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In the context of nonrelativistic quantum mechanics, we obtain several upper and lower limits on the mean
square radius applicable to systems composed of two bodies bound by a central potential. A lower limit on the
mean square radius is used to obtain a simple criterion for the occurrei®eafe quantum halo sates.
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I. INTRODUCTION p+2

r®y=(2¢+3)? .
The root mean squar@ms) radius is used in many fields 4pE

of physics to characterize the size of quantum systems; this | the case of a vanishing angular momentym0, an-

observable is thus of special interest. In the case of two-bodyther restriction is given by the Bertimann-Martin inequality
systems, the rms radius and the energy of one eigenstafeq)

determine the depth and the range of the central potential
which binds the particles provided that the number of bound
states supported by the potential is also known. A simple
example is the naive description of the deuteron by a square- =~ o ]
well potential(see, for example, Ref1]). The depthv, and This simple relatlo_n is _actually_ also app_hcable to systems
the ranger can be adjusted to reproduce the rms radius an§0mposed bN>2 identical particles provided that no sym-
the binding energy of the deuteron. This adjustment is nofl€try is required for the wave functid20]. However, this
unique except if the number of bound states in the potentidlermula yields restrictions only on the size of the ground
is fixed to one. Obviously, these quantities are not sufficiengtate of the system, and the energy of two levels needs to be
to infer the shape of the potential. Indeed, the same simplknown. _
description of the deuteron could be achieved with an expo- [N Sec. Il, we propose several rigorous upper and lower
nential potential, for example. However, if information on limits on the rms radius applicable to systems composed by
the shape of the potential is obtained by other means, the/0 bodies bound by a central potential. Some of these limits
constraints on the rms radius, on the energy, and on the nurdf® applicable to arbitrary eigenstates of the systemny
ber of bound states yield strong restrictions on the potentialalue of the radial quantum number, and of the angular
Consequently, upper and lower limits on these quantities arBlomentum{). These limits involve the energy of the eigen-
interesting tools to obtain easily constraints on the interacState considered as well as the potential itself. Upper and
tion. lower limits on the energy of the eigenstate can then be used
There exists a fairly large number of upper and lowert® obtain upper and lower limits on the rms radius as a func-

limits on the energy of eigenstates in the literati2elq as tion of 'ghe potential only and to infer con_straints on the_ val-
well as on the number of bound states supported by centrales of its parameters. In Sec. Ill, as a simple application of
potentials[3,11-17. Similar results concerning the rms ra- the results obtained in this work, we use a lower bound on
dius are scarcer. A first general inequality gives a lower limitthe rms radius to study weakly bound systeimsantum halo

on the rms radius of afirwave state in terms of the average State$ and to find a criterion for the occurrence of such
kinetic energy(h=2m=1) ([18], p. 73 states. Some tests of the other limits are reported in Sec. IV.

Finally, we present some conclusions in Sec. V.

(2)

3

(r¥e=0= .
=1~ Ee=0

o= ——. (1) Il. UPPER AND LOWER LIMITS ON THE RMS RADIUS

To obtain various upper and lower limits on the rms ra-
This relation is, however, not very useful except in the casalius, we consider the Schrodinger equation with a central
of power-law potentialsy(r)=sgr(p)gr® (p>-2), for which  potential
the virial theorem gives a simple relation between the energy, 0 +1)
E, of the {-wave state and the average kinetic ener@y: u'(r) = {V(r) +—— - E} u(r), (4)
=pE/(p+2). In this case, the relatiofl) simply reads r

whereu(r)=rR(r) andR(r) is the radial wave function; the
angular part is obviously given by the spherical harmonics
*Electronic address: fabian.brau@umh.ac.be Yem(0, ). For simplicity of the notations, we do not write
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the indicesn and¢ on the functioru(r) and on the energk,
except if this is necessary for the clarity of the formula. The
negative part of the potential is supposed to be less singular
thanr=2 at the origin and the potential is supposed to bewhich proves that its right-hand side is indeed positive.
piecewise continuous elsewhere. Potentials characterized by negative parts which decrease

To obtain the relation from which each limit will be de- exactly ascr~2 at infinity are at the borderline between po-
rived in this work, we multiply the relatiotd) by r2u(r) and  tentials which possess a finite number of bound states and
we integrate to obtain potentials for which this number is infinite. It has been
proved that these potentials support only a finite number of
bound states it is small enough22]. Thus in this case,
there exists a maximal valug, of the angular momentum.
The upper limitL* is expected to be valid and the relation
(5) (10) proves that the right-hand side of E@) is positive.

Integration by parts of the normalization condition of the However, to be completely rigorous, one should study this

5
-Erd) < i (LYH2-¢2+ LY -¢, (10)

fo dr r2u(nu’(r) = fw dr r2V(r)u(r)? + €(€ + 1) - E(r?).
0

0

wave functionu(r), [3dru(r)?=1, leads to class of potentials in detail and prove that indeed the upper
limit L* is correct.
* o The simple upper limi{8) shows that the product of the
Zfo dr ru(nu’(r =-1. (6)  absolute value of the energy by the mean square radius can-

not increase faster than linearly with the depth of the poten-
In all cases throughout this paper, it is easy to verify that theial.

boundary terms of all integration by parts are vanishing if the  This upper limit will be significantly improved in the next
energyE and the rms radiug?) have a sense. Integration by section. We have presented this result because it is very
parts of the left-hand side of the relatigh) together with ~ simple and the discussion about the positivity of the right-

Eq. (6) leads to hand side of the inequalit8) will be useful later.
“E e D=1 [ arvou? 5. Main resuls
0
o The result(8) obtained in the previous section can be
_f dr r2u’ (r)2. (7)  improved provided we take into account the contribution of
0 the last term of Eq(7). Such a contribution is easily ob-

tained. An integration by parts leads to the equalit
With the help of the equality7), it is possible to obtain I ntegrat yp quality

various upper and lower limits on the rms radius. We give 2T
these limits in the next sections. . drreu’(n<=-7 . drriu’(nu’(r). (1)

A. Simple upper limit The second derivative of the wave function which appears in

The first upper limit we present is directly obtained from Eq. (11) can be replaced using the Schrodinger equa@on

the relation(7). Since[ydr r?u’(r)2=0, we have A second integration by parts yields the desired result
- N 2 2 1 - 3 2 €(€ + 1) 2
-Er) =1 ‘f drrV(rju(r)® - €(¢ + 1) drreu’(r) =3 drr=v(r)]"u(r)*+ 3 E(ro).
0 0 0
<1+ sup[-rV(r)]-€({+1). (8) (12)
o=r<ow

The relation(7) together with the identity12) leads to
We still need to show that the right-hand side of the last .
inequality of Eq.(8) is finite, to have nontrivial results, and C2E() + 4—16(6 f1)=1 +}f drWur?,  (13)
positive for nonvanishing values of the angular momentum. 3 3Jo '
This last inequality is finite only if the negative part of the
potential decreases as? at infinity or faster. It is well Where
known that the class of potentials characterized by a negative __ / 2
part which decrease faster thert at infinity supports only a W(r) = =[8V() + V(D] (14)
finite number of bound statg¢&1]. Consequently, there exists The upper limit on the rms radius simply reads
a maximal valuel, of the angular momentuny,, above

which no bound state exists. If' is defined by the relation —E(rd) = 1 + 1 sugW(r)] - 25({; +1). (15)
2 6 3
+ 1 2
Ogipm[— rv(r)] = (L + 5) , (9)  This upper limit(15) is nontrivial if the negative part of the

potential decreases &% at infinity or faster and if the posi-
then it is also well known thak* is an upper limit onL, tive part of the potential is less repulsive thaif at the
L<L"[17,2]. The upper limit(8) then takes the form origin. The positivity of the right-hand side of the upper limit
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(15) is simple to prove. In Sec. Il A, we have obtained thatstrictive constraints on the rms radius than the upper limits
the quantity sup-r2V(r)]-€(¢£+1) [see Eq.(8)] is positive.  (8) and(15), except possibly for weakly bound systems.

In contrast, we now need to show that the quantity We begin with the inequality

sugW(r)]/4—-€(€+1) is positive. For this purpose, it is suf-

r 2
ficient to prove that the inequality sir2V(r)] r24(r) = lf dt[tu(t)]’}
<sudW(r)]/4 is verified. Suppose that the supremum of the 0
function +2V(r) is reached for =r. At this point, we have % o
< rlf dt{[tu(t)]’}z} = rJ dtt2u’(t)?, (20
0 0

- PV = 5PV, (16)
where the Cauchy-Schwarz inequality is used. The inequality

This infers that value of the supremum af¥(r) is equal to  (20) together with the relation7) yield
the value oM(r)/4 at this point: ¥2V(r)=W(r)/4. Thus the

two functions have a crossing etr, implying that the su- -E(rd <1 +If drrau’(r)2-¢(€ +1), (21)
premum ofW(r)/4 cannot be smaller than the supremum of 0
—r2V(r).

Similarly, the lower limit obtained from Eq13) reads where

I=—1+f ‘drrV‘(r), (22)

-E(r®) = % + % inf(W(r)] - gm +1). (17) o

The inequality(17) is nontrivial if the positive part of the With V'(r)=max0,-V(r)). The Jost-Pais necessary condi-
potential decrease as? at infinity or faster and is less sin- tion [24] implies thatZ is positive if the potential supports at
gular thanr=2 or more singular tham™® at the origin. For least one bound state. The quanfityloes not diverge if the
potentials less singular tharr? at the origin, we have Potential decreases faster thert at the infinity. Now, we
W(0)=0 yielding infW(r)]<0. Consequently, the lower consider the following inequality:

limit is only nontrivial for Swave states in this case. More-

over, if the infimum ofW(r) is negative, the lower limit u’(r):—f dtu'(t),
becomes trivial for a depth of the potential large enough. r
A case where the lower limitl7) leads certainly to non- 2 { o€ +1) }
trivial results concern§-wave states, and potentials such as =- f dt| V(t) + - E [u(t),
r

W(r) are non-negative In this case, we obtain the simple

lower limit % o 00 +1)
=< dt\/’(t)u(t)+f dt| E- u(t),
= 2E4=o(r%) =0 = 1. (18) fr r t?
This relation is used in Sec. Ill to obtain a criterion for the *
occurrence oS-wave quantum halo states. We show that this < f dtv-(Hu(t). (23)
r

criterion is still efficient even if the functiodV(r) associated

to the potential is somewhere slightly negative. Note alsorhe last inequality in Eq(23) is valid only for wave func-
that the lower limit(18) has been obtained previously but for tions without a node, i.e., the lowegtwave states. The

a more restrictive class of potentials composed of potentialeauchy-Schwarz inequality together with the inequal@$)
of finite range V(r >R)=0, which are less singular than? yield

at the origin[23]. . .
It is interesting to note that, contrary to E®), the upper 12(p) < f V- (t 2f tu(h)?
and lower limits(15) and(17) are best possible in the sense U ; v ] ; dtut)”
that there exists a potential which turns these inequalities .
into equalities. Such potential is obtained frowi(r)=c, < f df V- (H)2 (24)
wherec is a constant. The potential is then given by ; '

V(r) =a R 6_ b R 2 (19) We obviously suppose that the integral, from Otpof the
B r square of the negative part of the potential exists. This last
inequality can be used with the relatig@l), and after an
andc=4bR. integration by parts we obtain
I o0
C. Upper limit for the lowest €-wave states —E(r3) <1+ Ef drrdV-(n2-€¢(¢+1), (25
0

To conclude this section devoted to the derivation of up-
per and lower limits on the rms radius, we present an uppewhereZ is defined by Eq(22). The right-hand side of the
limit applicable to the lowesf-wave stategno node in the inequality (25) behaves as a third power of the strength of
wave function. This upper limit yields in general less re- the potential. Clearly, for large values of the strength this
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upper limit yields a poor constraint on the rms radius but forhas a vanishing binding energy. Singe gCN, we obtain a
values of the strength close to the critical valiv@lue at  value ofx, slightly underestimated, which leads to a slightly
which a first€-wave bound state appegrand if this critical  lower value of the energ¥, above which quantum halo
value is small enough, we show in Sec. IV that this upperstates appear. This effect will be attenuatedppressed in
limit is better than those reported in Secs. Il A and Il B.  practice if we use upper limits org}. Accurate upper and

lower limits on the value ot and ongY~%, involving only
lil. CRITERION FOR THE OCCURRENCE the potential, can be found in the literaty®11-17,38—-4D
OF HALOS The energyE, is then given by
In this section, we use the lower lim{i8) to obtain a )
criterion for the occurrence dd-wave quantum halo states. Eq=- g’g'R‘zv(xo) =—-—. (28b)
These states are threshold phenomena characterized by large 2(o%o)

mean square radii and small binding energies. They occur i@:onsequently, states characterized by an enérigyger than

nuclear physics as halo nuclgsee, for example, Refs. g are characterized by a rms radius satisfying the inequality
[25-29) and in molecular physics as weakly bound dimers g

(see, for instance, Ref§30-32). For quantum halo states, ~ Rgjevant information about the occurrence of quantum
the separation energy of the two bodies of the system |5 sates is obtained with the criteri@@8) only if the en-
nucleus and a nucleon or two atoms much smaller than g rgies at which these states appear are obtained with reason-
the mean binding energy of the particles which composgype accuracy. In other words, the inequaligs) should be

eventually these bodies. These many-body systems can thgRyified and reasonably close to saturation. Two tests are per-
be treated as two-body systems interacting through a potefg,med below.

tial. o _ . Several remarks are in order.
The idea of the criterion is the following: knowing the (i) Since the inequalitiegt<g?<---<g\ are always
C C C

two bodies which compose the system as well as the centrglyifieq x, is larger for an excited state than for the ground
interaction, we detgrmlne for wh|ch binding energies quanyaresee Eq(28)al. Consequently, the enerdsy, is greater

tum _halo states exist. The application pre_sented n this seGq; excited states than for ground states. This clearly indi-
tion is somewhat complementary to previous studies found s that halo states are likely to be ground states instead of

in the literature(see, for example, Ref$33-37). __excited states. This conclusion may be incorrect for poten-
Quantum halo states are characterized by an extension faf s \which vanish identically beyond a given radins
out into the classical forbidden region. We consider that &+, R |n this casex, could stay constant for all values of

state with an energl is a halo state if its rms radius is larger ;i the radiusx* is small enough. This is the case for a
than its classical radius square-well potential as discussed below.
A2 = gr, (26) (i) From the rglation(ZSb), hqlos states have the best
. ] ) chance to appear in potentials with a small raRgyéndeed,
with E=V(ro). The value ofo can be estimated if we con- \yhen R varies, the quantitiegiv(x,) or X, remain un-
sider that in a quantum halo state, the probability of findingchanged_ This result is simple to understand: Ho#'2 and
the particles with an interdistance greater than the classic% scale likeR, consequently their ratio is independentfof
interdistance is greater than 50féee, for example, Refs. |yt the energ)E scales likeR™2. Consequently, the energy

[27,28). The value ofo obtained with this definition varies ¢, \which the system is characterized by a given value of the
from 1.37 for the square well to 1.68 for a potential which o+ (r)12/r, scales likeR™2.

decreases as? at the infinity. In this work, we taker=2 in
all numerical calculations for simplicity.

With the lower limit(18) and the constraint26), we can
write

(i) When the two constituents of the halo are character-
ized by a finite size, like atoms or nuclei, halo states have the
best chance to appear for small sizes and for small reduced
masses of these constituefifsa repulsion exists for a small

5 1 ) interdistance
(r)= —_2E =T 2V(ro) = Ozro- (27) To illustrate the last affirmation, we consider the follow-
0 ing interaction:

Thus we are in the halo regime if o%rSV(rO)s 1. 2(n-1) N

We can now obtain the criterion for the occurrence of halo V(r) = ng[ (B) - (B) } _ (29)
states. We write the potential in the convenient form r r
V(r)=—gR %(r/R). Notice that the number of bound states
in the potential and the critical value of the strengthat
which new bound states appear do not depen&.0Ve first
search for the largest solutior,, of the equation

The repulsive part of the potential takes roughly into account
the Pauli repulsion anR is then linked with the sizes of the
particles interacting through this potential. The attractive part
describes various kinds of interactions depending on the
) 1 value ofn. The interaction of a charge and an induced dipole
Xgu(Xo) = Py (283 corresponds tm=4; bothn=6 andn=7 correspond to van
Ye der Waals forces, of London and Casimir-Polder type, re-
where xo=ro/R and where the coupling constagtis re-  spectively. Fom=6, we have a Lennard-Joné®, 6 poten-
placed by its critical valuegcN for which theNth eigenstate tial. The particular form of the interactio®9) is simply
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chosen to allow analytical calculations and is not intended to
describe physical systems accurately but instead to get in-
sights into the gross characteristics of some physical sys-

tems.

The functionW(r) [see Eq(14)] is positive forn=4 and
the lower limit(18) and then the criterio28) can be used.
An estimation of the critical valugy of the strengthg is
obtained with the formula

% -2
gyi(Nﬂ{J-dmbT@] , (30)
0
which is applicable fon=4 [39]. This leads to
o' <[2N(n-2%. (31)
The quantityx, is obtained easily,
J—
1+y1-4 1
2= =TT (32)

__1,
2y Y

PHYSICAL REVIEW A 70, 062112(2004

2 2
$="2-1="2, (36)
with y=1/(20%gY). This leads to
Xo = (20°gH) M2, (37

The energy at which halo states appear is given by

EH = _ R—2(20,2)n/(2—n)(gCN)2/(2—n)’ (38)

=-R2%s(N,n). (39)

Before we draw some conclusions about the influence of
the asymptotic behavior of the potential on the enefgy
we mention that, as expected, the rms radius satisfies the

where y:1/(20292‘) <0.0078, which justifies the expansion inequality(26) if the energy is larger thaBy. If the energy is

aroundy=0. The square root in the relatidi32) imposes

chosen to be equal tB, for N=1, an exact numerical cal-

gi=1/2. This is always verified since the simple lower culation shows that the value of the ratio of the rms radius
bound g('§‘>2N(n—2) can be obtained with the Bargmann- over the classical radius is, for example, 2.44 1ier5,2.47

Schwinger inequality{3,11]. The relations(28b), (31), and
(32) lead to
|:2n+40_2nNZ(n _ 2)4]—1/(n—2)

E = 1
H 2uR?

(33

where the reduced mass of the systemhas been written
explicitly. The energyE, decreases when grows, giving

more of a chance for halo states to exist. For fixed valug of

E, increases withu andR and also withN.
We can calculatéy, with the formula(33) for n=6 and

for n=10,2.44 forn=20,2.41 forn=50, and 2.40 forn
=100. The same calculation fdf=2 leads to the following
values for the same ratio: 2.29 fon=5,2.38 for n
=10,2.42 forn=20, 2.40 forn=50, and 2.40 fom=100.
These results indicate that even if the functdfir) com-
puted with the potential34) is partially negative fom>6,
the criterion stays applicable for large valuesno$ince the
inequality (26) is always verified.

Figure 1 indicates clearly that halos could exist more eas-
ily when n is large, since in this case the energy at which
they appeart,, is smaller(keepingR constant obviously It

R=2.640 A [41]. This model could be used to describe js also clear that halos have more of a chance to exist as

roughly the helium dimer 4He\,z. We find that

E,=-0.82 eV, while the experimental energy is found to ¢|ysion is

ground states than as excited states. However, this last con-
only partially correct since we have

be around —0.09meV [42]. In this model, the helium dimer jim_ (N, n)=1/(20?) for all values ofN. In this limit, the

is a halo state. Actually the value & used in this simple
calculation was adjusted for a Lennard-JoE, 6) poten-

potential(34) reduces to a square-well potential. This prop-
erty can be verified with an exact calculation, i.e., for a

tial [41]. If this last potential is used, instead of a Lennard-gqyare-well potential, the energy at which halo states appears
Jones(10, 6 potential, we find a slightly modified value s aimost the same for the ground state and for excited states.

E,=-0.89 ueV.
We can also study how the energy, is sensitive to the

For example, with the potentiaV/(r)=-V,exp(-r/R)6(R
-r), halo states have even marginally more of a chance to

asymptotic behavior of the potential. We simply choose th&ist as excited states than as ground states. It is also clear in

potential

gR?

V(r):—m.

(34)

For n=4, the formula(30) can be used to obtain an upper

bound on the critical coupling constant. We have

N2 73

g <
¢ 1 1 1\’
1-*2 - _ = 1‘*2 1+=
2 n n

(35

Fig. 1 that the ratio of the enerdy, for the ground states
over the energyE, for the first excited statesk,(N
=1)/Ey(N=2), decreases asgrows. The values of this ratio
are, for example, 4 fon=4, 2 forn=6, and 1.41 fom=10.

The same study could be performed with the potential
V(r)=—gR 2 exd —(r/R)"]. The same qualitative behaviors of
E, as those obtained with the potenti@4) are observed.
The ratioE(N=1)/EL(N=2) also decreases asgrows, but
the values of this ratio are now smaller: 2.15 for1, 1.35
for n=2, and 1.12 fom=5.

We can also study how the energy, is sensitive to the

wherel'(x) is the Euler gamma function. To find the quantity details of the repulsive potential near the origin. We simply

Xo, We need to solve

choose the potential
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0.08

0.06

s(NV,n)

0.04

FIG. 1. s(N,n) as a function oi for several
values ofN.

0.02 4

el F-] o

For this potential, the functioW/(r) is positive forn=6. For

=-R2(N,n). (45)

Figure 2 indicates that the existence of halo states is not
very sensitive to the details of the repulsive potential. For the

n=5, the formula30) can be used to obtain an upper bound9round state, the enerds, increases by a factor of 2 for

on the critical coupling constant. We obtain

3n-10 1
b < 4N?m(n-4 2r2< )r-z( ) NS
% mn-4) 2n-8 n-4 “1

To find the quantityx,, we need to solve
ye=1-xa"=1, (42)
with y=1/(252gY). This leads to
Xo = (20°g¢)""2. (43)

The energy at which halo states appear is given by

(44)

0.0016

going from 5 to 25, whereas in the previous case, see Fig. 1,
the increase was by a factor of 10 in the same intervai. of

Application to nuclear halos is possible. For this purpose,
we consider a Woods-Saxon potential as an interaction be-
tween the nucleon and the nucleus,

Vo

v == 1+exd(r-R)/a]’

(46)

with Vo=ga?, R=roAY3, ry=1.27 fm, anda=0.67 fm[43].

For this potential, the functioWV(r) is (slightly) partially
negative, whereas the criterion rigorously applies only to the
potential yielding a functionM(r) everywhere positive. In
Table |, we report a comparison between exact results and
results obtained with the formul&g8) which prove that the
criterion is applicable.

0.0014 +

0.0012 ~

0.0010 A

0.0008 -

HN,n)

FIG. 2. t(N,n) as a function o for several
values ofN.

0.0006 -

0.0004 -

0.0002 A

e —

0.0000 - : . .
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TABLE I. Comparison between the enerBy; given by Eq.(49) TABLE Ill. Same as Table Il but fof=1.
with the exact energfey at which(r?)4/2=2r for several values of
the atomic numbeA. The ratio(r?)*/?/r at energyEy, is also given. g -E(r?) Eq.(8) Eq. (15 Eq. (25
The energies are given in MeV.
6.945 0.06045 2.6746 1.771 46.942
(r312 6.95 0.09321 2.6773 1.7729 47.045
A ~Eex B o 7 0.23641 2.7037 1.7917 48.142
7.5 0.74323 2.9683 1.9792 59.982
1 0.30 0.26 211 8 1.0652 3.2328 2.1667 73.583
5 0.14 011 2.20 9 1.5923 3.7619 2.5417 106.55
10 011 0.087 2.23 10 2.0529 4.291 2.9167 148.03
15 0.10 0.075 2.25
20 0.097 0.067 2.27
25 0.089 0.062 228 agreement with a previous res{®4]). The functionh(A) is
50 0.069 0.047 230 slightly increasing [h(1)=0.16 and h(225=0.55 and
100 0.053 0.035 232 the modulus of the energyE, decreases slower than

AR A numerical fit of the formula(49) leads to
E,=-0.22A %> MeV. This last expression depends obvi-

The critical coupling constant of the potent{@b) is sim- ously on the value o If inStea_dl,ZOfU:Z we chooser
=1.5, the fit becomeE,=-0.25A""< MeV.

ply estimated with the WKE formula In Table I, to test the criteriori28) applied to nuclear
N (N=-1/87 |2 halos, we compare the value of the enekjygiven by the
Y% z[ 1} : 47 formula (49) with the exact energyE., at which (r??
. . . . ) =ar,, With o=2. We also give the exact value of the ratio
with @=R/a=1.9 A3 The quantityx, is obtained with the (r)2/r, at energyEy. This ratio is almost constant; it in-

a+ 2 arcsinh

Lagrange inversion formula creases slowly with the atomic numbar In any case, the
Xo = ala?ly— 1Y, (48) inequality (26) is satisfied.
with y=1/(20%g?). We restrict the calculation to the case
N=1 for which the formula(48) is quite accurate. Taking IV. TESTS
into account the reduced mass of the system, we finally ob- . .
. In this section, we propose to test, only for the ground
tain . T -
state, the various upper and lower limits reported in Sec. Il
Ey= - 1.60(A)A 22 MeV, (49)  with two simple potentials
where gR?
Va(r) ==—"""53 (51)
A+1 1+(r/R)
h(A) =———=~. 50
A APy - 1)% (50 and
For a square-well potential, the energy scales almost ex- exp-r/R)
actly asA?3; for a Woods-Saxon potential, there is a cor- Vy(r) =-gR - (52)

rection. Indeed, taking the limih— « of the relation(38),
and taking into account the reduced mass of the system, we In Tables Il and Ill, we compare the exact value of the

obtain for a square welE,=-1.(A+1)/AJA??MeV (in  quantity -£(r?), for the potentialV,(r) and for¢=0 and 1,

TABLE Il. Comparison between the exact value of the quantir2) for the ground state and various
upper and lower limits reported in Sec. Il for the potentia{r) and for£=0.

g —E(r?) Eq.(8) Eq. (15 Eq.(17) EQ. (29
1.35 0.51418 1.7143 1.0063 0.5 1.1549
1.4 0.55325 1.7407 1.025 0.5 1.1825
15 0.61348 1.7937 1.0625 0.5 1.2460
1.75 0.74037 1.9259 1.1563 0.5 1.4592
2 0.85531 2.0582 1.25 0.5 1.7623
3 1.26746 2.5873 1.625 0.5 4.1773
4 1.63531 3.1164 2 0.5 9.2480
5 1.97341 3.6455 2.375 0.5 17.949
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TABLE IV. Same as Table Il but for the potentigh(r) and ¢ TABLE V. Same as Table Il but for the potentigh(r) and

=0. €=1.

g -E(r?) Eq.(8) Eq.(15 Eq.(17) g -E(r?) Eq.(8) Eq.(15
1.7 0.50948 1.6254 0.92778 0.49575 9.085 0.03585 2.3422 1.4528
1.75 0.53314 1.6438 0.94036 0.49563 9.1 0.092294 2.3477 1.4565
1.8 0.55699 1.6622 0.95294 0.4955 9.5 0.53225 2.4949 1.5572
1.9 0.60473 1.699 0.97810 0.49525 10 0.85248 2.6788 1.683
2 0.65199 1.7358 1.0033 0.495 11 1.3309 3.0467 1.9346
3 1.0558 2.1036 1.2549 0.4925 12 1.7085 3.4146 2.1863
4 1.3429 2.4715 1.5065 0.49 13 2.0267 3.7824 2.4379
5 1.55389 2.8394 1.7582 0.4875 14 2.3031 4.1503 2.6895

15 2.5476 4.5182 2.9412

respectively, with the various upper and lower limits reportedei enstates with arbitrary radial auantum number and andu-
in Sec. Il. As expected, the upper liniit5) yields the stron- 9 y q 9

O . lar momentum. Some of these limits yield in general stron
gest restrictions and is always better than the forni@dy restrictions on the rms radius as sr):own ingSec. IV. Thg

construction. However, fof=1, the_ constraints are poor fo_r sjmple lower limit(18) is used to obtain a criterion for the
states characterized by a weak binding energy. As explainggecrrence ofSwave halo states. This criterion gives the
in Sec. Il C, the upper limit25) yields its best restrictions  gnergy, callecE,,, above which the eigenstate is character-
for the coupling constang close to the critical valu.  jzed by a large rms radius compared to the classical radius,
(1.3326<9.<1.3403 [13,40). Useful restrictions are ob- (122> 4r, and is thus qualified as quantum halo states.
tained only if this critical value is small enough. F6F1,  The relevance of the criterion has been tested with various
we haveg,=6.94(6.9221< ¢, <6.9535[13,4Q) and the re-  potentials and we found that accurate information is ob-
lation (25) gives poor restrictions. Ifc is smaller than 1, the  tained. It is worth noting that the various formulas derived in
upper limit (25) could be better than Eq15) for g close  Sec. IIl are applicable for arbitrary values @f but the vari-
enough to g, this is the case for the potential ous numerical values reported in the text and in the tables are
V(r)=-gR%r exp(-r/R). For the potentiaV,(r), the lower computed foro=2 for simplicity. This value could be
limit (17) yields nontrivial results only fof =0. In this case, changed for practical uses. However, the conclusions ob-
since the infimum of\(r) is equal to O, the lower limit is a tained in this work, and summarized below, do not depend on
constant and is quite restrictive for valuesgtlose to the the precise value of, contrary, of course, to the energy,.
critical valueg,. In general, this lower limit yields strong _ With this criterion, we have shown that halo states are
restrictions when the binding energy of the system is smalllikely to be ground states and not radial excitatigescept

This explains the good accuracy of the criteria obtained ifP0SSibly for potentials which vanish identically beyond a
Sec. III. given radius, like the square-well potential, for which the

In Tables IV and V, we compare the exact value of theconverse could be tryeThis conclusion completes other re-

- 2 : _ sults obtained previously which proved that halo statesSare
quantity -E(r®), for the potentialV,(r) and for{=0 and 1, or P-wave states. We have shown that, when the two con-

respectively, with the various upper and lower limits reportedgiy ,ents of the halo are characterized by a finite size, like

in Sec. II. For this potential, the upper lim@95) is not ap-  4toms or nuclei, halo states have the best chance to appear

plicable and the lower limi€17) yields nontrivial results only - {o; small sizes and for small reduced masses of these con-

for £=0. Again, as expected, the upper i) yields the  stityents(if a repulsion exists for small interdistancerhe

strongest restrictions and is obviously always better than thgriterion is also used to confirm that halo state have more of

formula (8). The lower limit(17) is again very accurate for a chance to exist in potentials which tend rapidly to zero

weak binding energy. asymptotically. We have also shown that, if the potential has
a repulsive part near the origin, the existence of a halo is not

V. CONCLUSIONS very sensitive to the details of this repulsive part.
In this paper, several rigorous upper and lower limits on ACKNOWLEDGMENT
the rms radius have been obtained for systems governed by This work was supported by the National Funds for Sci-
central potentials. Some of these limits are applicable t@ntific ResearcliFNRS), Belgium.
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