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We present a fully operational and consistent approach to complementarity. In contrast to previous ap-
proaches, in this proposal the duality relations emerge exclusively from the outcomes of simultaneous mea-
surements performed on every run of the experiment and under the same experimental conditions. This can be
done without assuming any definite relationship between the measurement performed and the complementary
observables being studied.
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I. INTRODUCTION

Complementarity means that quantum systems possess
properties that are mutually exclusive: the observation of one
of them precludes the observation of the other. Maybe the
best illustration is provided by the interferometric wave-
particle duality: if a which-path detector is arranged in order
to determine the path taken by the particle within a two-
beam interferometer, the interference is unavoidably dis-
turbed.

This appealing concept without classical analog has at-
tracted a lot of attention from the beginning of the quantum
theory. However, only recently has this idea been thoroughly
scrutinized. In Refs.[1–8] the interested reader can find
some examples concerning formal definitions[1], quantita-
tive evaluation[2–4], experimental observations[5–7], and
investigation of its physical origin[8].

In this work we focus on the quantitative evaluations of
complementarity along with their practical determination. In
this regard, the most popular assessment of interferometric
complementarity in the presence of a which-way detector is
provided by a duality relation involving measures of the dis-
tinguishability of the path and the visibility of the interfer-
ence[2,6]. This approach is recalled in Sec. III A.

It is worth stressing that the notion of complementarity
refers to the simultaneous observations of two incompatible
observables performed in every run of the experiment and
under the same experimental conditions. This idea is in-
cluded in every presentation of complementarity at any level.
For example, in the classic interferometric wave-particle du-
ality it is always understood that we are monitoring the vis-
ibility of the interference at the same time that we try to
determine the path followed by the particle within the inter-
ferometer.

However the distinguishability of the path and the visibil-
ity of the interference developed in Refs.[2] and [6] cannot
be measured simultaneously, in sharp contrast to the very
spirit of complementarity discussed above. This is because
the determination of the distinguishability requires not only
the which-way detection whose effect is being investigated,

but also a simultaneousexactmeasurement of the path[see
Eq. (20) below] [2,6]. This implies that the measurements of
distinguishability and visibility cannot be performed simul-
taneously and their assessment requires different experimen-
tal arrangements. This point is confirmed by the experimen-
tal verifications of the above mentioned duality relation[6].
In this work we avoid this difficulty by addressing a genuine
operational approach, where complementarity is to be mea-
sured exclusively in terms of the outputs of measurements
performed simultaneously in each and every run of the ex-
periment and under the same experimental conditions.

II. FORMALISM

The most general measurement is described by a positive
operator measureDswd, where w represents the outcomes
appearing with probabilitiespswd=trfrDswdg, r being the
density matrix for the system[9]. Any inference about any
system property must be derived exclusively from the out-
comew and from the measurement performedDswd, which
is the only information accessible to the experimenter. A very
natural procedure consists in associating a quantum staterw
to every outcomew, depending only onw and Dswd. Then
we can compute the value of the desired observable in the
staterw.

The correspondencerw↔Dswd can be carried out in
many different ways. We just mention three natural options.

(i) As a first option we considerrw= uwlkwu where uwl
represents the eigenvector ofDswd with the largest eigen-
value. This is the best possible choice from a maximum like-
lihood perspective and maximizes the fidelity as shown in
Ref. [10].

(ii ) rw can be determined also by the wholeDswd, instead
of by part of its spectrum, in the form[11]

rw =
1

trDswd
Dswd. s1d

(iii ) Following a Bayesian perspectiverw becomes a su-
perposition of all possible density matricesrV weighted by
the probabilitypsV ,wd=trfrVDswdg of the outcomew,
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rw =
E dV psV,wdrV

E dV8 psV8,wd
, s2d

whereV are parameters indexing the density matrices.
In any case, the evaluation of system properties, repre-

sented by an arbitrary operatorM, can be carried out as

M̃ = o
w

pswdtrsMrwd = trsMrDd, s3d

where

rD = o
w

pswdrw s4d

represents the observed state of the system provided by the
cumulative collection of the outcomes of a large number of
measurements. For simplicity we have assumed that the
number of measurements is large enough so that the relative
frequencies of the measured outputs can be represented by
the exact probabilitiespswd with enough accuracy. It is also
worth stressing that in principle there is no particular relation
betweenDswd andM [12].

This concludes the outline of the operational approach.
Before considering particular examples let us stress that this
procedure does not rely on the reconstruction of the input
state of the system, i.e.,rD is not an estimator ofr. Other-
wise we would be addressing the estimation of theintrinsic
valuesof the corresponding observables, rather than themea-
sured valuesthat are pertinent to the notion of complemen-
tarity at work.

III. TWO-BEAM INTERFERENCE

We illustrate this proposal by applying it to the most rel-
evant and widely studied example of path and visibility in
two-beam interference. A brief explanation of two-beam in-
terference is sketched in the Appendix. For two-dimensional
situations the most generalDswd can be expressed as

Dswd = mw + mw · s, s5d

where s are the three Pauli matrices andmw,mw are real
coefficients satisfying

o
w

mw = 1, o
w

mw = 0, mw ù umwu, s6d

in order to guarantee the reality, positivity, and normalization
of pswd. On the other hand, the most general density matrix
and the associated statistics are

r =
1

2
s1 + s · sd, pswd = mw + mw ·s, s7d

wheres is a real vector withusuø1. The parametersV in Eq.
(2) describe a unit sphere

rV =
1

2
s1 + V · sd, s8d

where

V = 1r sinu cosf

r sinu sinf

r cosu
2, dV = r2sinu dr du df. s9d

The three correspondencesrw↔Dswd discussed above
can be summarized by the single expression

rw =
1

2
S1 +

1

hw
mw · sD , s10d

where for (i) hw= umwu, for (ii ) hw=mw, while for (iii ) hw
=5mw. Thus the observed state is

rD =
1

2
s1 + m · sd, m = o

w

1

hw
smw + mw ·sdmw. s11d

The path variable is represented by the operatorsz, while
the phase observable is given by the positive operator mea-
sureuflkfu whereufl are the phase states[4,13,14],

ufl =
1

Î2p
su− l + eifu + ld, s12d

u± l are the eigenstates ofsz, andf can take any value in a
2p interval. A suitable operator representing the phase is the
complex exponential off,

E =E
2p

df eifuflkfu = u− lk+ u. s13d

Usually the measurement ofsz corresponds to a measure-
ment of photon number, atomic populations, or spin orienta-
tion. The procedure to measure the phasef is sketched in the
Appendix.

A suitable measure of fluctuations of observables in finite-
dimensional Hilbert spaces is given by thecertainties

Cz = ukszlu, Cf = ukElu, s14d

representing the degree of certainty one can have concerning
the value of the corresponding observable[4]. It must be
noted thatCz,2Cf coincide with the standard definitions of
predictability and visibility, respectively[2,4]. They are
bounded by 1ùCzù0, 1

2 ùCfù0, and satisfy the duality re-
lations [4]

Cz
2 + 4Cf

2 ø 1, CzCf ø
1

4
. s15d

A. Standard approach

In order to illustrate the properties of the formalism intro-
duced in this work we recall in the first place the results of
applying the standard approach to the case of two-beam in-
terference[2,6].

The which-way detection is obtained by coupling the sys-
tem to auxiliary degrees of freedom, i.e., an apparatus, ini-
tially in a given stateuMl. In practical terms this can be the
internal degrees of freedom of the interfering particle, such
as the internal electronic state of an atom or the polarization
state of a photon. The standard system-apparatus coupling is
of the form
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U = V+u + lk+ u + V−u− lk− u, s16d

leading to an output state

r̃ = Ur ^ uMlkMuU†, s17d

whereV± are unitary operators acting solely on the appara-
tus, uM±l=V±uMl. Thus, the state of the apparatus experi-
ences different transformations depending on the path. The
path can then be disclosed with minimum error by perform-
ing a measurement on the apparatus described by projection

on the orthogonal vectorsuM̃±l [4]:

uM̃±l =
cossu/2d

cosu
uM±l −

sinsu/2d
cosu

uM7l, s18d

where sinu=kM− uM+l, assumed to be real without loss of
generality. The reduced states of the system after the which-

way detection arer j =kM̃ jur̃uM̃ jl /pj, j = ±1, where

kM̃ jur̃uM̃ jl =
1

4
f1 + jszcosu + ssz + j cosudsz + sinussxsx

+ sysydg, s19d

andpj =s1+ jszcosud /2.
For the approach developed in Refs.[2] and [6] the pre-

dictability and visibility (i.e., the certaintiesCz8 ,Cf8 ) are given
by the average of the predictabilities and visibilities associ-
ated to eachr j [2,6]:

Cz8 = o
j

pjzk+ ur ju + l − k− ur ju − lz = o
j

ukM̃ juk+ ur̃u + luM̃ jl

− kM̃ juk− ur̃u − luM̃ jlu = maxsCz,ucosuud,

Cf8 = o
j

pjzk+ ur ju − lz = usinuuCf, s20d

whereCz,Cf are the intrinsic certainties computed usingr.
Note that in order to determineCz8 experimentally it is

necessary to perform simultaneously a measurement on the

apparatus(projection onuM̃ jl) and an exact measurement on
the system(projection onu± l). Therefore there is no room
for the measurement of the visibility on the same elements of
the ensemble. It must then be determined by measurements
performed on other elements of the ensemble observed under
different experimental conditions.

B. Operational approach

Next we apply the operational approach to the above in-
terferometric arrangement with path detection. The main dif-
ference from the above analysis is that for the approach pre-

sented in this work the joint measurement ofuM̃±l on the
apparatus and phaseufl on the system after the coupling(16)
is enough to obtain quantitative duality relations. Note that in
this case the same measurement is performed on each and
every element of the ensemble and always under the same
experimental conditions.

The statistics of the simultaneous measurement of path
and phase can be expressed as

trsr̃uflkfu ^ uM̃ jlkM̃ jud = trfrDs j ,fdg, s21d

whereDswd with w=s j ,fd is the positive operator measure

Ds j ,fd =
1

4p
f1 + j cosusz + sinuscosfsx − sinfsydg,

s22d

j = ±1, f takes any value in a 2p interval, and the parameter
u expresses the relative accuracy of the phase and path ob-
servations[15]. For u=0 we have an exact measurement of
the path while the phase is fully uncertain, and vice versa for
u=p /2.

In the most general case the observed state is

rD =
1

2
F1 + nszcos2usz +

n

2
sin2ussxsx + sysydG , s23d

wheren=1 for options(i) and (ii ), while n=1/5 for option
(iii ).

In this case the observed certainties are simply related to
the intrinsic ones in the form

C̃z = n cos2uCz, C̃f =
n

2
sin2uCf, , s24d

where the variables with tildes refer to the observed values
(computed usingrD) while the certainties without tildes refer
to the intrinsic values(computed usingr). Using Eq.(15) for
the intrinsic values we get the duality relations for the ob-
served certainties,

C̃z
2 + 4C̃f

2 ø n2maxHcos4u,
1

4
sin4uJ ,

C̃zC̃f ø
n2

8
sin2s2udCzCf ø

n2

32
sin2s2ud. s25d

These expressions(24) and (25) properly reflect in a fully
operational way the notion of complementarity at work in-
cluding the characteristics of the measuring process.

For this particular example of two-beam interferometry
some other operational duality relations have been examined
before being computed directly in terms of the outputs of a
noisy joint measurement of the corresponding observables
[3,4]. This sort of approach focuses on the outcomesw of the
measurement, disregarding most of the information con-
tained inDswd. Moreover, it requires prior assumptions con-
cerning the relation between the outputs of the measurement
and the values of the system variables.

On the other hand, the procedure presented here is en-
tirely different since it does not rely on any prior relation
between the measurement and the observables being investi-
gated. This lack of prior assumptions is relevant since the
relation between the measurement outputs and the observ-
ables being studied is necessarily perturbed by the unavoid-
able unsharpness of the joint measurement of complementary
observables. Moreover, the inferences about system proper-
ties in this proposal naturally embody the characteristics of
the measurement being performed through the dependence of
rw and the measured staterD on Dswd. Therefore, the for-
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malism addressed here makes a more sound use of the infor-
mation provided by the measurement.

IV. CONCLUSIONS

We have presented a fully operational and consistent ap-
proach to complementarity. In contrast to previous formal-
isms, in this proposal quantitative duality relations emerge
exclusively from the outcomes of simultaneous measure-
ments of complementary variables performed always under
the same experimental conditions. The only ingredients used
are the outputs of the measurement and our knowledge of the
measurement being performed. It is not necessary to assume
any definite relation between the measured outputs and the
system variables under investigation. This is interesting,
given the natural unsharpness of any attempt to a joint mea-
surement of incompatible observables. We think that this ap-
proach offers a perspective on complementarity especially
suitable for experimental observations of this phenomenon.

APPENDIX: TWO-BEAM INTERFERENCE

In this appendix we provide a basic illustration of two-
beam interference schematized in Fig. 1. This is actually the
most common and simple implementation of the idea of in-
terference as the superposition of two waves. These waves
are the two internal paths within the interferometer. This
framework includes classic interferometers such as the
double slit, the Michelson and Mach-Zehnder interferom-
eters, as well as more sophisticated realizations[7].

Focusing on a quantum description, the two paths can be
formally described by two orthonormal statesu± l, so that the
state of the systemr within the interferometer is in general a
superposition of these two path statesu± l. These statesu± l

can be photon-number states(such asu+l= u1,0l, u−l= u0,1l,
whereun+,n−l representn+ photons in the upper path andn−
photons in the lower path), atomic internal energy levels(as
in Ramsey interferometry), or the orientation of a component
of a 1/2 spin.

The first element of a two-beam interferometer(the input
beam splitter) is devised to produce a coherent superposition
of u± l from an initial input staterin, such asrin= u+lk+u for
example, via a transformation of the formu± l→ su+l± u
−ld /Î2.

Then the vectorsu± l experience different evolutions lead-
ing to the appearance of a phase differencef+−f− between
the two paths. The purpose of any interferometric setup is the
detection or monitoring of the phase difference via a mea-
surement performed on the output staterout.

In our case the phase difference is represented in the
quantum domain by the statesufl [14]. It can be appreciated
thatf in Eq. (12) is the relative phase between the two paths
u± l. Therefore, the measurement of the phase difference cor-
responds to the projection of the internal stater of the inter-
fering system on the statesufl.

To this end the output state is obtained after adding a
phase shiftf to one of the paths and then mixing the two
internal paths at an output beam splitter(or beam merger)
producing the transformationu± l→ su+l± u−ld /Î2. These
two steps(phase shift and beam splitting) lead to the follow-
ing transformations between internal and output states:

ufl → u + l, uf + pl → u− l. s26d

With this we get that the detection of the statesu± l at the
output corresponds to the projection of the internal stater on
the phase-difference statesufl.

On the other hand, the standard procedure of path detec-
tion involves the use of additional degrees of freedom(ini-
tially in a given stateuMl) that experience different transfor-
mations depending on the pathu± luMl→ u± luM±l. A very
convenient choice for these auxiliary degrees of freedom are
the internal state of the interfering particle(the internal elec-
tronic state of an atom or the polarization of a photon). Fi-
nally, a measurement is performed on the output state of the
auxiliary variables. Since the initial state of the auxiliary
variables is in a fixed state known in advance, the informa-
tion obtained in this measurement can be regarded as infor-
mation exclusively about the path followed.
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