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Quantum Brownian oscillator model(QBM), in the Fock-space representation, can be viewed as a multilevel
spin-boson model. At sufficiently low temperature, the oscillator degrees of freedom are dynamically reduced
to the lowest two levels and the system behaves effectively as a two-level(E2L) spin-boson model(SBM) in
this limit. We discuss the physical mechanism of level reduction and analyze the behavior of E2L-SBM from
the QBM solutions. The availability of close solutions for the QBM enables us to study the non-Markovian
features of decoherence and leakage in a SBM in the nonperturbative regime(e.g., without invoking the Born
approximation) in better details than before. Our result captures very well the characteristic non-Markovian
short time low temperature behavior common in many models.
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I. INTRODUCTION

Recent development in quantum information processing
and quantum computation has attracted much attention to the
study of discrete quantum systems with finite degrees of
freedom. The most commonly used model is an array of
interacting two-level systems(2LS) each of which represent-
ing a qubit. As the system almost always interacts with its
environment, quantum decoherence in the system usually is
the most serious obstacle to the actual implementation of
quantum information processors[1–3]. For this reason a de-
tailed understanding of quantum decoherence in open sys-
tems is crucial. There are a handful of models useful for such
studies, the quantum Brownian motion(QBM) [4–7] is one,
the spin-boson model[4,8] is another: the system in the
former case is a harmonic oscillator and in the latter case a
2LS, both interacting with an environment of a harmonic
oscillator bath(HOB).

Most qubit models presently employed are the results of
picking out the levels most relevant to the description of the
qubit from a multilevel structure. In atom optics, internal
electronic excitations are often approximated by a 2LS con-
sisting of the ground state and the excited state. A similar
model is used for the study of low temperature tunneling
process where the two levels degrees of freedom represent
the quasi ground states in a double well potential. The sim-
plification to two-levels allows for detailed analytical or nu-
merical treatment, but this remains an approximation appli-
cable only when the effects of higher levels are negligible,
e.g., at low enough temperature when higher levels are not
well-populated. However, in the presence of gate operation,
the existence of higher levels causes a leakage of the 2LS
due to transitions to these other levels. Some extra perturba-
tion may be necessary to select or restrict multi-level struc-
ture the particular levels of interest[9]. In order to make a
quantitative estimation of decoherence with a leakage effect,

it is more desirable to study open system models which
maintain the multilevel structure.

In the present paper, we study certain aspects of realistic
qubits residing in the multilevel system, taking advantage of
our fairly good understanding from the detailed studies of
QBM over the last few decades. In particular, we focus on
harmonic QBM, which can be viewed as aǹ-level spin-
boson model. Commonly used two-level spin-boson model
can be obtained by restricting the harmonic oscillator Fock
space to the lowest two levels. This correspondence allows
for a detailed analysis of the spin-boson model from the
known results of QBM. In particular, we will focus on the
non-Markovianaspects of decoherence. Non-Markovian dy-
namics, often neglected in the literature(models are mainly
based on a Markov approximation) for technical simplicity,
is actually of crucial importance for the realistic implemen-
tations of quantum information processing. The “effective”
model we consider here invokes a two level simplification
from a multilevel structure. How realistic this is certainly
depends on the way the qubits are defined and realized in the
multilevel structure usually encountered in actual experimen-
tal conditions. Nevertheless, our model is able to capture the
characteristic short time behavior in many physical ex-
amples.

Beyond the commonly assumed Ohmic spectrum for the
bath, generic non-Ohmic environments can be studied with
this model. Contrary to the Ohmic case, the sub-Ohmic en-
vironment(including 1/fa type) causes nontrivial long time
behavior such as anomalous diffusion or localization[8] ow-
ing to the long range temporal bath correlation. In the present
paper, we will mainly focus on the opposite case of super-
Ohmic environments[4,8,27]. Owing to the ultrashort time
bath correlations, nontrivial short-time system dynamics en-
ters, which is particularly difficult to describe by means of
other models or approximations. The decoherece time scale
in the super-Ohmic environment can be much shorter than
the one in the Ohmic case and thus is hard to remove by
external pulses. Thus super-Ohmic environment can be a ma-
jor obstacle for the realization of quantum computation and
information processing.
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We emphasize that to maximally preserve the coherence
of an open system, self-consistency is required, and because
of the back-action from the environment, non-Markovian
processs is often the norm rather than the exception. We will
argue that, for a generic class of environment, Markovian
approximations are not strictly valid. To facilitate compari-
son with results in related papers we will compare our meth-
ods with other commonly used approximations to the spin-
boson model, such as the Born approximation and the Born-
Markov rotating-wave approximation[10] for two-level and
multilevel systems.

The outline of this paper is as follows: In Sec. II we
specify the model and cast it in the influence functional for-
malism in the presence of an external field. In Sec. III we
outline our idea of an effective 2LS using the QBM ap-
proach. Then we make correspondence between the phase
space representation discussed in Sec. II with the Fock space
representation. We compare our approach with other meth-
ods based on Born-Markov and rotating-wave-approx
imation. Our results are presented in Sec. IV A. In Sec. IV B
we discuss the limitations and potential extensions of this
approach.

II. QBM IN THE PRESENCE OF AN EXTERNAL FIELD

A. The model

Our model consists of a Brownian particle interacting
with a thermal bath in the presence of an external field. We
follow the notion developed in[6,12]. (We use the units in
which kB="=1.) The Hamiltonian for this model can be
written as

H = HS+ HB + HI + HF, s1d

where the dynamics of the systemS (with coordinatex and
momentump) is described by the Hamiltonian

HS=
p2

2M
+ V0sxd, s2d

and the(bare) potentialV0sxd is related to the physical po-
tential by a counter termDV i.e., V0sxd=Vsxd+DV (see be-
low). The bath is assumed to be composed ofN harmonic
oscillators with natural frequenciesvn and massesmn with
Hamiltonian

HB = o
n=1

N S pn
2

2mn
+

mnvn
2qn

2

2
D , s3d

where sq1,… ,qN,p1,… ,pNd are the coordinates and their
conjugate momenta. The interaction between the systemS
and the bathB is assumed to be bilinear,

HI = xo
n=1

N

cnqn, s4d

wherecn is the coupling constant between the Brownian os-
cillator and thenth bath oscillator with coordinateqn. The
coupling constants are related to the spectral densityJBsvd of
the bath by

JBsvd ; po
n

cn
2

2mnvn
dsv − vnd. s5d

We assume the spectral density has the form

JBsvd = 2Mgvne−v/L, s6d

wheren=1 is Ohmic,n,1 is sub-Ohmic, andn.1 is super-
Ohmic. We will discuss the Ohmic and super-Ohmicsn=3d
cases in detail.

The countertermDV depends oncn,mn,vn,p andx and is
given by

DV = H2MgLx2/p sn = 1d,

2MgLp2/M2p + 2MgL3x2/p sn = 3d.
J s7d

This term is introduced to cancel the shift in the mass and
frequency of the Brownian oscillator due to its interaction
with the bath which will become divergent when the fre-
quency cutoff L→`. As is customary, we consider the
renormalized quantities after including a counter term as the
physical observables with specified values.

For a linear QBM, the potential is

Vsxd =
MV2x2

2
, s8d

where V is the natural frequency of the system oscillator.
Finally, the Hamiltonian for the external fieldEstd is as-
sumed to be

HF = − xEstd. s9d

B. The influence functional

We begin by making the connection with prior treatment
of QBM based on the influence functional[13] with a phase
space representation for the Wigner function[14]. First we
consider the case without an environment. We define the
transition amplitude between the initial stateux0q0l at t=0
and the final stateux ql at time t to be

Ksx,q;tux0,q0;0d ; kx que−iHtux0q0l. s10d

The Liouville equation for the density matrix is

i
]

] t
rstd = fH,rstdg, s11d

where[,] is the commutator. In the coordinate representation,
the density matrix becomes

rsx,x8,q,q8,td ; kx qurstdux8q8l, s12d

with the collective notation for bath variablesq;hqnj. The
time evolution of the density matrix is given by

rsx,x8,q,q8,td =E dx0dx08dq0dq08Ksx,q;tux0,q0;0d

3rsx0,x08,q0,q08,0dK*sx8,q8;tux08,q08;0d.

s13d

For the problem under study, we assume that the charac-
teristic time scale for the bath is much shorter than the sys-
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tem. Under this condition, we may integrate out the bath
harmonic oscillator variables to obtain an equation for the
reduced density matrixrrsx,x8d;edqrsx,x8 ,q,q,td. For a
factorized initial condition between the system and the bath,
which is assumed to be initially in thermal equilibrium,

rsx0,x08,q0,q08,0d = rSsx0,x08,0d ^ rBsq0,q08,0d, s14d

we can express the time evolution for the reduced density
matrix in an integral form,

rrsx,x8,td =E dx0dx08Jrsx,x8;tux0,x08;0drSsx0,x08,0d,

s15d

where its time evolution operator is given by

Jrsx,x8;tux0,x08;0d =E dqdq0dq08Ksx,q;tux0,q0;0d

3rBsq0,q08,0dK*sx8,q;tux08,q08;0d.

s16d

The total action of the systemSfx,x8g enters as

Jrsx,x8;tux0,x08;0d ; E
sx0x08d

sxx8d
DxDx8eiSfx,x8g s17d

and consists of several contributions:

Sfx,x8g = SSfx,x8g + DSCfx,x8g + SFfx,x8g + SIFfx,x8g.

s18d

The sum of the actions for the systemSS plus its counterac-
tion DSS is given by

sSS+ DSSdfR,rg =E
0

t

dshM0Ṙssdṙssd − M0V0
2Rssdrssdj,

s19d

where R;sx+x8d /2 ,r ;x−x8. For notational convenience,
we have assumed the bare massM0 and bare frequencyV0
take on the valuesM0=M and M0V0

2=MV2+4MgL /p for
n=1 while M0=M +4MgL /p and M0V0

2=MV2+4MgL3/
s3pd for n=3. The action for the external field is

SFfR,rg =E
0

t

ds rssdEssd. s20d

The influence actionSIFfx,x8g accounts for the effect of the
bath onS and is given by

SIFfR,rg = iE
0

t

dsE
0

s

ds8rssdmss− s8drss8d

− 2E
0

t

dsE
0

s

ds8rssdnss− s8dRss8d, s21d

where

nstd =
1

p
E

0

`

dv JBsvdcoth
bv

2
cosvt, s22d

mstd = −
1

p
E

0

`

dv JBsvdsinvt s23d

are the noise and dissipation kernels, respectively.
From Eqs.(21) the Euler-Lagrange equations forR andr

are

M0R̈cstd + M0V0
2Rcstd + 2E

0

t

ds mst − sdRcssd = Estd,

s24d

M0r̈cssd + M0V0
2rcssd − 2E

s

t

ds8mss− s8drcss8d = 0.

s25d

The nonlocal kernelm contains the information of the past
history of the bath in the presence of the system variables.
Thus by solving these equations, self-consistency of the
system-bath interaction is taken into account. Nonlocal ker-
nels imply that these equations normally contain time deriva-
tives higher than two. In earlier studies of QBM, higher or-
der terms were neglected[11]. Hence the damping effect was
not treated properly. Inclusion of the higher order terms leads
to unphysical runaway solutions. In[12], the order reduction
procedure similarly to the radiation damping problem is used
to eliminate unphysical solutions reducing them into second
order differential equations with well-defined initial value
problems. After the order reduction procedure, the solutions
can be specified uniquely by imposing the initial and final
conditions:R0 andRt (r0 and rt).

If we let the two independent solutions of the homoge-
neous part of Eq.(24) and Eq.(25) beuissd andvissd , i =1, 2,
with boundary conditionsu1s0d=1,u1std=0,u2s0d=0,u2std
=1 and v1s0d=1,v1std=0,v2s0d=0,v2std=1, respectively,
the solutions of these uncoupled equations can be written as

Rcssd = R0u1ssd + Rtu2ssd + essd,

rcssd = r0v1ssd + rtv2ssd, s26d

whereestd=e0
t dsg+st−sdEssd /M. The solutionsv1 andv2 sat-

isfy the homogeneous part of the backward time equation
(25) and are related tou1 and u2 by v1ssd=u2st−sd and
v2ssd=u1st−sd. The functionsg+ssd and g−ssd also satisfies
the homogeneous part of Eq.(24) and Eq.(25) with bound-
ary conditionsg±s0d=0,ġ±s0d=1, respectively. The solutions
for g± for Ohmic and super-Ohmic cases are given in Appen-
dix A of [12]. From these solutionsu1,2 and v1,2 can be
determined.

Since the potentials in our model are harmonic, an exact
evaluation of the path integral can be carried out. It is domi-
nated by the classical solution given in Eq.(26). From these
classical solutions, we write the actionSfx,x8g as

SfRc,rcg = fMu̇1stdR0 + Mu̇2stdRtgrt − fMu̇1s0dR0

+ Mu̇2s0dRtgr0 + iha11stdr0
2 + fa12std + a21stdgr0rt

+ a22stdrt
2j + e1stdr0 + e2stdrt. s27d
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Here (e1std ,e2std)=eT=e0
t ds(v1ssd ,v2ssd)essd and

aklstd =
1

2
E

0

t

dsE
0

t

ds8vkssdmss− s8dvlss8d, s28d

for sk, l =1,2d contains the effects of induced fluctuations
from the bath on the system dynamics.

Using the results above,Jr in Eq. (17) can be written in
the compact form,

JrsRt,rt;tuR0,r0;0d = NstdeiL, s29d

where L=RTur + irTar+eTr, sadi j =aij ,R
T=sR0, Rtd, and rT

=sr0,rtd,

u = Su11 u12

u21 u22
D ; MS− u̇1s0d u̇1std

− u̇2s0d u̇2std
D . s30d

C. QBM in the phase space representation

The Wigner function is related to the density matrix by

WrsR,P,td =
1

2p
E dr e−iPrrrsR+ r/2,R− r/2,td. s31d

The Wigner distribution function obeys the evolution equa-
tion

WrsRt,Pt,td =E dR0dP0KsRt,Pt;tuR0,P0;0dWrsR0,P0,0d,

s32d

whereKsR,P; t uR0,P0;0d is defined by

KsR,P;tuR0,P0;0d =
1

2p
E dr dr0e

−isPr−P0r0dJrsR,r ;tuR0,r0;0d.

s33d

The propagatorK for the Wigner function is given by

KsR,P;tuR0,P0;0d =
Nstd
2p

E dr dr0e
is−Pr+P0r0+Ld

= NWstdexpf− dXW TS−1dXW g,

whereNWstd=Nstd /2Îuau anduau is the determinant ofa. The

vectordXW =XW −kXW l, with

XW = S R

P − e2
D , s34d

and

kXW l = SkRl
kPl

D = SC11 C21

C12 C22
DS R0

P0 + e1
D

=
− 1

u21
Su11 1

uuu u22
DS R0

P0 + e1
D . s35d

Here S is a matrix characterizing the induced fluctuations
from the environment:

S =
2

u21
2 S a11 a12u21 − a11u22

a12u21 − a11u22 a11u22
2 − 2a12u21u22 + a22u21

2 D .

s36d

At long times, fluctuations of the system are governed by
these terms asS11→ ksDRd2l ,S22→ ksDPd2l, and S12=S21

→0.
It is seen that this solution for the density matrix obeys

non-Markovian dynamics in that the solution at a given time
depends on its past history. Owing to the time dependent
nature of their coefficients, despite its simple appearance,
these equations are not easy to solve without approximations.
The commonly used Markovian approximations can miss the
essential features in the description of quantum/classical cor-
respondence: it tends to underestimate the loss of quantum
coherence because the rapid initial increase of diffusion co-
efficients is crucial for decoherence at low temperature for
strong coupling. It is simply not a valid approximation for a
harmonic oscillator model with a generic spectral density.

III. EFFECTIVE SPIN-BOSON MODEL FROM QBM

A. Dynamical level reduction

We first illustrate our scheme of dynamical level reduc-
tion based on the harmonic QBM, which can be viewed as an
infinite-level system in a bosonic environment

HS
s`d + HI

s`d = Va†a + Î2Vsa + a†do
n=1

NB

cnqn. s37d

This can be viewed as a limit of the finiteN-level system:

HS
sNd + HI

sNd = VSN
+SN

− + sSN
− + SN

+do
n=1

NB

c̃nqn s38d

when N→`. Here we have absorbedÎ2V by defining c̃n

=Î2Vcn.
At finite temperatureT, only those modes up toN

,kBT/"V are occupied. Thus at low temperatureT,"V,
the effective number of levels of harmonic QBM is signifi-
cantly reduced. In particular, atkBT,"V, we expect that the
system is effectively reduced to two levels:

HS
s2d + HI

s2d = VS2
+S2

− + sS2
− + S2

+do
n=1

NB

c̃nqn. s39d

The formal correpondence is achieved by replacing the har-
monic oscillator annihilation/creation operatora,a† by the
two-level pseudospin annihilation/creation(Pauli) operator
S2

−,S2
+. The spin-boson model can be obtained by rewriting

the Pauli operators as

HS
s2d + HI

s2d = VSS2
z +

1

2
D + S2

xo
n=1

NB

c̃nqn. s40d

B. Fock states from phase space representation

The correspondence between the Fock state representation
for the pseudospin qubits and the phase space representation

K. SHIOKAWA AND B. L. HU PHYSICAL REVIEW A 70, 062106(2004)

062106-4



is given as follows. First we write the density matrix in terms
of the phase space variable as

r̂std =E d2z

p
xQsz,z̄,tde−iz̄a†

e−iza, s41d

where

xQsz,z̄,td = Trfr̂stdeizaeiz̄a†
g s42d

is a characteristic function for theQ (or Hushimi) represen-
tation [15,16]. In a Fock space representation,

rklstd =E d2z

p
xQsz,z̄,tdkkue−iz̄a†

e−izaull, s43d

xQsz, z̄d is related to the characteristic function for the
Wigner representationxWsz, z̄d by

xQsz,z̄,td = e−uzu2/2xWsz,z̄,td. s44d

These characteristic functions are Fourier components of the
phase space distribution functions, namely

xQsz,z̄,td =E d2aQsa,ādeiz̄āeiza, s45d

xWsz,z̄,td =E d2aWsa,ādeiz̄āeiza. s46d

The characteristic functionxQsz, z̄,td for the harmonic
QBM evolved from the initial ground state has the following
Gaussian form:

xQsz,z̄,td = expF−
ka2stdl

2
z2 −

ka†2stdl
2

z̄2 − kastda†stdluzu2

+ ia fstdz+ iā fstdz̄G . s47d

The time dependent coefficients are antinormal ordered op-
erator averages of second moments given byka2l=c
+s ,kaa†l=C+S+1/4, anda f, which have their origins in
the classical trajectoryC of a damped harmonic oscillator in
Eq. (35), the induced fluctuationsS from the bath in Eq.
(36), and the external fieldE. The relations of these compo-
nents are given as follows:

8c = C22
2 − C11

2 + V2C12
2 −

C21
2

V2 + 2isC11C12 + C21C22d,

8C = C11
2 + V2C12

2 +
C21

2

V2 + C22
2 ,

4s = VS11 −
S22

V
+ 2iS12,

4S = VS11 +
S22

V
, s48d

and

a fstd =
1

Î2V
E

0

t SV + i
d

dt
Dg+st − sdEssd, s49d

whereg+ satisfies the homogeneous part of the equation of
motion in Eq.(24).

From Eq.(43) we can directly evaluate the density matrix
in the Fock representation at arbitrary quantum number. Note
that Fock states are not Gaussian states in general. For in-
stance, for an initial ground state,r̂s0d= u0lk0u, in the absence
of an external field, the ground state and the first excited
state population can be written as

r00std =
1

fkaa†l2 − ka2lka†2lg1/2 s50d

and

r11std =
1

fkaa†l2 − ka2lka†2lg1/2 −
kaa†l

fkaa†l2 − ka2lka†2lg3/2.

s51d

Let us introduce the Pauli spin representation for the two-
level system:

ksxstdl = r01std + r10std,

ksystdl = ir10std − ir01std,

kszstdl = r11std − r00std. s52d

We can express them by the variables defined in Eqs.
(47)–(49) for arbitrary two-level spin initial states as follows:

ksxstdl =
− 1

fkaa†l2 − ka2lka†2lg3/2Hfksxs0dlC22 − ksys0dlVC12g

3fReka2l − kaa†lg + Fksxs0dl
C21

V

− ksys0dlC11GImka2lJ , s53d

ksystdl =
− 1

fkaa†l2 − ka2lka†2lg3/2HFksxs0dl
C21

V
− ksys0dlC11G

3fReka2l + kaa†lg − fksxs0dlC22

− ksys0dlVC12gImka2lJ , s54d

and

kszstdl = −
kaa†l

fkaa†l2 − ka2lka†2lg3/2

+
4r11s0d

fkaa†l2 − ka2lka†2lg3/2HRefc̄ka2lg − Ckaa†l − C

+ 6kaa†l
Refc̄ka2lg − Ckaa†l

fkaa†l2 − ka2lka†2lg3/2J . s55d

These identities relate expectation values in oscillator
variables and effective spin variables. In particular, the close
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relations between the time dependent nonequilibrium uncer-
tainty principle and decoherence and dissipation in the low
level excitations become manifest. The uncertainty principle
generalized for mixed states in nonequilibrium implies that
kaa†l2−ka2lka†2lù1, which gives r00stdø1 in Eq. (50).
Thus the positivity of the density matrixr00 is guaranteed by
the uncertainty principle. Uncertainties of oscillator variables
will manifest themselves in a temporal decay of number
states and can be observed, for instance, in Rabi oscillations.
Conversely, the crossover between the qubit decoherence
from quantum fluctuation dominated regime to thermal fluc-
tuation dominated regime[12,17] implies the similar quan-
tum to classical crossover exists in the time-dependent un-
certainties in the phase space[5].

The leakage at time t is given by Lstd=1

−min TrfP̂rrstdg, whereP̂ is the projection operator onto the
computational subspace and the minimization is taken over

initial conditions. In our case,P̂=on=0,1unlknu. The source of
the leakage in our model is the transition to higher modes.
The leakage is typically estimated by perturbative methods.
However, the exact temporal evolution of this function is
highly nontrivial as we will see below. Note that from the
form of our effectiveHamiltonian in Eq.(40), the notion of
coherence and population between our model and some oth-
ers in the literature(for example, in[8]) are interchanged.
They are related to each other by a change of basis. We can
obtain similar expressions in the presence of an external
field. We will examine this case in Sec. IV A. In the Mar-
kovian limit, if the limit exists, two-level spin states become
coupled nontrivially and obey optical-Bloch type equations
[18].

C. Limitations of other approximations

1. Born approximation

Although exact master equations for open systems are
integro-differential equations, they can also be written in a
time-convolutionless form[29] (differential equation with
time-dependent coefficients local in time). The master equa-
tions in this form are still difficult to deal with. Most ap-
proaches based on master equations invoke Born-
approximation, which is not applicable for strong coupling
and the bath with long range correlation. Under Born-
approximation, one can obtain a tractable form, which can be
solved numerically[20] or analytically in some cases[21].
The master equation under weak-coupling approximation
may be suitable for describing the short time dynamics but
tends to predict incorrect behavior for long times[4,8]. Our
nonperturbative approach does not require Born approxima-
tion and thus is applicable to arbitrary time scales.

2. Born-Markov approximation

In this approximation, the bath correlation is neglected.
This may be obtained as a limit of high temperature or adia-
batic system evolution in the Ohmic bath. For a generic bath
spectral density, however, there is no such limit. In a super-
Ohmic bath, the bath correlation, when time-averaged for a
long time, vanishes owing to the ultrashort time correlation

time. In a sub-Ohmic bath, it diverges owing to the long
correlation time. Only Ohmic spectrum gives the finite con-
stant diffusion term.

3. Born-Markov rotating-wave-approximation

For weak coupling, the off-resonant counter-rotating
terms in the interaction Hamiltonian are often ignored by
invoking the rotating-wave-approximation(RWA). Although
the use of RWA significantly simplifies the analysis, the dy-
namics under this approximation cannot capture the fast dy-
namics at time scales less than the natural time scale of the
system. Furthermore, the spectrum of the Hamiltonian under
RWA is found to be unbounded from below[19]. These fea-
tures suggest that the range of validity of RWA is restricted
to the leading order in the coupling constant only, where the
counter-rotating terms do not contribute. After neglecting the
counter-rotating terms from the two-level spin-boson Hamil-
tonian in Eq.(40), we obtain

HS+ HSB= VS2
+S2

− + sS2
− + S2

+do
n=1

N

cnqn → HS+ HRWA

= VS2
+S2

− + o
n=1

cnsS2
−bn

† + S2
+bnd, s56d

wherebn=svnqn+ ipnd /Î2vn are bath annihilation operators.
In the presence of an external field, under the RWA, the
reduced density matrix for the Hamiltonian obeys an optical
Bloch equation. This case is commonly described in quan-
tum optics text books.

4. Born-Markov-RWA in multilevel system (MLS)

For comparison, we make the same Born-Markov-RWA in
our E2L-SBM. Since the naive high temperature limit of the
master equation obtained from QBM violates positivity[28],
we start from the master equation in the Lindblad form[10].
For a particle initially in the Fock stater̂s0d= uklkku, the Q
distribution function at timet has the following form:

Qsa,ād =
1

pf1 + nBs1 − e−gtdg
expF−

uau2

1 + nBs1 − e−gtdG
3F snB + 1ds1 − e−gtd

1 + nBs1 − e−gtd Gk

o
l=0

k
1

k!

k!

l ! sk − ld!

3F uau2e−gt

snB + 1ds1 − e−gtdh1 + nBs1 − e−gtdjG l

, s57d

where nB;1/sebV−1d is a Planck distribution factor. For
r̂s0d= u1lk1u, from Eqs.(43), (45), and(57),

r00std =
1

f1 + nBs1 − e−gtdg2f1 − e−gt + nBs1 − e−gtdg s58d

and

r11std =
1

1 + nBs1 − e−gtdH1 −
1 + e−gt

1 + nBs1 − e−gtd

+
2e−gt

f1 + nBs1 − e−gtdg2J . s59d
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IV. RESULTS AND DISCUSSIONS

A. Results

In Fig. 1, the populations and the leakage atT
=50 mK,V=1 GHz,g=0.1 GHz, and L=100 GHz are
shown. The initial state is assumed to be the first excited
state. At this temperature, the exact and the Markovian re-
sults agree at an intermediate time scale(around t=10 ns)
but disagree at initial times. The slow oscillations in Fig. 1(b)
of the exact curve are from effects due to counter-rotating
terms. The large leakage indicates that at this temperature,
kBT."V, 2LS description is not a good picture. In Fig. 2,
T=10 mK case is shown. There is a drastic difference in the
entire time range shown in the figure. The exact result fol-
lows the quick decay at early times up tot,10–50 ps. Late
time decay rate asymptotically approaches the value given
by the Markov approximation. The leakage is relatively large
initially but negligibly small at late times. This indicates that
only the lowest two levels are essentially populated except
for the initial times,t,5 ns. The initial rapid decay of popu-
lation is the result of large initial leakage due to the transition
to noncomputational subspace. The large initial impact of the
bath also appears in the diffusion constants in the generalized
master equation at low temperature.(Note that at low tem-
perature, there is also an anomalous diffusion constant[6].)
The total decay slows down as the leakage is suppressed at
an intermediate time scale. The qualitative features are un-
changed for the more realistic mixed state initial condition
(starting from the local equilibrium with the lowest two
population reversed) except for the initial value, which is
shifted to below unity. In Fig. 3(a), the decay rate of the

excited state population atT=0 is plotted. The large initial
growth is due to the rapid decoherence which sets in around
the bath characteristic time scale. The rate reaches the value
given by the Markovian approximation asymptotically. The
Born-Markov RWA prediction from 2LS and multilevel sys-
tem(MLS) (dashed line) coincide since there is no excitation
from the ground state atT=0 under RWA. In Fig. 3(b) the
same quantity atT=20 mK is shown. The decay rate under

FIG. 1. (a) Plot of the time evolution of the population of the
ground and the first excited state population, and the leakage(the
dot-dashed curve) at T=50 mK with V=1 GHz,g=0.1 GHz, and
L=100 GHz. The thick solid(dashed) curve is the exact(Markov-
ian) result for excited states while the thin solid(dashed) curve is
the exact(Markovian) result for ground states. Panel(b) is in the
logarithmic time scale.

FIG. 2. The ground and the first excited state population, and the
leakage (the dot-dashed curve) at T=10 mK. V=1 GHz,g
=0.1 GHz, andL=100 GHz. The thick(thin) curve is for the ex-
cited state with the pure(mixed) state initial condition. Panel(b) is
in the logarithmic time scale.

FIG. 3. The decay rate of population atT=0 in (a) and atT
=20 mK in (b). The solid curve is our exact result, while the dashed
lines are from using the Born-Markov apporoximation.V
=1 GHz,g=0.2 GHz, andL=100 GHz.
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Markovian approximation is constant for the two-level sys-
tem (thin dashed line) but time-dependent for the multilevel
system(thick dashed line). This is due to the fact that the
Fock state is not an eigenstate of the interaction Hamiltonian
(9). We will come back to this issue in the next section. The
exact result exhibits a large initial growth similar to theT
=0 case indicating that this comes from quantum fluctuations
of the environment, then reaches asymptotically the value
given by the Markovian multilevel case. In Fig. 4, the result
for a super-Ohmic environment is plotted. Compared to the
Ohmic case, the initial decay of the excited state population
is much more drastic but it appears to saturate at late times.
Thus if the initial decay is strong enough, the coherence in
the system can be totally washed out at an early stage, a
serious concern for the quantum devices. On the other hand,
if it is small, the system can remain coherent for a long time.
Note that our result disagrees markedly with the Markovian
prediction over the entire time range.

In Fig. 5, the Rabi oscillations in the presence of an ex-
ternal sinusoidal pulse at the resonant frequency are plotted.
The most notable difference between the exact results from
the Markovian results is that the exact results show the low
onset and low visibility for all times. The difference is more
evident for the super-Ohmic case. Our figures also suggest
that it is not easy to determine the characteristics of the en-
vironment only from the experimental Rabi oscillation data
without the precise knowledge of the dissipation. The large
increase of leakage is due to the resonant transition to higher
level states. The leakage can be suppressed by detuning of
the external field. Though increasing anharmonicity in the
potential will also suppress these transitions to some extent,
the initial rapid increase of leakage is unavoidable due to

energy-time uncertainty relation. In the presence of tunneling
with a biased potential, due to the dominance of resonant
transitions to the continuum modes, we expect the result will
be qualitatively similar to ours. In this case, the leakage in
our model can be interpreted as the effect often attributed to
tunneling. However, this rather corresponds to the hopping
induced by environment to other metastable states. As the
system-bath interaction increases, this hopping rate will in-
crease similarly to the thermal hopping while the tunneling
rate will be suppressed[22].

B. Discussion

Our nonperturbative calculation shows that at low enough
temperatures, many conventional approaches based on the
Born-Markov approximation can significantly underestimate
the environment-induced decoherence beyond the weak
system-bath coupling. In this regime, the visibility in Rabi
oscillations in the exact calculation tends to be lower than
what is expected in the Markovian approximation. Low vis-
ibility in Rabi oscillations is commonly observed in super-
conducting qubits[23–26]. The bath time scale is also im-
portant in causing the initial rapid decoherence and leakage;
this is completely neglected in analysis based on the Born-
Markov-RWA. This initial effect can manifest itself as an
onset value of Rabi oscillations. In many practical imple-
mentations of qubits, the temperature of the environment
compared to the bath cutoff frequency is small,kBT!"L,
thus we are still in the low temperature regime.

For a sufficiently small quality factorQ, weak coupling
approximation is no longer valid. Our results indicate that for
Q smaller thanQ,10–100, there can be an extra suppres-

FIG. 4. The excited state populations and the leakage are plotted
for super-Ohmic environment.T=10 mK in panel (a) and T
=50 mK in panel(b). The thick (thin) solid curves is our exact
result for super-Ohmic(Ohmic) case, while the dashed line is from
using the Born-Markov apporoximation.V=1.5 GHz, and L
=100 GHz.

FIG. 5. Rabi oscillations and the leakage atT=10 mK are plot-
ted for Ohmic environment in panel(a) and for super-Ohmic envi-
ronment in panel(b). Estd=E0cossVtd with E0=2.0. The thick solid
curves are exact results, while the dashed curves are from using the
Born-Markov approximation. V=1.5 GHz,g=0.1, and L
=100 GHz.
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sion of Rabi oscillations such that their peaks largely deviate
from the exponential curve. There is an enhancement of non-
perturbative correction including the off-resonant contribu-
tion of the environment as temperature is lowered. ForQ
.1000, nonperturbative effects are fairly suppressed. Never-
theless, they should appear as anonexponentialdeviation
from the exponential damping, depending on other param-
eters that can be extracted from the temporal evolution data.

The E2L-SBM approach gives a precise evaluation of the
leakage due to the system’s interaction with the environment
and the external control field. For temperatures higher than
the characteristic energy of the oscillator, the large leakage
makes the qubit based on the choice of the lowest two levels
ill-defined. During gate operations, this can become a serious
problem and remedies for stabilizing the system such as us-
ing external pulse control may be necessary. Our result
shows that the time scale associated with leakage is charac-
terized by the dynamical time scale of both the system and
the bath.

In realistic macro- or mesoscopic systems, the potential
contains anharmonicity, which causes the deviation of the
system dynamics from the harmonic motion. A measure of
anharmonicity near the ground state can be given by the
difference of energy level separation between the lowest lev-
els v01;v1−v0 and the excited levelsv12;v2−v1. When
this difference is small,v12−v01!v01, the initial short time
evolution around a metastable state is well-described by the
linear dynamics for any metastable state. When the correc-
tion to the energy level due to anharmonicity in the potential
becomes important, it is necessary to include such an effect
in our scheme. Although the large anharmonicity also pre-
vents the leakage in the long term, the initial large leakage
we saw cannot be completely eliminated as we mentioned
before. When we apply our formalism to the metastable
state, eventually the system state will leave the harmonic
oscillator phase space into other metastable states via tunnel-
ing. The harmonic approximation of coherent dynamics is
expected to be accurate at initial times when the time scales
associated with these nonlinear effects are large compared to
the decoherence time scale. In our example, the deviation
from the Markovian prediction is evident in the very early
stage of the system evolution up tot,1 ns even for an in-
termediate temperature. For the realistic implementation of
qubits, the underlying potential landscape leading to the dis-
crete energy level is already known by design[23–26,30,31].
Our approach based on E2L-SBM is suitable in this situation

and will give a more precise estimate of the open system
dynamics than the one based on the conventional 2LS ap-
proximation. In particular, our results are directly relevent to
the superconducting phase qubit models[23,24,31]. In the
superconducting qubits, the major source of decoherence is
the noise induced by the interaction with the current or
charge sources mainly during the qubit manipulations. We
have not considered other possible sources of decoherence
such as the coupling to defects or nuclear and magnetic
spins. Multilevel structure in the superconducting flux qubits
was studied in[32] by Born-Markov approximation without
control fields.

For many qubit models that involve electric charges, 1/f
noise from background charge fluctuations are considered to
be the dominant source of decoherence. Contrary to the 1/f
noise, the effect of super-Ohmic environment is most evident
in the ultrashort time range as shown in Fig. 4, which makes
the detection of super-Ohmic environment a challenging
task. Recent demonstration of spin-echo technique for the
detection of 1/f noise[33] and the use of similar technique
for the suppression of 1/f noise[34] are conducive to further
clarifying decoherence in an super-Ohmic environment.

For the system-environment coupling we considered in
Eq.(9), the Fock state is not an eigenstate of the interaction
Hamiltonian and is subjected to a complex decay even under
the Born-Markov approximation as shown in Sec. III C 2.
Previous study in the high temperature limit indicates the
pointer state which is stable under this system-environment
coupling is a coherent state[7]. Our calculation based on the
solutions of QBM indicates that, beyond the weak coupling
regime, the environment-induced effect has a crucial impact
on the system dynamics at an early stage. A pure and a mixed
state initial conditions are studied in accord with the initial-
ization scheme by cooling commonly used in quantum infor-
mation processing[35]. Our results are robust under both
initial conditions and also in accord with earlier studies of
QBM including the preparation effect[4,36]. We expect that
our results will hold for a more general class of initial con-
ditions.
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