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The incoherent inelastic part of the resonance fluorescence spectrum of a laser-driven atom is known as the
Mollow spectrum[B. R. Mollow, Phys. Rev.188, 1969 (1969)]. Starting from this level of description, we
discuss theoretical foundations of high-precision spectroscopy using the resonance fluorescence light of
strongly laser-driven atoms. Specifically, we evaluate the leading relativistic and radiative corrections to the
Mollow spectrum, up to the relative orders ofsZad2 andasZad2, respectively, and Bloch-Siegert shifts as well
as stimulated radiative corrections involving off-resonant virtual states. Complete results are provided for the
hydrogen 1S-2P1/2 and 1S-2P3/2 transitions; these include all relevant correction terms up to the specified order
of approximation and could directly be compared to experimental data. As an application, the outcome of such
experiments would allow for a sensitive test of the validity of the dressed-state basis as the natural description
of the combined atom-laser system.
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I. INTRODUCTION

Experimental possibilities in high-precision spectroscopy
have received a rather significant “boost” in recent years due
to the availability of phase coherent regularly spaced fre-
quency combs that may bridge large frequency intervals be-
tween frequency standards and optical transition frequencies
[1]. In general terms, highly accurate spectroscopy may lead
to an experimental verification of known theoretical models
of the physical process under study. Precision
measurements—in combination with theory—allow one to
obtain accurate values for physical parameters or fundamen-
tal constants[2]. With increasing accuracy, one may even ask
whether the so-called constants are in fact constant[3–10].
These results may as well be used as input to more applied
physics as the creation of unit standards, e.g., for time and
mass.

On the theoretical side, quantum electrodynamics is one
of the most accurate theories known so far. In many previous
studies, theS-matrix formalism has been used to obtain ac-
curate predictions for experimental investigations. TheSma-
trix relates the distant past to the distant future without refer-
ring to the dynamics of the intermediate times and leads
effectively to a somewhat static description[11].

Thus, theS-matrix formalism cannot,a priori, lead to a
satisfactory description of quantum electrodynamic correc-
tions to dynamical processes, and the subject of this paper is
to provide a first step in the direction of a high-precision
theoretical description of dynamical processes including ra-
diative corrections, using a laser-driven atom as a paradig-
matic example. Obviously, the treatment of radiative correc-
tions to a dynamically driven atomic transition requires input

from two different areas, which are laser physics and quan-
tum electrodynamics. While the two areas are related, there
are a couple of subtle points to consider when a unified un-
derstanding of a specific problem is sought, whose nature
inevitably requires concepts introduced within the context of
either of the two areas. In particular, it is known that the
description of dynamical processes requires considerable
care in the treatment of the gauge dependence of amplitudes,
and with regard to the physical interpretation of the wave
functions used in the mathematical description[12–21].

A classic textbook example for a dynamical atom-laser
system, well known in theoretical quantum optics[22], con-
sists of the Jaynes-Cummings model of an atom that contains
two relevant energy levels interacting with a single mono-
chromatic laser-field mode[23]. Due to the driving of the
laser field, the atomic population undergoes Rabi oscilla-
tions. The population is driven periodically from the upper to
the lower state and vice versa. The emission spectrum of this
process with a strong driving field is known as the Mollow
spectrum[24]. This case of strong driving may easily be
interpreted in terms of the so-called dressed states. Laser-
dressed states are defined as the eigenstates of the combined
system of atom and driving-laser field[25] and have proven
to be useful in countless cases of both theory and experi-
ment, one of which is the Autler-Townes splitting[26].

When evaluating radiative corrections to the Mollow
spectrum, it is natural to start from the dressed-state basis,
which consists of the natural eigenstates of the(strongly)
coupled atom-laser system rather than the bare atomic states.
It might be assumed that in order to fully treat the Lamb shift
of laser-dressed states, it would be sufficient to simply cor-
rect the energies of the bare states that enter into the formu-
las for the generalized Rabi frequencies by the “bare-state”
(i.e., the usual, ordinary) Lamb shift. Indeed, the first inves-
tigations on the problem[27] revealed corrections to the
dressed-state “quasienergies” consistent with this assump-
tion. However, recently, it was found that at nonvanishing
detuning and Rabi frequency, the Lamb shift of dressed
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states is nontrivially different from the bare-Lamb shift
[28,29]. Thus the distinction between evaluations in terms of
the bare- and the dressed-state basis in fact has to be made.
In the limit of vanishing detuning, the coincidence of the
bare and dressed-Lamb-shift effects on the detuning is ob-
tained only after a summation of a specific series whose lead-
ing correction term may be obtained by carrying out the
calculation to second order in the atom-field interaction. A
diagrammatic representation of a radiative correction to the
dressed state is shown in Fig. 1.

Thus in this paper we present a detailed and complete
theoretical analysis of the leading nonrelativistic and relativ-
istic corrections to the Mollow spectrum, up to the relative
orders of sZad2 and asZad2, respectively, and of Bloch-
Siegert shifts as well as stimulated radiative corrections in-
volving off-resonant virtual states, and laser-field
configuration-dependent corrections. The purpose is to en-
able a direct comparison between theory and experiment for
a high-precision spectroscopic investigation involving laser-
dressed states. Such a comparison to experimental data
would allow one to address questions related to the physical
reality of the dressed states(and their “quasienergy”) on the
one hand, and of the nature and the interpretation of the
various radiative corrections on the other hand. As a prom-
ising candidate for the experiment, we identify the resonance
fluorescence spectrum of a strongly driven hydrogen 1S-2P
transition, which to lowest order may be described by the
standard Mollow spectrum. A coherent Lyman-a source
[30,31] has recently become available as a driving field, and
we show that ionization into the continuum does not prohibit
an experimental implementation. In particular, we discuss
corrections which are due to resonant and off-resonant exci-
tations as well as the Bloch–Siegert shift, and corrections to
the transition dipole moment and to the secular approxima-
tion leading to the Mollow spectrum. As a result, we provide
theoretical predictions which are directly comparable to pos-
sible experimental data.

The paper is organized as follows. In Sec. II we introduce
our system of interest and provide the relevant theoretical
background for the further analysis. In Sec. III we evaluate
the corrections to the Mollow spectrum, which we divide
into modifications of the detuning(Sec. III A) and the Rabi
frequency(Sec. III B). The dominant relativistic corrections
are of the order ofsZad2, where Z is the nuclear charge
number, and leading radiative effects lead to correction terms
of the order ofasZad2 lnfsZad−2g. In Sec. IV we provide
numerical data for the hydrogen 1S-2Pj transitionss j = 1

2 , 3
2

d.

Section V discusses and summarizes the results.

II. MOLLOW SPECTRUM

In this section, we introduce our system and recall results
of previous studies which will serve as the basis of our
analysis. Throughout the calculations, we adopt natural units
with "=e0=c=1. The electron mass is denoted bym. We
make use of the Einstein summation convention unless stated
otherwise, and we employ the length gauge for all wave
functions and operators as we deal with off-resonant excita-
tions, as it is done in most of the literature, and in textbooks
on the subject(see, e.g.,[22]). The Mollow spectrum con-
tains the incoherent, inelastic part of the atomic fluorescence,
i.e., the fluorescence spectrum mediated by the many-photon
processes whose intensity dominates over the elastic part in a
strongly driven atom-laser system. In a purely quantum elec-
trodynamic formalism, the description of many-photon pro-
cesses would require perturbation theory in exceedingly high
orders. However, as is well known, the description using
dressed states[25] allows for a considerable simplification,
as the formulas for the Mollow spectrum[24] follow rather
naturally in terms of transitions among the dressed-atomic
states which incorporate the atom-laser interaction to all or-
ders in perturbation theory.

Before we now start with the discussion of the Mollow
spectrum, a slight detour on questions related to gauge trans-
formations of the laser-atom interaction is in order. The
“length gauge” means that the laser-atom interaction is for-
mulated in terms of the interaction −qEL ·x, whereq is the
physical electron charge andEL is the (gauge invariant, ob-
servable) laser-field strength. Instead, in the “velocity
gauge,” the interaction is formulated as −qAL ·p/m, where
AL is a gauge-dependent suitable vector potential for the
laser field. In the velocity gauge, of course, one also has to
add theAL

2 term, but dipole interactions are mediated exclu-
sively by the “AL ·p” interaction. Due to gauge invariance,
the two possible gauges are equivalent,provided that the
gauge transformation of the wave function is properly taken
into account[22,32]. In order to avoid confusion, we stress
here the absolute necessity of considering the gauge transfor-
mation of the wave function in dynamical processes[12–21].
According to [13,21], the usual physical interpretation of a
Schrödinger wave function is only conserved if the length
gauge is used for the description of the atom-laser interac-
tion. For dynamical processes, the velocity gauge leads to
many more terms in intermediate steps of the calculation
than the length-gauge formulation chosen here, due to the
necessity of applying the gauge transformation to the wave
function. Nevertheless, we would like to mention the possi-
bility of an independent verification of our derivation, as
presented here, in different gauges. In this case, the gauge
transformation of the wave function should be applied al-
ready on the level of quantum mechanics(i.e., on the level of
the Mollow spectrum as discussed in the current section), not
just to the quantum electrodynamic corrections discussed in
the following sections. This concludes our detour regarding
gauge transformations.

FIG. 1. Diagrammatic representation of a radiative self-energy
correction to the laser-dressed atomic state. The double line corre-
sponds to the electron bound by the nuclear Coulomb field. The
jagged line denotes the additional dressing of the bound electron by
the (strong) laser field. The self-energy of a laser-dressed Coulomb-
bound electron is a quantum-field theoretic problem in the presence
of two classical background fields.
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We recall from[24,28,29] that the incoherent resonance
fluorescence spectrum of atoms driven by a monochromatic
coherent laser field may be expressed as

Sincsvd =
G

p

2G2 + V2 + 2sv − vLd2

G2 + 2V2 + 4D2

3
4GV4

X0 + X2G2 + X4G4 + X6G6 , s2.1d

where

X0 = 16fD2 + V2 − sv − vLd2g2sv − vLd2, s2.2ad

X2 = 4f6sv − vLd4 − 2s3D2 − V2dsv − vLd2 + s2D2 + V2d2g,

s2.2bd

X4 = 8D2 + 4V2 + 9sv − vLd2, s2.2cd

X6 = 1. s2.2dd

Here,V is the Rabi frequency

V = − qkeux · eLuglEL s2.3d

of the driving-laser fieldELstd=ELeL cossvLtd with fre-
quencyvL, macroscopic classical amplitudeEL, and polar-
ization eL. q=−uqu is the electron charge.D=vL −veg is the
detuning of the laser-field frequency from the atomic transi-
tion frequencyveg, and G is the spontaneous decay rate of
the atomic transition. The excited and the ground state of the
laser-driven transition are denoted byuel and ugl, respec-
tively, and x is the position operator vector. In secular ap-
proximationV@G, this expression simplifies to

Sincsvd <
G

p
F G0A0

sv − vLd2 + G0
2 +

G+A+

sv − vL − VRd2 + G+
2

+
G−A−

sv − vL + VRd2 + G−
2G . s2.4d

Here, the separation of the Mollow spectrum into one central
peak located atv=vL and into two sidebands shifted by the
generalized Rabi frequencyVR=ÎD2+V2 may easily be
seen. The amplitudes and widths are given by

A0 =
V6

4VR
2sVR

2 + D2d2 , s2.5ad

A± =
V4

8VR
2sVR

2 + D2d
, s2.5bd

G0 = G
V2 + 2D2

2VR
2 , s2.5cd

G± = G
3V2 + 2D2

4VR
2 . s2.5dd

The approximate form(2.4) does not represent the positions
of the sideband peaks accurately in cases whereG /VR is not
small. Indeed, the positionv± of the sideband peaks may be

expanded in a series in powers ofG /VR whose first terms
read

v± = vL ± VRF1 −
4 + y2

8s1 + y2d
S G

VR
D2

−
70 + 8y2 + y4

128s1 + y2d2 S G

VR
D4

+ OS G

VR
D6G , s2.6d

with y=D /V. For vanishing detuningD=0, which implies
VR=V, Eq. (2.6) specializes to

v± = vL + VF1 −
1

2
S G

V
D2

−
35

64
S G

V
D4

+ OS G

V
D6G .

s2.7d

The correction terms move the sideband peaks closer to the
central maximum.

The above results in secular approximation may easily be
interpreted with the help of the so-called dressed states,
which are defined as the eigenstates of the interaction part of
the Hamiltonian. Under the influence of the external driving
field, the atomic states are no longer eigenstates of the
Hamiltonian, but rather have to be combined with the
driving-laser field to give the new eigenstates. To show the
precise composition of the dressed states, we use the quan-
tum representations of the Rabi frequency

Vn = 2 gL
În + 1, s2.8d

the mixing angleun defined by

tans2und = − Vn/D, s2.9d

and the generalized Rabi frequency

VR
snd = ÎVn

2 + D2 s2.10d

rather than the corresponding classical entities. Here,n is the
number of photons in the laser-field mode, and the coupling
constantgL for the interaction of the driving-laser field with
the main atomic transition is defined by

gL = − qkgueL ·xuelEL
sgd, s2.11d

whereEL
sgd=ÎvL /2V is the electric laser field per photon and

V is the quantization volume. The matching of the electric
field per photon with the corresponding classical macro-
scopic electric fieldEL is given by

2În + 1EL
sgd ↔ EL . s2.12d

Throughout this paper, we will sometimes refer to the quan-
tum description during the derivations, but use the classical
entities in the final results. We may switch between the two
descriptions as the driving laser field is assumed to be in-
tense in our analysis. The matching of the quantum and the
classical entities is possible with the help of the following
list of replacements:

Vn ↔ V, s2.13ad

un ↔ u, s2.13bd
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n + 1 < n. s2.13cd

Using this notation, the dressed states are given by

us+ ,ndl = cosunue,nl + sinunug,n + 1l, s2.14ad

us− ,ndl = − sinunue,nl + cosunug,n + 1l. s2.14bd

Here, ui ,nl si P he,gjd are combined atom-field states where
the atom is in statei with n photons in the driving-field
mode. The energies of these dressed states are given by
E±,n= sn+ 1

2
dvL +veg/2±VR

snd /2, where the splitting between
the two dressed statesus±,ndl is known as the ac Stark shift.
The various spectral components then arise from transitions
us±,ndl→ us±,n−1dl. The transitions +→+ and −→− yield
the central Mollow component and the coherent elastic peak,
while the transitions +→− and −→+ yield the sidebands
shifted to higher and lower frequencies, respectively.

III. CALCULATION OF RELATIVISTIC AND RADIATIVE
CORRECTIONS TO THE MOLLOW SPECTRUM

In the following, we discuss corrections whose under-
standing is essential for the additional relativistic and radia-
tive energy shifts received by the dressed states. First, we
evaluate corrections which may be incorporated in a redefi-
nition of the detuning of the driving-laser field to the atomic
transition frequency; in the second part, we complete the
analysis by considering corrections which effectively modify
the Rabi frequency. Throughout the analysis, we focus on the
hydrogen 1S-2P transition as a promising candidate for a
possible experiment.

In Sec. II we have employed a purely nonrelativistic
theory. Both the resonance frequency as well as the transition
dipole moments are evaluated first for the nonrelativistic
(Schrödinger) case. However, in order to resolve radiative
effects, it is necessary to include the relativistic shifts of the
transitions in a unified theory, and to analyze the fine struc-
ture. The nonrelativistic expressions for the transition dipole
moments also change once we resolve the fine-structure lev-
els, because the angular momentum algebra is augmented by
the spin.

A. Corrections to the detuning

1. Relativistic corrections to the resonance frequency

The well-known relativistic correction to the hydrogen
energy levels is given by

Hrel = −
p4

8m3 +
pZa

2m2 dsrd +
Za

4m2r3s ·L . s3.1d

The effects are of the order ofsZad4m, whereas the
Schrödinger energy is of the order ofsZad2m. The full ex-
pression for the Dirac energy of a hydrogenic level with
quantum numbersn,j , is [[33], Eq. (2-87)]

Enj = m−
sZad2m

2n2 −
sZad4m

n3 F 1

2j + 1
−

3

8n
G , s3.2d

where we neglect terms of ordersZad6. When evaluating the
expectation values ofHrel on the dressed states(2.14) in

first-order perturbation theory, the following expression re-
sults:

dv±, j
sreld = 7

D

ÎV2 + D2
Erel

s jd. s3.3d

Here

Erel
s1/2d = k2P1/2uHrelu2P1/2l − k1S1/2uHrelu1S1/2l, s3.4ad

and

Erel
s3/2d = k2P3/2uHrelu2P3/2l − k1S1/2uHrelu1S1/2l. s3.4bd

The expression fordv±, j
sreld finds a natural interpretation as a

first-order(in Erel
s jd) correction to the quantity

ÎV2 + sD − Erel
s jdd2 = ÎV2 + D2 −

D

ÎV2 + D2
Erel

s jd + ¯ .

s3.5d

We can thus formally define a “summed” relativistic shift of
the Mollow sidebands as

Dv̄±, j
sreld = ± fÎV2 + sD − Erel

s jdd2 − ÎV2 + D2g. s3.6d

We recall that the detuning has been defined asD=vL −veg
in Sec. II. If the fine structure is included, the resonance
frequency becomesj dependent. The shift of the detuning as
given in Eq.(3.6) is thus equivalent to a modification of the
resonance frequency according to

veg→ veg
s jd ; veg+ Erel

s jd, s3.7ad

D → D − Erel
s jd. s3.7bd

Thus, the summed shift of the detuning due to the relativistic
correction Erel

s jd, evaluated using the dressed-state basis, is
equivalent to the shift of the detuning that would have been
obtained if we had evaluated the detuning, right from the
start, with a resonance frequency corrected by the relativistic
effects. The “summation” implied by Eq.(3.6) thus finds a
natural interpretation.

Throughout the calculations, we will refer to shifts of the
Mollow sidebandsv± due to first-order perturbations asdv±
[see, e.g., Eq.(3.3)], whereas summed expressions like Eq.
(3.6) will be denoteddv̄±.

2. Bare Lamb shift

In addition to the relativistic shifts, the positions of the
sidebands have to be modified further if one desires a nu-
merical accuracy as required to appropriately model current
high-precision spectroscopy experiments. In[28,29], the
second-order radiative self-energy corrections due to the in-
teraction of the combined system of atom and driving-laser
field with the surrounding nonlaser-field vacuum modes was
analyzed. Taking into account both interactions of the atom-
field system with resonant and off-resonant intermediate
states, in the limitD ,V!veg (i.e., under the replacements
vL →veg, veg−vL ±VR→0, and vL +veg±VR→2veg), we
obtain corrections to the energy of the dressed states which
yield an additional shift of the position of the sidebands
given by
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dv±, j
sLambd = 7

D

ÎV2 + D2
Lbare

s jd . s3.8d

Here, the prefactor arises from the mixing coefficients cosu
and sinu, and Lbare

s jd is the usual Lamb shift of the atomic
bare-state transition frequency which for the hydrogen 1S
-2P transition is given by

Lbare
s jd = L2Pj

− L1S, s3.9d

where j = 1
2 , 3

2 is the total angular momentum quantum num-
ber of the excited state[for the definition of Lnlj

see also Eq.
(3.16) below]. The Lamb shifts of the individual states are
given by [34,35]

L1S= 8172 811s32d kHz, s3.10d

L2P1/2
= − 12 835.99s8d kHz, s3.11d

L2P3/2
= 12 517.46s8d kHz. s3.12d

The correction may be interpreted physically by defining the
dressed summed Lamb shiftdv̄±, j as

dv̄±, j
sLambd = ± fÎV2 + sD − Lbare

s jd d2 − ÎV2 + D2g ,

s3.13d

where to first order inLbare
s jd , one recovers Eq.(3.8). Thus the

correctiondv±, j
sLambd effectively is a shift

D → D − Lbare
s jd s3.14d

of the detuning[in analogy to Eq.(3.7b)].
With typical parameters(see Sec. IV), the summed ex-

pressiondv̄±
s jd yields results which significantly differ from

the first-order expressiondv±, j
sLambd. The reason is that the bare

Lamb shift is not small as compared to the detuningD, so
that the higher-order terms of the series expansion are rel-
evant. Nevertheless, we use the summed formula Eq.(3.13)
instead of Eq.(3.8), as it is the expected result in the sense
that the Lamb shift is naturally interpreted as a modification
of the transition frequency and a corresponding alteration of
the detuning.

3. Unified expressions for the relativistic and radiative shifts

Both the summed relativistic shift Eq.(3.6), as well as the
summed Lamb shift Eq.(3.13), are effectively summarizing
the corrections received by the detuning due to various shifts
that go beyond the nonrelativistic treatment of the hydrogen
(and Mollow) spectrum discussed in Sec. II. These effects
would also be observable in low-intensity scattering of(la-
ser) light off atoms, and are automatically included in the
observable resonance frequency of the transition whose high-
intensity behavior we are studying. The corrections can
therefore be included into the formalism if we replace the
detuningD by the detuningDexpt to the experimental transi-
tion frequency given by

Dexpt= vL − vexpt, s3.15d

wherevexpt is the experimentally observable transition fre-
quency as it would be obtained from low-intensity scattering

[36]. In Sec. II, we have started from a nonrelativistic theory,
and therefore the detuningD=vL −veg was calculated with
regard to the inaccurate resonance frequencyveg as it fol-
lows from the Schrödinger theory that fails, as is well
known, to describe even the relativistic effects that lead to
the fine structure(let alone the Lamb shift). Thus, in practice,
the bare Lamb shift modification to the detuning may be
accounted for by replacing the resonance frequencyveg as it
would be obtained from a nonrelativistic theory, by an ex-
perimental value for the atomic transition frequency as found
in low-intensity scattering experiments[36].

The frequencyvexpt may not be known well enough for
any given transition to lead to a meaningful comparison be-
tween theory and a conceivable high-accuracy measurement
of the Mollow spectrum. This is because we are sensitive, in
the measurement of the Mollow spectrum, to tiny differences
between the laser frequency and the actual resonance fre-
quency. It may therefore be useful to recall that for the Lamb
shift Lnlj

of a hydrogenic energy level(spectroscopic nota-
tion nlj), one may use the implicit definition(see, e.g.,
[34,37]),

Esnljd = mrffsn, jd − 1g −
mr

2

2sm+ mNd
ffsn, jd − 1g2 + Lnlj

+ Ehfs,

s3.16d

whereE is the energy level of the two-body system,fsn, jd is
the dimensionless Dirac energy,m is the electron mass,mr is
the reduced mass of the system, andmN is the nuclear mass.
In very accurate experiments, one also has to include the
hyperfine frequency shiftEhfs which depends on the quantum
numbermF that includes the nuclear spin. Note, however,
that the hyperfine structure does not contribute to the Lamb
shift according to the definition Eq.(3.16).

The expression Eq.(3.16) can be used to make a theoret-
ical predictionvth for the transition frequency by forming the
difference of this expression for the two states involved in
the atomic transition whose high-intensity behavior we are
studying. The detuning can then alternatively be evaluated as
Dth=vL −vth. Assumingvth=vexpt, one then hasDexp=Dth.
For some recent data on Lamb shifts, we refer to[35].

4. Bloch–Siegert shifts

The Mollow spectrum also receives corrections due to
so-called counterrotating interactions of the driving-laser
field with the atom[38]. These correspond to an excitation of
the atom simultaneously with a creation of a laser photon or
the vice versa process. The first-order perturbation vanishes,
and the second-order expression is given by[29]

DE±
sBSd = ±

V2

vL

8 coss2ud − sVR/vLdf3 + coss4udg
64 − 16sVR/vLd2

= ±
1

8

V2

ÎV2 + D2

2D2 + V2 + 4DvL

D2 + V2 − 4vL
2 . s3.17d

The correctiondv±
sBSd of the Mollow sidebands due to the

Bloch-Siegert shift is thus given by

dv±
sBSd = DE±

sBSd − DE7
sBSd s3.18d
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= 7
D

ÎV2 + D2
fBV2g. s3.19d

Here, the parameterfBV2g depends on the laser-field inten-
sity, which reflects the fact that the Bloch–Siegert shifts are
stimulated processes. AssumingV ,D!vL as a typical range
of parameters, one hasvL <vR and thus

B =
1

4vR
+ OsD/vL

2,V/vL
2d. s3.20d

Here, one should note that the energy shift Eq.(3.19) with B
as in Eq.(3.20) vanishes forD=0. This is consistent with the
analysis in[29,39], where it was found that the Bloch-Siegert
shift is suppressed by an additional power ofV /vL for van-
ishing detuning. We also define a summed Bloch-Siegert
shift in analogy with(3.6) and (3.13) as

dv̄±
sBSd = ± fÎV2 + sD − B V2d2 − ÎV2 + D2g. s3.21d

Effectively, the Bloch–Siegert shift may be accounted for by
the replacementD→D−BV2. This correction to the detuning
is proportional toV2, i.e., proportional to the laser intensity.

5. Off-resonant radiative corrections stimulated
by the atom-laser interaction

For these corrections, we restrict the atom-field interac-
tion to the laser mode, but take into account the off-resonant
(OR) atomic levelsu jl (i.e., u jlÞ uel,ugl). The leading effect is
the second-order perturbation

DE±,n
sORd =Ks±,ndUHL

1

E±,n − sHM + HFd
HLUs±,ndL .

s3.22d

Here, we have defined the Schrödinger-picture Hamiltonian
HL describing the interaction of the atom with the driving-
laser field, the free energy of the nonresonant atomic states
HM, and the free energy of the electromagnetic fieldsHF as

HL = − qx ·EL , s3.23ad

HM = o
jÞg,e

v ju jlk j u, s3.23bd

HF = o
kl

vkakl
† akl, s3.23cd

respectively, whereakl andakl
+ are annihilation and creation

operators for photons with wave vectork, frequencyvk, and
polarizationl, andv j s j Þg,ed are the energies of the non-
resonant intermediate states. The sum in Eq.(3.23c) extends
over all possible vacuum-field modes, andEL is the field
operator for the laser mode,

EL =ÎvL

2V
eLfaL + aL

+g. s3.24d

Here,eL is the polarization vector for the laser mode. As the
laser mode is highly populated with an occupation number
n@1, both the field annihilation and creation operators inHL

contribute[see also Eq.(2.12)]. The resulting expression for
the energy shift of the dressed stateus+,ndl is given by

DE+,n
sORd = o

jÞe,g
Hugeju2 cos2 uS n + 1

− v j + E1
+

n

− v j + E2
D

+ uggju2 sin2 uS n + 1

− v j + E3
+

n

− v j + E4
DJ ,

s3.25d

with

E1 = vg −
1

2
D +

1

2
VR < vg, s3.26ad

E2 = vg + 2vR +
3

2
D +

1

2
VR < vg + 2vR, s3.26bd

E3 = vg − vR −
3

2
D +

1

2
VR < vg − vR, s3.26cd

E4 = vg + vR +
1

2
D +

1

2
VR < vg + vR. s3.26dd

For the dressed stateus−,ndl, we have

DE−,n
sORd = o

jÞe,g
Hugeju2 sin2 uS n + 1

− v j + E1
+

n

− v j + E2
D

+ uggju2 cos2 uS n + 1

− v j + E3
+

n

− v j + E4
DJ .

s3.27d

In calculating these expressions, we may carry out the semi-
classical approximationn+1<n and replace the above Rabi
frequency by its semiclassical counterpart. The couplinggij
is defined by

gij = − qki ueL ·xu jlÎvL

2V
, s3.28d

and is of the same order of magnitude asgL. We therefore
obtain as the second-order shift due to the off-resonant en-
ergy levels,

dv±
sORd = DE±,n

sORd − DE7,n
sORd = ± D coss2udV2

= 7
D

ÎV2 + D2
fDV2g, s3.29d

whereD is the detuning and

D =
1

4gL
2 o

jÞe,g
Hugeju2S 1

− v j + E1
+

1

− v j + E2
D

− uggju2S 1

− v j + E3
+

1

− v j + E4
DJ s3.30d

depends again on the laser intensity. The energiesEi
(i =1,…,4) are defined in Eq.(3.26). Therefore this additional
shift is a stimulated radiative correction in the same sense as
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the corrections discussed in the previous section[32].
To further evaluate the parameterD, it is important to

note that the virtual states are coupled to the initial states by
the driving-laser field rather than by the vacuum as for ex-
ample in Lamb-shift calculations. Thus, the polarization of
the coupling field mode is fixed. For the off-resonant correc-
tions, it is sufficient to evaluate the relevant matrix elements
in the nonrelativistic approximation. So, if we assume the
atoms to be in the 1Sground state initially(m=0, of course),
then we have a situation in which for a given polarization of
the laser field not all magnetic sublevels of the 2P states are
coupled. In the following, we assume the driving-laser field
to be z polarizedfeL =s0,0,1dg, so that only them=0 sub-
levels of the 1S and the 2P ground and excited state are
occupied. Then, the parameterD may be rewritten as[see
Eq. (3.26)]

D =
MgsE3d + MgsE4d − MesE1d − MesE2d

4zkguzuelz2
s3.31d

in terms of the two matrix elements

Mgszd = kguzG9szdzugl, s3.32d

Meszd = keuzG9szdzuel, s3.33d

where the propagator is given by

Gszd =
1

H − z
, s3.34d

and where the double prime means thatboth resonant states
ugl= u1S,m=0l and uel= u2P,m=0l are excludedfrom the
sum over intermediate states in the Green function. The
evaluation ofMeszd requires special care, as there are bothS
(angular quantum numberl =0) andD sl =2d states as inter-
mediate states. Due to the fixed polarization of the coupling
field, the angular parts of these two contributions have dif-
ferent proportionality factors relative to the angular parts of
the “standard” matrix element

o
i=1

3

keuxiG9szdxiuel s3.35d

and thus have to be calculated separately. The above standard
matrix element may however be recovered from the matrix
elements for definite initial state and coupling field polariza-
tion by averaging appropriately. This is discussed in Appen-
dix B.

In the propagatorGszd, the energy is parametrized by the
(in general complex) parameters

z ; zstd = −
sZad2m

2n2t2
, s3.36ad

t ; tszd =
Za

n
Î−

m

2z
. s3.36bd

Usually, one hasz=E−v whereE is the bound-state energy,
and we may write

zstd = E − vstd = −
sZad2m

2n2 − vstd. s3.37d

The parametersv and t are related by the equations

v =
sZad2m

2n2

1 − t2

t2
, s3.38ad

tnlsvd = S1 +
2n2v

msZad2D−1/2

, s3.38bd

wheren, l are the principal and the angular momentum quan-
tum number of the quantum state for which the relevant ma-
trix elements are to be evaluated. In the following, we will
also use common spectroscopic notation for the level char-
acterized byn and l, i.e., for example,t2Psvd; t21svd. For
the energiesEi si P h1,… ,4jd andn=1,2, we thus obtain

tnlsEid =ÎEn

Ei
. s3.39d

The above matrix elements Eqs.(3.32) and (3.33) without
the double primes, i.e., including resonant intermediate
states, may then be expressed in terms of the standard hyper-
geometric function[34,40,41]

Fsn,td = 2F1X1,−nt,1 −nt,S1 − t

1 + t
D2C . s3.40d

as (see Appendix B)

M̄gszd = kguzGszdzugl = maB
4F 2t2xgstd

3st − 1d5st + 1d4

−
256t9

3st − 1d5st + 1d5Fs1,tdG , s3.41ad

M̄eszd = keuzGszdzuel = maB
4F 16t2xestd

15st − 1d7st + 1d5

−
214t11s23t2 − 7d

15st − 1d7st + 1d7Fs2,tdG , s3.41bd

where

xgstd = 38t7 + 26t6 + 19t5 − 19t4 − 12t3 + 12t2 + 3t − 3,

s3.42d

xestd = 6739t10 − 1702t9 − 231t8 − 1420t7 − 262t6 + 1944t5

− 402t4 − 1140t3 + 435t2 + 270t − 135. s3.43d

Here, the Bohr radius scaled by the nuclear charge numberZ,
in our units, is

aB =
1

Zam
, s3.44d

wherea is the fine-structure constant andm is the electron
mass.

The corresponding matrix elements without resonant in-
termediate states may then be obtained by subtracting the
respective contributions of the resonant intermediate states
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Mgszd = kguz G9szdzugl = M̄gszd −
zkguzuelz2

E2P − z
, s3.45d

Meszd = keuz G9szdzuel = M̄eszd −
zkguzuelz2

E1S− z
. s3.46d

We assume here that the Rabi frequency is not excessively
large, which implies that it is small as compared to the opti-
cal transition frequency(i.e., V!vR). For a meaningful
measurement of the Mollow spectrum, it is necessary, fur-
thermore, to tune the laser close to the atomic resonance
(which impliesD!vR). In this case, we may carry out the
following approximations[cf. Eq. (3.26)]

E1 → vg ⇒ t2PsE1d → 1/2, s3.47ad

E2 → vg + 2vR ⇒ t2PsE2d → Î− 0.5, s3.47bd

E3 → vg − vR ⇒ t1SsE3d → 2/Î7, s3.47cd

E4 → vg + vR ⇒ t1SsE4d → 2. s3.47dd

With these parameters,D evaluates to

D =
1

sZad2m
f6.2148s8d − 0.235 32s2dig

=
1

vR
f2.3305s3d − 0.088 245s6dig. s3.48d

The uncertainties are mainly due to the approximations car-
ried out in Eq.(3.47) with respect to the energiesEi (i =1, …,
4) originally defined in Eq.(3.26). This is possible because
the off-resonant stimulated radiative correction amounts to a
modification of the detuning which is of orderV2/vR!V
[see also Eq.(3.49) below]. Therefore we may carry out the
approximation Eq.(3.47), i.e., neglect the further corrections
of order V3/vR

2 !V2/vR and V2D /vR
2 !V2/vR, which are

beyond the scope of the current analysis. The real partDR
;ResDd gives rise to a shift of the position of the Mollow
sideband, while the imaginary partDI ; ImsDd describes the
ionization into the continuum. This means that the imaginary
part of the energy shiftsDE±,n

sORd received by the two dressed
statesus±,ndl must be negative, which is equivalent to a
negative sign for the imaginary partDI.

In the numerical analysis in Sec. IV, it is shown that for
typical parameters the system is sufficiently far from the ion-
ization threshold[42] so that the ionization does not restrict
the applicability of our scheme. The real part yields a cor-
rection to the detuning given byD→D−DRV2, according to
the summation[cf. Eq. (3.29)]

dv̄±
sORd = ± fÎV2 + sD − DRV2d2 − ÎV2 + D2g s3.49d

with

dv̄±
sORd < dv±

sORd = 7
D

ÎV2 + D2
fDRV2g. s3.50d

As pointed out below in Sec. IV(see also Table I), the mag-
nitude of the off-resonant correction is small as compared to

the detuning for typical parameters so that there is no nu-
merically significant difference between the first-order cor-
rection Eq.(3.29) and the summed form given in Eq.(3.49).

The first-order imaginary contribution to the Mollow side-
bands is

dv±
sImd = 7

D

ÎV2 + D2
fiDIV

2g. s3.51d

This effect broadens the sidebands slightly, but its contribu-
tion is so small for typical parameters(see Sec. IV below),
that it may be ignored on the current level of accuracy of the
theoretical predictions. It is interesting to note that the stimu-
lated off-resonant correction is small as compared to the rela-
tively large effect mediated by the bare Lamb shift of the
transition, which is discussed in Sec. III A 2.

B. Corrections to the Rabi frequency

In this section we discuss corrections to the incoherent
fluorescence spectrum due to modifications of the Rabi fre-
quency. In particular, we consider corrections to the transi-
tion dipole moment and to the spontaneous transition rate of
the atomic transition, due to coupling of the driving-laser
field to resonant and nonresonant atomic transitions, and cor-
rections to the secular approximation.

TABLE I. Summary of all individual energy shifts due to the
various discussed corrections. All numbers are obtained forhj

=1000 andD=50G j with j = 1
2

s j = 3
2

d for the left (right) column
using summation formulas such as Eq.(4.8). Here,dv̄+

sLambd is the
correction to the high-frequency Mollow sideband position related
to the bare Lamb shift(cf. Sec. III A 2), the symbol(BS) denotes
Bloch-Siegert shifts(Sec. III A 4), and the(OR) shifts are due to
off-resonant excitations(Sec. III A 5). These shifts all may be in-
terpreted as arising from a modified detuningD and are discussed in
Sec. III A. The other five corrections are due to a modified Rabi
frequency (Sec. III B). In particular, dv̄+

sRd is discussed in Sec.
III B 1 and refers to relativistic corrections, whereasdv̄+

sFd (Sec.
III B 2 ) is a field-configuration-dependent shift. The shiftdv̄+

sTDMd

(Secs. III B 4 and III B 5) refers to radiative corrections to the tran-
sition dipole matrix element, anddv̄+

sCd is a dynamic correction to
the Rabi frequency(Secs. III B 3 and III B 5). Finally, dv̄+

sSd is a
shift due to corrections to the secular approximation(Sec. III B 6).

Shift 1S1/2↔2P1/2

skHzd
1S1/2↔2P3/2

skHzd

dv̄+,j
sLambd 741 599(4) 738 281(4)

dv̄+
sBSd −50.30s5d −50.30s5d

dv̄+
sORd −468.51s6d −468.51s6d

dv̄+,j
sRd −1842.1s1d −1937.7s1d

dv̄+
sFd −331.44s2d −331.44s2d

dv̄+,j
sCd −121s31d −121s31d

dv̄+,j
sTDMd 374s25d 372(26)

dv̄+
sSd −49.8s2d −49.8s2d
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1. Relativistic corrections to the transition dipole moment

In this section we discuss relativistic corrections to the
fluorescence spectrum up to relative ordersZad2. The correc-
tions amount to a modification of the atomic transition fre-
quency and of the transition dipole moments. The relativistic
expressions for the state energies and the transition dipole
moments depend on the total angular quantum numbersj of
the involved states, which is the vectorial sum of the electron
orbital angular momentuml and its spins. Therefore, we
specify the total angular momentum quantum number and
thus the spin state of the atomic system in order to fix a
specific experimental setup(see also Appendix A). We fur-
ther assume the atom to be driven by a pure dipole laser field
linearly polarized in thez direction, such that the laser field
only couples states with equal magnetic quantum number.
The situation of a pure dipole field has recently been studied
in a related context in[43]. In the numerical analysis in Sec.
IV, we consider a standing wave laser-field configuration
where the atom is at a point of maximum electric-field inten-
sity of the standing wave. As then, the magnetic field com-
ponent of the driving laser may be neglected, it is not con-
sidered in the following analysis(corrections due to the
variation of the electric field about its maximum are treated
in Sec. III B 2).

The relativistic corrections to the energies of the atomic
states and thus to the atomic transition frequencies effec-
tively modify the detuningD and may be accounted for by
choosing an experimental value for the atomic transition fre-
quency as found in low-intensity scattering experiments(see
Sec. III A 3). The corrections to the transition dipole mo-
ments may be evaluated with the help of the relativistic wave
functions of the hydrogen atom as given in[44,45]. We de-
note the absolute relativistic correction to the nonrelativistic
matrix element

k1S1/2,m= ± 1
2uzu2Pj,m= ± 1

2lNR, s3.52d

by ddj
sRd, where j = 1

2 , 3
2 is the total angular momentum and

m= ± 1
2 is the magnetic quantum number. In the following,

we will omit the “m=” from the second parameter of the
atomic state vectors. Then the relativistic matrix element
(with subindex “R”) gives rise to a relativesZad2 correction
ddj

sRd /dj with respect to the nonrelativistic(NR) expression
which is given by

k1S1/2, ± 1
2uzu2Pj, ± 1

2lR

k1S1/2, ± 1
2uzu2Pj, ± 1

2lNR

= 1 +
ddj

sRd

dj
, s3.53d

where we ignore higher-order relativistic terms of order
sZadm with mù4. The corresponding matrix elements where
the “initial” and the “final” state have different magnetic
quantum numbers vanish identically as the driving-laser field
is assumed to be polarized in thez direction. Evaluating the
relative corrections, one obtains

dd1/2
sRd

d1/2
= − sZad2S13

32
+

3

2
ln 2 − ln 3D , s3.54ad

dd3/2
sRd

d3/2
= − sZad2S31

96
+

5

4
ln 2 −

3

4
ln 3D . s3.54bd

The Rabi frequency and the transition dipole moment depend
linearly on each other. Therefore, the relative correction to
the Rabi frequency is identical to the relative correction to
the transition dipole moment:

dV j
sRd

V
=

ddj
sRd

dj
. s3.55d

Here,dV j
sRd is the absolute correction to the Rabi frequency

due to relativistic modifications to the transition dipole mo-
ment. The spin-dependent shiftdv̄±, j

sRd of the position of the
Mollow sidebands due to the relativistic corrections of the
matrix element is thus given by

dv̄±, j
sRd = ± fÎsV + dV j

sRdd2 + D2 − ÎV2 + D2g , s3.56d

where

dv̄±, j
sRd < dv±, j

sRd = 7
V2

ÎV2 + D2
E j s3.57d

and

E j = −
ddj

sRd

dj
+ OSddj

dj
D2

. s3.58d

With these definitions, the summed relativistic correction to
the dipole moment effectively corresponds to a replacement
V→Vs1−E jd.

2. Field-configuration-dependent correction
to the Rabi frequency

It is well known that the magnetic component of plane-
wave electromagnetic wave influences the transition current
at relative ordersZad2 (see, e.g.,[34,46,47]). The radiation
pressure due to the magnetic field could move the atom.
Therefore, we propose a standing-wave field configuration,
where the atom is placed at an antinode of the standing-wave
electric field. In this setup, the influence of the magnetic field
can be neglected to a very good approximation.

The analysis of the previous Sec. III B 1 is valid up to the
order discussed[relative ordersZad2] only for a pure dipole
field which additionally has to be constant in any direction
perpendicular to the polarization. However, for a standing-
wave configuration, thez-polarized electric field of the laser
is not constant in the propagationsxd direction. This leads to
a further correction, which gives rise to a field-configuration-
dependent shift of the Rabi frequency. In the following, this
shift of relative ordersZad2 is analyzed for the setup de-
scribed above where the atom is at the maximum of the
standing-wave electric field.

We start from the long-wavelength quantum electrody-
namic(LWQED) interaction Hamiltonian[47]. The only rel-
evant terms(in the context of our analysis) of the interaction
part of this Hamiltonian are
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HI
LW = − qx ·E −

q

2
xixjE,j

i −
q

6
xixjxkE,jk

i . s3.59d

Here, thexi denotes theith component of the position opera-
tor vectorx, andE,j

i is the partial derivative with respect toxj

of the ith component of the electric-field vector. The electric
field of the standing wave is given by

Est,xd = êzESW cossvtdcosskxd. s3.60d

The term containing the first derivative of the electric field in
Eq. (3.59) vanishes, and the last term gives

−
q

6
xixjxkE,jk

i = −
q

6
z x2E,xx

z =
q

6
z k2x2ESW cossvtd.

s3.61d

This result has to be distinguished from a simple expansion
of the electric field around the maximum atx=0, which
yields

− q r ·Est,xd = − q z ESW cossvtdcosskxd = − qzESW cossvtd

3S1 −
skxd2

2
+ Osx4dD . s3.62d

This naive expansion gives the wrong prefactor and is not
applicable here.

The term in Eq.(3.61) entails a spin-independent correc-
tion to the transition dipole moment. At resonance, one has

k =
3

8
sZad2m. s3.63d

The relative correction due to the additional contribution Eq.
(3.61) to the interaction Hamiltonian is therefore

−
k2

6

k1S,m= 0uz x2u2P,m= 0l
k1S,m= 0uzu2P,m= 0l

= −
1

16
sZad2. s3.64d

Analogous to Eq.(3.53), this modification of the transition
dipole moment, for a 1S-2P transition, gives rise to a correc-
tion to the Rabi frequency given by

dVsFd = −
1

16
sZad2V. s3.65d

The summed shiftdv̄±
sFd of the Mollow sidebands due to this

modification of the Rabi frequency can be expressed as

dv̄±
sFd = ± fÎsV + dVsFdd2 + D2 − ÎV2 + D2g, s3.66d

where

dv̄±
sFd < dv±

sFd = 7
V2

ÎV2 + D2
F s3.67d

and

F =
1

16
sZad2. s3.68d

With these definitions, the summed relativistic correction to
the dipole moment effectively corresponds to a replacement
V→Vs1−Fd.

It is important to note that the long-wave QED correction
to the interaction Hamiltonian Eq.(3.59) does not couple any
unwanted magnetic quantum numbers to the laser-driven
doublet.

3. Higher-order corrections (inV and D) to the self-energy
of dressed states and corresponding correction

to the Rabi frequency

The Lamb shift of dressed states is different from the
Lamb shift of atomic bare states, as already discussed in Sec.
I. In this section, we extend the analysis of Sec. III A 2 to the
next-higher order. For this, we keep the terms linear inV and
D in evaluating the energy shifts of the dressed states. As
explained in detail in[28,29], we thereby obtain a further
correction to the position of the fluorescence sidebands
which may be expressed as

dv±
sCd = 7 C V2

ÎV2 + D2
, s3.69d

where

C =
a

p
lnfsZad−2g

kp2lg + kp2le

m2 s3.70d

is a dimensionless constant. For the hydrogen 1S-2P transi-
tion, the leading logarithmic term is independent of the spin
and given by

C =
5

4p
asZad2 lnfsZad−2g. s3.71d

This correction may be interpreted physically with a summa-
tion as used for the bare Lamb-shift correction

dv̄±
sCd = ± fÎV2s1 −Cd2 + D2 − ÎV2 + D2g, s3.72d

with dv̄±
sCd<dv±

sCd because of the smallness of the correc-
tion. Thus the additional shiftdv±

sCd may be interpreted as a
radiative correctionV→Vs1−Cd of the Rabi frequency.

4. Leading logarithmic radiative corrections to the transition
dipole moment (vertex corrections)

In “normal” bound-state quantum electrodynamics, vertex
corrections are evaluated with respect to the interaction of
the electron with the binding field of the atomic nucleus. In
an effective treatment, and in leading logarithmic approxima-
tion, the effect of the self-energy may be accounted for by
making use of an effective Lamb-shift potential[48]

DVLambsrd =
4

3
asZadlnfsZad−2g

ds3dsrd
m2 , s3.73d

which modifies the Coulomb interaction according to

−
Za

r
→ −

Za

r
+ DVLambsrd. s3.74d

Note that the potential(3.73) is really the consequence of a
self-energy(“vertex”) correction, not that of vacuum polar-
ization. In many cases, vacuum polarization corrections may
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also be accounted for by employing an effective potential,
but the corresponding potential lacks the large logarithm
lnfsZad−2g. An accurate treatment of self-energy corrections
requires the consideration of many more terms than the crude
approximation(3.73).

Here, we evaluate the leading vertex corrections to the
interaction of the bound electron with the driving-laser field,
and so we have to consider both the Coulomb as well as the
laser field. Nonrelativistically, the atom-laser interaction is
given by the matrix element of the usual interaction Hamil-
tonian, which reads(length gauge, 1S⇔2P transition)
−qELk1Suzu2Pl=−qELd whereEL is the field strength of the
(strong) laser field and the dipole moment is

d = k2Puzu1Sl =
27

35
Î2

1

msZad
. s3.75d

Vertex corrections lead to modifications of the dipole mo-
ment given byd→d+dd, where the vertex correctiondd is
considered below, and the radiative correction(in the length
gauge) to the laser-atom interaction is effectively a replace-
ment −qELd→−qELsd+ddd. The large intensity of the
driving-laser field is accounted for in this formalism because
the electric laser-field strengthEL multiplies both the dipole
moment matrix element of the interaction Hamiltoniand and
the radiative correctiondd.

Laser photons as well as the spontaneously emitted pho-
tons in the radiative decay of excited states are real rather
than virtual. Consequently, the radiative corrections to the
laser-atom interaction on the one hand and to the radiative
decay rate on the other hand are related to each other. In the
length gauge, the leading-order expression for the spontane-
ous emission decay rate is

G =
4

3
aE3d2 =

28

38asZad4m. s3.76d

In order to obtain gauge-invariant results for the quantum
electrodynamic corrections toG (while working in the length
gauge), it is necessary to consider both radiative vertex cor-
rections to the dipole momentd and corrections to the(bare)
transition frequency (energy difference) E (see Refs.
[48–50]). In our treatment, the vertex corrections to the di-
pole moment are given in Eqs.(3.81), (3.86a), and (3.86b),
whereas the vertex corrections to the transition frequency
enter into the radiative correction to the detuning in Eq.
(4.10a).

In general, the vertex corrections to the laser-atom inter-
action enter at the relative order ofOsasZad2 lnfsZad−2gd.
One may wonder why the corrections do not enter at the
relative orderOsad. The reason is that in interactions with
real photons(the square of the four momentum beingq2=0),
the otherwise dominant correction due to theF1 Dirac form
factor vanishes, and the remaining terms are then of higher
order in theZa expansion.

We now analyze the shift of the resonance frequency and
the shift of the transition dipole moment induced by the
Lamb-shift potential(3.73). The transition energy

E = E2P − E1S=
3

8
sZad2m s3.77d

is shifted byVLamb according to

dEslogd = − k1SuDVLambsrdu1Sl = −
4m

3p
asZad4 lnfsZad−2g,

s3.78d

because the matrix element of the 2P state vanishes. This
yields a relative shift of

dEslogd

E
= −

32

9p
asZad2 lnfsZad−2g. s3.79d

The modification of the matrix element due to the corrections
to the 1S-wave function amounts to

ddslogd =K2PUzS 1

E − H
D8

DVLambsrdU1SL
= Î2

25asZad
37mp

lnfsZad−2gS48 ln
4

3
+ 131D ,

s3.80d

where the prime denotes the reduced Green function. Thus,
the logarithmic relative correction is[49]

ddslogd

d
=

asZad2

p
lnfsZad−2gS4

3
ln

4

3
+

131

36
D . s3.81d

This leads to a correction to the Rabi frequency analogous to
Eq. (3.55),

dVslogd

V
=

ddslogd

d
, s3.82d

where we may ignore the spin, in contrast to Eq.(3.54).
The interpretation of this shift is analogous to the relativ-

istic corrections to the dipole matrix element in Sec. III B 1.
The Mollow sidebands are shifted by the frequency

dv̄±
slogd = ± fÎsV + dVslogdd2 + D2 − ÎV2 + D2g,

s3.83d

where

dv̄±
slogd < dv±

slogd = ±
V2

ÎV2 + D2
A, s3.84d

and

A =
ddslogd

d
+ OSddslogd

d
D2

s3.85d

is a dimensionless constant. Then, these corrections may be
accounted for by the replacementV→Vs1+Ad. One should
note that at this parametric order, the above results hold for
both states 2P1/2 and 2P3/2 [49,50].

5. Nonlogarithmic vertex and vacuum polarization corrections
to the transition dipole moment

The concurrence of the radiative shifts to the transition
dipole matrix elements for the 1S-2P1/2 and the 1S-2P3/2
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transitions, which was found in Sec. III B 4 for the effects of
relative orderasZad2 lnfsZad−2g, is lifted on taking into ac-
count corrections of orderasZad2 (no logarithms) due to the
self-energy. Vacuum polarization corrections to the transition
dipole matrix elements also enter at the relative order of
asZad2.

The sum of the nonlogarithmic(“nlog” ) vertex and
vacuum polarization corrections to the transition dipole mo-
ments of orderasZad2 are given by[50]

dd1/2
snlogd

d1/2
= −

asZad2

p
9.2s1.8d s3.86ad

for the 2P1/2 state and by

dd3/2
snlogd

d3/2
= −

asZad2

p
9.3s1.9d s3.86bd

for the 2P3/2 state [50]. In between Eqs.(70) and (71) of
[50], it is stated that currently, there is an internal discrep-
ancy between the numerically obtained values for the radia-
tive correction atZ=5,10,… on the one hand, and analytic
results for the first terms of theZa expansionslogarithm
+constantd on the other hand. This discrepancy is of the or-
der of 10% of the total constant term of orderasZad2, and
this limits the current status of the theory. Here, we employ
an even more conservative error estimate and assign a 20%
uncertainty to both of the numerical values in Eqs.(3.86a)
and (3.86b). The corresponding correction to the Rabi fre-
quency is again analogous to Eq.(3.55),

dV j
snlogd

V
=

ddj
snlogd

dj
. s3.87d

One obtains the following total correctiondv̄±, j
sTDMd to the

position of the sidebands due to logarithmic and nonlogarith-
mic correction to the transition dipole matrix element
(TDM):

dv̄±, j
sTDMd = ± fÎsV + dVslogd + dV j

snlogdd2 + D2 − ÎV2 + D2g ,

s3.88d

where

dv̄±, j
sTDMd < dv±, j

sTDMd = ±
V2

ÎV2 + D2
A j s3.89d

and

A j =
ddslogd

d
+

ddj
snlogd

dj
+ O„asZad3

…. s3.90d

A j is a dimensionless constant andj = 1
2 , 3

2. Thus the correc-
tions amount to a modification of the Rabi frequency given
by V→Vs1+A jd.

We expect a similar nonlogarithmic correction of order
asZad2 to supplement theC term discussed in Sec. III B 3.
The logarithmicC term was found to be of the order of
asZad2 lnfsZad−2g. The evaluation of the corresponding non-
logarithmic term is, however, beyond the scope of this work.
Here, we only present a(conservative) estimate of the ex-
pected correction. To this end, we observe that the general

form of the radiative corrections under discussion is

asZad2 lnfsZad−2gc1 + asZad2c2, s3.91d

wherec1 andc2 are dimensionless constants. Based on expe-
rience with similar corrections(both for self-energy effects
and well as radiative corrections to decay rates[37,50]), we
assume the following relation with the corresponding uncer-
tainty for the unknown parameterc2:

c2 = s− 2 ± 2dc1. s3.92d

For example, we verify the validity of this estimate for the
particular contribution to the nonlogarithmic part discussed
above, i.e., for the terms that contribute toA j. For these
terms, the estimates−2±2dc1 evaluates to −2.56±2.56 for
the constant term. In comparison, the values obtained above
for c2 by a direct numerical analysis are −2.92 for the cor-
rectionA1/2, and −2.97 for the correctionA3/2, which agrees
to the estimate. For theC-term correction, we thus obtain
from Eqs.(3.71) and (3.92)

C j = asZad2S 5

4p
lnfsZad−2g −

5

4p
s2 ± 2dD s3.93d

as the combination of the logarithmic and the estimated non-
logarithmic correction. We expect the nonlogarithmic correc-
tion to be spin dependent in analogy to Eq.(3.86a) and
(3.86b). As for the correction to the matrix element, this
shifts the Mollow sidebands by[see also Eq.(3.72)]

dv̄±, j
sCd = ± fÎV2s1 −C jd2 + D2 − ÎV2 + D2g < 7

V2

ÎV2 + D2
C j ,

s3.94d

such that the correction may be applied by the replacement
V→Vs1−C jd.

6. Corrections to the secular approximation

In this section we transform the correction terms to the
secular approximation in Eq.(2.6) such that they may be
integrated into our correction scheme. Equation(2.6) may be
rewritten as

v± = vL ± VR 7
V2

ÎV2 + D2
S, s3.95d

S =
4 + y2

8s1 + y2d
S G

V
D2

+ OS G

V
D4

. s3.96d

For D!V, one may expand the leading contribution toS to
give

S =
1

2
S G

V
D2

+ OSD2G2

V4 D . s3.97d

With this definition, the corrections to the secular approxi-
mation may be accounted for in the final result with the
replacementV→Vs1−Sd, which results in a summed shift
of

dv̄±
sSd = ± fÎV2s1 −Sd2 + D2 − ÎV2 + D2g. s3.98d
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IV. NUMERICAL DATA FOR THE HYDROGEN 1 S-2Pj

TRANSITIONS „j = 1
2 , 3

2
…

In the preceding section, we have discussed both correc-
tions to the detuning and to the Rabi frequency, which give
rise to a modification of the positions of the sidebands in the
Mollow spectrum. We start the evaluation of correction terms
here from a point where we assume that all relativistic cor-
rections to the transition frequency, as well as hyperfine-
structure effects, have already been included in the bare tran-
sition frequency. This frequency corresponds to the
prediction obtained using Eq.(3.16) by setting Lnlj

explicitly
equal to zero. We therefore redefine the detuningD to be

D = vL − ṽR, s4.1d

where[cf. Eq. (3.16)]

ṽR = Ẽs2Pjd − Ẽs1Sd s4.2d

with

Ẽsnljd = mrffsn, jd − 1g −
mr

2

2sm+ mNd
ffsn, jd − 1g2 + Ehfs.

s4.3d

Of course, the full theoretical predictionEsnljd is obtained as

the sum ofẼsnljd and Lnlj
. The modification of the Rabi

frequency due to the bare Lamb shift

Lbare
s jd = L2Pj

− L1S, s4.4d

as discussed in Sec. III A 2, finds a natural interpretation as a
contribution to theLamb shift of the dressed states. The vari-
ous first-order correction terms to the lowest-order prediction
for the generalized Mollow-sideband displacement

±ÎV2 + D2, s4.5d

starting from Eq.(4.1), may be summarized as follows:

dv±
s jd = 7

D

ÎV2 + D2
sLbare

s jd + B V2 + DRV2d

±
V2

ÎV2 + D2
sA j − C j − E j − F − Sd, s4.6d

where

Lbare
s1/2d = − 8185.647s34d 3 106 Hz, s4.7ad

Lbare
s3/2d = − 8160.294s34d 3 106 Hz, s4.7bd

B =
1

4vR
, s4.7cd

D = DR + iDI =
1

vR
f2.3305s3d − 0.088 245s6dig,

s4.7dd

A =
asZad2

p
lnsZad−2S4

3
ln

4

3
+

131

36
D , s4.7ed

A1/2 = A −
asZad2

p
9.2s1.8d, s4.7fd

A3/2 = A −
asZad2

p
9.3s1.9d, s4.7gd

C j = asZad2 5

4p
hlnfsZad−2g − s2 ± 2dj, s4.7hd

E1/2 = sZad2S13

32
+

3

2
ln 2 − ln 3D , s4.7id

E3/2 = sZad2S31

96
+

5

4
ln 2 −

3

4
ln 3D , s4.7jd

F =
1

16
sZad2, s4.7kd

S =
1

2
S G

V
D2

. s4.7ld

We have found that the bare Lamb shiftLbare
s jd , the Bloch–

Siegert shiftsBd, and the off-resonant self-energy corrections
sDRd give rise to a modification of the detuningD in the
expression for the Mollow spectrum. As the latter two effects
are intensity dependent, also their correction to the detuning
depends on the intensity of the incident laser field. The modi-
fications to the transition dipole momentsA j ,E j ,Fd as well
as the higher-order resonant self-energy shiftssC jd and the
correction to the secular approximationsSd may be inter-
preted as radiative corrections to the Rabi frequencysVd.
The interpretations as a modification of the detuning and the
Rabi frequency may best be seen by using a summation of
Eq. (4.6), which we have shown to be valid up to first order
in the parameters in Eq.(4.7):

dv̄±
s jd = ± sVC

s jd − ÎV2 + D2d s4.8d

with

VC
s jd = ÎV2s1 + V̂rad

s jd d2 + sD − Drad
s jd d2. s4.9d

Here, the Rabi frequency and detuning are supplemented by
the discussed relativistic and radiative corrections; these are
given by

Drad
s jd = Lbare

s jd + BV2 + DRV2, s4.10ad

V̂rad
s jd = A j − C j − E j − F − S. s4.10bd

This summation implied by Eq.(4.8) is motivated by Eqs.
(3.6), (3.13), (3.21), (3.49), (3.56), (3.72), (3.88), (3.66),
(3.94), and(3.98). In Eq.(4.10b), the symbolV̂rad

s jd indicates a
relative modification of the Rabi frequency, i.e., a dimension-
less quantity.

We have thus summed all the radiative corrections as ef-
fective corrections to the Rabi frequency and the detuning.
Of course, the mixing angleu as defined in Eqs.(2.9) and
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(2.13b) is changed by the radiative corrections. Indeed, one
may evaluate the correctedu by employing the relation
tans2ud=−Vcorr/Dcorr, whereDcorr=D−Drad

s jd and Vcorr=V·s1
+V̂rad

s jd d are the relativistically and radiatively corrected Rabi
frequency and the detuning, respectively[see Eqs.(4.10b)
and(4.10a)]. Because all relativistic and radiative corrections
find a natural interpretation as corrections to the Rabi fre-
quency and the detuning, the corrected dressed states have
the same structure as Eqs.(2.14a) and(2.14b), but with rela-
tivistic and radiative wave function corrections a corrected
mixing angle.

All relativistic and radiative corrections to the Rabi fre-
quency and the detuning have been evaluated here using the
unperturbed mixing angleu. The “corrections to the correc-
tions” due to an evaluation of modifications to the Rabi fre-
quency and the detuning in terms of the corrected mixing
angle are of higher order than the terms relevant for the
discussion in the current paper and may be neglected on the
level of approximation employed in the current investigation.

In the following numerical analysis, we assume the atom
to be located at an antinode of a laser field in standing-wave
configuration. The atom is thus driven by two counterpropa-
gating laser beams, whereas in the definitions of the electric
field and the Rabi frequency in Sec. II and especially in the
matching of the classical macroscopic field with the corre-
sponding quantum counterpart in Eq.(2.12) a single-mode
running-wave field was considered. However, all results of
Sec. III also apply to a standing-wave field configuration if
the macroscopic electric-field strengthEL is taken to be the
total field strength of both counterpropagating field modes at
the position of the atom. In order to avoid confusions, from
now on we thus denote the total electric-field strength of the
standing wave asESW.

A. 1S1/2^2P1/2

For the u2P1/2,m= ±1/2l state as upper state, the decay
constant is given byG1/2=99.709 42s1d3106 Hz [50]. In or-
der to account for the dependence on the laser-field intensity,
we introduce the parameterh1/2= uVu /G1/2. Then for h1/2
=1000 andD=50G1/2, one hasvR@V@G1/2,D. Therefore,
the relative corrections to the detuning and the Rabi fre-
quency in Eqs.(4.10a) and (4.10b) become

Drad
s1/2d = − 8.175 249s33d 3 109 Hz, s4.11ad

Vrad
s1/2d = − 19.78s56d 3 10−6. s4.11bd

Here, the parameterh1/2 may be expressed in terms of the
electric-field strengthEL as

h1/2 = 346.7833 10−6uESW sV/mdu. s4.12d

Of course,fV/mg in this case means that the peak electric-
field strength of the laser is assumed to be measured in volts
per meter.

The absolute ionization rateI into the continuum due to
the driving-laser field is given byI=DIV

2. In an experiment,
this ionization rate has to be much smaller than the Rabi
frequency, such that on average the atom undergoes many

fluorescence cycles before it is ionized. Thus, we define the
ratio

IV = U I
V
U = uDIuV = uDIuh1/2G1/2, s4.13d

which has to be much smaller than unitysIV!1d. For h1/2

=1000, one obtains

Ish1/2 = 1000d = 356 kHz, s4.14d

IVsh1/2 = 1000d = 3.63 10−6, s4.15d

which means that the probability of one-photon ionization
does not restrict the above measurement scheme.

For h1/2=1000 andD=50G1/2, the theoretical prediction
for the shift of the Mollow sidebands relative to the central
Mollow peak by the generalized corrected Rabi frequency is
as follows:

±VC
s1/2d = ± 100.572 258s60d 3 109 Hz. s4.16d

This formula has been evaluated using the summation for-
mula Eq.(4.8) and includes all corrections, in particular the
C-term evaluated in Sec. III B 3. For comparison, we also
give here a theoretical prediction that would be obtained by
ignoring theC term,

±Vno C
s1/2d = ± 100.572 377s27d 3 109 Hz. s4.17d

This result is obtained by explicitly settingC j in Eq. (4.10b)
equal to zero, but still using the full summation according to
Eq. (4.9) for all other corrections. A comparison of Eq.(4.16)
to Eq. (4.17) shows that the theoretical uncertainties of the
two results do not overlap. Therefore, the current status of
the theory would allow to discern the presence or absence of
the C-term corrections by means of an accurate experiment.

The principal uncertainty of the generalized Rabi fre-
quency in Eq.(4.16) is due to the uncertainty in the estimate
of the nonlogarithmic contribution toC j andA j. As a refer-
ence, the bare shift without corrections is given by

±ÎV2 + D2 = ± 99.8339753 109 Hz. s4.18d

This result has to be compared to the radiatively corrected
result (4.16).

In Table I, the individual shifts due to the considered cor-
rections are listed together with their respective uncertainties
for both transitions 1S1/2↔2P1/2 and 1S1/2↔2P3/2. All shifts
are evaluated in their “summed” form[see, e.g., Eq.(3.13)].
For the bare Lamb-shift corrections Lbare

s jd , the uncertainty in
the shift is mainly due to the uncertainty in the numerical
value for the Lamb shift of the hydrogen 1S state, see Eq.
(3.10). The Bloch-Siegert shift acquires a numerical uncer-
tainty due to neglected terms of relative orderOsV /vLd from
the higher-order Bloch-Siegert-type shifts(higher-order per-
turbation theory in the counter rotating terms). There is a
further source of uncertainty for the Bloch-Siegert shifts due
to terms of relative orderOsD /vL ,V /vLd from the expan-
sion leading from Eq.(3.19) to Eq. (3.20). The shift due to
off-resonant excitationD has an uncertainty because contri-
butions to the energies Eq.(3.26) of relative orderD /vR and
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of order V /vR have been neglected in evaluating thet pa-
rameters in Eq.(3.47). There are also uncertainties of the
Rabi-frequency shifts due to relativistic corrections to the
transition dipole matrix elementssE jd, which are due to ne-
glected higher-order corrections of relative ordersZad2 with
respect to the leading corrections. The field-dependent cor-
rections have an uncertainty due to higher-order effects of
relative ordersZad2. The main uncertainty of theC-term and
A j-term corrections are due to the uncertainty which we as-
sign to the nonlogarithmic contribution of relative parametric
order asZad2 [see Eqs.(3.86) and (3.92)]. The main uncer-
tainty of the shift due to corrections to the secular approxi-
mation sSd are due to higher-order terms of the expansion
leading from Eq. (3.96) to Eq. (3.97) or relative order
OsD2/V2d, and of fourth-order corrections to the secular ap-
proximation of relative orderOsG2/V2d. For the entries of
Table I, the shifts have been evaluated individually according
to Eqs. (3.6), (3.13), (3.21), (3.49), (3.56), (3.66), (3.72),
(3.88), (3.94), and(3.98).

It is perhaps worthwhile to note that one cannot simply
add the corrections to the quasienergy of dressed states in the
same sense as corrections to the energy of bare atomic states.
For the evaluation of a theoretical Lamb-shift prediction of a
bare atomic state, the usual procedure is to list the various
corrections and to simply add these in order to give a theo-
retical prediction for the total energy shift(see, e.g., Tables I
and II of [34]). For the Lamb shift of laser-dressed states, the
natural interpretation of the corrections implies modifications
of the decisive physical parameters that determine the
quasienergy of the dressed levels: These are the Rabi fre-
quencyV and the detuningD. This interpretation implies,
however, summations of the expressions which agree well
with the first-order results, so that at least for numerically
small corrections, it is still permissible to simply add the
correction terms in an approximative sense. The correspon-
dence of first-order expressions and summed results holds
approximately unless the correction is large compared toV
andD; in this case, the summation yields a different result as
compared to the first-order expression. This is the case for
the numerically dominant effect referred to asdv̄+,j

sLambd in
Table I. As already discussed in Secs. III A 2 and III A 3, this
summation is somewhat nontrivial in particular for the
Lamb-shift corrections. Because fundamental symmetry
properties prevent the radiative corrections from couplingS
andP states(even in higher order), preference is given to the
summed results. In principle, more explicit higher-order cal-
culations outlined in Sec. III A 3 would be desirable to verify
the summations for all radiative effects discussed here.

B. 1S1/2^2P3/2

In this section, we repeat the above numerical analysis
with u1S1/2,m= ± 1

2l as the ground state andu2P3/2,m= ± 1
2l as

the excited state. The decay width of the 2P3/2 state is given
by G3/2=99.709 42s1d3106 Hz [50]. In order to account for
the dependence on the laser-field intensity, we introduce the
parameter h3/2= uVu /G3/2. Then for h3/2=1000 and D
=50G3/2, one hasvR@V@G3/2, D such that the corrections

to the detuning and the Rabi frequency in Eqs.(4.10a) and
(4.10b) become

Drad
s3/2d = − 8.149 896s33d 3 109 Hz, s4.19ad

Vrad
s3/2d = − 20.76s56d 3 10−6. s4.19bd

Here, the parameterh3/2 may be expressed in terms of the
electric-field strengthEL as

h3/2 = 490.4253 10−6uESW sV/mdu. s4.20d

For this transition, the ionization to the continuum is again
given by

Ish3/2 = 1000d = 356 kHz, s4.21d

IVsh3/2 = 1000d = 3.63 10−6. s4.22d

Thus the scheme is not restricted by ionization on this tran-
sition either.

With the above parameters for the Rabi frequency and the
detuning, the positions of the Mollow sidebands relative to
the center component with full corrections, withoutC-term
corrections and without any corrections are given by

±VC
s3/2d = ± 100.568 846s60d 3 109 Hz, s4.23d

±Vno C
s3/2d = ± 100.568 966s27d 3 109 Hz, s4.24d

±ÎV2 + D2 = ± 99.833 9753 109 Hz. s4.25d

Thus also in this case the theoretical uncertainties of the
generalized corrected Rabi frequency in Eq.(4.23) and of the
corresponding value in Eq.(4.24) obtained by ignoring the
C-term correction shift do not overlap. The individual shifts
with their uncertainties are listed in Table I as discussed in
Sec. IV A.

V. DISCUSSION AND SUMMARY

In this paper we have discussed radiative corrections to
the usual quantum optical expression for the Mollow spec-
trum, i.e., the resonance fluorescence spectrum of an atom
with two relevant energy levels driven by a strong coherent
laser field. To lowest order, the Mollow spectrum consists of
one main peak which is centered at the frequency of the
driving-laser field and of two sidebands, which are shifted
from the center by the generalized Rabi frequencyVR
=ÎV2+D2. For the analysis, we have used concepts intro-
duced originally in two different fields: the dressed-state for-
malism of quantum optics and the renormalized radiative
corrections which are treated in the formalism of quantum
electrodynamics. Throughout the analysis, we have adopted
the dressed-state basis as the natural starting point for our
analysis of corrections to the quasienergies of the combined
atom-laser system.

From the point of view of spectroscopy, the Mollow spec-
trum is attractive for several reasons. First of all, the radia-
tive corrections manifest themselves in the shift of the Mol-
low sidebands with respect to the central Mollow peak. Thus
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the tiny radiative corrections are measured relative to the
generalized Rabi frequency, which for typical parameters of
the driving-laser field is several orders of magnitude smaller
than optical frequencies. Also, the Mollow spectrum is cen-
tered around the frequency of the driving-laser field. Thus it
is a kind of a differential spectrum because the laser-field
detuning is automatically subtracted.

As for quantum electrodynamics, radiative corrections to
the Mollow spectrum are a quantum-field theoretic problem
in the presence of two classical background fields, the laser
field and the binding Coulomb field. Our analysis also differs
from typical QED calculations relying on theS-matrix for-
malism, as the process under study is dynamical. In order to
account for the quantum fluctuations of the dipole moment
leading to the incoherent part of the Mollow spectrum, a
static description is not sufficient.

The shifts of the Mollow sidebands may be interpreted as
arising from corrections to either the detuning or the Rabi
frequency. In particular, the detuning is modified by the bare
Lamb-shift, Bloch-Siegert shifts, and virtual off-resonant ex-
citations. The Rabi frequency is corrected by relativistic and
radiative corrections to the transition dipole moment, by
field-configuration-dependent corrections, by a dynamic cor-
rection, and by corrections to the secular approximation. Of
particular interest is the dynamical correction to the Rabi
frequency. This correction arises from an evaluation of the
second-order radiative self-energy corrections of the com-
bined system of atom and laser field in terms of the dressed
states of this system. To lowest order of the limitV ,D
!veg, this yields a corrections which can be identified with
the usual Lamb shift of the atomic bare states. The dynamic
correction is then obtained by keeping terms linear inV, D in
the above analysis and cannot be explained in terms of the
bare state Lamb shift alone.

The corrections to the detuning may be incorporated into
the analysis by the replacements j = 1

2 , 3
2

d

D → D − Drad
s jd , s5.1d

where Drad
s jd is defined in Eq.(4.10a). Correspondingly, the

corrections to the Rabi frequency are given by

V → Vs1 + V̂rad
s jd d. s5.2d

The dimensionless quantityV̂rad
s jd is defined in Eq.(4.10b).

Then, the generalized Rabi frequency supplemented by the
discussed relativistic and radiative corrections is[Eq. (4.9)]

VC
s jd = ÎV2s1 + V̂rad

s jd d2 + sD − Drad
s jd d2. s5.3d

In a numerical analysis, we provide a theoretical analysis
which is required in order to accurately resolve the dynami-
cal shift. For this, we suppose the driving-laser fields to be in
a standing-wave configuration. As a promising candidate for
the experiment, we identify the hydrogen 1S1/2↔2P1/2 and
1S1/2↔2P3/2 transition. The results are discussed for a
driving-laser field parameter set which is expected to be
within reach of improvements of the currently available
Lyman-a laser sources in the next few years.

For the 1S1/2↔2P1/2 transition and forV=1000G1/2, D
=50G1/2, the Rabi frequency is shifted with respect toVR

=ÎV2+D2 by relativistic and radiative corrections as fol-
lows,

±sVC
s1/2d − VRd = ± 738.282s60d 3 106 Hz. s5.4d

The corresponding result for the 1S1/2↔2P3/2 transition with
V=1000G3/2, D=50G3/2 is

±sVC
s3/2d − VRd = ± 734.871s60d 3 106 Hz. s5.5d

We note, however, that we are only concerned with theoret-
ical issues. Thus uncertainties due to possible experimental
issues such as a misalignment of the apparatus or due to
additional trapping potentials have not been considered.

In summary, we have presented a detailed analysis of the
leading nonrelativistic and relativistic corrections to the Mol-
low spectrum. The analysis includes the relativistic and non-
relativistic corrections up to relative orders ofsZad2 and
asZad2, respectively, and also includes Bloch–Siegert shifts,
stimulated radiative corrections involving off-resonant vir-
tual states, field-configuration-dependent corrections and cor-
rections to the secular approximation. Based on these results,
we provide a numerical analysis of the corrections of the
Mollow spectrum of the hydrogen 1S-2P transition. By a
comparison with experimental data, one may verify the pres-
ence of dynamical leading-logarithmic correction to the
dressed-state radiative shift, which cannot be explained in
terms of the bare Lamb shift(see Sec. III B 3). This allows
us to address questions related to the physical reality of the
dressed states. On the other hand, the comparison with ex-
perimental results could also be used to interpret the nature
of the evaluated radiative corrections in the sense of the sum-
mation formulas which lead to the interpretation of the shifts
as arising from relativistic and radiative corrections to the
detuning and the Rabi frequency.
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APPENDIX A: DIPOLE MOMENTS AND SPIN

The spontaneous emission decay rate of the population of
an excited stateuil to a final stateufl is given by

G ~ v3zkf uxuilz2, sA1d

where all elements of the position vector have to be consid-
ered in the coupling with the vacuum field. For the 2P
→1S decay in atomic hydrogen, and in the nonrelativistic
Schrödinger theory without spin, the squared modulus of the
dipole moment vector is given by

o
i=1

3

zk1Suxiu2Plz2 =
215

310

1

sZad2m2 , sA2d

independent of the magnetic quantum numbermi
P h−1,0,1j of the initial P state(by the term final state we
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will denote in this section the particular state that enters as a
“bra-” in the Dirac notation, i.e., the 1S state in the above
case). In the Schrödinger-Pauli theory with spin, one has
different decay channels depending on the spin state of the
initial and the final state. For the channel where the initial
and the final state have the same magnetic quantum number
mi =mf = ± 1

2, one obtains

o
i=1

3

zk1S1/2,miuxiu2P1/2,milz2 =
1

3

215

310

1

sZad2m2 . sA3d

In contrast, the channel with opposite magnetic quantum
numbermi =−mf = ± 1

2 yields a contribution of

o
i=1

3

zk1S1/2,− miuxiu2P1/2,milz2 =
2

3

215

310

1

sZad2m2 . sA4d

This calculation predicts that if one were to measure the
electron spin polarization in the final state, then theu2P1/2l
state would be twice as likely to decay into au1S1/2l state
with opposite total electron angular momentum than into a
u1S1/2l state with the same total electron angular momentum
as the initialu2P1/2l state. Adding the two decay channels to
the final state, we obtain

o
mf=±1/2

o
i=1

3

zk1S1/2,mfuxiu2P1/2,milz2 =
215

310

1

sZad2m2 ,

sA5d

i.e., the same result as in the spinless case, as it should be.
For the decay of theu2P3/2,mi = ± 1

2l state, one obtains the
same total decay rate, but here the decay withmf =mi is twice
as likely as the decay withmf =−mi.

These results for the dipole moments have to be reconsid-
ered for excitation of an atom in theu1S1/2,mil ground state
with a laser field which is linearly polarized in one direction,
say thez direction. Then other than for the interaction with
the vacuum field, only thez component of the dipole moment
vector has to be considered. These matrix elements can be
used to calculate the Rabi flopping frequency corresponding
to the driving laser field. For the spinless case, one obtains

k1Suzu2Pl =
27

35
Î2

1

Zam
. sA6d

We now include the spin and choose a definite initial state
u1S1/2,mi = + 1

2l. We obtain

k1S1/2,
1
2uzu2P1/2,

1
2l = −

27

35Î2

3

1

Zam
, sA7d

where we have omitted the “mi=” (“mf=”) from the initial
(final) state vector. Furthermore, one has

k1S1/2,
1
2uzu2P1/2,−

1
2l = 0, sA8d

k1S1/2,
1
2uxu2P1/2,

1
2l = 0, sA9d

k1S1/2,
1
2uyu2P1/2,

1
2l = 0, sA10d

so that thez-polarized field only couples the 2P1/2 state with
mi =mf to the ground state, and this excited state is only one
coupled to the ground state byz-polarized light. For the
u2P3/2,mfl upper state, the corresponding results are

k1S1/2,
1
2uzu2P3/2,

1
2l =

28

35Î1

3

1

Zam
, sA11d

k1S1/2,
1
2uzu2P3/2,−

1
2l = 0, sA12d

k1S1/2,
1
2uxu2P3/2,

1
2l = 0, sA13d

k1S1/2,
1
2uyu2P3/2,

1
2l = 0, sA14d

k1S1/2,
1
2uzu2P3/2, ± 3

2l = 0. sA15d

Thus also in this case only the upper state with same mag-
netic quantum number is coupled to the ground state, but
with a matrix element which differs by a factor of −Î2 in
magnitude from the corresponding result for theu2P1/2, 1

2l
upper state. From these spin-resolved results, the correspond-
ing matrix element without spin Eq.(A6) may be obtained
by summing over the final states and averaging over the
initial states.

APPENDIX B: EVALUATION OF THE MATRIX
ELEMENTS

In this section, we demonstrate the evaluation of the ma-
trix element in Eq.(3.32):

Me = keuzG9szdzuel, sB1d

where uel is the 2P, m=0 state. We start by calculating the
“unreduced” matrix element

M̄eszd = keuzGszdzuel, sB2d

where the full sum over intermediate states is employed in
Gszd, and the wave function of the excited stateF2P,m=0 is
given by a product of a radial and an angular contribution:

F2P,m=0srWd = R2PsrdY10su,fd.

Here,sr ,u ,fd are spherical coordinates. In these coordinates,
a representation of the Green function in position space is
given by [Ref. [45], Eq. (2.2)]

1

H − E
= o

l,m
glsr1,r2,vdYlmsu1,f1dYlm

* su2,f2d,

where gnsr1,r2,vd is the radial component of the
Schrödinger-Coulomb propagator
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glsr1,r2,vd = 2mS 2

aBv
D2l+1

sr1r2dl expS−
r1 + r2

aBv
D

3 o
k=0

` k ! Lk
2l+1S 2r1

aBv
DLk

2l+1S 2r2

aBv
D

s2l + 1 +kd ! sl + 1 +k − vd
sB3d

containing associated Laguerre polynomials La
bsrd. The quan-

tity v=saB
Î−2mEd−1 is an energy parameter which is related

to the parametert used in Sec. III A 5 byv=nt, wheren is
the principal quantum number of the initial bound state. The
Bohr radius is defined in Eq.(3.44), and we evaluate all
matrix elements here for the caseZ=1 (atomic hydrogen).
Thus, for the 2P state discussed here, we havev=2t. The
index l is summed over all possible angular momentum num-
bers of the virtual intermediate states. Starting from aP state
with l =1, both Ssl =0d and Dsl =2d states are possible as
intermediate states. The integration may be further separated
in angular and radial parts:

M̄e = M̄l=0
angM̄l=0

rad + M̄l=2
angM̄l=2

rad, sB4d

where the angular integrations yield

M̄l=0
ang=

1

3
, M̄l=2

ang=
4

15
. sB5d

The radial parts may written explicitly as

M̄l
rad=E

0

`

dr1dr2r1
3r2

3R2P
* sr1dR2Psr2dglsr1,r2,vd, sB6d

for l =0,2. Simplifying further, one obtains

M̄l=0
rad =

m

12taB
6 o

k=0

`
k!

s1 + kd ! s1 + k − 2td
I0
2, sB7d

I0 =E
0

`

dr r4Lk
1S r

aBt
Def−s1+td/2aBtgr . sB8d

The integral inI0 can be evaluated using(see[51], Sec.
6.10 and[52], Sec. 10.12)

E
0

`

dr exps− lrdrgLn
msrd

=
l−1−gGsg + 1d
n ! Gsm + 1d

Gsm + n + 1d2F1s− n,g + 1,m + 1,l−1d

sB9d

to give

I0 =
768aB

5 t5

s1 + td5

Gsk + 2d
k! 2F1S− k,5,2;

2

1 + t
D . sB10d

Using an explicit expression for the hypergeometric function
([51], Sec. 2.1.1), we obtain

2F1sa,b,c;zd = o
j=0

`
sad jsbd j

scd j

zj

j !
, sB11d

where the Pochhammer symbolssad j are given by

sad j =
Gsa + jd

Gsad
. sB12d

Contiguous relations for the hypergeometric function([51],
Sec. 2.8) then lead to

M̄l=0
rad = maB

4S 16t2X0std
3st − 1d6st + 1d4 −

214t11

3st2 − 1d6Fs2,tdD ,

X0std = 45 − 90t − 84t2 + 258t3 + 18t4 − 294t5 + 148t6 − 2t7

+ 257t8,

where the hypergeometric functionFsn,td is defined in Sec.
III A 5. A similar calculation for the intermediateDsl =2d
states yields

M̄l=2
rad = maB

4S 16t2X2std
3st − 1d7st + 1d5 −

216t11s4t2 − 1d
3st2 − 1d7 Fs2,tdD ,

X2std = − 45 + 90t + 165t2 − 420t3 − 174t4 + 768t5 − 34t6

− 700t7 − 37t8 − 1274t9 + 4733t10.

Inserting in Eq.(B4) finally yields the expression in Eq.
(3.41b). The reduced matrix element can then be obtained
from this by subtracting the contributions of the two inter-
mediate statesuel,ugl. The excited state contribution vanishes
due to parity, and the ground state contribution is given by

zkguzuelz2

E1S− z
. sB13d

This term, which cancels the divergence asz→E1S in (3.46),
may be verified by inserting the resonant 1S state as the
intermediate state into the matrix element. Alternatively, the
cancellation may be seen as follows: On setting the interme-
diate state energy toE1S+e, the series expansion of the un-

reduced matrix elementM̄esE1Sd receives a contribution pro-
portional to 1/e which diverges fore→0. This diverging
part is canceled by the intermediate state contribution Eq.
(B13) in the reduced matrix elementMeszd to give a finite
result.

If one compares this derivation with a similar calculation
for the standard matrix element

M̄ = o
i=1

3

keuxiG9szdxiuel sB14d
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=M̄l=0
angM̄l=0

rad + M̄l=2
angM̄l=2

rad, sB15d

where all polarization directions are considered, one findst-
hat the respective radial parts forl =0 andl =2 are identical
to the ones in Eq.(B4):

M̄l=0
rad = M̄l=0

rad, M̄l=2
rad = M̄l=2

rad. sB16d

For the angular parts, however, one finds

M̄l=0
ang= M̄l=0

ang, M̄l=2
ang=

5

2
M̄l=2

ang. sB17d

The reason for this is that the fixed polarization of the driv-
ing laser field only allows to excite one of the magnetic
sublevels of the intermediateS and D states. The sum over
all polarizations in the standard matrix element still only
gives one magnetic sublevel for the intermediateSstates, but
three possible virtualD states. Due to this asymmetry the
desired matrix element Eq.(3.41b) cannot be calculated di-
rectly from the standard matrix element in Eq.(B14).
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