528

9.1 0.092294 2.3477 1.4565

9.5 0.53225 2.4949 1.5572

10 0.85248 2.6788 1.683

11 1.3309 3.0467 1.9346

12 1.7085 3.4146 2.1863

13 2.0267 3.7824 2.4379

14 2.3031 4.1503 2.6895

15 2.5476 4.5182 2.9412
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