PHYSICAL REVIEW A 70, 062111(2004)

Relativistic and radiative corrections to the Mollow spectrum
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The incoherent inelastic part of the resonance fluorescence spectrum of a laser-driven atom is known as the
Mollow spectrum[B. R. Mollow, Phys. Rev.188 1969(1969]. Starting from this level of description, we
discuss theoretical foundations of high-precision spectroscopy using the resonance fluorescence light of
strongly laser-driven atoms. Specifically, we evaluate the leading relativistic and radiative corrections to the
Mollow spectrum, up to the relative orders @«)? and a(Z«)?, respectively, and Bloch-Siegert shifts as well
as stimulated radiative corrections involving off-resonant virtual states. Complete results are provided for the
hydrogen 52P,,, and 1S-2P5, transitions; these include all relevant correction terms up to the specified order
of approximation and could directly be compared to experimental data. As an application, the outcome of such
experiments would allow for a sensitive test of the validity of the dressed-state basis as the natural description
of the combined atom-laser system.
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[. INTRODUCTION from two different areas, which are laser physics and quan-
i o . tum electrodynamics. While the two areas are related, there
Experimental possibilities in high-precision spectroscopyare a couple of subtle points to consider when a unified un-
have received a rather significant “boost” in recent years dugerstanding of a specific problem is sought, whose nature
to the availability of phase coherent regularly spaced freinevitably requires concepts introduced within the context of
quency combs that may bridge large frequency intervals beeijther of the two areas. In particular, it is known that the
tween frequency standards and optical transition frequenciegescription of dynamical processes requires considerable
[1]. In general terms, highly accurate spectroscopy may leadare in the treatment of the gauge dependence of amplitudes,
to an experimental verification of known theoretical modelsand with regard to the physical interpretation of the wave
of the physical process wunder study. Precisionfunctions used in the mathematical descriptj@@—21.
measurements—in combination with theory—allow one to A classic textbook example for a dynamical atom-laser
obtain accurate values for physical parameters or fundamegystem, well known in theoretical quantum optje®], con-
tal constant$2]. With increasing accuracy, one may even askSists of the Jaynes-Cummings model of an atom that contains
whether the so-called constants are in fact conggatq.  two relevant energy levels interacting with a single mono-
These results may as well be used as input to more appligghromatic laser-field modg23]. Due to the driving of the
physics as the creation of unit standards, e.g., for time an{iSer field, the atomic population undergoes Rabi oscilla-
mass. tions. The populanonlls driven penodlcglly. from the upper to
On the theoretical side, quantum electrodynamics is onéhe lower state and vice versa. The emission spectrum of this

of the most accurate theories known so far. In many previougroceSS with a strong driving field is known as the Moliow

. ; . : “Spectrum([24]. This case of strong driving may easily be
studies, thé_s-r_natnx formalls_m has peen yseq to obtain ac interpreted in terms of the so-called dressed states. Laser-
curate predictions for experimental investigations. Biea-

i rel he di he di ¢ h ¢ dressed states are defined as the eigenstates of the combined
trix relates the distant past to the distant future without re €rsystem of atom and driving-laser fiel@d5] and have proven
ring to the dynamics of the intermediate times and lead

fractivel h ic d e %o be useful in countless cases of both theory and experi-
effectively to a somewnhat static ESC”P“m]-_ ment, one of which is the Autler-Townes splittifig6].
Thus, theS-matrix formalism cannota priori, lead to a

. O _ When evaluating radiative corrections to the Mollow
satisfactory description of quantum electrodynamic correc

. . . ) spectrum, it is natural to start from the dressed-state basis,
tions to_dynam_|cal processes, and the subject .Of this PAPeT {Zhich consists of the natural eigenstates of agongly)
to provide a first step in the direction of a high-precision

. > . . . coupled atom-laser system rather than the bare atomic states.
theoretical description of dynamical processes including rag mignt he assumed that in order to fully treat the Lamb shift
diative corrections, using a laser-driven atom as a paradi

. le. Obviouslv. th ¢ radiati %f laser-dressed states, it would be sufficient to simply cor-
matic example. Obviously, the treatment of radiative correCyg . e energies of the bare states that enter into the formu-
tions to a dynamically driven atomic transition requires input

las for the generalized Rabi frequencies by the “bare-state”
(i.e., the usual, ordinapyLamb shift. Indeed, the first inves-
tigations on the problenj27] revealed corrections to the

*Electronic address: joerg.evers@mpi-hd.mpg.de dressed-state “quasienergies” consistent with this assump-
"Electronic address: ulrich.jentschura@mpi-hd.mpg.de tion. However, recently, it was found that at nonvanishing
*Electronic address: keitel@mpi-hd.mpg.de detuning and Rabi frequency, the Lamb shift of dressed
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Section V discusses and summarizes the results.

II. MOLLOW SPECTRUM

FIG. 1. Diagrammatic representation of a radiative self-energy In thi i introd t d I it
correction to the laser-dressed atomic state. The double line corre-, "' IS Se€clion, We introduce our system and recall resufts

sponds to the electron bound by the nuclear Coulomb field. Thé’f pre\_/ious studies which will s_erve as the basis of ou_r
jagged line denotes the additional dressing of the bound electron Kgnalysis. Throughout the calculations, we adopt natural units

the (strong laser field. The self-energy of a laser-dressed CoulombWith =€ =c=1. The electron mass is denoted by We
bound electron is a quantum-field theoretic problem in the presenc@ake use of the Einstein summation convention unless stated

of two classical background fields. otherwise, and we employ the length gauge for all wave
functions and operators as we deal with off-resonant excita-
states is nontrivially different from the bare-Lamb shift tions, as it is done in most of the literature, and in textbooks
[28,29. Thus the distinction between evaluations in terms ofon the subjectsee, e.g.[22]). The Mollow spectrum con-
the bare- and the dressed-state basis in fact has to be madgins the incoherent, inelastic part of the atomic fluorescence,
In the limit of vanishing detuning, the coincidence of thej.e., the fluorescence spectrum mediated by the many-photon
bare and dressed-Lamb-shift effects on the detuning is olprocesses whose intensity dominates over the elastic part in a
tained only after a summation of a specific series whose leagtrongly driven atom-laser system. In a purely quantum elec-
ing correction term may be obtained by carrying out thetrodynamic formalism, the description of many-photon pro-
calculation to second order in the atom-field interaction. Acesses would require perturbation theory in exceedingly high
diagrammatic representation of a radiative correction to thgyrders. However, as is well known, the description using
dressed state is shown in Fig. 1. dressed statef25] allows for a considerable simplification,
Thus in this paper we present a detailed and completgs the formulas for the Mollow spectruf4] follow rather
theoretical analysis of the leading nonrelativistic and relativﬂaturany in terms of transitions among the dressed-atomic
istic corrections to the Mollow spectrum, up to the relativestates which incorporate the atom-laser interaction to all or-
orders of (Za)? and a(Za)? respectively, and of Bloch- ders in perturbation theory.
Siegert shifts as well as stimulated radiative corrections in- Before we now start with the discussion of the Mollow
volving off-resonant virtual states, and laser-field spectrum, a slight detour on questions related to gauge trans-
configuration-dependent corrections. The purpose is to erformations of the laser-atom interaction is in order. The
able a direct comparison between theory and experiment fofength gauge” means that the laser-atom interaction is for-
a high-precision spectroscopic investigation involving lasermulated in terms of the interactiongE, -x, whereq is the
dressed states. Such a comparison to experimental dagysical electron charge arf| is the (gauge invariant, ob-
would allow one to address questions related to the physicaervable laser-field strength. Instead, in the “velocity
reality of the dressed statéand their “quasienergy’on the  gauge,” the interaction is formulated ag/A; -p/m, where
one hand, and of the nature and the interpretation of th@, is a gauge-dependent suitable vector potential for the
various radiative corrections on the other hand. As a promtaser field. In the velocity gauge, of course, one also has to
ising candidate for the experiment, we identify the resonancadd theA? term, but dipole interactions are mediated exclu-
fluorescence spectrum of a strongly driven hydrog&®2B  sively by the ‘A_ -p” interaction. Due to gauge invariance,
transition, which to lowest order may be described by thehe two possible gauges are equivalgmipvided that the
standard Mollow spectrum. A coherent Lymansource gauge transformation of the wave function is properly taken
[30,31 has recently become available as a driving field, andnto account{22,32. In order to avoid confusion, we stress
we show that ionization into the continuum does not prohibithere the absolute necessity of considering the gauge transfor-
an experimental implementation. In particular, we discussnation of the wave function in dynamical procesgEz-21.
corrections which are due to resonant and off-resonant excaccording to[13,21], the usual physical interpretation of a
tations as well as the Bloch—Siegert shift, and corrections t&chriodinger wave function is only conserved if the length
the transition dipole moment and to the secular approximagauge is used for the description of the atom-laser interac-
tion leading to the Mollow spectrum. As a result, we providetion. For dynamical processes, the velocity gauge leads to
theoretical predictions which are directly comparable to posmany more terms in intermediate steps of the calculation
sible experimental data. than the length-gauge formulation chosen here, due to the
The paper is organized as follows. In Sec. Il we introducenecessity of applying the gauge transformation to the wave
our system of interest and provide the relevant theoreticalunction. Nevertheless, we would like to mention the possi-
background for the further analysis. In Sec. Ill we evaluatepility of an independent verification of our derivation, as
the corrections to the Mollow spectrum, which we divide presented here, in different gauges. In this case, the gauge
into modifications of the detuningSec. Ill A) and the Rabi  transformation of the wave function should be applied al-
frequency(Sec. Il B). The dominant relativistic corrections ready on the level of quantum mechanics., on the level of
are of the order ofZa)?, whereZ is the nuclear charge the Mollow spectrum as discussed in the current segtiuot
number, and leading radiative effects lead to correction termpist to the quantum electrodynamic corrections discussed in
of the order ofa(Za)?In[(Za)™?]. In Sec. IV we provide the following sections. This concludes our detour regarding

numerical data for the hydrogers82P; transitions(j =%,§). gauge transformations.
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We recall from[24,28,29 that the incoherent resonance expanded in a series in powers Bf )z whose first terms
fluorescence spectrum of atoms driven by a monochromaticead

coherent laser field may be expressed as
T2+ 0%+ 2(w - w,)?

Sinc(w) = 7_7 FZ + 292+ 4A2
4ro4
2 4 6° (2.1)
Xg+ Xol'? + X + Xl
where
Xo=16A%+ 0%~ (0 - w)H(w-w)?  (2.29

Xo = 46(w - w)* = 2(30%7 - 0%)(w - w)? + (247 + 0?7,

(2.2b
X, =8A%2+40%+ 9w - w)?, (2.20
Xs=1. (2.20
Here,Q is the Rabi frequency
Q=-qlelx - €/g)EL (2.3

of the driving-laser fieldE, (t)=& € coqdw t) with fre-
quencyw,, macroscopic classical amplitudg, and polar-
ization €. =—|q| is the electron charge\ = |~ weq is the

detuning of the laser-field frequency from the atomic transi-
tion frequencyw, andl is the spontaneous decay rate of

e AR ]
8(1+y?) 1281 +y?)? \ Qg

O
r )6]
+0| —| |,
£
with y=A/Q. For vanishing detunindh=0, which implies
Or=Q, Eqg.(2.6) specializes to

o 3218
@=L 2\a/) “eal0 ol |
(2.7)

The correction terms move the sideband peaks closer to the
central maximum.

The above results in secular approximation may easily be
interpreted with the help of the so-called dressed states,
which are defined as the eigenstates of the interaction part of
the Hamiltonian. Under the influence of the external driving
field, the atomic states are no longer eigenstates of the
Hamiltonian, but rather have to be combined with the
driving-laser field to give the new eigenstates. To show the
precise composition of the dressed states, we use the quan-
tum representations of the Rabi frequency

a)J_,:wLiQR[l

(2.6)

the atomic transition. The excited and the ground state of thg, o mixing angled, defined by

laser-driven transition are denoted bg) and |g), respec-

tively, and x is the position operator vector. In secular ap-

proximationQ)>T", this expression simplifies to

S ()~ r { ToAo T.A,
T (0= w)?+T§ (0= o ~Qp?+T7
+ IA } (2.4
(0= +Qg)°2+T2

Q,=2g.\n+1, (2.9
tan26,) = - Q. /A, (2.9

and the generalized Rabi frequency
QP =02+ A2 (2.10

rather than the corresponding classical entities. Hergethe
number of photons in the laser-field mode, and the coupling
constantg, for the interaction of the driving-laser field with

Here, the separation of the Mollow spectrum into one centrathe main atomic transition is defined by

peak located abv=w, and into two sidebands shifted by the
generalized Rabi frequencfg=\A?+Q? may easily be

seen. The amplitudes and widths are given by

QG
= 2.5
Ao 402(03 + A?)? (2.59
94
= 2.5b
Ae 802(03+A?) (250
02+ 2A2
To=T—5—, (2.50
202
302+ 2A2
[=I——%—. (2.50

The approximate forng2.4) does not represent the positions

of the sideband peaks accurately in cases whéfeg is not

small. Indeed, the position, of the sideband peaks may be

(2.11

whereE(LV)zv’wL/ZV is the electric laser field per photon and
V is the quantization volume. The matching of the electric
field per photon with the corresponding classical macro-
scopic electric fieldS, is given by

o = - (gl -xle)E”,

2Vn+ 15|(_7) — 5|_.

(2.12

Throughout this paper, we will sometimes refer to the quan-
tum description during the derivations, but use the classical
entities in the final results. We may switch between the two
descriptions as the driving laser field is assumed to be in-
tense in our analysis. The matching of the quantum and the
classical entities is possible with the help of the following
list of replacements:

(2.1339

(2.13bh
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n+1=n. (2.139 first-order perturbation theory, the following expression re-
sults:
Using this notation, the dressed states are given by
A _
|(+,n)) = cos@ylen) +sindyg,n+1), (2.143 s = ¥ \QZ—TAZE%)' (3.3

|(=,n)y=-sing,le,ny + cosh,gn+1). (2.14np  Here

Here,|i,n) (i e {e,g}) are combined atom-field states where EY2 = (2P 5/H el 2P1/2) — (1S1JHiel 1Sy, (3.43
the atom is in staté with n photons in the driving-field d

mode. The energies of these dressed states are given 8{/‘

Ern=(n+2)w +we/2+ QW /2, where the splitting between E2 = (2P35/H el 2P32) — (1S1/2H el 1S12).  (3.4b)
the two dressed staté&, n)) is known as the ac Stark shift. _ (rel) & _ _

The various spectral components then arise from transitions '€ expressiont, fobw, ;” finds a natural interpretation as a
|(£,n))—|(x,n-1)). The transitions +-+ and — — yield first-order(in E,) correction to the quantity

the central Mollow component and the coherent elastic peak, :
while the transitions +>— and —+ yield the sidebands VOZ+(A-ED)?= V0% + A%~
shifted to higher and lower frequencies, respectively.

= M) 4.
\J’QZ+A2EreI+ .

Ill. CALCULATION OF RELATIVISTIC AND RADIATIVE 39
CORRECTIONS TO THE MOLLOW SPECTRUM We can thus formally define a “summed” relativistic shift of
the Mollow sidebands as
In the following, we discuss corrections whose under- ,
standing is essential for the additional relativistic and radia- AZS_{?') = +[VO2+(A-ED?-10%+A?7. (3.6
tive energy shifts received by the dressed states. First, W& recall that the detuning has been defined\ass, - weq

evaluate corrections which may be incorporated in a redefli'n Sec. Il. If the fine structure is included, the resonance

nition _of the detunmg _of the driving-laser field to the atomic frequency becomesdependent. The shift of the detuning as
transition frequency; in the second part, we complete the

. Lo . : ; . given in EQ.(3.6) is thus equivalent to a modification of the
analysis by considering corrections which effectively mOd'fyresonance frequency according to
the Rabi frequency. Throughout the analysis, we focus on the q Y 9

hydrogen B-2P transition as a promising candidate for a Weg— wggz Weg+ Eﬁgl (3.79
possible experiment.
In Sec. Il we have employed a purely nonrelativistic A—A-ED. (3.7b

theory. Both the resonance frequency as well as the transition ] ] o
dipole moments are evaluated first for the nonrelativistic! Nus, the summed shift of the detuning due to the relativistic
(Schrodinger case. However, in order to resolve radiative correction E\), evaluated using the dressed-state basis, is
effects, it is necessary to include the relativistic shifts of theeguivalent to the shift of the detuning that would have been
transitions in a unified theory, and to analyze the fine strucobtained if we had evaluated the detuning, right from the
ture. The nonrelativistic expressions for the transition dipolestart, with a resonance frequency corrected by the relativistic
moments also change once we resolve the fine-structure le@ffects. The “summation” implied by Eq3.6) thus finds a
els, because the angular momentum algebra is augmented Bgtural interpretation.

the spin. Throughout the calculations, we will refer to shifts of the
Mollow sidebandsw, due to first-order perturbations as.
A. Corrections to the detuning [see, e.g., Eq3.3)], whereas summed expressions like Eq.
1. Relativistic corrections to the resonance frequency (3.6) will be denotedéw,.
The well-known relativistic correction to the hydrogen 2. Bare Lamb shift
energy levels is given by In addition to the relativistic shifts, the positions of the
4 sidebands have to be modified further if one desires a nu-
p Tl Za : ; !
He=—53+ - 500 +——>=0-L. (3.2 merlcal accuracy as required to approprlately model current
sm® 2 Amrr high-precision spectroscopy experiments. [28,29, the

second-order radiative self-energy corrections due to the in-
teraction of the combined system of atom and driving-laser
field with the surrounding nonlaser-field vacuum modes was
analyzed. Taking into account both interactions of the atom-
field system with resonant and off-resonant intermediate
(Za)®’m (Za)*m| 1 3 states, in the limitA, () < wgq (i.€., under the replacements
T o m 2] +1 8nl’ ( WL — Weg weg—.wLiQR—>O, and o + wegt Qg — 2wey), WE .
obtain corrections to the energy of the dressed states which
where we neglect terms of ordé«)®. When evaluating the yield an additional shift of the position of the sidebands
expectation values oH,, on the dressed staté2.14) in  given by

The effects are of the order ofZa)*m, whereas the
Schrédinger energy is of the order (a)?m. The full ex-
pression for the Dirac energy of a hydrogenic level with
guantum numbers,j, is [[33], Eq. (2-87)]

Enj:m
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_ A 0 [36]. In Sec. Il, we have ;tarted from a nonrelativistic th_eory,
+ m'—bam (3.8 and therefore the detunin=w,_-w,, Was calculated with

‘ regard to the inaccurate resonance frequesngyas it fol-
Here, the prefactor arises from the mixing coefficients €os lows from the Schrodinger theory that fails, as is well
and sing, and LY _is the usual Lamb shift of the atomic known, to describe even the relativistic effects that lead to

b . . .
bare-state transition frequency which for the hydrogéh 1 the fine structuré¢let alone the Lamb shift Thus, in practice,

5a)£_r|?fmb) =

-2P transition is given by the bare Lamb shift modification to the detuning may be
0 accounted for by replacing the resonance frequengyas it
Lbare= Lop, ~ L1s, (3.9 would be obtained from a nonrelativistic theory, by an ex-

perimental value for the atomic transition frequency as found
in low-intensity scattering experimenf36].

The frequencywe,,; may not be known well enough for
any given transition to lead to a meaningful comparison be-
tween theory and a conceivable high-accuracy measurement

wherej :%g is the total angular momentum quantum num-

ber of the excited statdor the definition of lﬂ|j see also Eq.
(3.16) below]. The Lamb shifts of the individual states are
given by[34,35

L,s=8172 81132) kHz, (3.10 of the Mollow spectrum. This is because we are sensitive, in
the measurement of the Mollow spectrum, to tiny differences
Lop,,= - 12 835.998) kHz, (3.11) between the laser frequency and the actual resonance fre-

quency. It may therefore be useful to recall that for the Lamb
shift Lmj of a hydrogenic energy levébpectroscopic nota-
tion nl)), one may use the implicit definitiotsee, e.g.,
The correction may be interpreted physically by defining thel34.37),

dressed summed Lamb shi, ; as 2

E(nl) =m[f(n,j) - 1] - - ———[f(n,j) - 1]°+ Loi; + Ents:

Lop,, = 12 517.468) kHz. (3.12

e = +[02+ (A - L2~ V02 + 7], 2(m+my)
(3.13 (3.16)
where to first order in_g;e one recovers Eq3.8). Thus the  whereE is the energy level of the two-body systeftn, j) is
correctiondw 2™ effectively is a shift the dimensionless Dirac energy,is the electron massy, is

+]

) the reduced mass of the system, amglis the nuclear mass.
A—A-LY (3.19 ; ;
are In very accurate experiments, one also has to include the
of the detunindin analogy to Eq(3.7b)]. hyperfine frequency shit which depends on the quantum
With typical parametergsee Sec. 1Y, the summed ex- numberme that includes the nuclear spin. Note, however,

the first-order expressio&u(i'f‘mm. The reason is that the bare Shift according to the definition E¢3.16.
Lamb shift is not small as compared to the detuningso The expression Eq3.16) can be used to make a theoret-

that the higher-order terms of the series expansion are relc@l Predictionay, for the transition frequency by forming the
evant. Nevertheless, we use the summed formula &43 difference of this expression for the two states involved in
instead of Eq(3.8), as it is the expected result in the sensethe a’Fomic transition whose high—intensjty behavior we are
that the Lamb shift is naturally interpreted as a modificationStudying. The detuning can then alternatively be evaluated as

of the transition frequency and a corresponding alteration ofth=®L~ @in- ASSUMING W= weypy ONE then haslex,=Ag,
the detuning. For some recent data on Lamb shifts, we refef3g.

3. Unified expressions for the relativistic and radiative shifts 4. Bloch-Siegert shifts

Both the summed relativistic shift E(3.6), as well as the The Mollow spectrum also receives corrections due to
summed Lamb shift Eq3.13, are effectively summarizing So-called counterrotating interactions of the driving-laser
the corrections received by the detuning due to various shift§€!d with the aton{38]. These correspond to an excitation of
that go beyond the nonrelativistic treatment of the hydrogerin€ atom simultaneously with a creation of a laser photon or
(and Mollow) spectrum discussed in Sec. Il. These effectdhe vice versa process. The first-order perturbation vanishes,
would also be observable in low-intensity scatteringlaf ~ and the second-order expression is giver{24]

sen light off atoms, and are automatically included in the 028 cog26) - (Quf 3+ cog46
observable resonance frequency of the transition whose high- AE(iBS): +— 120) = (Qelo [ > $40)]
intensity behavior we are studying. The corrections can wL 64 - 16Q0/w,)

theref_ore be included ir_1to the formalism if_ we replace _the 1 0% 2A%+ 0%+ 4Aw

detuningA by the detuning, to the experimental transi- =t §¢QZ+ A2 AZ+(2- 4wf (3.17)

tion frequency given by

. (BS) .

Agpt= ©L = Do (3.15  The correctionéw, ™ of the Mollow sidebands due to the
Bloch-Siegert shift is thus given by

where we, is the experimentally observable transition fre-

BS) _ BS BS
quency as it would be obtained from low-intensity scattering 80 = AEPY — AE® (3.18
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_ A 5 contribute[see also Eq(2.12]. The resulting expression for
=+ \,,92+A2[BQ ] (3-19  the energy shift of the dressed stite,n)) is given by
Here, the parametdi3Q?] depends on the laser-field inten- AECR = {|gej|2 co 0( n+1 L )
sity, which reflects the fact that the Bloch—Siegert shifts are ' i#eg —wjtE; —otE
stimulated processes. AssumifigA < w; as a typical range N+l n
of parameters, one has =~ wg and thus +|gqil® sir? a( + ) ,
9l —(,L)j+E3 —w]-+E4
1
B=,—+ O(Alw?,Qlw?). (3.20 (3.29
w
R _ _ with
Here, one should note that the energy shift 8919 with 15 L .
as in Eq.(3.20 vanishes foA=0. This is consistent with the AL TO. ~
analysis in29,39, where it was found that the Bloch-Siegert E1= o 2A " 2QR Dgr (3.263

shift is suppressed by an additional powelbfw, for van-

ishing detuning. We also define a summed Bloch-Siegert 3 1
shift in analogy with(3.6) and(3.13 as Er = wy+ 20x + EA + EQR ~ wy+ 20g, (3.26h
S0P = +[VO2+ (A -B 0?)2- 02+ A?]. (3.2
3.1
Effectively, the Bloch—Siegert shift may be accounted for by Es=wy—wr— EA + EQR ~wg—wgr, (3.260

the replacement — A—-BQO?. This correction to the detuning
is proportional ta)?, i.e., proportional to the laser intensity.

1 1
5. Off-resonant radiative corrections stimulated Es=wg+wpt EA + EQR ~wgtog. (3.260

by the atom-laser interaction

. . . ) For the dressed state-,n)), we have
For these corrections, we restrict the atom-field interac- fe-.n)

tion to the laser mode, but take into account the off-resonant (OR) _ 5 n+1 n
(OR) atomic leveldj) (i.e.,|j) # |e),|g)). The leading effect is AES,"= 2 el sir? 6] = o +E; ot E,
the second-order perturbation 1769 ) )

o Hlggltcod of L )t
AESR =( (£,n) (£,n) ). 9 -~w+E; -w+E

(3.22

Hy Hy

Ein—(Hm+Hp) (3.27

) e , .. Incalculating these expressions, we may carry out the semi-
Here, we have defined the Schrodinger-picture Hamiltonianassical approximation+1~n and replace the above Rabi

‘H, describing the interaction of the atom with the driving- frequency by its semiclassical counterpart. The coupting
laser field, the free energy of the nonresonant atomic statgs gefined by

Hwm, and the free energy of the electromagnetic fiditlsas

. o
Hi=-ax Ey, (3.233 0 =~ oiler X[iyy 50 (3.289
Hu= > oli)]l, (3.23p  and is of the same order of magnitudegis We therefore
i*g.e ) obtain as the second-order shift due to the off-resonant en-
ergy levels,
He= kE)\ EYCHY (3.239 80P = AESP - AECR = £ D cog20)0?
A
respectively, wherey, anday, are annihilation and creation =¥ [DO?], (3.29

102 2
operators for photons with wave vectorfrequencyw,, and VQT+A
polarization), andw; (j #g,e) are the energies of the non- \ynereA is the detuning and

resonant intermediate states. The sum in B30 extends
over all possible vacuum-field modes, akd is the field D:i 2 g _|2( 1 . 1 )
operator for the laser mode, 4gEj#eyg el - w+E; —w+E

o . 1 1
E, =\/—¢l[a +a]. 3.24) - <2< + ) 3.30
L 2V€|_[ L L] ( ) |ggj| - ) +E3 —a)j+E4 ( )

Here, ¢, is the polarization vector for the laser mode. As thedepends again on the laser intensity. The enerdies
laser mode is highly populated with an occupation numbe(i=1,...,4) are defined in Eq.3.26). Therefore this additional
n>1, both the field annihilation and creation operatord{in  shift is a stimulated radiative correction in the same sense as
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the corrections discussed in the previous seci#).
To further evaluate the paramet®, it is important to

PHYSICAL REVIEW A 70, 062111(2004)

(Za)®m
2n?

() =E-ow()=- - o(t). (3.3

note that the virtual states are coupled to the initial states by
the driving-laser field rather than by the vacuum as for ex-The parameters andt are related by the equations

ample in Lamb-shift calculations. Thus, the polarization of

(Za)®’m1 -t?

the coupling field mode is fixed. For the off-resonant correc- 0= 5 > (3.383
tions, it is sufficient to evaluate the relevant matrix elements 2n t

in the nonrelativistic approximation. So, if we assume the

atoms to be in the3 ground state initiallfm=0, of coursg t(w) = |1+ 2w |72 (3.38
then we have a situation in which for a given polarization of nit@) = m(Za)? ' ’

the laser field not all magnetic sublevels of tHe &ates are

coupled. In the following, we assume the driving-laser fieldWheren,| are the principal and the angular momentum quan-

to be z polarized[ g =(0,0, 1], so that only then=0 sub-

levels of the B and the P ground and excited state are

occupied. Then, the parametér may be rewritten agsee
Eq. (3.26)]

_ Mg(E3) + Mg(E4) - Me(El) B Me(EZ)

D= 3.3

A(gdeP (830

in terms of the two matrix elements
Mq(9) =(glzG'(9)Zg), (3.32
Me(Q) =(elzG'(9)Ze), (3.33

where the propagator is given by
1

G(¢) = H-¢' (3.39

and where the double prime means thath resonant states

|g)=|1S,m=0) and |e)=|2P,m=0) are excludedfrom the

evaluation ofM¢({) requires special care, as there are ®th
(angular quantum numbér0) andD (I=2) states as inter-
mediate states. Due to the fixed polarization of the coupling
field, the angular parts of these two contributions have dif- Me(g) =(€lz3(0)Ze) = maé[
ferent proportionality factors relative to the angular parts of

sum over intermediate states in the Green function. The 2569 ]

the “standard” matrix element

3
> (elXG"()xe) (3.35
i=1

— 7
and thus have to be calculated separately. The above standard Xq(t) = 38

tum number of the quantum state for which the relevant ma-
trix elements are to be evaluated. In the following, we will
also use common spectroscopic notation for the level char-
acterized byn andl, i.e., for examplef,p(w) =ty1(w). For

the energies; (i e{1,...,4}) andn=1,2, we thus obtain

tn(E) = \/g : (3.39

The above matrix elements Eq®.32 and (3.33 without

the double primes, i.e., including resonant intermediate
states, may then be expressed in terms of the standard hyper-
geometric functior{34,40,41

o= {1-mam(22)) wao
(n,t) =,F;| 1,-nt,1 —nt, 1+1) /) (3.40

as(see Appendix B

— ~ 2t%x4(1)
Mq(2) =(glzG(0)4g) = m%{m

- m@(l,t) (3.413
16t2Xe(t)
15(t - 1)7(t+ 1)°

2141237 - 7)
- m@(z,t)} , (3.41b
where

+260 + 15— 19* - 12483 + 1242 + 3t - 3,

matrix element may however be recovered from the matrix (3.42

elements for definite initial state and coupling field polariza-
tion by averaging appropriately. This is discussed in Appen- y.(t) = 6733*°- 1702° - 2318 - 14207 - 262° + 19445

In the propagato6(¢), the energy is parametrized by the 4027~ 11407 +4337+ 270 - 135, (3.43

(in general complexparameters

(Za)®’m
n’t?

Za
tEt(g):?\/—ng. (3.36b

(=) =- (3.363

Here, the Bohr radius scaled by the nuclear charge nu&ber
in our units, is
1
=—, 3.44)

=5 (3.44
where « is the fine-structure constant andis the electron
mass.

The corresponding matrix elements without resonant in-

Usually, one hag=E-w whereE is the bound-state energy, termediate states may then be obtained by subtracting the

and we may write

respective contributions of the resonant intermediate states
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. 2

My(2) =(glz G'(9)Zlg) = My(0) - @ﬂ, (3.49
»= ¢
. 2

M(2) =(elz G'(9)Ze) = M¢({) - @ﬂ_ (3.49
15 ¢

PHYSICAL REVIEW A70, 062111(2004

TABLE |. Summary of all individual energy shifts due to the
various discussed corrections. All numbers are obtainedhfor
=1000 andA=500; with j=3 (j=2) for the left (right) column
using summation formulas such as £4.8). Here, 5o'-2™ is the
correction to the high-frequency Mollow sideband position related
to the bare Lamb shiftcf. Sec. Ill A 2), the symbol(BS) denotes
Bloch-Siegert shiftgSec. Il A 4), and the(OR) shifts are due to

We assume here that the Rabi frequency is not excessivelys resonant excitationsSec. Il A 5). These shifts all may be in-
large, which implies that it is small as compared to the opti-epreted as arising from a modified detuningnd are discussed in

cal transition frequencyi.e., Q) <wg). For a meaningful

Sec. lll A. The other five corrections are due to a modified Rabi

measurement of the Mollow spectrum, it is necessary, furfrequency (Sec. 1l B). In particular, 5o is discussed in Sec.
thermore, to tune the laser close to the atomic resonanq@ g1 and refers to relativistic corrections, whereas!™ (Sec.

(which implies A < wg). In this case, we may carry out the g 2) is a field-configuration-dependent shift. The st ™

following approximationgcf. Eq. (3.26)]

(Secs. 1l B 4 and 11l B § refers to radiative corrections to the tran-
sition dipole matrix element, andaic) is a dynamic correction to

E O tp(E 1/2, 3.47
1% 20(Ed) = ( 3 the Rabi frequencySecs. 111 B 3 and Il B 5. Finally, 5635) is a
— shift due to corrections to the secular approximatigac. 11l B 6).
E; — wg+ 20g 0 tp(Ey) — V-0.5,  (3.47b
= Shift 1Sy, 2Py 1S,/ 2P3);
Es— wg— wg 0 t1g(E3) — 2IN7, (3.479 (kHz) (kH2)
i th | sat®d -50.305) -50.3Q5)
With these parameter$) evaluates to 55(+OR) _468.516) —468.516)
D= ———[6.21488) - 0.235 322)i] 5511) -1842.11) ~1937.11)
(Za)"'m St -331.442) -331.442)
1 . sl -121(31) -121(31)
= w—R[233053) - 0.088 24%6)i]. (3.48 5B§_1:jDM) 374(25) 372(26)
s -49.92) -49.82)

+

The uncertainties are mainly due to the approximations car=
ried out in Eq.(3.47) with respect to the energi€s (i=1, ...,
4) originally defined in Eq(3.26). This is possible because he detuning for typical parameters so that there is no nu-
the off-resonant stimulated radiative correction amounts t0 @erically significant difference between the first-order cor-
modification of the detuning which is of ord€}?/ wg<Q rection Eq.(3.29 and the summed form given in E8.49).

[see also E(3.49 below]. Therefore we may carry out the e first-order imaginary contribution to the Mollow side-
approximation Eq(3.47), i.e., neglect the further corrections pnds is

of order Q% w3 <0? wg and Q?A/ wi<Q?/ wg, Which are
beyond the scope of the current analysis. The real Part
=RgD) gives rise to a shift of the position of the Mollow
sideband, while the imaginary pa® =Im(D) describes the
ionization into the continuum. This means that the imaginary

. (OR) .
part of the energy shiftaE, ;* received by the two dressed Tg effect broadens the sidebands slightly, but its contribu-

states|(x,n)) must be negative, which is equivalent t0 ayiop is 5o small for typical paramete(see Sec. IV beloyy
negative sign for the imaginary pafy. that it may be ignored on the current level of accuracy of the
In the numerical analysis in Sec. IV, it is shown that for thegretical predictions. It is interesting to note that the stimu-
typical parameters the system is sufficiently far from the ionateq off-resonant correction is small as compared to the rela-
ization threshold42] so that the ionization does not restrict tively large effect mediated by the bare Lamb shift of the

the applicability of our scheme. The real part yields a COltransition, which is discussed in Sec. Il A 2.
rection to the detuning given by — A—Dg?, according to

the summatioricf. Eq. (3.29)]
dw®® = +[{02+ (A - Dr0O?)2 - Q2+ A?] (3.49

A .
Tt AZ[|D,QZ].

&ng) =¥

(3.5)

B. Corrections to the Rabi frequency

In this section we discuss corrections to the incoherent
fluorescence spectrum due to modifications of the Rabi fre-
A ) quency. In particular, we consider corrections to the transi-
=——IPrO. (350 tion dipole moment and to the spontaneous transition rate of
VO + A ) . . .
the atomic transition, due to coupling of the driving-laser
As pointed out below in Sec. I\{see also Table)l the mag- field to resonant and nonresonant atomic transitions, and cor-
nitude of the off-resonant correction is small as compared toections to the secular approximation.

with

SoOR =~ 5uOR = =
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1. Relativistic corrections to the transition dipole moment SdR 31 5 3
3/2 2
. . . I . —<=—(Za)| —=+-In2--In3|. (3.54h
In this section we discuss relativistic corrections to the ds/o 9% 4 4

fluorescence spectrum up to relative ortiéw)?. The correc-

tions amount to a modification of the atomic transition fre- 1 he Rabi frequency and the transition dipole moment depend
quency and of the transition dipole moments. The relativistidinearly on each other. Therefore, the relative correction to
expressions for the state energies and the transition dipof@@ Rabi frequency is identical to the relative correction to

moments depend on the total angular quantum numpefs the transition dipole moment:

the involved states, which is the vectorial sum of the electron

. . . (R) (R)
orbital angular momentunh and its spins. Therefore, we Y - od; _ (3.55
specify the total angular momentum quantum number and Q d;

thus the spin state of the atomic system in order to fix a
specific experimental setuisee also Appendix A We fur- Here, 507 is the absolute correction to the Rabi frequency
ther assume the atom to be driven by a pure dipole laser fieldue to relativistic modifications to the transition dipole mo-
linearly polarized in thez direction, such that the laser field ment. The spin-dependent shiﬁ‘f) of the position of the
only couples states with equal magnetic quantum numbeMollow sidebands due to the relativistic corrections of the
The situation of a pure dipole field has recently been studiethatrix element is thus given by

in a related context if43]. In the numerical analysis in Sec.

IV, we consider a standing wave laser-field configuration 55&5): i[\s’/(ﬂ+ 5QJ®)2+A2— VO2+A2] (3.56)
where the atom is at a point of maximum electric-field inten-

sity of the standing wave. As then, the magnetic field comWwhere
ponent of the driving laser may be neglected, it is not con-

. . . . . 2
sidered in the following analysigcorrections due to the st ~ su® = T Q—g_ (3.57
variation of the electric field about its maximum are treated =) *) VO2Z + A? !
in Sec. Il B 2.

The relativistic corrections to the energies of the atomicand
states and thus to the atomic transition frequencies effec-
tively modify the detuningA and may be accounted for by £ = 5_0@ +O<5—di)2
. : ) » = . (3.58
choosing an experimental value for the atomic transition fre- ! d, d,
quency as found in low-intensity scattering experime&aee
Sec. lll A 3). The corrections to the transition dipole mo- With these definitions, the summed relativistic correction to
ments may be evaluated with the help of the relativistic wavehe dipole moment effectively corresponds to a replacement
functions of the hydrogen atom as given[#4,45. We de- Q—Q(1-¢)).
note the absolute relativistic correction to the nonrelativistic
matrix element 2. Field-configuration-dependent correction
to the Rabi frequency

— 41 — 41 . .
<131/z,m— * 2|2|2Pj’m‘ t 2>NR’ (3.52 It is well known that the magnetic component of plane-

® 13 wave electromagnetic wave influences the transition current
by 5di , Wherej=3,5 is the total angular momentum and at relative orderZa)? (see, e.g.[34,46,47). The radiation
m=+3 is the magnetic quantum number. In the following, pressure due to the magnetic field could move the atom.
we will omit the “m=" from the second parameter of the Therefore, we propose a standing-wave field configuration,
atomic state vectors. Then the relativistic matrix elementyhere the atom is placed at an antinode of the standing-wave
(with subindex “R’) gives rise to a relativéZa)? correction  electric field. In this setup, the influence of the magnetic field
6dj®ldj with respect to the nonrelativistidNR) expression can be neglected to a very good approximation.

which is given by The analysis of the previous Sec. Il B 1 is valid up to the
order discusseffelative order(Za)?] only for a pure dipole

(1S, £ 3122P;, £ 3) sd® (3.53 field which additionally has to be constant in any direction

=1+ ; 3.53 erpendicular to the polarization. However, for a standing-

<151/2, * %|Z|2Pjv * %>NR d peP g J

wave configuration, the-polarized electric field of the laser

is not constant in the propagati¢x) direction. This leads to

a further correction, which gives rise to a field-configuration-

dependent shift of the Rabi frequency. In the following, this
hift of relative order(Za)? is analyzed for the setup de-
cribed above where the atom is at the maximum of the

standing-wave electric field.

We start from the long-wavelength quantum electrody-
® namic(LWQED) interaction Hamiltoniarj47]. The only rel-
odyp (Za)2<5 + §In 2-1In 3> (3.543 evant termgin the context of our analysi®f the interaction

2 2 ' '

dy/n T 3 part of this Hamiltonian are

where we ignore higher-order relativistic terms of order
(Za)™ with m=4. The corresponding matrix elements where
the “initial” and the “final” state have different magnetic
quantum numbers vanish identically as the driving-laser fiel
is assumed to be polarized in thalirection. Evaluating the
relative corrections, one obtains
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W i Auijoke It is_importgnt to note that the long-wave QED correction
H™ = = ax- B = oXXE = OO i (3.59 {0 the interaction Hamiltonian E¢3.59 does not couple any
unwanted magnetic quantum numbers to the laser-driven
Here, thex denotes théth component of the position opera- doublet.
tor vectorx, andEfj is the partial derivative with respect
of theith component of the electric-field vector. The electric 3. Higher-order corrections (in@ and A) to the self-energy
field of the standing wave is given by of dressed states and corresponding correction

E(t,X) = &,Eqy cog wt)cogkX). (3.60) to the Rabi frequency
- ) o o The Lamb shift of dressed states is different from the
The term cont.alnmg the first derivative qf the electric field in Lamb shift of atomic bare states, as already discussed in Sec.
Eq. (3.59 vanishes, and the last term gives I. In this section, we extend the analysis of Sec. Il A 2 to the
9ok q . q ) next-higher order. For this, we keep the terms linedniand
- EXXX Ex=- gz XES= 62 ICXEgw cogwt). A in evaluating the energy shifts of the dressed states. As
explained in detail in28,29, we thereby obtain a further
(3.61) correction to the position of the fluorescence sidebands

This result has to be distinguished from a simple expansioM"hiCh may be expressed as

of the electric field around the maximum a0, which © 02
i bw,” = F C——=, 3.69
yields Wy + \J’m ( )
-qr-Etx)=-qz& t kx) =-qz t
qr-E(tx)=-qz svvcff(w )cogkx) = — qzEsy Co wt) where
(kx) 4>
X|1-——+0(X") |. 3.6 2+ (p?
( ; T (3.62 ngln[(Za)"2]<p m2<p e (3.70
an

This naive expansion gives the wrong prefactor and is not , , .
applicable here. is a dimensionless constant. For the hydrog&mRR transi-

The term in Eq(3.61) entails a spin-independent correc- tion, the leading logarithmic term is independent of the spin
tion to the transition dipole moment. At resonance, one has2nd given by

5 _
k= S(Za)m. (3.63 C=—a(Za)?In[(Za)2]. (3.71
8 41
The relative correction due to the additional contribution Eq.This correction may be interpreted physically with a summa-
(3.61) to the interaction Hamiltonian is therefore tion as used for the bare Lamb-shift correction
K2 (1Sm=0jz ¥[2P,m=0) _ sl = £[JO2(1-C)2+A2- 02+ A%, (3.72

1
6 — — ——1—6(Za’)2. (3.69
(1Sm=0[zl2P,m=0) with 8w~ sw'® because of the smallness of the correc-

Analogous to Eq(3.53), this modification of the transition tion. Thus the additional shiffw'”~’ may be interpreted as a
dipole moment, for a 2P transition, gives rise to a correc- radiative correctio) — ((1-C) of the Rabi frequency.
tion to the Rabi frequency given by

1 4. Leading logarithmic radiative corrections to the transition
S0P = — 1—6(za)29_ (3.65 dipole moment (vertex corrections)

i£1—tF) : _ In “normal” bound-state quantum electrodynamics, vertex

The summed shif6w, * of the Mollow sidebands due to this corrections are evaluated with respect to the interaction of
modification of the Rabi frequency can be expressed as  the electron with the binding field of the atomic nucleus. In
—F) _ 1/ P22 A2 JOZ 1 A2 an effective treatment, and in leading logarithmic approxima-

dw,” = £[V( 2+ 80T)7+ A= VOT+AT], (3.6 tion, the effect of the self-energy may be accounted for by

where making use of an effective Lamb-shift potentjdB]
0? 4 .9(r)
s = 50V = F W;ﬁ (3.67) AV (1) = 5a(za)m[(zoo 2]7, (3.73
and which modifies the Coulomb interaction according to
1 z Z
F= 1 (2Za) (3.69 - T“ - T“ + AV artf). (3.74

With these definitions, the summed relativistic correction toNote that the potential3.73 is really the consequence of a
the dipole moment effectively corresponds to a replacemerself-energy(“vertex”) correction, not that of vacuum polar-
Q—-Q(1-F). ization. In many cases, vacuum polarization corrections may
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also be accounted for by employing an effective potential, 3 )
but the corresponding potential lacks the large logarithm E:EZP_Elszé(Za) m (3.77
In[(Za)™2]. An accurate treatment of self-energy corrections
requires the consideration of many more terms than the crudé shifted byV, ,, according to
approximation(3.73). am

Here, we evaluate the leading vertex corrections to the SE°9 = —(1§AV, ,myN)|1S = - — a(Za)* In[(Za) 2],
interaction of the bound electron with the driving-laser field, 37
and so we have to consider both the Coulomb as well as the (3.78
laser field. Nonrelativistically, the atom-laser interaction is
given by the matrix element of the usual interaction Hamil-
tonian, which reads(length gauge, %= 2P transition

because the matrix element of th® 3tate vanishes. This
yields a relative shift of

—-gE (1972P)=—qE, d whereE, is the field strength of the SET9 32 5 >
(strong laser field and the dipole moment is E 9_77“(2“) In[(Za)™7]. 3.79
27 _ The modification of the matrix element due to the corrections
d=(2P|Z19 = 35\ mZa) (3.79  to the 1ISwave function amounts to
l !
(log) —
Vertex corrections lead to modifications of the dipole mo- o <2P (E— H) AViamilT) 1S>
ment given byd— d+ &d, where the vertex correctiofd is
considered below, and the radiative correctjonthe length - \22 “(Za)m[(z ) 2](48 In- + 131>
gauge to the laser-atom interaction is effectively a replace- 3'm
ment -qE d——-gE (d+4&d). The large intensity of the (3.80

driving-laser field is accounted for in this formalism because

the electric laser-field strengf® multiplies both the dipole Where the prime denotes the reduced Green function. Thus,

moment matrix element of the interaction Hamiltongand  the logarithmic relative correction [9r9

the radiative correctiodd. ' 5109 a(Z )2 , 4 131

Laser photons as well as the spontaneously emitted pho- r —In[(Za)™] In * 36/ (3.80

tons in the radiative decay of excited states are real rather

than virtual. Consequently, the radiative corrections to theThis leads to a correction to the Rabi frequency analogous to

laser-atom interaction on the one hand and to the radiativgq. (3.55),

decay rate on the other hand are related to each other. In the (o
. . 50og)  sq(log)

length gauge, the leading-order expression for the spontane- - '

ous emission decay rate is Q d

(3.82

g where we may ignore the spin, in contrast to E3}54).
r= A—laE3d2= 2—a(Za)4m (3.76 The interpretation of this shift is analogous to the relativ-
8 istic corrections to the dipole matrix element in Sec. 111 B 1.

The Mollow sidebands are shifted by the frequency

In order to obtain gauge-invariant results for the quantum log) _ I o2 3 7

electrodynamic corrections 10 (while working in the length 55(* 9= £ [V(Q+0019)2+ A7~ {02 + A7),
gauge, it is necessary to consider both radiative vertex cor- (3.83
rections to the dipole momedtand corrections to thébare

transition frequency (energy difference E (see Refs. where ,
[4E|3—5Q). In our treatment, ItEhe vg;texgcfc;(rsrectlogsst(;3 éhe di- 5_(,09) 50! (,Og) - Q L (3.84
pole moment are given in _q63. ), (3.8689, an (3.86b, \,92+A2
whereas the vertex corrections to the transition frequency
enter into the radiative correction to the detuning in Eq.and
(4.109. 5d(09) Salog) \ 2
In general, the vertex corrections to the laser-atom inter- A= q +0 q ) (3.85

action enter at the relative order @i(a(Za)? In[(Za)™?]).
One may wonder why the corrections do not enter at thgs a dimensionless constant. Then, these corrections may be
relative orderO(«). The reason is that in interactions with accounted for by the replacemet— Q(1+.4). One should
real photongthe square of the four momentum beigfg=0),  note that at this parametric order, the above results hold for
the otherwise dominant correction due to fagDirac form  poth states R;,, and 25, [49,50.
factor vanishes, and the remaining terms are then of higher o o _
order in theZa expansion. 5. Nonlogarithmic vertex a_n@ vaguum polarization corrections

We now analyze the shift of the resonance frequency and to the transition dipole moment
the shift of the transition dipole moment induced by the The concurrence of the radiative shifts to the transition
Lamb-shift potentia(3.73. The transition energy dipole matrix elements for theSi2P,;, and the 52P;
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transitions, which was found in Sec. Il B 4 for the effects of
relative ordera(Za)? In[(Za)™2], is lifted on taking into ac-
count corrections of ordex(Za)? (no logarithms due to the

PHYSICAL REVIEW A70, 062111(2004

form of the radiative corrections under discussion is

(3.9)

a(Za)? In[(Za)?]e, + a(Za)?cy,

s_elf-energy._Vacuum polarization corrections to t_he transitionwherec, andc, are dimensionless constants. Based on expe-
dipole matrix elements also enter at the relative order ofience with similar correctiongboth for self-energy effects

a(Za)?
The sum of the nonlogarithmig“nlog”) vertex and

and well as radiative corrections to decay rgd&5,50), we
assume the following relation with the corresponding uncer-

vacuum polarization corrections to the transition dipole mo-ainty for the unknown parametes:

ments of order(Za)? are given by[50]

5d(n|og) 7 2
12”207 o g (3.863
d1/2
for the 2P, state and by
5d(nlog) Z 2
sz o _ 2% 50 g (3.86h
d3/2

for the 2P,, state[50]. In between Eqgs(70) and (71) of
[50], it is stated that currently, there is an internal discrep
ancy between the numerically obtained values for the radi
tive correction atZz=5,10,.. on the one hand, and analytic
results for the first terms of th&a expansion(logarithm
+constant on the other hand. This discrepancy is of the or-
der of 10% of the total constant term of ordefZ«)?2, and

Cr= (_ 2 2)C1.

(3.92

For example, we verify the validity of this estimate for the
particular contribution to the nonlogarithmic part discussed
above, i.e., for the terms that contribute #. For these
terms, the estimaté-2+2)c; evaluates to —2.56+2.56 for
the constant term. In comparison, the values obtained above
for ¢, by a direct numerical analysis are —2.92 for the cor-
rection.A,,,, and -2.97 for the correctiad,, which agrees

to the estimate. For thé-term correction, we thus obtain

from Egs.(3.71) and(3.92

a_

5 5
¢ = a(Za)2<ET|n[(Za)_2] - ;T(z * 2)) (3.93

as the combination of the logarithmic and the estimated non-

this limits the current status of the theory. Here, we employogarithmic correction. We expect the nonlogarithmic correc-
an even more conservative error estimate and assign a 20880 to be spin dependent in analogy to H§.869 and

uncertainty to both of the numerical values in E¢3.8639
and (3.86h. The corresponding correction to the Rabi fre-
quency is again analogous to E§.55),

(nlog) (nlog)
0T _ T

Q g (3.87

i
One obtains the following total Correctio&_oiT.DM) to the
position of the sidebands due to logarithmic and nonlogarith
mic correction to the transition dipole matrix element
(TDM):

55(iTjDM) _— [\/(Q+ 50009 4 m](nlog))2+A2_ \J’QZ+A2J,
(3.89
where
QZ
662—][3’\/') ~ 5w(¢T,jDM): * N 5A; (3.89
and
= 'Sd:g) + @? +0(a(Ze)®).  (3.90

J
Aj is a dimensionless constant ajw3, 3. Thus the correc-
tions amount to a modification of the Rabi frequency given
by Q—Q(1+A)).

We expect a similar nonlogarithmic correction of order
a(Za)? to supplement the€ term discussed in Sec. Il B 3.
The logarithmicC term was found to be of the order of
a(Za)? In[(Za)~?]. The evaluation of the corresponding non-

logarithmic term is, however, beyond the scope of this work.

Here, we only present éconservativg estimate of the ex-

pected correction. To this end, we observe that the general

(3.86h. As for the correction to the matrix element, this
shifts the Mollow sidebands bjsee also Eq(3.72]

QZ
Sal¥ = £ [VOX(1-C)2+A%- 02+ A% = ¥ ——,,
(,()_'J [\ ( J) \ ] + \J’QZ‘FAZ J
(3.99
such that the correction may be applied by the replacement

6. Corrections to the secular approximation

In this section we transform the correction terms to the
secular approximation in Eq2.6) such that they may be
integrated into our correction scheme. Equati21) may be
rewritten as

92
0, = Qg F Ws, (3.9
solal +ols)
=—— =] +0[=]. 3.9
8(1+y)\Q Q (3.96

1

For A<(), one may expand the leading contributionSdo
A7T?

T e

With this definition, the corrections to the secular approxi-
mation may be accounted for in the final result with the
replacement) — Q(1-3S), which results in a summed shift
of

r

S (3.97)

Swl¥ = £[JOA(1-8)2+A2- 02+ A?]. (3.99
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IV. NUMERICAL DATA FOR THE HYDROGEN 1 S2p a(Za)z
TRANSITIONS (j=%,3) Ayp=A- 9.21.9), (4.71)
In the preceding section, we have discussed both correc-
tions to the detuning and to the Rabi frequency, which give a(Za)?
rise to a modification of the positions of the sidebands in the Agpp= A= 9.31.9), (4.79

Mollow spectrum. We start the evaluation of correction terms

here from a point where we assume that all relativistic cor- 5

rections to the transition frequency, as well as hyperfine- Cj = a(Za)*>—{In[(Za) 2] - (2 £ 2)}, (4.7h
structure effects, have already been included in the bare tran- Am

sition frequency. This frequency corresponds to the

Gl 1 2610, We therefore redufine e detiang be ez e Sn2-n3.
A=ow — g, (4.7 1 3
where[cf. Eqg. (3.16)] E3p=(Za) <_6 +-In2- Zln 3) (4.7))
@r=E(2P) -E(19 (4.2 .
with F= 1—6(201)2, (4.7K
E(m"):mr[f(n’j)_l]_Wgrnm[f(n’j)_l]zﬁhfs' s=%(£>2- .70

(4.3
. - . . We have found that the bare Lamb s the Bloch-

Of course, tbe full theoretical pl’edICtIFE-'(mj-) is obtained as_ Siegert shifi(/3), and the off-resonant seﬁaﬁ%rgy corrections
the sum ofE(nl;) and Lmj. The modification of the Rabi (Dr) give rise to a modification of the detuniny in the
frequency due to the bare Lamb shift expression for the Mollow spectrum. As the latter two effects
(4.4) are intensity dependent, also their correction to the detuning

depends on the intensity of the incident laser field. The modi-
as discussed in Sec. Il A 2, finds a natural interpretation as fcations to the transition dipole momeg#;,&;,7) as well
contribution to theLamb shift of the dressed stat@e vari- ~ as the higher-order resonant self-energy shift3 and the
ous first-order correction terms to the lowest-order predictiorcorrection to the secular approximatid§) may be inter-
for the generalized Mollow-sideband displacement preted as radiative corrections to the Rabi frequeffey.

3 =
LbJare_ I—2Pj - LlSa

VO A2 45 The interpretations as a modification of the detuning and the
=\ ' (4.5 Rabi frequency may best be seen by using a summation of
starting from Eq(4.1), may be summarized as follows: Eq. (4.6), which we have shown to be valid up to first order
A in the parameters in E@4.7):
D= = = . ) —_—
§wi] =+ \yQZ A ( bare+ B Qz + DRQZ) 552) = i (Q(é) - \JQZ + AZ) (48)
t——=(A (- &~ F-9), (4.6) , — _
2 2

VO +A Q0 =021 + 002+ (A - A0, (4.9
where Here, the Rabi frequency and detuning are supplemented by
LE)Jéllrze - 8185.64734) X 10° Hz, (4.73 g;\e/:ecrj:sbcyussed relativistic and radiative corrections; these are

L2 = - 8160.29434) X 10P Hz, (4.7b AD =10 +BO2+DRO?, (4.108

B= 4i, 4.79 O=A-C-&-F-S. (4.10D

WR

This summation implied by Eq4.8) is motivated by Egs.
_ 1 _ (3.6), (3.13, (3.21, (3.49, (3.56), (3.72, (3.88, (3.66),

D=Dr+iD;= ;[2-33053) - 0.088 24%6)i], (3.94), and(3.98. In Eq.(4.10b), the symboIQ<ad indicates a

R relative modification of the Rabi frequency, i.e., a dimension-
(4.70 less quantity.

, We have thus summed all the radiative corrections as ef-
A= a(Za) In(Za)” <4Inﬂ £1> 4.7@ fective corrections to the Rabi frequency and the detuning.

T 3 3 36 ' Of course, the mixing anglé as defined in Eqg2.9) and
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(2.13b is changed by the radiative corrections. Indeed, ondluorescence cycles before it is ionized. Thus, we define the
may evaluate the corrected by employing the relation ratio
tan(260) = ~Qcon/ Acor, Where Ao =A-AY and Qo= Q-(1

rad
+Q§’a)d) are the relativistically and radiatively corrected Rabi Tg= ‘é‘ =|D,|Q =D |hy ol 12, (4.13
frequency and the detuning, respectivgbee Eqs(4.10b
and(4.109]. Because all relativistic and radiative correctionswhich has to be much smaller than unit§,<1). For hy,
find a natural interpretation as corrections to the Rabi fre=1000, one obtains
quency and the detuning, the corrected dressed states have

the same structure as Eq8.143 and(2.14b), but with rela- Z(hy,=1000 = 356 kHz, (4.14
tivistic and radiative wave function corrections a corrected
mixing angle. Zq(hy,=1000 =3.6 X 10°°, (4.15

All relativistic and radiative corrections to the Rabi fre- - o
quency and the detuning have been evaluated here using thdich means _that the probability of one-photon ionization
unperturbed mixing anglé. The “corrections to the correc- d0€S not restrict the above measurement scheme.
tions” due to an evaluation of modifications to the Rabi fre- For h1,=1000 andA=50I"; >, the theoretical prediction
quency and the detuning in terms of the corrected mixing©" the shift of the Mollow slldebands relative to the centra_l
angle are of higher order than the terms relevant for th ollow peak by the generalized corrected Rabi frequency is
discussion in the current paper and may be neglected on ti@$ follows:
level of approximation em_ployed in t_he current investigation. iQ(Cl’2> = +100.572 25660) X 10° Hz.  (4.16)

In the following numerical analysis, we assume the atom
to be located at an antinode of a laser field in standing-wavéhis formula has been evaluated using the summation for-
configuration. The atom is thus driven by two counterpropamula Eg.(4.8) and includes all corrections, in particular the
gating laser beams, whereas in the definitions of the electrié-term evaluated in Sec. Ill B 3. For comparison, we also
field and the Rabi frequency in Sec. Il and especially in thegive here a theoretical prediction that would be obtained by
matching of the classical macroscopic field with the corredgnoring theC term,

sponding quantum counterpart in E@.12) a single-mode w2 _
running-wave field was considered. However, all results of +{poc = £100.572 37727) X 10° Hz. (4.17)

Sec. Il also apply to a standing-wave field configuration ifThis result is obtained b .~ Lo
. O : y explicitly settin@ in Eq. (4.10b
the macroscopic electric-field strength is taken to be the o, 5 g zero, but still using the full summation according to

total field strength of both counterpropagating field modes aEq_(4_9) for all other corrections. A comparison of Ed.16)

the position of the atom. In order to a\_/0|q confusions, from,, Eqg. (4.17) shows that the theoretical uncertainties of the
now on we thus denote the total electric-field strength of the,,, resuits 'do not overlap. Therefore, the current status of
standing wave ass. the theory would allow to discern the presence or absence of
the C-term corrections by means of an accurate experiment.

A. 1S, 2Py The principal uncertainty of the generalized Rabi fre-

quency in Eq(4.16) is due to the uncertainty in the estimate

For the|2P,,,m=+1/2) state as upper state, the decay ot the nonlogarithmic contribution t6; and A;. As a refer-
constant is given by',,=99.709 421) X 10° Hz [50). In or- ence, the bag:e shift without correct%ns isgiven by
der to account for the dependence on the laser-field intensity,
we introduce the parametdr,,,=|Q|/T';,. Then for hy), +V02+ A2= +99.833975< 10° Hz. (4.18
=1000 andA=500"y,5, one haswg>Q0>T",,A. Therefore, _ .
the relative corrections to the detuning and the Rabi fre-This result has to be compared to the radiatively corrected

quency in Eqs(4.109 and(4.10b become result(4.16. o . .
In Table I, the individual shifts due to the considered cor-

Ag{f) =-8.17524933) X 10° Hz, (4.113 rections are listed together with their respective uncertainties
for both transitions $,,,< 2P, and 1S, 5« 2P5/. All shifts
o2 = _ 19 7856) x 10°C. (4.11p  are evaluated in their “summed” forfsee, e.g., Eq(3.13)].
_ For the bare Lamb-shift correctiong/} , the uncertainty in
Here, the parametdr,, may be expressed in terms of the {he ghift is mainly due to the uncertainty in the numerical
electric-field strengtlt, as value for the Lamb shift of the hydrogerSstate, see Eq.
— 6 (3.10. The Bloch-Siegert shift acquires a numerical uncer-
hyj2= 346.783:¢ 107w (VIm)|. (4.12 tainty due to neglected terms of relative or@¥£)/ w, ) from
Of course[V/m] in this case means that the peak electric-the higher-order Bloch-Siegert-type shiftsigher-order per-
field strength of the laser is assumed to be measured in voltsirbation theory in the counter rotating tenrm3here is a
per meter. further source of uncertainty for the Bloch-Siegert shifts due
The absolute ionization rat€ into the continuum due to to terms of relative orde©(A/w; ,Q}/w.) from the expan-
the driving-laser field is given b§=D,Q2. In an experiment, sion leading from Eq(3.19 to Eq. (3.20. The shift due to
this ionization rate has to be much smaller than the Raboff-resonant excitatiorD has an uncertainty because contri-
frequency, such that on average the atom undergoes maiytions to the energies E¢B.26) of relative orderA/ wg and
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of order )/ wg have been neglected in evaluating thpa-  to the detuning and the Rabi frequency in EGE10g and
rameters in Eq(3.47). There are also uncertainties of the (4.10h become
Rabi-frequency shifts due to relativistic corrections to the 32 _ @
transition dipole matrix elements;), which are due to ne- Arad’ = —8.149 89633) X 10° Hz, (4.193
glected higher-order corrections of relative or@&e)? with

respect to the leading corrections. The field-dependent cor- Q3P =-20.7656) X 10°°. (4.19b
rections have an uncertainty due to higher-order effects of :

relative order(Za)?. The main uncertainty of thé-term and giﬁ}ig}?el%ag?rrgﬁéfglz ;;ay be expressed in terms of the
Aj-term corrections are due to the uncertainty which we as- -

sign to the nonlogarithmic contribution of relative parametric hsj, = 490.425x 107 gy, (V/m)). (4.20
order a(Za)? [see Eqs(3.86 and(3.92]. The main uncer- . . o . . .
tainty of the shift due to corrections to the secular approxi—':.or this transition, the ionization to the continuum is again
mation (S) are due to higher-order terms of the expansiong'ven by

leading from Eq.(3.96) to Eq. (3.97 or relative order Z(hs, = 1000 = 356 kHz, (4.21)
O(A?%/Q?), and of fourth-order corrections to the secular ap-

S ) PP X
proximation of relative orde©(I'“/Q°). For the entries of To(hs= 1000 = 3.6 X 10°°. (4.22)

Table I, the shifts have been evaluated individually according
to Egs. (3.6), (3.13, (3.21), (3.49), (3.56), (3.66), (3.72, Thus the scheme is not restricted by ionization on this tran-
(3.88), (3.94), and(3.98). sition either.

It is perhaps worthwhile to note that one cannot simply  With the above parameters for the Rabi frequency and the
add the corrections to the quasienergy of dressed states in thetuning, the positions of the Mollow sidebands relative to
same sense as corrections to the energy of bare atomic stat® center component with full corrections, withatsterm
For the evaluation of a theoretical Lamb-shift prediction of acorrections and without any corrections are given by
bare atomic state, the usual procedure is to list the various
corrections and to simply add these in order to give a theo- ng?/?) = £100.568 84650) X 10° Hz,  (4.29
retical prediction for the total energy shiftee, e.g., Tables |

and Il of [34]). For the Lamb shift of laser-dressed states, the +039 = +100.568 96627) X 10° Hz,  (4.29)
natural interpretation of the corrections implies modifications
of the decisive physical parameters that determine the +1/02+ A2= +99.833 975¢ 10° Hz. (4.25

quasienergy of the dressed levels: These are the Rabi fre-

quency ) and the detuning\. This interpretation implies, Thus also in this case the theoretical uncertainties of the
however, summations of the expressions which agree wetjeneralized corrected Rabi frequency in E423) and of the
with the first-order results, so that at least for numericallycorresponding value in Eq4.24) obtained by ignoring the
small corrections, it is still permissible to simply add the C-term correction shift do not overlap. The individual shifts
correction terms in an approximative sense. The corresporwith their uncertainties are listed in Table | as discussed in
dence of first-order expressions and summed results holdsec. IV A,

approximately unless the correction is large comparef to

anda; in this case, the summation yields a different result as V. DISCUSSION AND SUMMARY
compared to the first-order expression. This is the case for
the numerically dominant effect referred to dgiL?mb) in In this paper we have discussed radiative corrections to

Table 1. As already discussed in Secs. Ill A 2 and ill A 3, thisthe usual quantum optical expression for the Mollow spec-
summation is somewhat nontrivial in particular for the trum, i.e., the resonance fluorescence spectrum of an atom
Lamb-shift corrections. Because fundamental symmetryVith two relevant energy levels driven by a strong coherent
properties prevent the radiative corrections from Coupﬁqg laser field. To lowest order, the Mollow SpeCtrUm consists of
andP stategeven in higher ordgr preference is given to the 0ne main peak which is centered at the frequency of the
summed results. In principle, more explicit higher-order cal-driving-laser field and of two sidebands, which are shifted
culations outlined in Sec. Ill A 3 would be desirable to verify from_the center by the generalized Rabi frequeriey

the summations for all radiative effects discussed here. :\392+A?- For the analysis, we have used concepts intro-
duced originally in two different fields: the dressed-state for-

malism of quantum optics and the renormalized radiative
B. 1S;/pe>2P3)5 corrections which are treated in the formalism of quantum

electrodynamics. Throughout the analysis, we have adopted

In this section, we repeat the above numerical analysithe dressed-state basis as the natural starting point for our

with |1S;/,,m= i%) as the ground state a|112P3,2,m:i%> as analysis of corrections to the quasienergies of the combined

the excited state. The decay width of thie; state is given atom-laser system.

by I'3/,=99.709 421) X 10° Hz [50]. In order to account for From the point of view of spectroscopy, the Mollow spec-
the dependence on the laser-field intensity, we introduce thieum is attractive for several reasons. First of all, the radia-
parameter hs,=|Q|/T'3,. Then for hg,=1000 and A tive corrections manifest themselves in the shift of the Mol-
=50I5,, one haswg>Q>1'3, A such that the corrections low sidebands with respect to the central Mollow peak. Thus
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the tiny radiative corrections are measured relative to theyQ?+A? by relativistic and radiative corrections as fol-
generalized Rabi frequency, which for typical parameters ofows,
the driving-laser field is several orders of magnitude smaller 12 B
than optical frequencies. Also, the Mollow spectrum is cen- £(Q¢"? - Q) = £738.28260) X 1P Hz.  (5.9)
tered around the frequency of the driving-laser field. Thus itrhe corresponding result for th&jl, < 2P, transition with
is a kind of a differential spectrum because the laser-field)=100a;,, A=500;, is
detuning is automatically subtracted.
As for quantum electrodynamics, radiative corrections to +(QF? - Qg) = £734.87160) X 1P Hz. (5.5

the Mollow spectrum are a quantum-field theoretic problen'\Ne note, however, that we are only concerned with theoret-

|f_n It(;‘e p(;eiﬁenbc_e d‘?f twé’ CIIaSS:)C?I It()ja(zlggrouncli fl_e|dS|, th;_f:asq{:al issues. Thus uncertainties due to possible experimental
I€ld and the binding Loulomb field. Dur analysis also difterSigg a5 gych as a misalignment of the apparatus or due to

frorp typlcaltr? ED calculatlgns rtelé/mg %n thér_na}rl? for(—j tadditional trapping potentials have not been considered.
malism, as the process under study 1s dynamical. In order o summary, we have presented a detailed analysis of the

;elccocl?unt tfortkt‘he.quarr]numtfluctl:atlfo?ﬁ Olf\/lthlf dipole Tomen‘eading nonrelativistic and relativistic corrections to the Mol-
cading fo the inconerent part of the Moflow Spectrum, ay,,, spectrum. The analysis includes the relativistic and non-

static description is not sufficient. P - - 2
. ; . relativistic corrections up to relative orders and
The shifts of the Mollow sidebands may be interpreted as P a)

5 : . o .
arising from corrections to either the detuning or the Rabia(.za) ' respecfuvgly, and als_o mc_ludes.BIoch Slegert shnfts,
stimulated radiative corrections involving off-resonant vir-

frequency. In particular, the detuning is modified by the bar ) ) ) ;
Lamb-shift, Bloch-Siegert shifts, and virtual off-resonant e)ftual states, field-configuration-dependent corrections and cor-

citations. The Rabi frequency is corrected by relativistic and&ctions to the secula.r approximation. Based on t_hese results,
we provide a numerical analysis of the corrections of the

radiative corrections to the transition dipole moment, by e
field-configuration-dependent corrections, by a dynamic corMOHOW spectrum of the hydrogenSi2P transition. By a

rection, and by corrections to the secular approximation. ofomparison Wlth_experlmgntal data_\, one may ver_lfy the pres-
ence of dynamical leading-logarithmic correction to the

particular inte_r est is th_e dyn_a mical correction to'the Rabldressed-state radiative shift, which cannot be explained in
frequency. This correction arises from an evaluation of thet oo .
second-order radiative self-energy corrections of the com-esrTos;Jdtrheessbafels‘ggg ?2;2?23 iefﬁe”l E;;iggllsreilllli?wif the
bined system of atom and laser field in terms of the dresse ressed statesq On the other hand thepczgmparison zvith ex-
iifes tﬁ:cst;i'; dssyztironr.r e-[:ct)i olr?;v\?v?i C%rigrn %]; tiginl'[lh‘r?étdAwith perimental results c_ou_ld also be_usec_;l to interpret the nature
eg f the evaluated radiative corrections in the sense of the sum-

the usual Lamb shift of the atomic bare states. The dynami8 . X . ) .
correction is then obtained by keeping terms linea®im in mation formulas which lead to the interpretation of the shifts

the above analysis and cannot be explained in terms of th s arising from relativistic and radiative corrections to the
bare state Lamb shift alone. etuning and the Rabi frequency.
The corrections to the detuningl; may be incorporated into ACKNOWLEDGMENTS
the analysis by the replaceme(n'nzé,i ) . ) )
0 Financial support by the German Science Foundation
A— A=Ay (5.7) (SFB 276 and KE 721/13lis gratefully acknowledged. J.E.

where A” is defined in Eq.(4.103. Correspondingly, the V&S supported by the German National Ac_ademl_c Founda-
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Q- 031 +Qg)d)_ (5.2)  the description of dynamical processes.

The dimensionless quanti2!’, is defined in Eq.(4.10D. APPENDIX A: DIPOLE MOMENTS AND SPIN

- “rad
Then, the generalized Rabi frequency supplemented by the the gpontaneous emission decay rate of the population of

discussed relativistic and radiative correction$bg. (4.9)] an excited stat§i) to a final statgf) is given by

QU =021+ 007 + (A - A0, (5.3 I o AL, (A1)

In a numerical analysis, we provide a theoretical analysisvhere all elements of the position vector have to be consid-
which is required in order to accurately resolve the dynamiered in the coupling with the vacuum field. For the 2
cal shift. For this, we suppose the driving-laser fields to be in— 1S decay in atomic hydrogen, and in the nonrelativistic
a standing-wave configuration. As a promising candidate foSchrédinger theory without spin, the squared modulus of the
the experiment, we identify the hydroge®,;b— 2P, and  dipole moment vector is given by
1S,,<+2P5, transition. The results are discussed for a 3
driving-laser field parameter set which is expected to be S jas i|2p>|2—2_15 1
within reach of improvements of the currently available = X B 319(Za)?m?’
Lyman- laser sources in the next few years.

For the 1S,,,< 2Py, transition and for(Q=1000"/,, A independent of the magnetic quantum numben
=500"y,5, the Rabi frequency is shifted with respect (i e{-1,0,1 of the initial P state(by the term final state we

(A2)

062111-16



RELATIVISTIC AND RADIATIVE CORRECTIONS TQO... PHYSICAL REVIEW A 70, 062111(2004)

will denote in this section the particular state that enters as a (131/2,%|y|2p1/2,%> =0, (A10)
“bra-" in the Dirac notation, i.e., theSstate in the above

case. In the Schrodinger-Pauli theory with spin, one hasso that thez-polarized field only couples theP2,, state with
different decay channels depending on the spin state of thg,=m; to the ground state, and this excited state is only one
initial and the final state. For the channel where the initialcoupled to the ground state tpolarized light. For the
and the final state have the same magnetic quantum numbgpw,mf) upper state, the corresponding results are

m=my=+3, one obtains

28 11
3 1 1\ _
. 1215 1 (1S12,31d2P3.3) = 5\ 25— (A11)
1Sy, m|X 2P )P === —=—. (A3 3> ¥V 3Zam
EK S1/2 || | 1/2 |>| 3310(Za)2m2 ( )
1 1\ _
In contrast, the channel with opposite magnetic quantum <151/2,5|Z|2P3/21‘§>—0v (A12)
numberm=-m;=+3 yields a contribution of
3 s (1S12,3(X|2P3 2, 2) =0, (A13)
i , 22 1
> (1S5, — mi|X[ 2Py, m)|? = =510 5. (A4)
i=1 33 (Za) m2 1 1
(1S12.31y12P312.3) =0, (A14)

This calculation predicts that if one were to measure the
electron spin polarization in the final state, then (B, ,,) 1S, .. 2Z2P4 + 3 = 0 A15
state would be twice as likely to decay into|£S,,,) state (1812 5|22P3pp, £ 3) =0. (A15)

with opposite .total electron angular momentum than into 3hus also in this case only the upper state with same mag-
|1S;,) state with the same total electron angular momentuny, ;e quantum number is coupled to the ground state, but
as the initial 2P, ) state. Adding the two decay channels to with a matrix element which differs by a factor of2 in

the final state, we obtain magnitude from the corresponding result for ﬂl?@l,z,%>

3 25 4 upper state. From these spin-resolved results, the correspond-
> D> (ASye me|X[ 2Py o m)2 = = ———, ing matrix element without spin EqA6) may be obtained
mfzﬂ/Zi:ll 2 X |2Ps ) 31(Za)’n? by summing over the final states and averaging over the

(A5) initial states.

i.e., the same result as in the spinless case, as it should be.  APPENDIX B: EVALUATION OF THE MATRIX

For the decay of th¢2P3,2,mi:i%> state, one obtains the ELEMENTS
same total decay rate, but here the decay withm is twice
as likely as the decay witmi=-m,. In this section, we demonstrate the evaluation of the ma-

These results for the dipole moments have to be reconsidtix element in Eq(3.32:
ered for excitation of an atom in tH&S,;,,,m;) ground state
with a laser field which is linearly polarized in one direction, M.=(elzG'()Ze), (B1)
say thez direction. Then other than for the interaction with
the vacuum field, only the component of the dipole moment where|e) is the 22, m=0 state. We start by calculating the
vector has to be considered. These matrix elements can Benreduced” matrix element
used to calculate the Rabi flopping frequency corresponding

to the driving laser field. For the spinless case, one obtains Me(ﬁ) =(€|lz3(0)Ze), (B2)
27 1 . . . .
(1922P) = _5\5 _ (A6) where the full sum over |.ntermed|ate s_tates is emplo_yed in
3> Zam G(¢), and the wave function of the excited stabgp ¢ is

) ) o given by a product of a radial and an angular contribution:
We now include the spin and choose a definite initial state

|18y, mi= +%>- We obtain Dop meo(F) = Rop(r) Y10(6, ).

27 |2 1

£ |z Here,(r, 6, ¢) are spherical coordinates. In these coordinates,
3° V3zZam’

a representation of the Green function in position space is
given by[Ref. [45], EqQ. (2.2)]

<1Sl/2' %|Z|2P1/21 %> =- (A7)

where we have omitted theri=" (“m;=") from the initial

(final) state vector. Furthermore, one has 1 .
1 1 ﬁ = 2 gl(rlarZ:U)YIm( 01! ¢1)Ylm(021¢2),
(1S123|42P12-3) =0, (A8) m
where g,(r1,r,,v) is the radial component of the
(1Sy2.3/x[2P112.3) =0, (A9)  Schrodinger-Coulomb propagator
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2 |2 p( ry+ r2> 7683t°T'(k+ 2) 2
. Kl Lzl+1<ﬂ)|_z|+1<ﬁ) Using an explicit expression for the hypergeometric function
S0 \agy agy ([51], Sec. 2.1.}, we obtain

x>

ko 2+1+K!(+1+k-0)

(B3)

sFi(a,b,c;2) = 2 @J@lij

—, (B11)
containing associated Laguerre polynomiag(?h_ The quan- i (©); It
tity v=(agy-2mE)~! is an energy parameter which is related where the Pochhammer symbé#s; are given by
to the parametet used in Sec. Ill A5 byw=nt, wheren is
the principal quantum number of the initial bound state. The I'a+j)
Bohr radius is defined in Eq.3.44), and we evaluate all (@)= I'(a) (B12)

matrix elements here for the cags1 (atomic hydrogen

Thus, for the P state discussed here, we have2t. The  Contiguous relations for the hypergeometric functigsi],
index| is summed over all possible angular momentum num-Sec. 2.8 then lead to

bers of the virtual intermediate states. Starting from state ’ a1
with 1=1, both S(1=0) and D(I=2) states are possible as Mg = m 4( 16Xt 2%
intermediate states. The integration may be further separated =0 (t-1)8%t+1)* 3(t2-1)°
in angular and radial parts:

<D(2,t)),

X,(t) = 45— 90 — 84t% + 25&°% + 184 - 2945 + 148° - 2’
Me = MIZEMIZ; + MIZEMIZS, (B4) +2578,
where the hypergeometric functiab(n,t) is defined in Sec.

IIA5. A similar calculation for the intermediat®(l=2)
states yields

where the angular integrations yield
9= T M= (85) .
0= 3 M= 4< 16t2X,(1) 2615412 - 1)

nprad — -
M=%\ 3 0yier s 3@-1)

<I>(2,t)>,

The radial parts may written explicitly as
X,(t) = — 45+ 90 + 165 — 4203 — 174 + 768> — 34t

T * 5 — 7 _ 8 _ 9+ 10
eradzf drldl’gl’fl’ngp(rl)Rzp(rz)g|(r1,r2,v), (B6) 7007377~ 12747+ 4733
0 Inserting in Eq.(B4) finally yields the expression in Eq.

(3.41b. The reduced matrix element can then be obtained

for 1=0,2. Simplifying further, one obtains from this by subtracting the contributions of the two inter-
mediate statel&),|g). The excited state contribution vanishes
o due to parity, and the ground state contribution is given by
Mrad: m E k| |2 (B?) 2
20T 128 (L+Kk) ! (L+k=2t) [{glZle)] (B13)
Eis—¢

o r This term, which cancels the divergencelas E;sin (3.46),
I0=J dr r“L&(—)e[‘(l“)’zaBt]r. (B8)  may be verified by inserting the resonart &tate as the
0 agt intermediate state into the matrix element. Alternatively, the
The integral inly can be evaluated usingee[51], Sec. g_ancellatlon may be seen aﬁ fOIIOWS: On sett!ng tf}e rl]nterme-
6.10 and[52], Sec. 10.12 iate state energy tB;s+e¢, the series expansion of the un-

reduced matrix elememil(E;s) receives a contribution pro-
portional to 1k which diverges fore—0. This diverging

J dr exp(— Ar)r7LA(r) part is canceled by the intermediate state contribution Eq.
o (B13) in the reduced matrix elemeM({) to give a finite

-1- result.

N (y+ 1) 1 . S . - .

=———— T (u+n+1),F(-ny+1u+ 1\ If one compares this derivation with a similar calculation
n! I'(p+1) for the standard matrix element
(B9) E
M=2 (elxG"(xle) (B14)

to give i=1
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_ v 4angy srad , x sang; srad — — — —
=MIME+ MEIMPS,  (B1Y) M=V, Ming= Mg (817)

where all polarization directions are considered, one findstThe reason for this is that the fixed polarization of the driv-
hat the respective radial parts forO andl=2 are identical ing laser field only allows to excite one of the magnetic

to the ones in Eq(B4): sublevels of the intermediat®and D states. The sum over
all polarizations in the standard matrix element still only
— — — — ives one magnetic sublevel for the intermedi@sates, but
ME=MZ,  MZ=MZ, (B16) g X

three possible virtuaD states. Due to this asymmetry the
desired matrix element E@3.410h cannot be calculated di-
For the angular parts, however, one finds rectly from the standard matrix element in E§14).
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