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The original Wigner function provides a way of representing in phase space the quantum states of systems
with continuous degrees of freedom. Wigner functions have also been developed for discrete quantum systems,
one popular version being defined on ld>2 2N discrete phase space for a system witlorthogonal states.

Here we investigate an alternative class of discrete Wigner functions, in which the field of real numbers that
labels the axes of continuous phase space is replacedibiegfield havingN elements. There exists such a

field if and only if N is a power of a prime; so our formulation can be applied directly only to systems for
which the state-space dimension takes such a value. Though this condition may seem limiting, we note that any
guantum computer based on qubits meets the condition and can thus be accommodated within our scheme. The
geometry of ouN X N phase space also leads naturally to a method of constructing a completeNset of
mutually unbiased bases for the state space.
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I. INTRODUCTION investigations into thé&N=2 case by Cohen and Scull§0]

Given any pure or mixed state of a quantum system witfind Feynmarill].l The NX'N phase-space description has
continuous degrees of freedom, one can represent the st18€n applied to quantum optics by Vaccaro and Piegg
by its Wigner function[1,2], a real function on phase space. @nd to quantum teleportation by Koniorczgkal. [16]. Dis-
The Wigner function acts in some respects like a probabilitycrete Wigner functions on theN2< 2N model have been in-
distribution, but it differs from a probability distribution in Vvestigated by Leonhardtl4] and used by Bianuccet al,
that it can take negative values. The Wigner function hadiquel et al, and Paz to analyze various quantum processes
been widely used in semiclassical calculations, and it is alssuch as the Grover search algoritfifiv]. All of these pro-
used to facilitate the visualization and tomographic reconposals have the feature that one can sum the Wigner function
struction of quantum states. For a system with a single dealong different axes in the discrete phase sp@oeeluding
gree of freedom, one of the most interesting features of thekew axepto obtain correct probability distributions for ob-
Wigner function is this: if one integrates the function alongservables associated with those axes. Leonhardt in particular
any axis in the two-dimensional phase space—the axis cafas emphasized the value of this feature for tomography, that
represent any linear combination of position andis, for ascertaining the quantum state of a given ensemble by
momentum—the result is the correct probability distributionperforming a series of measurements on subensembles. Other
for an observable associated with that g)dsd]. discrete Wigner functions have been considered which do not

Generalizations of the Wigner function have been pro-have this featurg¢18], but in the work we present here this
posed that apply to quantum systems with a finite nunhber tomographic property plays a central role. One can find fur-
of orthogonal states, and the present paper continues this lifber discussion of discrete Wigner functions and their history
of research. In 1974 Buot introduced a discrete Weyl transin, for example, Refs[12,13,53.
form which, when applied to a one-dimensional periodic lat- In the continuous case, for a system with one degree of
tice of N sites (with N odd), generates a Wigner function freedom, one can regard the Wigner function as being based
defined on a phase space consisting ofNad N array of  on a certain quantum structure that one imposes on the clas-
points [5]. Buot's work is related to earlier work by sical phase space. The structure consists of assigning to each
Schwinger[6], who did not explicitly generalize the Wigner straight line in phase space a particular quantum stateq Let
function but identified a complete basis bf orthogonal andp be the phase-space coordinates, and suppose that the
unitary operators (elements of the generalized Pauli line in question is the solution to the linear equatiag
group—or discrete Weyl-Heisenberg groupat can be used +bp=c. Then the quantum state assigned to this line is the
to define anN X N phase space. A different approach waseigenstate of th@perator &g-bp with eigenvaluec. Once
taken in 1980 by Hannay and Berfy]: these authors di-

rectly adapted the definition of the continuous Wigner func- itponx N approach has been problematic wiis even in that
tion to a periodic lattice and thereby arrived at a discretghe method of Buot does not lead to a complete basis of Hermitian
Wigner function de“”_Ed on aNex 2N phase space. _ operators in that cagesee Refs[12—14). In Ref.[9] the state-space
Both of these basic approaches were later rediscoveregimensionN is restricted to odd values; in Refg,8] the difficulty
and developed further by other researchers. Variations on the addressed by giving a special role to prime valuesNof

N X N scheme were proposed by Woottpd} Galettiand De  Schwinger likewise found it natural to regard each prime valug of
Toledo Piza[8], and Cohendett al. [9], following initial as representing a single degree of freedéin
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this connection is made between lines in phase space aradely to a unique Wigner function for a quantum system with
guantum states, one defines the Wigner functioWés, p) N orthogonal states. To some extent this non-uniqueness is
=(1/2mh)Tr[pA(d,p)], wherep is the density matrix being mitigated by the fact that many different quantum nets are
represented and the operaf(q, p) is built in a symmetric  closely related to each other. We define notions of “equiva-
way out of all the quantum states assigned to lines of phasience” and “similarity” for quantum nets and identify the
space, the weight given to a particular state depending on theimilarity classes foN=2, 3, and 4. A good portion of the
relationship of its line to the poinig, p). paper is devoted to this classification of quantum nets, which
In this paper we wish to define a discrete Wigneramounts to a classification of possible definitions of the
function—actually a class of discrete Wigner functions—wigner function within this framework.
fO”OWing as C|OSE|y as possible the spirit of the construction One motivation for the present work comes from guantum
just described. Because this construction is essentially ge@omography, which we mentioned above in connection with

metrical, we want the geometry of our discrete phase spacgiher discrete versions of the Wigner function as well as the
to be closely analogous to the geometry of an ordinary plang.,ntinuous version. As we will see, our approach leads natu-

For example, we need to have the concept of “parallel linesy v, 14 4 specific tomographic technique. Each complete set
in phase space, and we want two non-parallel lines always t

; . o . ! 8f parallel lines in the discrete phase space corresponds to a
intersect in exactly one point, just as in the Euclidean plane P P P P

Such considerations lead us to use, as the variables that Iab%eirticular measurement on the quantum system, or more pre-
the axes of phase space, quantities that take valueiéfda cisely, to a particular orthogonal basis for the state space. By

in the algebraic sense. That is, for our axis variabjesdp, expgrimentally determining the probabilities_of the outcomes
we replace the usual real coordinates with coordinates takin fth|s. measurement, one can obtain some mfprmaﬂon a.bout
values inFy, the finite field withN elements.(Our phase 1€ Wigner function, namely, the sum of the Wigner function
space can therefore be pictured asNi N lattice) Now, ~ OVer each of those parallel lines. The sums aethe lines
there exists a field having exactiyelements if and only iN of ph_ase space are sufflc!ent to reconstruct the entire Wigner
is a power of a primé19]. Thus our formulation is directly function and thus determine the state of the system. _
applicable only to quantum systems for which the dimension The parncular.orthogonal bases that are asspmated with
of the state space is such a number. It is always possible ®£tS of parallel lines turn out to bautually unbiasedor
extend it to other values of by taking Cartesian products of Mutually conjugate; that is, each vector in one of these bases
the basic phase spaces—the same strategy is used ipiRef. 'S @n equal-magnitudesuperposition of al! the vectors in any
and indeed, exactly the same strategy is used in the contin@f the other bases. Sets of mutually unblased bases have been
ous case when there is more than one degree of freedom-Used before, not only for state determinat[@0,21 but also
but in this paper we will restrict our attention to the basicfor quantum cryptography and in other contej@,29, and
phase spaces with field elements as coordinates. The esséhféW methods have been found for generating such bases
tial use of arbitrary finite fields is what distinguishes our [23:24,20,25-3D As we will see, the discrete phase space
work from earlier approaches to discrete phase space. ~ developed in this paper leads to a rather elegant way of con-

Though the restriction to powers of primes rules out manyStructing mutually_unblased bases; it is es_,sent|ally the same
quantum systems, there is one familiar case to which ouf?ethod as was discovered recently by Pittenger and Rubin
formulation may be ideally suited, namely, a systemnof [28] and is closely related to the recent work of D{28],
qubits such as is commonly used to model a quantum confhough those authors were not studying phase space or
puter. In that case the dimension of the state spade=i2", Wigner fun_ctlons. The_ connectlon_wnh r_nutuqlly unbiased
which is indeed a power of a prime. Thus our version of the?aseés—valid for all prime power dimensioNs—is one re-
discrete Wigner function provides an alternative to tie 2 SPect in which the Wigner function presented here is differ-
X 2N formulation that has been most frequently used in€Nt from those proposed earlier. A consequence is that the
guantum information theoretic applications. Most likely eachtomographic scheme suggested by our phase space construc-
of these phase-space formulations will prove to have its oW,t]|_on involves fewer distinct measurements than_ schemes de-
advantages. rived from other discrete phase spa¢@8,21. This feature

As in the continuous case, we impose a quantum structur the focus of Ref[31], which introduces for certain special
on theNx N phase space by assigning a quantum state t§aS€S some of the ideas that we present here in a more gen-
each line in phase space. We insist that this assignment s&@! setting. o _ _
isfy a certain strong constraint, namely, that it transform in a AS further motivation, we note that the discrete Wigner
particular way under translationgThe analogous quantum function we develop here appears to bear an interesting rela-
structure on the continuous phase space satisfies a similpn to certain toy models of quantum mechanics proposed
constraint) Any assignment of quantum states to lines that?y Hardy [32] and Spekken¢33] to address foundational
meets this condition we call a “quantum net,” and we use itSSU€S. For example, in both of these models a “toybit" has
to define a discrete Wigner function. It turns out that the®xactly four underlying ontic states, which could be taken to
requirement of translational covariance does not pick out £0rrespond to the four points of our one-qubit phase space.
unique assignment of quantum states to phase-space lindd$ has been suggested by Spekkens, the discrete Wigner
that is, there is not a unique quantum net for a giler N
phase space. Moreover, we have not found a general prin-For the case of a single qubit, our phase-space formulation is the
ciple that would select, in a natural way, one particular quansame as in Refg4,8,11, but it is already significantly different
tum net for eaciN. So our approach does not lead immedi- when one enlarges the system to a pair of qubits.
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function might therefore facilitate the comparison between
quantum mechanics and these toy theof3ss. W(a,p) = —TF[PA(q P, (3)
Our discrete phase space is also related to some work on
guantum error correcting codes, which is similarly based orwhereA(q,p) is an operator that we will assign to the point
finite fields.(In Sec. IV we point out aspects of this relation- (q,p). This operator is constructed, as we will see below, out
ship) It is conceivable, then, that our Wigner function could of the statesy,;,o-
be of particular value when representing certain encodings of We want the Wigner function to have the property that its
gquantum states. integral over the strip of phase space bounded by the lines
The remaining sections are organized as follows. Sectiomq+bp=c, andaq+bp=c, is the probability that the opera-
Il recalls the definition of the usual Wigner function and tor ag+bp will take a value between, andc,. This is one of
shows how it can be obtained from an assignment of quanthe characteristic features of the Wigner function and is the
tum states to the lines of phase space. In Sec. Il we give thproperty that makes it so useful for tomography. We can
mathematical description of our discrete phase space and diguarantee this property by insisting that the integral of
cuss its geometrical properties. Section IV shows how tq1/2##)A(q,p) over the same strip of phase space is the
build a quantum net on this discrete phase space and shoysojection operator onto the subspace corresponding to the
that the bases associated with different sets of parallel linegigenvalues oag+bp lying betweenc, andc,. That is, we
must be mutually unbiased. The notion of a quantum net ignsist that
then used in Sec. V to construct a discrete Wigner function.

. . . C2
In Secs. VI and VIl we define our notions of equivalence and 1 A da do= J dc. forc, > c
similarity between quantum nets and identify the similarity 2% J gy, (a.p)dq dp o [¥ab0(Yapdde S
classes for small values &f. Finally in Sec. VIII we review 4)

our results and contrast the discrete and continuous cases.
An equivalent expression of this condition, in terms of a

single line in phase space rather than a strip, is the following:
Il. THE WIGNER FUNCTION CONSTRUCTED

g+bt 1
FROM EIGENSTATES OF aqrbp oo | e a0- A pIda o= ot ®)
Here we briefly derive the usual definition of the continu-
ous Wigner function in a way that lends itself to generaliza- To find A(q,p) explicitly, we need to invert Eq5). But
tion to the discrete case. The quantum system in question i5g. (5) is an example of the well-studied Radon transform—
a particle moving in one dimension, and the coordinates ofhe operatot,,{#and, regarded as a function ef b, and
phase space are the positigriand momentunp. ¢, is the Radon transform dfL/274)A(q,p) regarded as a
We begin by assigning a quantum state to each line idunction ofq andp—and the inverse of this transform is well
phase space. Consider the line specified by the equation known [34]. Here we simply state the result:
+bp=c, where the real numberg, b, and c are arbitrary
except thata and b cannot both be zero. To this line we A(g,p) ___f f ( )|,/,abt>
assign the unique eigenstate of the operafprbp that has (c-agq- bp)2
eigenvaluec. In the position representation we can write this
operator as

X{irapdda db, (6)
where c is any nonzero real constant, afid indicates the

d canonical regularization of the singular function that follows
aq+ bb:aq—ibhd—, (1) it. In the case of the function ¥#, this regularization is

q defined by

and the relevant eigenstdig,,) is given by f (RX_12>f(X)dX=f f(x) + f(—X;O - Zf(O)dx. R
—0 0
-i(a/2hb)(q - c/a)? 2 Using the expression foy,,. of EQ. (2), one can carry out
(Al ane) = Yanl ) = '21-,-ﬁ|b| @ e integration of Eq(6) to get
’ " o— q’ + q” _ (ip/h ")

The normalization ofi,,. is chosen so that the integral (@|A@.pla’) = 2 q)elp . (8)

§i| Uapo{apddc, with c,>c,, is a projection operator.

As we mentioned in the Introduction, given a density ma-The Wigner function then comes out to be

trix p of the particle, the corresponding Wigner function will 1 1 * i
be of the form W(q,p) = ﬁTr[PA(q p)]= — <q — X|p|q + X)X/,

3For the special cases=0 andb=0 we can take the eigenfunc- ©
tions to beygpe=(1/v277i|b|) &Y and y,0. = (1/Va) 5(q-c/a), re- Notice that according to the inverse Radon transform
spectively. given in Eqg.(6), the operatolA(q,p) is built out of all the
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operators|Jnp0{(iand, the weight given to each operator lines will be associated with an orthogonal basis, and one
tending to fall off as the associated line gets farther from thdinds that the magnitude of the inner product between any
point (g, p). We will find that the analogous inversion in the two vectors chosen from different bases is always the same.
discrete phase space is much simpler: Aheperator associ- This is the property called mutual unbiasedness. Before we
ated with a given point is built entirely from the states as-can see how this comes about, and before we explore dis-
signed to the lines passing through that point. crete generalizations of the Wigner function, we need to de-
A particular property of the Wigner function that we want fine our discrete phase space.

to generalize to the discrete case is translational covariance
[2]. Here we state the property without proof. Mg, p) be

the Wigner function corresponding to a density magrand

. MATHEMATICAL DESCRIPTION OF DISCRETE
PHASE SPACE

let p’ be obtained fronp by a displacement in position and Our approach to generalizing the continuous phase space
a boosty in momentum: to the discrete case is quite simple. Like the continuous
T Sy p_hase space for a system with_one Qegree of freedom, our
p = pe : (10 discrete phase space is a two-dimensional vector space, with
Then the Wigner functiokV’ corresponding tg’ is obtained ~ POints labeled by the ordered péir, p). But instead of being
from W via the transformation a vector space over the real numbers, it is a vector space over
a finite field, andq andp are field elements. The number of
W'(g,p) =W(-x,p-Y). (1) elements in the finite field is the dimensidhof the state

;Shace of the system we are describing. The physical interpre-
tation of this discrete phase space will be left mostly to Sec.
r#\-/' In this section we focus on its mathematical properties.

tion an interesting property of the statef,,.) that likewise A field, in the algebraic sense, is an arithmetic system

has an analogue in the discrete case. Consider two infinit\é{ith addition and multiplication, such that the operations are

stripsSandS' of phase space that are not parallel. The Stripcommutatlve, associative, distributive, and invertit@gcept

; ; - — ; that there is no multiplicative inverse for the number zero
+bp= +bp=

gIsisbct))lézizcédbyb;r;(,aqlins%q_ Ct,)pancé Zp&j +at()q/ pli'i, anvéh:,l\?e [19]. The real numbers are a familiar example of a field with
v 2

assume that,>c, andc,>c.. Let P be the projection op- an infinite number of elements. As we have said in the Intro-
erator onto the subspace associated ithe. ductlpn, there exists a fleld_W|th exactly elements if qnd .
' only if N is a power of a prime, so our scheme applies di-
C2 rectly only to quantum systems for which the state-space
P:f | habo{¥apddC. (12)  dimension is such a number. Moreover for any of these al-
“ lowed values olN, there is essentially only one field having
Similarly, let P’ be the projection onto the subspace associN elements—any two representations are isomorphic—and
ated withS'. Using Eq.(2) we can write down an explicit we label this fieldly. If N is prime, I’y consists of the num-
expression folP in the position representatiqwith a suit-  bers0,1,... N=1 with addition and multiplication mod\.

That is, when the density matrix is translated, the Wigne
function follows along rigidly.
Before moving on to the discrete phase space, let us me

able modification ifo=0): If N=r", with r prime andn an integer greater than 1, then
the field Iy is not modular in this sense but can be con-
Plq’y = sin[ (c;-c)(g- Q')} structed from the prime fieldl,; one says that'y is an ex-
m(q-q) 27i|b| tension off,.

Let us illustrate this process of extension in the cagé,pf
which we will use frequently as an example. To genefate
and P’ can be written similarly. One can show by ©ne begins by finding a polynomial of degree 2, with coeffi-
explicit integration that the quantity TPP'), that is, Cients inl, that cannot be factored if,. (To generaté’n

x g (i127b)(g-a")[a(a+q")~(cr+c)] (13)

J{qlPla’Xa’|P’|aydq dq, works out to be one would use a polynomial of degrag It happens that the
’ only such polynomial ix?+x+1: there is no solution ifi, to
1 (c,—cy(cy—cy the equation
Tr(PP/) - ( 2 /1)( 2/ ]_) (14) q ,
27h  |ab’ —a'b| X2+x+1=0. (15

But the positive quantityc,—cy)(c;—cy)/|ab’—a’b| is sim-  The extension is created by introducing a new eleraettitat
ply the area of the region where the two infinite strips over-is definedto solve this equation, just as, in creating the com-
lap. Thus T¢PP’) is equal to this area expressed in units of plex numbers from the reals, one defines the imaginary ele-
Planck’s constant. In the limit as the width of the st8p menti to solve the equation?+1=0. Once w is included,
shrinks to zero, this result tells us that any eigenstate of thanother elementy+ 1, is forced into existence, as it were, by
operatorad+bp yields a uniform distribution of the values of the requirement that the field be closed under addition. One
the operatoa’g+b’p. thus arrives at',:

A_s we will see, the an_alogue of this property ir_1 the case F,=10,10,0+1}, (16)
of discrete phase space is simpler. In place of strips we will
consider individual lines of the discrete phase space. As wwith arithmetic determined uniquely by the fact thakatis-
have said in the Introduction, each complete set of parallefies Eq.(15). For example, we can squaggeas follows:
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TABLE |. The complete addition table fdr,.

® e o e o “—<+— © o o o
+ 0 1 ® @ ®e e e e «—>0 o o o
0 0 1 ® w P ] © o e e >« © o o o
1 1 E ® ® 0 e e e e > > e o o o
® o ® 0 1 01 o ® N W W
® w 1) 1 0

q
w’=-w-1=-Duw+(-)=w+1, (17) (a) b
have elements, andb) by spin states.

(@+1)?=’+(1+Do+1=0’+1=(0+ 1) +1=0. always usingmodulararithmetic, as has been pointed out in

(18 Ref.[14]. Consider, for example, the calle=4. Under arith-
metic mod 4 the point4(0,0),(1,2),(2,0),(3,2} form a
Following common practice we will frequently use the sym-jine, namely, the line that solves the equatipr2g. But
bol w to represent the field elemeat+ 1. The complete ad- {(0,0),(1,0),(2,0),(3,0)} is also a line, and it shares two
dition and multiplication tables fol’, are given in Tables | points with the first one.
and Il There are exacthiN(N+1) lines in our phase space, and
We now explore some of the geometric features of thehese can be grouped inko+1 sets of parallel lines. To see
phase space for a geneftout prime powey value ofN. We this, note that each nonzero poift,p) determines a line
picture the space as ahx N array of points(q,p), with g  through the origin, namely, the line consisting of the points
running along the horizontal axis am@along the vertical (sq,sp) wheres takes all values it'y. Let us refer to a line
axis. For definiteness we place the origig,p)=(0,0), at  through the origin as aay. Now, there areN’-1 nonzero
the lower left-hand corner. The phase space No¥r4 is  points, but each ray contaimé-1 such points; so the num-
shown in Fig. 18, and in Fig. 1b) we show a possible ber of rays i(N°~1)/(N-1)=N+1. Each of these rays then
physical interpretation of the axis variables if the space iglefines a set ol parallel lines. Let us call a complete set of
being used to describe a pair of spin-1/2 particléEhe parallel lines a “striation” of the phase spa_cﬁhe five stria-
physical interpretation will be explained further in the fol- tions of the 4<4 phase space are shown in Fig. 2. One can
lowing section) We emphasize, however, that these picturesObserve there that the lines follow the three rules mentioned

are not essential to our basic construction. For example, waPove. N , I
will often speak of a “vertical line,” but this term is simply J“SE 3\5 'Q_t € ::on'ﬂnuous caseA(zne clart1_ Sp_ea{ﬁﬂﬁ 3;1.,[.
shorthand for a set of points of the for(g,y) whereq is lons ot (€ dISCrele pnase space. A ransiation 1S the addition
fixed andy can take any field value pf a constant vector to each point of the space. For ex_ample,
M llv. dine in the N N. h is th i in the 4X 4 phase space as pictured in Fig. 1, translating by
ore generaily, din€ in the phase space IS € Sel o yactor(1,0) has the effect of interchanging the first two
of points satisfying an equation of the foeg+bp=c, where

. columns and interchanging the last two columns. We will
3, b, gndc are e'emef‘ts ofy with a andb not both ZE10. " denote by7, the translation by the vectaw. 7, acts on
Two lines are parallel if they can be represented by equa\tlonﬁomtS in phcélse spacé, 8= a+ 3. But we will a?so some-

having the same andb but different values ot. Because times apply7, to an entire line, in which case it translates
the field operations are so well-behaved—especially sinc@ach point in the given line to yield another liggossibly the
every nonzero element has a multiplicative inverse—thesgme as the origingl
usual rules governing lines and parallel lines apfilygiven Shortly we will need the concept oftaasisfor a field. A
any two dlstmc_t points, exa_ctly one line contains both pointshasis for the fieldl'n is an ordered set of field elements
(if) given a pointa and a line\ not containinge, there is (e, ... e, such that every elementin I',n can be expressed
exactly one line parallel ta that containsy; (iii) two lines  in the form
that are not parallel intersect in exactly one point. Note that n
h r itions would n rue for genétal we wer
these propositions would not be true for gen&tédfl we were x=> xe, (19)

i

TABLE Il. The complete multiplication table for . L . . .
P P ‘ where eachx; is in the prime fieldl",. There are typically

many possible bases for a given field.lly for example, we

S

X 0 1 0}

0 0 0 0 _O “In Ref. [4] a similar set was called a “foliation,” because in that

1 0 1 ) ® case the elements of the set were sometimes higher-dimensional
1) 0 o) o 1 slices of a multidimensional space. Since the lines in our current
© 0 © 1 ® construction are one-dimensional, they are more like “striae” than

“folia.”
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IV. ASSIGNING A QUANTUM STATE TO EACH LINE
IN PHASE SPACE

We now need to supply our discrete phase space with a
physical interpretation. We will do this by assigning to each
= 6 W . oo o line in phase space a specific pure quantum state as repre-
g 'f s sented by a rank-1 projection operator. (ebe the function
eco oo ... R e e that makes this assignment. That is, for each Nrnia phase
space,Q(\) is the projection operator representing a pure
N RN @ . ®. .. quantum state. We will impose one condition Qntransla-
® @ 8 ol > g = tional covariance, to be defined shortly. A functi@nsatis-
v R cams 0@ fying translational covariance we will call a “quantum net.”
Later we will see how each possible choice of the funcon
@ ce o0 PrE— leads to a different definition of the discrete Wigner function.
@ N X ... e @ For N=r" wherer is prime, our phase space applies most
S E S - & & Wh = naturally to a system consisting nfobjects(which we call
“particles,” though they could be anythingach having an
R Y r-dimensional state space. We assume that our system has
ps RPN ® v o is @is this structure.
e ®- - @ - cece We have seen in E¢10) the sense in which the continu-
s il 20 S iRl ous Wigner function is translationally covariant. To define an
analogous property in the discrete case, we need a discrete
FIG. 2. The striations of the 4 4 phase space. analogue of the unitary translation operators

could take(1,w) as a basis, ofl,w), or (w,w). Because in Tixy = exHi(yq - xp)/f] (23)
this paper we need to talk about bases for Hilbert spaces agat appear in Eq(10). That is, for each discrete phase-space
well as bases for fields, we will often refer to the latter astranslation7(,, with x andy in Fy, we will define a corre-
“field bases.” '

We will also need the concept ofgual basis, which in
turn depends on the notion of thace of a field element.
The trace of a field elementis defined by

sponding unitary operatdf,,, that acts on the state space.
In choosing these unitary operators, we are guided by the
following considerations(i) We want the multiplication of
these unitary operators to mimic the composition of transla-

5 - tions; that is, we insist that for any vectatsand 8 in phase
trx=x+xX+x + - +x . (200  space,

(We distinguish it from the trace of an operator by the lower TaTp™= Tasp: (24)

case “tr") Though this definition may seem quite opaque onwhere the symbof indicates equality up to a phase factor
first reading, the trace has remarkably simple properties, thghat might depend om and 8. (The unitary operators of Eq.
most important for us being that) the trace is always an (23) have exactly the same relation to the addition of con-
element of the prime fieldl,, (ii) tr (x+y)=tr x+try, and(iii ) tinuous phase-space vectgrgi) There should be “basic”
trax=atrx, wherea is any element of",. Now, given any translations corresponding to unitary operators that act on
basis E=(ey, ...,e,) for F there is a unique basiE just one particle. We make the connection between a trans-
=(&,, ... &, such that lation vector(x,y) and individual particles by expanding
andy in field bases, allowing ourselves to use a different
basis for each of the two dimensions of phase space. Thus we

r &€ =4, @D \rite
where g; is the Kronecker delta. This unique basis is called "
the dual basis ofE [19]. We can immediately use the dual X= 2 Xei€ (25)
basis to obtain, for fixed basiE and field elemenk, the =1

unique coefficients in the expansioh9). Starting with that gndg
expansion, we multiply both sides @y and take the trace:

n
n y =2 yifi, (26)
~ ~ i=1
tr(xg) = E xitr(e) = X;. (22 _
[ whereE=(e, ...,e,) andF=(f, ... ,f,) are field bases, and
we associate the coefficientg andyy; with theith particle.
The expansion coefficients will be used in the following (The symbolse andf are included in the subscripts to indi-
section as we lay down a quantum structure on our discreteate which basis is being used in the expansiériransia-
phase space. tion that involves only coefficients having a particular value
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of i should be associated with a unitary operator that acts ZX=nXZ, (31
only on theith particle. (Later we will discuss how much
freedom we have in choosing the field baBesndF.) (iii) In _
the single-particle state space, we choose our unitary operaésxsy ¢an be written as

tors to be as analogous as possible to the continuous opera- Tisxsy = X1 7(V11 @ +.. @ X(SVenz(SYn, (32
tors. Let(|0), ... ,|r—1)) be a standard basis for the single- y

particle state space. Then in the space ofithearticle, the It follows from Eq.(31) that theséN operators commute with
“unit horizontal translation,” withx,;=1 andy;; =0, is asso- each other if and only if the following condition is met for all

where »=€?™". For each value 06, the unitary operator

ciated with the unitary operatof defined by pairs of field elements andt:
n n
Xky = |k+ 1), 27
= lk+ @7 > (SXej(ty)j = 2 (Xei(SY)s, (33
=1 =1

with the addition being ift",, and the “unit vertical transla-
tion,” with x,=0 andy; =1, is assigned the unitary operator where the operations are thoself that is, they are mod.
Z defined by It turns out that this condition can be very simply expressed
i in terms of'y. We show in Appendix A that E¢(33) is
Zlky = ™K. (28)  satisfied for all values of, y, s andt if and only if the field
basesE=(ey,...,e,) and F=(fy,...,f,) are related by an

The operatorX andZ, which are generalized Pauli matrices .
equation of the form

introduced long ago by WeyB5], have been used by many
authors in many contexteften with nonprime values afas fi=weg,i=1,...n, (34
in Ref.[36]), including studies of discrete phase spa&8] . ,
and mutually unbiased basg8,27. Except for phase fac- WHerew is any element of the fieldy. Thus, because we

tors, our general unitary translation operators are now fixe sist on translational covariance, we are not free to choose

by Eqgs.(24), (27), and(28). We write them as followsgand the base& andF arbitrarily. These bases enter into the defi-
this eqL.Jatio’n fixes the choice of phase factors nitions of the translation operatofs, and if the bases do not

satisfy Eq.(34), there is no functior@Q(\) that is translation-
Ty = XA @ - @ XeerZVin, (29) ally covariant with respect to these operators.
Suppose now thd andF do satisfy Eq(34), so that the
We note that the operatofl, ) play an important role in N operatorsT sy, for fixed x andy and all values ofs,
the theory of quantum error correction: they are normallycommute with each other. These unitary operators are trace-
taken as the basic error operators acting on"atimensional  |ess and mutually orthogonal in the sense that
state spaceusually withr=2). Often the indices; and y;; " )
labeling these error operators are treated simply as elements Tr(Tisxsy Tixty) =0 if s# t. (39
of I, without the additional field structure that we have as-,
sumed. However, for some purposes it has been found usef8|
to treatx andy as elements of the extensidm as we have
done here(See for example Ref$37-4Q.)

follows that they define ainigue basis of simultaneous
genvectorgup to phase factoys Thus as long as this con-
dition on the field bases is satisfied, our requirement of trans-
; i ) lational covariance picks out a unique orthogonal Hilbert
In or_der for the Wigner f_unc_:ﬂon—defmed Ia_lter—to be space basis to associate with each striatighe will see
translationally covariant, we insist that the functi@t\) be g,y that translational covariance also requige® assign
translationally covariant in the following sense: for each lineg yifrerent element of this basis to each line of the given
A and each phase-space veaior striation) Moreover, it follows from the work of Bandyo-
padhyayet al. [27] that these Hilbert space bases are all
mutually unbiased. Specifically, Bandyopadhyyal. show
the following: if a set ofN>~1 traceless and mutually or-

QTN =T, Q)T (30)

That is, if we translate a ling in phase space by the vector
a, the associated quantum state is transformed pyrhis is
quite a strong requirement. To see why, consider the line °As we have mentioned above, in some papers on quantum error
consisting of the pointésx,sy) wherex andy are fixed(and  correction the authors have indexed the error operators with ele-
not both zerp and s ranges over the whole fiellly. This  ments of the fieldF;n. These authors have also insisted that the
line, and each of the lines of its striation, are all invariantcommutation relations among error operators be expressible in a
under a translation by the vectésx,sy) for any value ofs.  simple way in terms of the field algebfa7—44. The condition Eq.
This means that in order to satisfy E§0), the projection®) ~ (34) does not seem to have appeared explicitly in these papers, but
that we assign to these lines must commute Withs, for it may well be implicit. o

eachvalue ofs. (If we were to represent the quantum states '1¢'€ again there is a connection with the theory of quantum

by state vectors rather than by projectors, the state vecto%’des‘ in which one frequently considers sets of commuting error

; : . rators: ntum ilizer isinf joint eigen f
assigned to these lines would have to be eigenvectors gperators: a quantu stabilizer code is in fact a joint eigenspace o

T for each value o) But this is impossible unless all ?he operators of such a getl-44. However, in our case the com-
(sxsy) vaiu ) But this is impossi u muting set ismaximal so that the subspace defined by a set of

of the operators(ssy, commute with each ot.her. The. basic gigenvalues is spanned by a single vector. The vectors we define in
operatorsX andZ obey the simple commutation relation this way are thus examples of stabilizer states.
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thogonal NX N unitary matrices can be partitioned into Consider, for example, the following three vectors which are
N+1 subsets of equal size, such that tel operators in  proportional to each othe(l,w), (»,®), (w,1). In terms of
each subset are commuting, then the bases of eigenvectasar field bases, we can express these vectors(Oes
defined by these subsets are mutually unbiased. Our operade,,1f,+0f,), (le;+0e,,1f;+1f,), (le;+1e,,0f;+1f,).
tors T,y satisfy this hypothesis as long as the field bdSes Thus according to Eq29) the unitary operators associated

andF satisfy Eq.(34). with translations by these vectors are, respectively,
Note that because there aket+1 striations, the above
argument—which again is closely related to R¢®8,29— Taw =28 X, T =XZ®Z, TGy =X® XZ, (41)

shows that one can construdt-1 mutually unbiased bases
in N complex dimensions wheN is a power of a prime. For
a general value o it is known [23,24 that the number of
mutually unbiased bases cannot excékell, and other pa- (O 1) (1 0 )

where in this casX and Z are the ordinary Pauli matrices,
expressed in the standard basis as

pers have shown in other ways that this number is exactly X=
N+1 whenN is a power of a primé¢20,25-27. Remarkably, 10
the maximum number of such bases appears to be unkno
for any value ofN that is not a power of a priméut see ; . - . .
. ! with each other. The unique basis of simultaneous eigenvec-
Refs.[26,30,45-4F which shed light on that problem tors is q 9
Let us find the Hilbert space bases that our construction
assigns to the vertical and horizontal striations. The vertical -1 1 1 1
lines are invariant under translations by vectors of the form

o -1 “2)

"®ne can verify that the three operators of E4l) commute

(0,s); so the Hilbert space basis associated with this striation 1 1 1 _.1 1 _ = (43)
consists of the simultaneous eigenvectors of the operators A A 2\ —i
T09- These operators take the form i i i —j

To9=21® -+ ®Z% (36)  This, then, is the basis that we associate with the striation

. . . . _containing the ling(0,0),(1,w),(w,®),(w,1)}.
and are thus all diagonal in the standard basis; so their sI- In the same way we can figure out what Hilbert space

multaneous eigenvectors are simply the standard basis V€Basis is associated with each of the other striations. Figure 3

tors shows the complete correspondence explicitly; each striation
k) ® - @ |Ky. (37)  is labeled, in the left-hand column, by a point belonging to

) ) ) ) ) the line in that striation that passes through the origin. The

The horizontal lines are invariant under translations by th&iations are listed in the same order as in Fig. 2. One can

vectors(s, 0); so the Hilbert space basis associated with this,erify that these five orthonormal bases are mutually unbi-
striation consists of the simulataneous eigenvectors of ased, as they must be.

Teg = X¥1® -+ @ X%, (39) So far our _constryction only al_ss_i_gns a Hill_aert-space basis
' to each striation. Given our definition df,,, in Eq. (29),
One finds that these vectors are this assignment is completely determined once we have cho-

lip® - @iy (39) sen a field basis for each of the two dimensions of phase
e space. We now turn to the question of assigning a specific
where the single-particle statg$, notationally distinguished stateQ(\) to each linex of phase space. How much freedom
by the curved bracket, are given by do we have in making this assignment?
r Consider a striatiors. Let B={|by} be the basis associ-
lj) = i_z 77”<|k>. (40) ated with this striation, witts € I'y. We now consider a spe-
VI k=1 cific line Ay in S, namely, theray that is included inS; that

) _ g2l . is, Ag is the line inSthat passes through the origin. We are
(Again, »=e-™".) Note that for these two special fee o assign any of the statéis) to Ag; this choice is
striations—vertical and horizontal—the associated H”be”arbitrary. However. once we have made this choice. the vec-

space bases do not depend on the choice of field bases. Thig 4ssigned to any other line of the striation is determined by
is typically not the case for other striations. Eq. (30);

Let us see how this all works out for the case 4. First
we arbitrarily choosée;,e,) =(w, 1) as the field basis for the Q(ZixyAs) = T(x,y)Q()\S))Tz.X,W' (44)
horizontal translation variablg. One finds that the unique
dual of this basis i€€;,8,)=(1,w). Thus in order to make since any line in the striation can be obtained by translating
translational covariance possible we should choose the fieldlg. The functionQ(\) is thus entirely determined once we
basis (f;,f,) for y to be either(1,0) or some multiple have assigned a quantum state to each ofrdlys of phase
thereof. We achieve a certain simplicity if we multigly,w)  space. Moreover, it is clear from E@4) that the same quan-
by w to get(f,,f,)=(w,1). Then the basis foy is the same tum state cannot be assigned to two distinct lines of a stria-
as the basis fox. Having made these choices, we can writetion: an operato(,, that translates. into A" cannot com-
down the unitary operator associated with any translationmute withQ(\), since it has a complete set of eigenvectors
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1 0 0 0 In the next section we show how we can use a quantum
0 1 0 0 net to define a Wigner function.
(0.1): 0 0 1 0
0 0 0 1 V. DEFINING A WIGNER FUNCTION
1 1 1 1 A quantum net assigns a st&@d€\) to each linex in phase
1 -1 . 1 -1 space. The Wigner functiolV(q,p) of a quantum system
(1,0: 3 1 5 1 3| —1 | 2| -1 should be such that whai(q, p) is summed over the link,
1 1 -1 1 the result is the probability that the quantum system will be
found in the stat®(\). That is, if p is the density matrix of
1 1 1 1 the system, we insist that
1 —Z 1 Z 1 —‘Z 1 Z _
GRS NP I 3 I N B - 2 W, =T{pQM)]. (45)
aeN
-1 -1 1
For a given quantum n&), this condition completely deter-
1 1 1 1 mines the relation betwegnandW.
) 1 -1 1 1 1 -1 We now use Eq(45) to expresdn, explicitly in terms of
(Lw): 3 i 3 i 2| —; 2 — p. We begin by observing that through any painthere are
i i i —i N+1 lines, and that each poift# « lies on exactly one of
these lines. These geometrical facts allow us to write
1 1 1 \ 1 1
—\. 1 '—2 1 Z 1 _7' 1 Z Wa:_[(z EWB>_2W3/:|1 (46)
(1,00) 2 1 2 1 2 -1 p] -1 N Asa Bel b%
3 —i —1 i

where the first sum is over all lines that contain the paint
FIG. 3. The five bases generated by the five striations. Using Eq.(45) we can rewrite this as

not all degenerajethat are unbiased with respect to the 1 1

E)asis assogiated \}vim P W, = N[ 2 TpQMN)] - 1] = NTr(PAa)' (47)
Let us summarize the choices we are allowed as we set up roa

a quantum net for th&l X N phase space. First, we choose a

field basiskE for the horizontal coordinate; any basis will do.

Next, we choose a field basks for the vertical coordinate,

but here we are not so fre€. must be a multiple of the A, = [ 2 Q()\)] -1. (48)

unique basis dual t&; that is, f;=w@& for some nonzerav

e I'y. These choices determine the unitary translation opera-

tors according to Eq(29), which in turn define a unique Equation(47) is our explicit formula forw,.

orthonormal basis to be associated with each striation. Now, The operator#\, have a number of special properties.

for each striatiors, we choose a particular vectfl) in that (1) A, is Hermitian.

striation’s basis and leD(\g) =|b){b|, where\g is the ray (2 TrA,=1.

defining that striation. The sta@(\) assigned to any other (3) TrAAz=Nd,z.

line N is then determined uniquely by the condition (4) 2,.,A,=NQ(\).

Q(T(x,yﬂ\so):T(x,y)Q(Rso)Tzrx,y)- These can all be proven directly from the definition. For our
In the caseN=4, with the field base€=F=(w,1) as present purpose the most important is prop€&3jywhich we

before, we can define a quantum net by choosing, from eachow prove explicitly. Starting with Eq48), we can write

of the five bases shown in Fig. 3, one state vector to be

associated with the corresponding ray in phase space. For - _

example, we might choose, for each basis, the vector in the TrAA E’a Eﬁ TIQMQM] =22 TrQ() +Tr1.

left-most column of that table. With this choice, the vertical

line through the origin is associated with the st@@ [that (49)

is, k;=k,=0 in Eqg.(37)], and the other vertical lines, from

left to right in Fig. Xa), are associated with the stajed), ~ 1he last two terms have the value (R 1)+N=-(N+2).

|10), and|11) respectively. If the system in question is a pair The value of the double sum over and » depends on

of spin-1/2 particles and if we interprf) as|1) and|1) as whethera and 8 are the same point. If they are, then of the

|1), the vertical lines can be labeled as shown in Fign:l ~ (N+1)” terms in the sumN+1 of them have the value 1

11, 11, 11, 1. With this same choice, the horizontal lines arebecause.=v, and the rest have the valueN,/because bases

associated with the statés>—) and so on, as is also indi- associated with different striations are mutually unbiased.

cated in Fig. 1b). Thus in this case we have

where

Ao«

Ao«
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1 state Wigner function
TrAaAB:(N+1)+N(N+1)N—(N+2):N (a=p).
(50) —— |1 0(0{0
If a# B, then exactly one term in the double sum has the |TT> ——1510]0}0
value 1,N terms have the value 0 becaus@nd v are par- ——1110(0]0
allel but different, and the rest have the valué&lblecause of ——=|2l010]0
the mutual unbiasedness. This gives us T4T T L
1
TrAA;=1+N(N+1)—=-(N+2)=0(a# B), (51
? N —«[0J0J0]0
which finishes the proof of proper{). —— 1111100
Property(3) shows that the operatofs, constitute a com- |T_’> ——|olololo
plete basis for the space bifx N matrices. In particular, we NN e
can write the density matrix as a linear combination 114
it
p=2b,A,, (52)

- : . —«—|0]0(0]0
where the coefficientb, must be real since and theA,’s ——slol*zl0
are Hermitian. Multiplying both sides of Eq52) by A, L(ITH_ 1LT) 414
taking the trace, and using propex®) above, we find that V2 —— 015110
b, is in fact equal tow, as expressed in Eg47). We have ——= (0101010
thus found an explicit expression for the density matrix in TTTLIT 1L
terms of the Wigner function:

FIG. 4. Wigner functions for three states of a pair of qubits.
p= 2 WA,. (53) ? parerd

. , i the rays of phase space with the states listed in the left-most
We now list @ number of properties of the Wigner func- .o jymn of Fig. 3. With these choices we can compute the

tion and its relationship to the density matrix. operatorsA,, and thereby find the Wigner function associated
(1) W, is real. o with any statep. In Fig. 4 we give the result for certain
(@) Zae\Wo=TrpQN)]. This is the property(45) that  quantum states of a pair of spin-1/2 particles, representing
we used to define the Wigner function. spin states as we did at the end of Sec. IV.
() Z,W,=1. This follows immediately from property 2.~ one can check that the sum over any line is the correct
break the sum ovew into parallel lines, and the correspond- propability of the state associated with that line. For ex-
ing probabilities must sum to one. ample, in the case of the singlet stétg\2)(|1 | )=|| 1)), if

(4) Let W be the Wigner function corresponding to a den-
sity matrix p and letW’ correspond t@’, wherep’ :TﬁpTL.
ThenW,=W,_;. This is the translational covariance of the
discrete Wigner function and is the analogue of @4). The
proof is straightforward:

both particles are measured in the up-down basis, the only
possible outcomes arg| and |1, corresponding to the two
middle columns; similarly if both particles are measured in
the right-left basis, the only possible outcomes are- and

— >,
o1 , 1 . 1 . The property(45) of the discrete Wigner function is the
W, = NTV(P Ay = NTr(TﬁpTﬁAa) = NTr(pTﬁAaTﬁ) one that makes it useful for tomography. Suppose that one
has an ensemble of systems with Brdimensional state
1 _ space all prepared by the same process, so that each instance
- NTr(”Aa'B) = We-g- (54) should be describable by the safpessibly mixed quantum

state. To find the values of the Wigner function, one can
Here we have used the fact thigt is a linear combination of  perform, onN+1 subensembles, the orthogonal measure-
the identity operator and the projectio@s which were con-  ments associated with thi+1 striations of phase space.
structed to be translationally covariant in accordance witherom the probabilities of the outcomes one can reconstruct

Eqg. (30). o _ _ the Wigner function. In fact, from Eq47) one obtains the
Of course the definition of the Wigner function dePe”deoIIowing equation for this reconstruction:

on the quantum ne®; different choices of the quantum net
will yield different definitions of the Wigner function. In 1
order to show some examples of Wigner functions, for the W, = —[ > P\ - 1], (55)
remainder of this section we adopt the particular quantum net N

for N=4 that we mentioned at the end of the preceding sec-

tion. Recall that for this quantum net, we have taken the fieldvhere P(\)=Tr[pQ(\)] is the probability of the outcome
bases to b&e=F=(w, 1), and we have chosen to associateassociated with the ling.

Asa
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In this discussion we are assuming tiNatr" wherer is  ®|0). And this exhausts our unitary freedom. If two quantum
prime. A system with such a value bf can alternatively be nets, after having their vertical and horizontal states brought
described using the Wigner function of Ré4], for which  to a standard form in this way, are not now identical, then
the phase space is the direct summafX r phase spaces. The they must not have been equivalent to begin with, since there
tomography on this 2dimensional phase space requiresis no further unitary freedom. To find the number of equiva-
(r+1)" different measurements, which is always greater thaence classes, we simply have to consider the freedom that
the numbeN+1=r"+1 required by our present scheme. In- remains once the states associated with the vertical and hori-
deed, for any value oN, N+1 is the minimum number of zontal lines are fixed. We still havd—-1 striations left, and
orthogonal measurements needed to reconstruct a genefal each one we still havl vectors that we can assign to the
guantum state, since a general density matrix containgy associated with that striation. Thus the number of equiva-
N2-1=(N+1)(N-1) independent real parameters and eacHence classes isN"1.

measurement provides only-1 independent probabiliti€s. Note that the above argument also shows that if two quan-
tum nets are equivalent, theyustbe related by a translation
VI. CLASSIFYING QUANTUM NETS of the phase space. Starting with a given quantum net, one

can generat&? equivalent quantum nets by translation, us-

According to our construction in Sec. IV, a quantum net ising theN? translation operatoréncluding the identity. Thus
determined once we) specify the field basis for each of the each equivalence class must have at I&#selements. But
two axes of phase space, afid select, for each striation, a since there ar&N-! equivalence classes and a totalNf*!
vector (from the basis associated with that striajido be  quantum nets, each equivalence class must lexaetly N
assigned to the line through the origin. For the purpose oglements, namely, the ones obtained by translation.
this section, let us assume that the choice of field bases is |n order to define the notion afimilarity, we consider a
fixed once and for all. We are still free to choose whichgifferent sort of transformation of the discrete phase space,
vector to associate with each ray. How many possible quamamely, alinear transformation That is, we imagine map-
tum nets do these choices give us? The answMi3, since ping each pointr of phase space into a poiat =L, where
there areN+1 striations, and for each one we can choose_ s linear over the field'y. If we think of a as a column
amongN basis vectors. But theg¢*! quantum nets are not vector with componentx andy, we can think ofL as a
all greatly different from each other, and in some cases the x 2 matrix with elements in the field:
definitions they generate of the Wigner function are closely
related. In order to get a sense of the range of significantly (X' ) _ (a b)(x)
different Wigner function definitions, we now begin to clas- y') \c d/\y/°
sify the possible quantum nets. For this purpose we define

two relations between quantum nets: equivalence and simi/é call two quantum net® and Q" similar if and only if
larity. there exists a linear transformatidnon the phase space,

Let us call two quantum netsquivalenif they differ only together with a unitqry transformatidsy on the state space,
by a unitary transformation of the state space. That is, twSUCh that for every lina,
quantum net$) and Q' are equivalent if and only if there iy =1t
exists a unitary transformatiod such that, for each ling, Q') = U QUM 57
Q’(\)=UQ(NUT. For exampleQ’ might be related t® by ~ That is,Q’ is unitarily equivalent not necessarily @ itself
a translation of the phase space, which by construction imbut to Q acting on a linearly transformed phase space. A
plies a unitary relation betwee@ andQ’. linear transformation can be regarded as a matter of changing
How many equivalence classes of quantum nets are therdéRe basis vectors of phase space, as a unitary transformation
To answer this gquestion, note first that, regardless of whas a change of basis in the state space. In this sense two
states a quantum net assigns to the vertical lines, becauggantum nets are similar if they are related to each other by
they are orthogonal—in fact they must be the basis stateshanges of basis in these two spaces. It turns out that Eq.
|k ® - ® ]k, in some order—we can always find a unitary (57) can hold only ifL has unit determinant. For suppose that
transformation that will bring them to the same basis but in &g. (57) holds for somel andU,. Then from the fact that
standard order, the stal® ® - -- ®|0) being associated with bothQ andQ’ must be translationally covariaftq. (30)], it
the vertical ray. Moreover, we still have freedom, by a fur-follows that for all phase space vectars
ther unitary transformation, to change the phases of these

(56)

t o

states arbitrarily. Thus the state assigned to hibazontal UlT UL~ T (58)
ray, a state that must already be one of the stgies - | Appendix B we show that Eq58) can be satisfied for all
@|jn) [Egs.(39) and(40)], can be brought, by changes inthe ,, only if L has unit determinant. We show further that for
phases of its components, to the particular st@e - eyeryunit-determinant linear transformatian there exists a

unitary U, such that Eq(58) holds. (See also Ref453,54
"Moving away from the simple tomographic model, there areWhich address a different formulation of the same general
many other schemes for the reconstruction of quantum states. IRfoblem)
particular, one can use non-orthogonal measurements or adaptive This latter fact has an important consequence for classi-
measurement§48] or one can perform arbitrarily many distinct fying quantum nets. Given a quantum 1@®), suppose that
measurement49]. we construct another functio@’()\):UIQ(L)\)UL, wherelL
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is a unit-determinant linear transformation dodis the uni- I’y are the same for both of the equivalence classes; so the
tary operator whose existence is guaranteed by (B).  following picture is valid for both. In this picture the value of
ThenQ' is also a legitimate quantum net, translationally co-I', is written in the location defined by (recall that the
variant with respect to the original translation operaf®gs lower left-hand corner is our origin, so the value written
Thus any function obtained from a quantum net by linearlythere isIyq0).
transforming all the lines of phase space, is itself a quantum
net up to a unitary transformation. We will use this fact Ton. — 1 111
shortly in the classification of quantum nets. 0y =151
In the rest of this section we characterize the similarity
classes of quantum nets fi=2, 3, and 4. For this purpose

it is helpful to introduce a unitarily invariant functiohi of Here the factor 1/4 multiplies each term in the array. As
three phase-space point: must be the case, the two equivalence classes do differ in
other values of: whena, B, andy are all different[’ .5, is
complex, and the values for the two equivalence classes are
related by complex conjugation.

As we have seen, each quantum net yields a particular
definition of the discrete Wigner function via E@L7). The

(61)

1
Fapy = THAAGA,), (59)

whereA,, is defined in Eq(48). Becausd' is not affected by hat th . | milarity cl P
a unitary transformation of the quantum net, it is constan{‘;’:ct t ﬂt t ﬁre IS only one I‘T"m' E}rlty cajsf' N: mfea;]ns,d.
over each equivalence class. Indeed, it follows from the or- en, th?‘” erfe IS _essefntlﬁ_yzon _thmeh efinition Oft € dis-
thogonaliy relaion TA,A,=No,, that the funciorl com- (50 £ 0T Lol =l e T MR aner onl
pIeter_ characterizes the guantum net up to,a uni_t ary transﬁy a .rotation of theqqubi(tequivalencyeand/or an antiunitary g
formation. Therefore, two quantum nésandQ" aresimilar spin flip (similarity). Up to these modifications, the definition

if and only if the corresponding functiods andI'" are re- ' ! _ : . .
lated by a unit-determinant linear transformation of the phas?'ven in Eq.(47) for N=2 agrees with the discrete Wigner

space, i.e., ifT;,;y:FLaLﬁLy- ThusTI' can be used to distin- unction defined in Refs.11,4,9.

: ; Y L Similarity classes for &3
guish different s'g;ﬁﬂ%gﬁ;ﬁgés for N2 For the three-element field there are two possible field

For higher dimensions we will need to specify a field bases(1) and(2). Let us fix(1) as our field basis for each of

basis for each of the two phase-space dimensions, but in tﬁhe two phase-space dimensions. The number of equivalence

: 2 :
case of a single qubit, there is no such choice, since the Onrgasses of quantum nets for a single qutrit '39. Again

field basis consists of the single number 1. The number Oeﬁc?%:;s(smba f&?rr]t'cmaerS;Z?ézszgé?“r\]’: dftcgr?hga\f:rtiigtl“;ﬁ;j
equivalence classes in this case 5'22. To construct a y 9 9

representative of each one, we first @\) for the vertical horizontal rays: to the vertical ray we assign the sfieand

and horizontal rays: to the vertical ray we assign the stattO the horizontal ray we assign the stgig: The difference
yS. y W 9 Between equivalence classes then lies in the choices we make
[0) and to the horizontal ray we assign the std@®

=(1/v“§)(|0>+|1>). As explained above, we have this freedoml;(:rri;:(cem(;ﬂ;er;two striations. The bases associated with these

within an equivalence class. The only choice remaining then,
which distinguishes the two equivalence classes, is the state
to be assigned to the diagonal ray. This state must be one

of the two eigenstates ofZ (that is, ofoy). Let us call these 1 Z 1 1 1
states|y,) and |y_), defined byly,)=(1/12)(|0)+i[1)) and Bl BT B (62)
ly_-)=(1/y2)(|0y-i|1)). As it turns out, the two resulting 1 1 ]
guantum nets are similar to each other. To see the similarity,
in Eq. (57) choose and
0 Y= P L) o
_10an =B\ —1) 1;1111
=1 =l»n] =1 (63

One can verify that if we leQ(\g) =|y.)Xy.|, then after ap- V3l ) v3l /) v3 7

plying L andU_ as in Eq.(57) we obtainQ’(\g) =|y_Xy_|,

but the states assigned to the vertical and horizontal rays are

unchanged. Thus there is only one similarity classNer2.  where »=€*"/3. We need to choose one vector from each of
Though we have not needddto classify the similarity these bases to assign to the remaining two rays. We now use

classes in this case, for comparison with other valuel itf  the values of'y, to help us identify the similarity classes.

will be helpful to see some of the values of this function. If we choose the first vector listed in each of E@2) and

Here we give the values dfy,,, where “0” indicates the (63), we get the following values dfy, (again, the position

origin andy is an arbitrary phase space point. The values ofn the table indicates the value ¢j:
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111 1111 5 |15]5|5
Fooy =3[ 111 s 511|511 . 1 (5111}5
111(1 (64) Bl 515|111 Bl 111155
2515|511 1311115
On the other hand, if we make any other choice, we find that
the analogous table contains three zeroes lying along one of (66)
the lines of phase space. Here is an example:
7131713 -113(-1¢13
0(1(1 X 1(-1] 7|7 L 7T171-1]-1
Fooy =211/ 0 ®31-11-11]3 3171713
41011 (65) 1913 (-1|7 19137 1-1
(67)

Now, in the 3X 3 phase space there are exactly eight lines
that do not pass through the origin. Moreover, with a unit-Though the last two have comparable features, we note that
determinant linear transformation acting on the phase spac#,is not possible to change one of them into the other by a
we can move any of these eight lines into any other; thuslinear transformation of the phase space. The first two are
starting with the zeroes as in E@5), we can move them to clearly not related to the others or to each other by linear
any other such line. We saw earlier that if we modify a quaniransformations since, for example, they have different val-
tum net by applying a unit-determinant linear transformationues ofI'gq Which is invariant under linear transformations.
to the phase space, the resulting function is, up to a unitary The fact that these four arrays are not related by linear
transformation, another quantum net. Therefore, as we udgansformations shows that there are at least four similarity
such transformations to move the zeros among these eightasses. In fact, by counting the number of different func-
lines, we are generating eight inequivalent quantum nets thaions I',4, that one can obtain by unit-determinant linear
by definition are in the same similarity class. We have thugransformationgincluding the possibility of complex conju-
accounted for all nine equivalence classes and have fourggtion, which does not show up Ify,), one finds that the
that they lie in exactly two similarity classes: a class of eightfour examples illustrated above generate 64 distinct equiva-
as exemplified by Eq65), and the special case shown in Eq. lence classes. We can conclude, then, that we have not left
(64) which is in a similarity class by itself. anything out and that there are exactly four similarity
Since there are two similarity classes tdF3, there are classes.
also two quite different definitions of the discrete Wigner Suppose that one has chosen one state vector from each of
function. The simpler one, whose quantum net yieldslthe the five bases in Fig. 3, each vector being assigned to the
of Eq.(64), is the same as the one defined in Ri4s8]. The  appropriate ray of phase spaa@low we are not fixing
other one, with d" like that shown in Eq(65), appears to be a priori the vectors to be chosen from the first two basks.
new. It necessarily has many of the features of the simplewould be good to have a simple algorithm that would deter-
definition—e.g., the sums of the Wigner function along themine to which of the four similarity classes the resulting
lines of any striation are the probabilities of the outcomes ofjuantum net belongs. One could of course compbite for
a measurement associated with that striation—but it lackée given quantum net and compare the result with the arrays
some of the symmetry. It is not clear whether there is anygiven in Eqs.(66) and(67). But in fact there exists a much
physical context in which one would choose to use this lessimpler method, as we now explain.
symmetric definition of the Wigner function. If there is, pre-  Let us label the four columns of Fig. 3 with elements of
sumably it would be a context in which a particular quantuml: from left to right, we label the columns with the values 0,
state, associated with the line along whicd, is zero, plays 1, and w. (This is not an entirely arbitrary labeling. In
a favored role. writing down the bases in Fig. 3, we consistently used the
Similarity classes for N4 same vertical translation operators to determine the order in
As always, we begin by fixing a pair of field bases for theeach of the last four bases. The first basis cannot be obtained
two dimensions of phase space. Rdr 4, let us adopt the in this way and in that case we used the horizontal translation
bases we have used in our earlier example: we associate wi@perators. The column labels can be used to specify which
each dimension the basi®,1). With the bases fixed, the vector we have chosen from each basis: & e the label of
number of equivalence classes of quantum nets in this casetie vector chosen from the first basts,the label of the
4*1=64. Referring to the list of bases in Fig. 3, we canVvector chosen from the second basis, and so on. For conve-
generate quantum nets from the 64 equivalence classes jence we repeat in Fig. 5 the list of bases, with the new
choosing one state vector from each of the last three base@beling scheme. Thus B=w, for example, the state vector
To see how these 64 cases sort themselves into similaritghosen from the second basidrresponding to the horizon-
classes, we again rely dfy,. Calculatingloo, explicitly for  tal ray) is (1/2)(|00)+(01)~|10)~[11)).
various cases, one obtains many different arrays, among It turns out that there is a functioB(a,b,c,d,e), taking
which the following four are representative: values ink,, such that the value dD determines the simi-
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0 1 w w If we adopt the convention of representing each equiva-
lence class by the unique quantum net in that class that has

1 ( 0 / 0 ( 0 a=b=0, we obtain a simplified form ob:

a 0 1 0 0 D =wc+cd+ wce+ wde (a=b=0). (69)

8 8 \ (1) \ (1) From this equatiorfor in other way¥ one can easily deter-
mine the number of equivalence classes in each of the four
similarity classes. One finds that there are twenty values of

1 ( 1 \ ( 1 \ 1 the triple (c,d,e) for which D(c,d,e)=0, so that there are
1 1 | =1 1 1 1 -1 twenty equivalence classes in the first similarity class shown
b 2| 1 2 1 21 1 2l -1 in Eq. (66). Similarly there are twenty equivalence classes in
1 1 ) \ -1 ) \ 1 the other similarity class shown that equation and twelve in
each of the two classes represented in(6@d). Thus the total
number of equivalence classes comes out to be 20+20+12
1 1 \ 1 \ 1 +12=64, as it should.
1] 1 H 1 —1 1 1 Similarity classes for larger N
¢ 2 i 2 i 2| - 2| — For larger values oN, it becomes more difficult to work
1 -1 ) ] ) 1 out all the possibilities for the functiohi,, as we did above.
We now outline another method for determining the number
of similarity classes.
1 1 1 1 We have seen that applying a unit-determinant linear
P! 1 ! 1 1 1] 1 transformation to a quantum n&€ vyields, up to unitary
2 i 2 i 2] — 2 —q equivalence, another quantum net in the same similarity

—i i i — class. Thus we can regard the group of unit-determinant lin-
ear transformations as acting on the set of equivalence
classes of quantum nets, and from this point of view the

1 1 1 1 similarity classes are seen as thrbits of the group. Accord-
e 1 —1 1 ) 1| —¢ 1 ( ing to a theorem in group theory, the numhbeof distinct
2 1 2 1 21 -1 2|1 -1 orbits generated by a group acting on a finite set is given
i —i —i i by
FIG. 5. Labeling scheme for quantum nets for 4. t= é EG #(9), (70)
ge

larity class of the quantum net defined bty,b,c,d,e). In  where|G]| is the size of the group andl(g) is the number of

Appendix D we present a method for finding the functidn  elements in the set that are fixed gy G. Since elements

Here we simply state the result: from the same conjugacy class fix the same number of ele-
ments, it is sufficient to calculate the number of quantum

01111\ a nets fixed(up to unitary equivalengeby one element from
001w w b each conjugacy class and then multiply by the number of
_ — — elements in that class. Using this method, one finds that there
D=w(@a+b+c)+w@bcdgl 00 0 0 wj|lc|. ;07 similarity classes fdi=5.
0000 1/|d While we have not performed this calculation for higher
0000 0o/ \e values ofN, we know that the identity always fixes &N-*
(69) equivalence classes of quantum nets, and one can show that

the number of unit-determinant linear transformations is ex-

where we are using ordinary matrix multiplication to express2ctly N°~N; so the number of similarity classes must be at
the quadratic terms, all the operations being'in The cor-  '€ast
respondence between the valueDoind the similarity class NN-1
is as follows: The valueB=0 andD=1 correspond, respec- 3
- S N°-N
tively, to the two similarity classes whodgy, arrays are
shown in Eq.(66); the valuesD=w andD=w likewise cor-  which grows very rapidly for largé\. Therefore, within the
respond to the similarity classes of H7). current framework, if one is going to use a discrete Wigner
To give an example, consider the specific quantum net wéunction to describe, say, a large number of qubits, one has
used earlier, obtained by choosing the first vector in each gberhaps too many possible definitions of the Wigner function
the five bases. In this case=b=c=d=e=0 and therefore to choose from. Is there some further criterion that would
D=0; so the above correspondence predictarectly that  naturally restrict the choice to, say, a single similarity class?
the quantum net obtained in this way is in the similarity class WhenN is an odd prime, there always exists one similar-
with T"g9g=25/16. ity class with more than the required symmetry. We saw this

> NN, (70
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above in the casé&=3, where for one of the similarity involves onlyN+1=5 measurements rather than+1)?=9
classes[ oy, was independent of. In fact, wheneveN is an  measurementslt is interesting to ask whether something

odd prime, there exists a quantum net for which similar can be done for any power of a prime. This consid-
1 eration might also be used to pick out one of the many pos-
Lupy= Nn—(aﬂﬁwﬂwvﬂa{ (72)  sible definitions of the discrete Wigner function that our for-

mulation allows for largeN. But at present we do not know
where(x,y) (X' ,y")=xy’ —yX' [4]. Indeed there is only one Whether such tensor-product structures exist, within our cur-

such quantum net up to unitary equivalence, as can be se&fnt framework, for other powers of primes.
f_rom the fact .that every unit-determinant linear trar)sforma- VII. CHANGING THE FIELD BASES
tion leaves this particuldr g, unchangeﬁ.So whenN is an _ o
odd prime, there is one definition of the Wigner functiop So far in our classification of quantum nets we have been
to unitary equivalendethat stands out because of its high assuming fixed basé&sandF in which to expand the phase-
degree of symmetry. space coordinateg and p. We now ask how the range of
The sole similarily class foN=2 does not possess quite Possibilities expands when we consider all allowed choices
this degree of symmetry, but here one does not have thef these bases. After the preceding discussion one might
problem of too many possibilities. wonder why we would want to consider additional possibili-
What if N is a power of a prime? We have studied in ties. Indeed for most practical purposes this is surely unnec-
detail only one such cas&=4. In that case, of the 64 essary, but for understanding the mathematical structure of
equivalence classes, it turns out that there are exactly two fe?ur formulation, our classification scheme would be incom-
which the matrixA,, defined in Eq(48), has the following plete if we did not allow other field bases.
special property: it is @ensor productof two single-qubit Recall that we can choose any field bais(ey, ... &,
matrices(For this condition it does not matter which pomt  for the horizontal coordinatg. The basis for the coordinate
we choose: ifA, is a tensor product, then soAs;, since the ~ p must then be of the fornfF=(fy, ... fy)=(we, ... W&,
translation operatol 4_, that relates them is itself a tensor for some field elemenw. What we want to know now is this:
product) In the notation of Fig. 5, these two special equiva-which of these choices lead to quantum nets that are not
lence classes are the ones for which, vathb=0, the triple  unitarily equivalent to the ones we have already discussed?
(c,d,e) takes the value€,0,0 and(w,w,1). They are both The question is easily resolved. Suppose that we switch
in the same similarity class, sin@0,0,0=D(w,w,1)=0.  from one pair of field based,F) to a different pai(E’,F’).
Looking at the vectors in question, one sees that these twbhe effect of this switch is to change the translation opera-
quantum nets are complex conjugates of each other. tors from
We can construct thé operators for these two special T = X%elzPi @ -+ g XenzPmn (75)
cases as follows. Lqui?y), with x,y € {0, 1}, be theA opera- @p
tors derived from either of the quantum nets fé2. And 10
let us express a ppimx in the 4x4 ph_ase space as T(’ | =X%1ZPI1g - @ X%enZPin, (76)
=(Xxw+X%o,y10+Y,), in which we are using our standard ap
field bases foN=4. Then one can show that the following If there exists a unitary operattt such that for each point
two sets of tensor-product operators correspond to quantum

T __ 7
nets forN=4: UT U= Te, 77
A2 2 then given any quantum n€X (\) based on the operatofs,
Aa= Ay © Aoy (73 we can define a corresponding quantum n@&(\)
and =UTQ’(M)U whose translation properties are determined by
o the operatord . Thus if Eq.(77) is satisfied for somé&J, the
A=A @ADL, (74)  change of field bases has not produced any new quantum

nets, up to unitary equivalence. Now, we can identify two
where the bar indicates complex conjugation. Moreovelelementary kinds of change in the field bases that are al-
these two sets correspond to two distinct equivalence classggwed by the conditiorf;=w&: (i) changee; arbitrarily into
In Ref. [4], Wigner functions for composite dimensions ¢/ and simultaneously chandginto f/ =w& (with the same
were constructed by taking tensor productéafperators for  \y as beforg (ii) leavee; unchanged and changeginto f/
prime dimensions. We see now that at leastNer4, we can =w'8. Any allowed change of the field bases can be re-
use this simple tensor-product construction and at the samgyrded as a combination of these two. Appendix C shows
time produce a Wigner function with the tomographic prop-that under a change of the first kind, there exists a unitary
erties defined by the lines dfj. [That is, the tomography operatorU such that Eq(77) is satisfied. Thus these changes
do not produce any new equivalence classes of quantum
8n arriving at Eq.(72) we have assumed that the field basis for N€tS- On the other hand, if we make a change of the second
the vertical axis(consisting of just one field element sindeis ~ Kind, we can write the resulting’ as
prime) is the same as the basis for the horizontal axis. A different T =Tk, (78)
choice has the effect of multiplying the exponent by a constant “ “
factor. where
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w=1 not a unique definition of the discrete Wigner function for a
N=2: given system; rather, the definition depends on ihe particular
quantum structure that one lays down on the discrete phase
space. This quantum structure, which we have called a quan-

tum net, assigns a pure quantum state to each line in phase
space. The assignment is severely constrained by the condi-
w=1 w=2 tion of translational covariance, which is analogous to a
similar property of the continuous Wigner function. In par-
ticular, the quantum states assigned to parallel lines are
N=3: forced by this condition to be orthogonal, and the orthogonal
bases assigned to distinct sets of parallel lines are forced to
b_e mutually unbiased. Because of this, our construction pro-
vides a method(closely related to the methods of Refs.
[28,29) of generating complete sets of mutually unbiased
bases.
It is interesting to contrast the discrete Wigner functions
presented in this paper with the usual continuous Wigner
function. In addition to translational covariance, the usual

w=1 w=w w=u

[12] [12] [12] Wigner function has another remarkable property which can
be called covariance with respect to unit-determinant linear

. transformationg34,50. Let p be any density matrix for a
N=4: | 12 | i 12 | | 12 I system with one continuous degree of freedom, and let

W, (@) be its Wigner function, wherer=(q,p) is a phase-
| 20 i | 20 | i 20 i space point. Now consider any unit-determinant linear trans-
formation L acting on phase space. It is a fact that for any
suchL, there exists a unitary operatb such thatW,(La)
=W,/ (@), where p’:ULpU[. In other words, rotating the
phase space, or stretching it in one direction while squeezing
it in another by the same factor, is equivalent to performing a
unitary transformation on the quantum state. That is, this sort
1 O of transformation of the Wigner function can in principle be
0 ww' /) (79) carried out physically. The analogous property typically does
not hold for our discrete Wigner functions. We can see this

Except in the trivial case where we have made no change alven in the cas&l=2. In that case the linear transformation
all, the determinant of this matrix is not unity, and therefore,

[20] [20] [20]

FIG. 6. Classification of quantum nets fi=2, 3, and 4.

as shown in Appendix B, there exists no unitéahsuch that 01
Eq.(77) is satisfied. Thus this second kind of change of basis L= ( )
doesproduce new quantum nets. By performing such basis 10

changes, we can multiply by—1 the number of equivalence

classes of quantum nets, since thereMel choices for the  interchanges horizontal lines with vertical lines while leaving
nonzero field element. the diagonal lines unchanged. For any of our quantum nets,
In Flg 6 we summarize in tabular form our CIaSSificationthis Corresponds to an interchange between eigenstaws of
of quantum nets foN=2, 3, and 4. Each box in the figure and eigenstates &, while the eigenstates ofZ (or of o)
represents a similarity class, and the integer appearing insid@main unchanged. No unitary operator can effect such a
the box indicates the number of distinct equivalence ClaSS%ansformation; so thig cannot be realized phys|ca||y
within the given similarity class. The similarity classes are  Note that in our formulation one does find a weaker ver-
arranged in columns corresponding to different values of thgjon of this property. Every unit-determinant linear transfor-
field elementw that expresses the relation between the baseﬁ]ation, while not necessar”y Corresponding to a unitary
E andF. Thus, for example, there are altogether 192 distinctransformation of the quantum state, does correspond to a
equivalence classes fdN=4. In general the number of ynitary transformation, up to a phase factor, of the translation
equivalence CIaSSES, now that we are a"OWing alternativgperatorS, as is shown in Appendix B. Moreover, there are
field bases, igN-1)NV, certain special quantum nets for which the associated Wigner
function does in fact have the stronger property. These are
the quantum nets discussed in Section VI, witlgiven by
Eq. (72). But such special quantum nets appear to exist only
The main new contribution of this paper has been to uséor odd prime values oN. If one wants to generalize the
the general concept of a finite field to construct discretéWVigner function to other finite fields, including even the case
phase spaces, and to study generalizations of the Wignef a single qubit, evidently one must do without some of the
function defined on such spaces. In this formulation, there isymmetry of the continuous Wigner function.

VIIl. DISCUSSION

062101-16



DISCRETE PHASE SPACE BASED ON FINITE FIELDS PHYSICAL REVIEW 70, 062101(2004

There is another interesting difference between the conpossible Wigner functions, a much smaller number in which
tinuous case and the discrete case. It is central to our corthe processes of interest are most simply represented.
struction that every line of discrete phase space corresponds
to a quantum state, as is also true for the continuous phase ACKNOWLEDGMENTS

space. However, in the continuous case, there is a specific For many valuable discussions, we would like to thank

correspondence between lines and quantum states that ari . . i
naturally: the quantum state assigned to the line defined bﬁgmel Aalberts, Carl Caves, Tom Garrity, Susan Loepp, An

ag+bp=c is precisely the eigenstate afj+bp with eigen- %ony Ndirango, and Kristopher Tapp.
valuec. This correspondence is possible in part because thRPPENDD( A: COMMUTING TRANSLATION OPERATORS

parameters, b, andc used in the equation for the line also AND THE CHOICE OF EIELD BASES
make sense as coefficients in the algebra of operators. In the
discrete case, on the other hand, the parametels andc Recall the necessary and sufficient conditi88) for the

are elements of a finite field and cannot be combined in theommutation of translation operators corresponding to paral-
same way with operators on a complex vector space. This il translations:

why, in the discrete case, there is not a unique quantum net

for a given phase space. The requirement of translational 2 (Xei(ty)g; = 2 (tX)ei(SY)s.- (A1)
covariance forces a certain correspondence betvabea- j i

tions andbases but not between lines and state vectors. a0 \ye show that this condition is true for alandt, and

In this connection, it is interesting to ask what new POS-¢or all (x,y) #(0,0), if and only if the field bases satisfl

sibilities would open up in the continuous case if one were to:w?q for some nonzero field element

approach the construction of distribution functions on con- We begin by assuming thaf=w& and proving that Eq

tinuous phase space along the lines we have followed in thi(sAl) follows. From f,=w@ it follows that t(efw1)=8,
paper. That is, rather than adoptiagriori a particular cor- o) Y U
Th{,Js we can write

respondence between lines and quantum states, suppose tha
we were to allow, for each striation, a separate translation of X, (sx)(ty); = % (SXeity)s;tr(e fw™)
the quantum states assigned to that striation. Most of the _ e 1
“generalized Wigner functions” that would thereby be al- =t (Zi(sXei@) (2 (ty)g;fw ] = tr(sxtyw)
lowed would no doubt be quite ugly, but one can imagine = tr(txsyw ™) = 3(tX)ej(SY)s;, (A2)
certain special quantum nets with useful properties. )

At one level what we have been exploring in this paper igVhich proves Eq(Al).
the general concept of phase space. This concept is certainI%/ Now we go the other direction. Assume E41) and note
central to the physics of systems with continuous coorditNat for anyze Iy, z;=tr(&z2). Thus
nates. Just as certainly, it has been less central to the physics ~ ~
of discrete systems. However, as we have seen, even in the 2 tr@sxtr(fity) = E r@Ettr(fysy). (A3)
discrete case the notion of phase space, with axis variables .
taking values in a field, meshes nicely with the complex-Using the linearity of the trace, we can rewrite this equation
vector-space structure of quantum mechanics. The sets af
parallel lines in phase space correspond perfectly with a ~ ~
complete set of mutually unbiased bases for the state space, tr[Z tf(fjty)éjsx} = tr[z tf(ijy)éth]- (A4)
and translations in phase space correspond to physically re- ) )
alizable transformations of quantum states. Indeed, if ongor this to be true for alk, we must have
were starting with the complex vector space and the concept _ _
of mutually unbiased bases, and were trying to find a com- [E tr(fjty)éj]s: [E tr(fjsy)éj]t. (A5)
pact way of expressing quantum states in terms of such j i
bases, one might be qu natqrally to phase space as thg MeSkollows that the quotient
economical framework in which to achieve this expression.

At present we have no particular evidence that discrete E-tr(?-ty)é-
phase space holds as distinguished a place with respect to the == (AB)
laws of physics as continuous phase space does. On the other t
hand, as a practical matter discrete phase space descriptiogsindependent of, though it might depend ow. That is,
have been found useful in a variety of problems in physics _
(see for example Ref$5,7,16,17,51), and we hope that our > tr(f;ty)& = At (A7)
phase space based on finite fields will find similar applica- j
tions, especially in analyzing systems of qubits. Indeed, ou
formulation(as presented in a preprjrias already been ap-
plied by Galvéo to a question regarding pure-state quantum Ty=Ag forally andj, (A8)
computation[52]. Galvdo makes explicit use of the full . v _
range of definitions of the Wigner function that our schemewhich in turn implies tha#\, is a constant timeg and thatf;
allows. For other applications, it is likely that further re- is a constant times;. Finally, the latter condition is equiva-
search will have to be done to identify, out of the set oflent to

for someA, € I'y. But that this is true for alt implies that
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which is what we wanted to prove.

APPENDIX B: CHANGES IN THE TRANSLATION
OPERATORS DUE TO LINEAR TRANSFORMATIONS

1. A linear transformation that preserves the
translation operators up to a unitary transformation and
phase factors must have unit determinant

Recall the definition of the translation operators:

Tigp = X421 ® -+ © XWhZPn, (B1)

where we have suppressed the notation indicating the fiel
bases in whicly andp are expanded, since we are not going

to be changing the bases in this section.

Let L be a linear transformation of the phase space, an
suppose that there exists a unitary operatprsuch that for

every pointe,

U T, Ul =ebaT (B2)

where ¢ is any real function of. and «. We show now that

this can be the case only lif has unit determinant.

Consider the operatdF,T,T,T}. Using the fact thaZX
=yXZ, wherep=exp2i/r), and the fact thaZ'=X"=I, one
finds that this operator simplifies to

T, TETLTh= 7Py, (B3)

wherea=(q, p), B=(X,Y), and the dot product-p stands for

> p. Now, if Eq. (B2) is true, it follows that

U LTaTBTLTgU[ =TTl T] P (B4)

and sinceTaTBTLT;‘3 is proportional to the identity operator,

we can say

T TaThTp=TLa T Tls (B5)

From this and Eq(B3) it follows that L must preserve the

quantity (x-p—q-y), regarded as an element Ibf.

Let us now invoke the field basés and F, which must
satisfy the conditiorf;=wg for some field element.. Since
tr(eg) =4, we can write

x-p-q-y=tlw(xp-ay]. (B6)
Thus the latter quantity must be conserved.byNow, when

(q,p) and (x,y) are both transformed b, the effect on

xp—qy is multiplication by the factor ddt. So tfw *(xp
-qy)] must equal fw (xp-qy)detL] for every (q,p) and
(x,y). This is the same as saying thatbtdetL)=tr(b) for
every field elemenb, which is true only if det=1. Thus
any linear transformation for which E@B2) is valid must
have unit determinant.

2. Every unit-determinant L preserves the translation
operators up to a unitary transformation and phase factors:
The caseN=r" with r an odd prime

PHYSICAL REVIEW A70, 062101(2004)

mation U, on state space such that for every phase-space
vector «,

U T U =T, (B7)

restricting our attention for now to the case whé&ds a
power of an odd prime. In this case we can, as we see below,
specify the phase factor that is implicit in E@7):

ULTQUI - n(l/Z)(q'-p'-Q-P)TLa_ (B8)

Here =€ (q,p)=a, and(q’,p’)=La. Also, in Eq.(B8)

and in what follows, the exponent is first computed as an
element of the field’, and is then interpreted as an integer in
H1e set{0, ... r—1}. (For example, ifr=3, the expression
7*2 is interpreted asp, since inl'3, 1/2 has the value 2To
prove that such &J, exists, we define the following linear
5nappingM on the space ol X N matrices:

M(T,) = 7](1/2)(61' 'P'—Q-p)TLa_ (B9)

This equation defineM on all the translation operators and
thus by linearity on all operators. Our aim is to show that the
M defined by Eq(B9) is of the formM(B)=UBU' for some
unitary operatotd. We do this by showing first tha¥l pre-
serves multiplication; that is, for any phase-space vectors
and 3,

M(T,Tp) = M(T)M(Tp).

This we do by direct calculation, starting with

(B10)

TaT,B = (quzpl ® + ® anzpn)(xxlzyl Q + ® Xanyn)

= P . (B11)
Here(x,y)=,, and we have used the fact that
ZX= pXZ. (B12)
Thus
M(T,Tp) = 7](1/2)[(q’+><’)-(p’+y’)—(q+><)-(p+y)],7(X-p)-|-l_(a+ﬂ)_
(B13)
On the other handW(T,)M(Ty) is given by
M(T)M(Tp) = P L2 p'-ap) 12X’ -y’-X-y>TLaTLB
= 2@ p"=ap) (A y =xy) px" P ()"
(B14)

Comparing the exponents in E@13) and(B14), one finds
that they are equalas elements of,) as long asq’-y’
—x'"-p’ is equal tog-y—x-p. But this condition is guaranteed
by the fact thal has unit determinarisee Eq(B6)]. SoM
does indeed preserve multiplication.

A linear transformation on the set of &l XN matrices
that preserves multiplication must be a conjugation; that is,
there must exist a matri® such that for anyN X N matrix B,

M(B) = SBS™. (B15)

Here we show that foeveryunit-determinant linear trans- But M has another special property that we now prove,
formation L on phase space, there exists a unitary transfornamely, that for anyN X N matrix B,
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M(B") =[M(B)]". (B16) (1 0><q> _( g )
Let us show that EqB16) is satisfied wherB is any of the 1 1/\p/ \a+p/’
translation operator$,; it will then follow that the equation ¢4, thatU, must effect the transformatiofup to a phase

(B23)

is true for anyB. First, we have facton

TI=ZPX g - ®ZPX = 70PT . (B17) XUZPL @ -+ @ XIZPn s XUZUHPL @ .. @ XInZdn*Pn.
Thus (B24)

M(T!) = 5 @PM(T_,) = 5@P yL2E p'-apT_ Because the componenfsandp; are not shuffled among the
L various qubits in this case, it is not hard to find a suitdl)je
= pt2aea T (B18)  the following is one of a number of operators that would

and suffice:

t = ~@W2@p'-ap7t = -1/2@ p'-ap) @ p) 10 10
M(T)]" =7 Te=7 /A I U= 0il® %o i) (B25)

= n(l/Z)(Q'-P”fQ-p)T_La. (B19)

If we think of the qubits as spin-1/2 particles, this operator
From Egs.(B18) and(B19) we see that rotates each qubit by 90° around thexis. Similarly, one
finds thatU, can be taken as a tensor product,

M(T]) = [M(T)T", (B20)
1/(1 i 1(1 i
from which Eq.(B16) follows. But Eq.(B16) cannot be true U,= :( ) ® - ® —-( ) (B26)
for all B unless the matrxS in Eq. (B15) is unitary. This Va1 vaii 1

proves the desired result whéhis a power of an odd prime.  \hich rotates each spin by 90° around thaxis. Note that
these definitions otJ; andU, would have the desired effect

3. Every unit-determinant L preserves the translation regardless of the field bases we were using to exmppadd
operators up to a unitary transformation and phase factors: p.
The caseN=2" We now consider the transformatidg. Our operatot),,

which doesdepend on the chosen field bases, is constructed
drom two basic gates: the controlletT operationcnor; acts

on qubitsi andj, taking |k;,k;) to [k, k;+k) with each index
&€ I'y; and swar; interchanges qubits and j. In terms of
these gated/Js is

The above proof does not work whéhis a power of 2,
because the division by 2 that appears in many of the exp
nents cannot be done ifpn. For this case we explicitly con-
struct the desired unitary transformation, which we imagin
acting on a system afi qubits. Since the casd=2" is the

one most likely to be relevant for quantum computation, our n
explicit construction may also have a practical value. Us= (H CNO@)(SWAP) 1n(SWAP) 1 (-1 * ** (SWAP) 1.
One can show that the group of unit-determinant linear j=2
transformations oﬂ?‘gn can be generated by the following (B27)

three elements of the group: - , ,
grotip Here theay’s are the coefficients in the expansionzBiin the

. _(1 O) . _(1 1) . _(z O) 821) basis(1,z,2, ...,z Y):
e P e T P A il P L

n
: I o n— 71
wherez is any primitive element of the multiplicative group z= 121 gz . (B28)

of Fn; that is, any nonzero element Bfn can be written as

a power ofz. (Such az exists for any finite field19].) Our  We note for future reference that must be equal to 1; if it
plan is first to choose a specific pair of field bageandF  were not, we could divide both sides of H&28) by z and
for the two phase-space coordinates, and then to find a unéonclude that 1z,72,...,2"* are not linearly independent,

tary U; for eachL;, such that contradicting the fact that these elements form a basis.
i To see thatU; has the desired effect, it is sufficient to

UT Ui = Tie (B22)  check its action on the basic translation operatdysg),

whenT, is defined in the chosen bases. We will argue sepal @0 -+ Tzt0 @d T, Tiogy, -+ Tio,), Where thefi's

rately that this result survives changes in the field bases. Theonstitute the dual basis. In the first of these sets, consider
specific bases we choose for now are the following: for thfor exampleT; . Applying L3 to the point(1, 0) gives
horizontal coordinate we use E=(ey,...,e) (z,0), so that we wantJ; to effect the transformation

=(1,z,7%,...,2"Y, which is indeed a basis as long as& a

primitive element, and for the vertical coordinate we use the Xole - gl-loXele ol (B29

dual of E. The U3 of Eq. (B27) does accomplish this shift through the
Consider first the transformatidn,. Acting on a generic  swaAP operations; theNoT operations have no effect since by

phase-space poinrt=(q,p), it yields the time they act, the operator in the first position is the
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identity. The same sort of shifting operation works also for

the other basic horizontal translation operators, with the ex-

ception ofTn-1. In this last case, sinde; takes(z"*,0) to
(z",0), we wantU; to have the following effect:

@ - @IIX—=X1L® -+ ® X, (B30)

One can verify that this is indeed the effect of thedefined
in Eq. (B27): now theswap operations shift the operatot
from thenth position to the first position, and tlenoT op-
erations change the operatbto X in every positionj for

which a;=1. Here we also need the fact, mentioned above,

thata; =1, since thecNOT operations will not affect the op-
eratorX in the first position.

Before we consider the vertical translation operators”
P ¢ Is an arbitrary basis anat is the same field element as in the

Tof) it is helpful to introduce a matrix representation o

multlpl|cat|0n byz. Let the matrixz, with components ir's,
be defined by

J

One can show that, for any field bagts the effect ofz on

the dual basis can be expressed as

J

That is, one uses the transpose of the original matrix. For our

particular basis, we have

ze=e,., i=1,...n-1 (B33

and

26,= 2 ae;. (B34)
j=1

It follows, then, that the effect of on the dual basis is given

by

zf = f, (B35)

and

zfi=fi +af, i= (B36)

Now, becausé ; multiplies the vertical coordinate ?,
we wantUs to takeT 1) 10T (Uptoa phase factpfor

each value ofi. This means thaUJr should takeTy, to
Toozt)- EquationgB35) and(B36) tell us how to wrltezf as

a sum of basis elements. Amﬂ3 is given by Eq.(B27) but
with the og

2,...Nn.

PHYSICAL REVIEW A70, 062101(2004)

APPENDIX C: THE EFFECTS OF CHANGES
IN THE FIELD BASES

1. Changing from g and we to g; and wg;

The translation operators depend on the choice of two
bases for the field, one for each coordinate. Here we ask how
the translation operators change when we make a change of
the following form in these two bases. Let the initial bases be

E=(ey,...,6) and F=(fq,...,f)=(Wé,... wW&). The
translation operators in these bases are
T,= X%e17Pi1 @ -+ @ X%nzPin, (C1

where (q,p)=«. We now change the bases &
=(91,...,0p) andH=(hy, ... ,hy)=(Wg, ... ,WG,), whereG

definition of F. The translation operators arising from these
bases are

T, =X%1ZPt @ -+ @ X%nZPhn, (C2

We show here that there exists a unitary operbtauch that
for every pointa,

(C3

Our method is the same as in part 2 of Appendix B. We
define a linear ma such that for every,

M(T,) =T, (C9

the action ofM on other matrices being determined by lin-
earity. We show thaM preserves matrix multiplication and
the adjoint operation and must therefore be conjugation by a
unitary operator.

First we look at the relation between the components of
the same field element in two different bases. One can show
that

T, =UT,U".

(CH

Ogi = E Yiiej»
J

where y; =tr(gig;). Let »; be the matrix that similarly ex-
presses the relation betweErand H:

Phi= > vjj Prj - (Co)

i
We can see that and y are closely related:
Vi = tr(ﬁifj) =tr[(w'g)(W@)] = tr(g&) = (¥ 1);i. (C7)

That is, v is the transpose of the inverse pf
We now show that for anya and B, M(T,Tp)

erators in the reverse order. By comparing theM(T,)M(Tp). As we saw in Appendix B,

effect of Ug v¥|th the effect of multiplication byz, one can T Tp= 7P g, (C8)
check thatU; does indeed transforri(0,f;) as desired.
Since every translatlon operator can be written as a produgthere(x,y)=g. Thus
of the basic horizontal and vertical translation operators, it e

! M(T,Tp) = PT! s (0°]
follows that Eq.(B22) holds for everyT,,. (TuTp) = 7 ath (€9

So far we have restricted our attention to translation op-On the other hand,

erators defined in terms of a particular pair of bases. The M(TM(T) = 7 phTMB (C10)

following Appendix shows that EqB22) can be extended to

any pair of baseg andF, as long asff;=w¢ for some field
elementw.

Thus M preserves multiplication iky-pp=X-p;. This is in-
deed the case:
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APPENDIX D: EFFECT OF LINEAR TRANSFORMATIONS
. = . L= X . . = X . y
Xo P 2 XoiPhi 2 (; i e’)(% V'kp”‘) e Pr AND TRANSLATIONS ON THE INDICES a, b, ¢, d, e

(C1) 1. Linear transformations
where the last step follows from the fact thatis the inverse Let L be a unit-determinant linear transformation, and let
of . U, be a corresponding unitary operator as in 8¥). Then,
We also need to show that for every, M(TD as we pointed out in Sec. VI, ®(\) is a quantum net, then
=[M(T,)]". As in Appendix B, we have :
) , Q'(\) =U{Q(LMUL (D)
M(T,) = 7%PT’, (C12

is also a quantum net, covariant with respect to the same
translation operators. Moreover, starting with a given quan-
[M(T)]" = 7%PT” . (C13  tum net, one can generate its entire similarity class via the
transformationD1), with L ranging over the group of unit-
But the exponents are again equal because of the relatigeterminant linear transformations.
betweeny and v. ThusM must be conjugation by a unitary For the caseN=4, with our standard field basds=F
operator, as we wanted to show. =(w, 1), we can label a quantum net by the indiee®, c, d,
ande of Fig. 5, which specify the quantum state assigned to
each ray of phase space. Now, if we perform the operation of
The above result shows that a certain sort of change oéq_ (D1) on a quantum net, it is helpful to know how these
basis preserves the translation operators up to a unitary trangmices change. In this section we present the relevant trans-
formation. In particular, this extends the result of part 3 offormations of the indices for each of the three generaters
Appendix B at least to some other pairs of bases, but not tp,, andL; given in Appendix B. To definé.;, we need to
all allowed pairs. We also have to consider the case in whiclpecify the field element that appears in EqB21). Let us
E is left unchanged an# is changed frontwe, ... W&) 0 choosez=w. Starting with Eq(B27), one obtains in the cur-
F'=(w'g, ... W&, wherew’ #w. As we argue in Sec. VII, rent setting the following unitary matrix to associate wlith
this change doesot correspond to a unitary transformation

and

2. Changing the value ofw that relates the bases€ and F

of the translation operators, even up to a phase factor. Nev- 1000

ertheless, we can extend the result of part 3 of Appendix B to 0010

bases obtained by such changes. Uz= (D2)
Let the translation operatois, be defined relative to the 0001

original base€ andF, and suppose it is known that for any 0100

unit-determinant linear transformatidn there exists a uni- . .

tary U, such that for any, The unitary operators associated withandL, are exactly

as given in Eqs(B25) and(B26) but specialized to the case

U T U] = T, (C14  of just two qubits.

Let T, be the new translation operators, defined relative to €t (@.0.¢.d.€) be the indices characterizing the quan-

the base€ andF’. From the definition29) of the transla- M net Q. and for a specific choice ofl, let
tion operators it follows that (a’,b’,c’,d’,e") characterize the quantum @t defined in

Eq. (D1). From this equation and the matricés given

T =T, whereK = 1 0 (C19) above, one can work out how the primed indices are related
a” K “\0 wiw, / to the unprimed ones. Here we simply present the results:
We want to show that the new translation operators also have a’ 1000 0\/a 0
the above transformation property. ,
To prove this, let. be any unit-determinant linear trans- b 00100|fb 1
formation, withU, satisfying Eq.(C14). Define a new uni- Lz ¢ [=]01000O0)|c|+| o]l
tary transformation/; by the relation d ooo00o071]ld o
VL: UKLK—l, (C]_G) e, 0 0 0 1 0 e O
which exists sinc&K LK™ also has unit determinant. Then (D3)
’ _ T _ )
VLTQVE - UKLK‘lTKaUKLK—l = T(KLK‘l)Ka =Tkia= TLa' a' 00100 a 1
(C17) b’ 01000}|[b 0
ThusV_ is a unitary transformation that correctly transforms Lyl ¢ |=|1 00O0O0||c|+]| o],
the translation operators, when the latter are defined relative d’ oooo0 1]ld 0
to the new bases. This finally extends the result of part 3 of ,
Appendix B to all pairs of bases that are allowed in our € 00010/ \e @
construction. (D4)
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a’ o 0 0 0O a 0
b’ 0 w 000 b 0
Lyl ¢ |=1 0 0 0 0w l|lc|+] o
d’ 0 0wO0O O d )
e’ 0 00w O e 0

(D5)

2. Translations

In the same spirit, we can consider translations of th
4X 4 phase space and ask how they affect the indices th
specify a quantum net. Given a quantum @&&) and a
translation7,, consider thgequivalent but differentquan-
tum net defined by

Q'(N) =Q(Z\N). (D6)
Q and Q' can be specified by indice&,b,c,d,e) and

PHYSICAL REVIEW A70, 062101(2004)

7(0,2- One finds that fof7; ¢ the primed indices are obtained
from the unprimed ones by adding the vectbt0,1 w, ).

In the case off(y 5 the added vector i€, 1, 1, 1, 3. (The
latter result reflects the scheme by which we arranged the
vectors in Fig. 5. From these two cases one can obtain cor-
responding transformations for an arbitrary translation via a
linear combination.

3. Searching for invariants
In Sec. VI we introduced the function(a,b,c,d,e) that

Sdentifies the similarity class of any quantum netlfbr4. To

%Tay thatD has a constant value within each similarity class is
the same as saying that it does not change when the quantum
net is modified by either a translation or a unit-determinant
linear transformation. Thus, one way to obtain the funcbon

is to look for an invariant under all of the transformations
given in the two preceding parts of this appendix. One can
show, in fact, that up to a constant factor and an additive

(a’,b’,c’,d’",e’) as above, and one can ask how the two setserm, D is the only second-degree polynomialanb, c, d,

are related. Let us consider two basic translatidis and

ande that is invariant in this sense.
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