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The original Wigner function provides a way of representing in phase space the quantum states of systems
with continuous degrees of freedom. Wigner functions have also been developed for discrete quantum systems,
one popular version being defined on a 2N32N discrete phase space for a system withN orthogonal states.
Here we investigate an alternative class of discrete Wigner functions, in which the field of real numbers that
labels the axes of continuous phase space is replaced by afinite field havingN elements. There exists such a
field if and only if N is a power of a prime; so our formulation can be applied directly only to systems for
which the state-space dimension takes such a value. Though this condition may seem limiting, we note that any
quantum computer based on qubits meets the condition and can thus be accommodated within our scheme. The
geometry of ourN3N phase space also leads naturally to a method of constructing a complete set ofN+1
mutually unbiased bases for the state space.
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I. INTRODUCTION

Given any pure or mixed state of a quantum system with
continuous degrees of freedom, one can represent the state
by its Wigner function[1,2], a real function on phase space.
The Wigner function acts in some respects like a probability
distribution, but it differs from a probability distribution in
that it can take negative values. The Wigner function has
been widely used in semiclassical calculations, and it is also
used to facilitate the visualization and tomographic recon-
struction of quantum states. For a system with a single de-
gree of freedom, one of the most interesting features of the
Wigner function is this: if one integrates the function along
any axis in the two-dimensional phase space—the axis can
represent any linear combination of position and
momentum—the result is the correct probability distribution
for an observable associated with that axis[3,4].

Generalizations of the Wigner function have been pro-
posed that apply to quantum systems with a finite numberN
of orthogonal states, and the present paper continues this line
of research. In 1974 Buot introduced a discrete Weyl trans-
form which, when applied to a one-dimensional periodic lat-
tice of N sites (with N odd), generates a Wigner function
defined on a phase space consisting of anN3N array of
points [5]. Buot’s work is related to earlier work by
Schwinger[6], who did not explicitly generalize the Wigner
function but identified a complete basis ofN2 orthogonal
unitary operators (elements of the generalized Pauli
group—or discrete Weyl-Heisenberg group) that can be used
to define anN3N phase space. A different approach was
taken in 1980 by Hannay and Berry[7]: these authors di-
rectly adapted the definition of the continuous Wigner func-
tion to a periodic lattice and thereby arrived at a discrete
Wigner function defined on a 2N32N phase space.

Both of these basic approaches were later rediscovered
and developed further by other researchers. Variations on the
N3N scheme were proposed by Wootters[4], Galetti and De
Toledo Piza[8], and Cohendetet al. [9], following initial

investigations into theN=2 case by Cohen and Scully[10]
and Feynman[11].1 The N3N phase-space description has
been applied to quantum optics by Vaccaro and Pegg[15]
and to quantum teleportation by Koniorczyket al. [16]. Dis-
crete Wigner functions on the 2N32N model have been in-
vestigated by Leonhardt[14] and used by Bianucciet al.,
Miquel et al., and Paz to analyze various quantum processes
such as the Grover search algorithm[17]. All of these pro-
posals have the feature that one can sum the Wigner function
along different axes in the discrete phase space(including
skew axes) to obtain correct probability distributions for ob-
servables associated with those axes. Leonhardt in particular
has emphasized the value of this feature for tomography, that
is, for ascertaining the quantum state of a given ensemble by
performing a series of measurements on subensembles. Other
discrete Wigner functions have been considered which do not
have this feature[18], but in the work we present here this
tomographic property plays a central role. One can find fur-
ther discussion of discrete Wigner functions and their history
in, for example, Refs.[12,13,53].

In the continuous case, for a system with one degree of
freedom, one can regard the Wigner function as being based
on a certain quantum structure that one imposes on the clas-
sical phase space. The structure consists of assigning to each
straight line in phase space a particular quantum state. Letq
and p be the phase-space coordinates, and suppose that the
line in question is the solution to the linear equationaq
+bp=c. Then the quantum state assigned to this line is the
eigenstate of theoperator aq̂+bp̂ with eigenvaluec. Once

1TheN3N approach has been problematic whenN is even in that
the method of Buot does not lead to a complete basis of Hermitian
operators in that case(see Refs.[12–14]). In Ref.[9] the state-space
dimensionN is restricted to odd values; in Refs.[4,8] the difficulty
is addressed by giving a special role to prime values ofN.
Schwinger likewise found it natural to regard each prime value ofN
as representing a single degree of freedom[6].
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this connection is made between lines in phase space and
quantum states, one defines the Wigner function asWsq,pd
=s1/2p"dTrfrAsq,pdg, wherer is the density matrix being
represented and the operatorAsq,pd is built in a symmetric
way out of all the quantum states assigned to lines of phase
space, the weight given to a particular state depending on the
relationship of its line to the pointsq,pd.

In this paper we wish to define a discrete Wigner
function—actually a class of discrete Wigner functions—
following as closely as possible the spirit of the construction
just described. Because this construction is essentially geo-
metrical, we want the geometry of our discrete phase space
to be closely analogous to the geometry of an ordinary plane.
For example, we need to have the concept of “parallel lines”
in phase space, and we want two non-parallel lines always to
intersect in exactly one point, just as in the Euclidean plane.
Such considerations lead us to use, as the variables that label
the axes of phase space, quantities that take values in afield
in the algebraic sense. That is, for our axis variablesq andp,
we replace the usual real coordinates with coordinates taking
values inFN, the finite field withN elements.(Our phase
space can therefore be pictured as anN3N lattice.) Now,
there exists a field having exactlyN elements if and only ifN
is a power of a prime[19]. Thus our formulation is directly
applicable only to quantum systems for which the dimension
of the state space is such a number. It is always possible to
extend it to other values ofN by taking Cartesian products of
the basic phase spaces—the same strategy is used in Ref.[4],
and indeed, exactly the same strategy is used in the continu-
ous case when there is more than one degree of freedom—
but in this paper we will restrict our attention to the basic
phase spaces with field elements as coordinates. The essen-
tial use of arbitrary finite fields is what distinguishes our
work from earlier approaches to discrete phase space.

Though the restriction to powers of primes rules out many
quantum systems, there is one familiar case to which our
formulation may be ideally suited, namely, a system ofn
qubits such as is commonly used to model a quantum com-
puter. In that case the dimension of the state space isN=2n,
which is indeed a power of a prime. Thus our version of the
discrete Wigner function provides an alternative to the 2N
32N formulation that has been most frequently used in
quantum information theoretic applications. Most likely each
of these phase-space formulations will prove to have its own
advantages.

As in the continuous case, we impose a quantum structure
on theN3N phase space by assigning a quantum state to
each line in phase space. We insist that this assignment sat-
isfy a certain strong constraint, namely, that it transform in a
particular way under translations.(The analogous quantum
structure on the continuous phase space satisfies a similar
constraint.) Any assignment of quantum states to lines that
meets this condition we call a “quantum net,” and we use it
to define a discrete Wigner function. It turns out that the
requirement of translational covariance does not pick out a
unique assignment of quantum states to phase-space lines;
that is, there is not a unique quantum net for a givenN3N
phase space. Moreover, we have not found a general prin-
ciple that would select, in a natural way, one particular quan-
tum net for eachN. So our approach does not lead immedi-

ately to a unique Wigner function for a quantum system with
N orthogonal states. To some extent this non-uniqueness is
mitigated by the fact that many different quantum nets are
closely related to each other. We define notions of “equiva-
lence” and “similarity” for quantum nets and identify the
similarity classes forN=2, 3, and 4. A good portion of the
paper is devoted to this classification of quantum nets, which
amounts to a classification of possible definitions of the
Wigner function within this framework.

One motivation for the present work comes from quantum
tomography, which we mentioned above in connection with
other discrete versions of the Wigner function as well as the
continuous version. As we will see, our approach leads natu-
rally to a specific tomographic technique. Each complete set
of parallel lines in the discrete phase space corresponds to a
particular measurement on the quantum system, or more pre-
cisely, to a particular orthogonal basis for the state space. By
experimentally determining the probabilities of the outcomes
of this measurement, one can obtain some information about
the Wigner function, namely, the sum of the Wigner function
over each of those parallel lines. The sums overall the lines
of phase space are sufficient to reconstruct the entire Wigner
function and thus determine the state of the system.

The particular orthogonal bases that are associated with
sets of parallel lines turn out to bemutually unbiased, or
mutually conjugate; that is, each vector in one of these bases
is anequal-magnitudesuperposition of all the vectors in any
of the other bases. Sets of mutually unbiased bases have been
used before, not only for state determination[20,21] but also
for quantum cryptography and in other contexts[22,29], and
a few methods have been found for generating such bases
[23,24,20,25–30]. As we will see, the discrete phase space
developed in this paper leads to a rather elegant way of con-
structing mutually unbiased bases; it is essentially the same
method as was discovered recently by Pittenger and Rubin
[28] and is closely related to the recent work of Durt[29],
though those authors were not studying phase space or
Wigner functions. The connection with mutually unbiased
bases—valid for all prime power dimensionsN—is one re-
spect in which the Wigner function presented here is differ-
ent from those proposed earlier. A consequence is that the
tomographic scheme suggested by our phase space construc-
tion involves fewer distinct measurements than schemes de-
rived from other discrete phase spaces[20,21]. This feature
is the focus of Ref.[31], which introduces for certain special
cases some of the ideas that we present here in a more gen-
eral setting.

As further motivation, we note that the discrete Wigner
function we develop here appears to bear an interesting rela-
tion to certain toy models of quantum mechanics proposed
by Hardy [32] and Spekkens[33] to address foundational
issues. For example, in both of these models a “toybit” has
exactly four underlying ontic states, which could be taken to
correspond to the four points of our one-qubit phase space.2

As has been suggested by Spekkens, the discrete Wigner

2For the case of a single qubit, our phase-space formulation is the
same as in Refs.[4,8,11], but it is already significantly different
when one enlarges the system to a pair of qubits.
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function might therefore facilitate the comparison between
quantum mechanics and these toy theories[33].

Our discrete phase space is also related to some work on
quantum error correcting codes, which is similarly based on
finite fields.(In Sec. IV we point out aspects of this relation-
ship.) It is conceivable, then, that our Wigner function could
be of particular value when representing certain encodings of
quantum states.

The remaining sections are organized as follows. Section
II recalls the definition of the usual Wigner function and
shows how it can be obtained from an assignment of quan-
tum states to the lines of phase space. In Sec. III we give the
mathematical description of our discrete phase space and dis-
cuss its geometrical properties. Section IV shows how to
build a quantum net on this discrete phase space and shows
that the bases associated with different sets of parallel lines
must be mutually unbiased. The notion of a quantum net is
then used in Sec. V to construct a discrete Wigner function.
In Secs. VI and VII we define our notions of equivalence and
similarity between quantum nets and identify the similarity
classes for small values ofN. Finally in Sec. VIII we review
our results and contrast the discrete and continuous cases.

II. THE WIGNER FUNCTION CONSTRUCTED
FROM EIGENSTATES OF aq̂+bp̂

Here we briefly derive the usual definition of the continu-
ous Wigner function in a way that lends itself to generaliza-
tion to the discrete case. The quantum system in question is
a particle moving in one dimension, and the coordinates of
phase space are the positionq and momentump.

We begin by assigning a quantum state to each line in
phase space. Consider the line specified by the equationaq
+bp=c, where the real numbersa, b, and c are arbitrary
except thata and b cannot both be zero. To this line we
assign the unique eigenstate of the operatoraq̂+bp̂ that has
eigenvaluec. In the position representation we can write this
operator as

aq̂+ bp̂= aq− ib"
d

dq
, s1d

and the relevant eigenstateucabcl is given by3

kqucabcl = cabcsqd =
1

Î2p"ubu
e−isa/2"bdsq − c/ad2. s2d

The normalization ofcabc is chosen so that the integral
ec1

c2ucabclkcabcudc, with c2.c1, is a projection operator.
As we mentioned in the Introduction, given a density ma-

trix r of the particle, the corresponding Wigner function will
be of the form

Wsq,pd =
1

2p"
TrfrAsq,pdg, s3d

whereAsq,pd is an operator that we will assign to the point
sq,pd. This operator is constructed, as we will see below, out
of the statesucabcl.

We want the Wigner function to have the property that its
integral over the strip of phase space bounded by the lines
aq+bp=c1 andaq+bp=c2 is the probability that the opera-
tor aq̂+bp̂ will take a value betweenc1 andc2. This is one of
the characteristic features of the Wigner function and is the
property that makes it so useful for tomography. We can
guarantee this property by insisting that the integral of
s1/2p"dAsq,pd over the same strip of phase space is the
projection operator onto the subspace corresponding to the
eigenvalues ofaq̂+bp̂ lying betweenc1 andc2. That is, we
insist that

1

2p"
E

strip
Asq,pddq dp=E

c1

c2

ucabclkcabcudc, for c2 . c1.

s4d

An equivalent expression of this condition, in terms of a
single line in phase space rather than a strip, is the following:

1

2p"
E dsc − aq− bpdAsq,pddq dp= ucabclkcabcu. s5d

To find Asq,pd explicitly, we need to invert Eq.(5). But
Eq. (5) is an example of the well-studied Radon transform—
the operatorucabclkcabcu, regarded as a function ofa, b, and
c, is the Radon transform ofs1/2p"dAsq,pd regarded as a
function ofq andp—and the inverse of this transform is well
known [34]. Here we simply state the result:

Asq,pd = −
"ucu
p
E

−`

` E
−`

` SR 1

sc − aq− bpd2Ducabcl

3kcabcuda db, s6d

wherec is any nonzero real constant, andR indicates the
canonical regularization of the singular function that follows
it. In the case of the function 1/x2, this regularization is
defined by

E
−`

` SR 1

x2D fsxddx=E
0

` fsxd + fs− xd − 2fs0d
x2 dx. s7d

Using the expression forcabc of Eq. (2), one can carry out
the integration of Eq.(6) to get

kq8uAsq,pduq9l = dSq8 + q9

2
− qDesip/"dsq8−q9d. s8d

The Wigner function then comes out to be

Wsq,pd =
1

2p"
TrfrAsq,pdg =

1

p"
E

−`

`

kq − xuruq + xle2ixp/"dx.

s9d

Notice that according to the inverse Radon transform
given in Eq.(6), the operatorAsq,pd is built out of all the

3For the special casesa=0 andb=0 we can take the eigenfunc-
tions to bec0bc=s1/Î2p"ubudeicq/"b andca0c=s1/Îaddsq−c/ad, re-
spectively.
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operatorsucabclkcabcu, the weight given to each operator
tending to fall off as the associated line gets farther from the
point sq,pd. We will find that the analogous inversion in the
discrete phase space is much simpler: theA operator associ-
ated with a given point is built entirely from the states as-
signed to the lines passing through that point.

A particular property of the Wigner function that we want
to generalize to the discrete case is translational covariance
[2]. Here we state the property without proof. LetWsq,pd be
the Wigner function corresponding to a density matrixr, and
let r8 be obtained fromr by a displacementx in position and
a boosty in momentum:

r8 = eisyq̂−xp̂d/"re−isyq̂−xp̂d/". s10d

Then the Wigner functionW8 corresponding tor8 is obtained
from W via the transformation

W8sq,pd = Wsq − x,p − yd. s11d

That is, when the density matrix is translated, the Wigner
function follows along rigidly.

Before moving on to the discrete phase space, let us men-
tion an interesting property of the statesucabcl that likewise
has an analogue in the discrete case. Consider two infinite
stripsS andS8 of phase space that are not parallel. The strip
S is bounded by the linesaq+bp=c1 andaq+bp=c2, while
S8 is bounded bya8q+b8p=c18 and a8q+b8p=c28, and we
assume thatc2.c1 andc28.c18. Let P be the projection op-
erator onto the subspace associated withS; i.e.,

P =E
c1

c2

ucabclkcabcudc. s12d

Similarly, let P8 be the projection onto the subspace associ-
ated withS8. Using Eq.(2) we can write down an explicit
expression forP in the position representation(with a suit-
able modification ifb=0):

kquPuq8l =
1

psq − q8d
sinF sc2 − c1dsq − q8d

2"ubu G
3e−si/2"bdsq−q8dfasq+q8d−sc1+c2dg s13d

and P8 can be written similarly. One can show by
explicit integration that the quantity TrsPP8d, that is,
ekquPuq8lkq8uP8uqldq dq8, works out to be

TrsPP8d =
1

2p"

sc2 − c1dsc28 − c18d
uab8 − a8bu

. s14d

But the positive quantitysc2−c1dsc28−c18d / uab8−a8bu is sim-
ply the area of the region where the two infinite strips over-
lap. Thus TrsPP8d is equal to this area expressed in units of
Planck’s constant. In the limit as the width of the stripS
shrinks to zero, this result tells us that any eigenstate of the
operatoraq̂+bp̂ yields a uniform distribution of the values of
the operatora8q̂+b8p̂.

As we will see, the analogue of this property in the case
of discrete phase space is simpler. In place of strips we will
consider individual lines of the discrete phase space. As we
have said in the Introduction, each complete set of parallel

lines will be associated with an orthogonal basis, and one
finds that the magnitude of the inner product between any
two vectors chosen from different bases is always the same.
This is the property called mutual unbiasedness. Before we
can see how this comes about, and before we explore dis-
crete generalizations of the Wigner function, we need to de-
fine our discrete phase space.

III. MATHEMATICAL DESCRIPTION OF DISCRETE
PHASE SPACE

Our approach to generalizing the continuous phase space
to the discrete case is quite simple. Like the continuous
phase space for a system with one degree of freedom, our
discrete phase space is a two-dimensional vector space, with
points labeled by the ordered pairsq,pd. But instead of being
a vector space over the real numbers, it is a vector space over
a finite field, andq andp are field elements. The number of
elements in the finite field is the dimensionN of the state
space of the system we are describing. The physical interpre-
tation of this discrete phase space will be left mostly to Sec.
IV. In this section we focus on its mathematical properties.

A field, in the algebraic sense, is an arithmetic system
with addition and multiplication, such that the operations are
commutative, associative, distributive, and invertible(except
that there is no multiplicative inverse for the number zero)
[19]. The real numbers are a familiar example of a field with
an infinite number of elements. As we have said in the Intro-
duction, there exists a field with exactlyN elements if and
only if N is a power of a prime, so our scheme applies di-
rectly only to quantum systems for which the state-space
dimension is such a number. Moreover for any of these al-
lowed values ofN, there is essentially only one field having
N elements—any two representations are isomorphic—and
we label this fieldFN. If N is prime,FN consists of the num-
bers0,1, . . . ,N−1 with addition and multiplication modN.
If N=rn, with r prime andn an integer greater than 1, then
the field FN is not modular in this sense but can be con-
structed from the prime fieldFr; one says thatFN is an ex-
tension ofFr.

Let us illustrate this process of extension in the case ofF4,
which we will use frequently as an example. To generateF4,
one begins by finding a polynomial of degree 2, with coeffi-
cients inF2, that cannot be factored inF2. (To generateFrn

one would use a polynomial of degreen.) It happens that the
only such polynomial isx2+x+1: there is no solution inF2 to
the equation

x2 + x + 1 = 0. s15d

The extension is created by introducing a new elementv that
is definedto solve this equation, just as, in creating the com-
plex numbers from the reals, one defines the imaginary ele-
ment i to solve the equationx2+1=0. Oncev is included,
another element,v+1, is forced into existence, as it were, by
the requirement that the field be closed under addition. One
thus arrives atF4:

F4 = h0,1,v,v + 1j, s16d

with arithmetic determined uniquely by the fact thatv satis-
fies Eq.(15). For example, we can squarev as follows:
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v2 = − v − 1 = s− 1dv + s− 1d = v + 1, s17d

where we have used the fact that −1=1 mod 2. Similarly, we
have

sv + 1d2 = v2 + s1 + 1dv + 1 =v2 + 1 = sv + 1d + 1 =v.

s18d

Following common practice we will frequently use the sym-
bol v̄ to represent the field elementv+1. The complete ad-
dition and multiplication tables forF4 are given in Tables I
and II.

We now explore some of the geometric features of the
phase space for a generic(but prime power) value ofN. We
picture the space as anN3N array of pointssq,pd, with q
running along the horizontal axis andp along the vertical
axis. For definiteness we place the origin,sq,pd=s0,0d, at
the lower left-hand corner. The phase space forN=4 is
shown in Fig. 1(a), and in Fig. 1(b) we show a possible
physical interpretation of the axis variables if the space is
being used to describe a pair of spin-1/2 particles.(The
physical interpretation will be explained further in the fol-
lowing section.) We emphasize, however, that these pictures
are not essential to our basic construction. For example, we
will often speak of a “vertical line,” but this term is simply
shorthand for a set of points of the formsq,yd whereq is
fixed andy can take any field value.

More generally, aline in the N3N phase space is the set
of points satisfying an equation of the formaq+bp=c, where
a, b, andc are elements ofFN with a and b not both zero.
Two lines are parallel if they can be represented by equations
having the samea andb but different values ofc. Because
the field operations are so well-behaved—especially since
every nonzero element has a multiplicative inverse—the
usual rules governing lines and parallel lines apply:(i) given
any two distinct points, exactly one line contains both points;
(ii ) given a pointa and a linel not containinga, there is
exactly one line parallel tol that containsa; (iii ) two lines
that are not parallel intersect in exactly one point. Note that
these propositions would not be true for generalN if we were

always usingmodulararithmetic, as has been pointed out in
Ref. [14]. Consider, for example, the caseN=4. Under arith-
metic mod 4 the pointshs0,0d ,s1,2d ,s2,0d ,s3,2dj form a
line, namely, the line that solves the equationp=2q. But
hs0,0d ,s1,0d ,s2,0d ,s3,0dj is also a line, and it shares two
points with the first one.

There are exactlyNsN+1d lines in our phase space, and
these can be grouped intoN+1 sets of parallel lines. To see
this, note that each nonzero pointsq,pd determines a line
through the origin, namely, the line consisting of the points
ssq,spd wheres takes all values inFN. Let us refer to a line
through the origin as aray. Now, there areN2−1 nonzero
points, but each ray containsN−1 such points; so the num-
ber of rays issN2−1d / sN−1d=N+1. Each of these rays then
defines a set ofN parallel lines. Let us call a complete set of
parallel lines a “striation” of the phase space.4 The five stria-
tions of the 434 phase space are shown in Fig. 2. One can
observe there that the lines follow the three rules mentioned
above.

Just as in the continuous case, one can speak oftransla-
tionsof the discrete phase space. A translation is the addition
of a constant vector to each point of the space. For example,
in the 434 phase space as pictured in Fig. 1, translating by
the vectors1,0d has the effect of interchanging the first two
columns and interchanging the last two columns. We will
denote byTa the translation by the vectora. Ta acts on
points in phase space:Tab=a+b. But we will also some-
times applyTa to an entire line, in which case it translates
each point in the given line to yield another line(possibly the
same as the original).

Shortly we will need the concept of abasisfor a field. A
basis for the fieldFrn is an ordered set of field elements
se1, . . . ,end such that every elementx in Frn can be expressed
in the form

x = o
i

n

xiei , s19d

where eachxi is in the prime fieldFr. There are typically
many possible bases for a given field. InF4, for example, we

4In Ref. [4] a similar set was called a “foliation,” because in that
case the elements of the set were sometimes higher-dimensional
slices of a multidimensional space. Since the lines in our current
construction are one-dimensional, they are more like “striae” than
“folia.”

TABLE II. The complete multiplication table forF4.

3 0 1 v v̄

0 0 0 0 0

1 0 1 v v̄

v 0 v v̄ 1

v̄ 0 v̄ 1 v

TABLE I. The complete addition table forF4.

1 0 1 v v̄

0 0 1 v v̄

1 1 0 v̄ v

v v v̄ 0 1

v̄ v̄ v 1 0

FIG. 1. The 434 phase space with axes labeled(a) by field
elements, and(b) by spin states.
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could takes1,vd as a basis, ors1,v̄d, or sv ,v̄d. Because in
this paper we need to talk about bases for Hilbert spaces as
well as bases for fields, we will often refer to the latter as
“field bases.”

We will also need the concept of adual basis, which in
turn depends on the notion of thetrace of a field element.
The trace of a field elementx is defined by

tr x = x + xr + xr2
+ ¯ + xrn−1

. s20d

(We distinguish it from the trace of an operator by the lower
case “tr”.) Though this definition may seem quite opaque on
first reading, the trace has remarkably simple properties, the
most important for us being that(i) the trace is always an
element of the prime fieldFr, (ii ) tr sx+yd=tr x+tr y, and(iii )
tr ax=a tr x, wherea is any element ofFr. Now, given any

basis E=se1, . . . ,end for Frn, there is a unique basisẼ
=sẽ1, . . . ,ẽnd such that

tr eiẽj = di j , s21d

wheredi j is the Kronecker delta. This unique basis is called
the dual basis ofE [19]. We can immediately use the dual
basis to obtain, for fixed basisE and field elementx, the
unique coefficients in the expansion(19). Starting with that
expansion, we multiply both sides byẽj and take the trace:

trsxẽjd = o
i

n

xitrseiẽjd = xj . s22d

The expansion coefficientsxi will be used in the following
section as we lay down a quantum structure on our discrete
phase space.

IV. ASSIGNING A QUANTUM STATE TO EACH LINE
IN PHASE SPACE

We now need to supply our discrete phase space with a
physical interpretation. We will do this by assigning to each
line in phase space a specific pure quantum state as repre-
sented by a rank-1 projection operator. LetQ be the function
that makes this assignment. That is, for each linel in phase
space,Qsld is the projection operator representing a pure
quantum state. We will impose one condition onQ, transla-
tional covariance, to be defined shortly. A functionQ satis-
fying translational covariance we will call a “quantum net.”
Later we will see how each possible choice of the functionQ
leads to a different definition of the discrete Wigner function.

For N=rn wherer is prime, our phase space applies most
naturally to a system consisting ofn objects(which we call
“particles,” though they could be anything), each having an
r-dimensional state space. We assume that our system has
this structure.

We have seen in Eq.(10) the sense in which the continu-
ous Wigner function is translationally covariant. To define an
analogous property in the discrete case, we need a discrete
analogue of the unitary translation operators

Tsx,yd = expfisyq̂− xp̂d/"g s23d

that appear in Eq.(10). That is, for each discrete phase-space
translationTsx,yd with x andy in FN, we will define a corre-
sponding unitary operatorTsx,yd that acts on the state space.
In choosing these unitary operators, we are guided by the
following considerations.(i) We want the multiplication of
these unitary operators to mimic the composition of transla-
tions; that is, we insist that for any vectorsa andb in phase
space,

TaTb < Ta+b, s24d

where the symbol' indicates equality up to a phase factor
that might depend ona andb. (The unitary operators of Eq.
(23) have exactly the same relation to the addition of con-
tinuous phase-space vectors.) (ii ) There should be “basic”
translations corresponding to unitary operators that act on
just one particle. We make the connection between a trans-
lation vectorsx,yd and individual particles by expandingx
and y in field bases, allowing ourselves to use a different
basis for each of the two dimensions of phase space. Thus we
write

x = o
i=1

n

xeiei s25d

and

y = o
i=1

n

yfi f i , s26d

whereE=se1, . . . ,end andF=sf1, . . . ,fnd are field bases, and
we associate the coefficientsxei andyfi with the ith particle.
(The symbolse and f are included in the subscripts to indi-
cate which basis is being used in the expansion.) A transla-
tion that involves only coefficients having a particular value

FIG. 2. The striations of the 434 phase space.
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of i should be associated with a unitary operator that acts
only on the ith particle. (Later we will discuss how much
freedom we have in choosing the field basesE andF.) (iii ) In
the single-particle state space, we choose our unitary opera-
tors to be as analogous as possible to the continuous opera-
tors. Let su0l , . . . ,ur −1ld be a standard basis for the single-
particle state space. Then in the space of theith particle, the
“unit horizontal translation,” withxei=1 andyfi =0, is asso-
ciated with the unitary operatorX defined by

Xukl = uk + 1l, s27d

with the addition being inFr, and the “unit vertical transla-
tion,” with xei=0 andyfi =1, is assigned the unitary operator
Z defined by

Zukl = e2pik/rukl. s28d

The operatorsX andZ, which are generalized Pauli matrices
introduced long ago by Weyl[35], have been used by many
authors in many contexts(often with nonprime values ofr as
in Ref. [36]), including studies of discrete phase spaces[6,8]
and mutually unbiased bases[28,27]. Except for phase fac-
tors, our general unitary translation operators are now fixed
by Eqs.(24), (27), and(28). We write them as follows(and
this equation fixes the choice of phase factors):

Tsx,yd = Xxe1Zyf1 ^ ¯ ^ XxenZyfn. s29d

We note that the operatorsTsx,yd play an important role in
the theory of quantum error correction: they are normally
taken as the basic error operators acting on anrn-dimensional
state space(usually with r =2). Often the indicesxei andyfi
labeling these error operators are treated simply as elements
of Fr without the additional field structure that we have as-
sumed. However, for some purposes it has been found useful
to treatx andy as elements of the extensionFrn as we have
done here.(See for example Refs.[37–40].)

In order for the Wigner function—defined later—to be
translationally covariant, we insist that the functionQsld be
translationally covariant in the following sense: for each line
l and each phase-space vectora,

QsTald = TaQsldTa
† . s30d

That is, if we translate a linel in phase space by the vector
a, the associated quantum state is transformed byTa. This is
quite a strong requirement. To see why, consider the line
consisting of the pointsssx,syd wherex andy are fixed(and
not both zero) and s ranges over the whole fieldFN. This
line, and each of the lines of its striation, are all invariant
under a translation by the vectorssx,syd for any value ofs.
This means that in order to satisfy Eq.(30), the projectionsQ
that we assign to these lines must commute withTssx,syd for
eachvalue ofs. (If we were to represent the quantum states
by state vectors rather than by projectors, the state vectors
assigned to these lines would have to be eigenvectors of
Tssx,syd for each value ofs.) But this is impossible unless all
of the operatorsTssx,syd commute with each other. The basic
operatorsX andZ obey the simple commutation relation

ZX= hXZ, s31d

where h=e2pi/r. For each value ofs, the unitary operator
Tssx,syd can be written as

Tssx,syd = Xssxde1Zssydf1 ^ ¯ ^ XssxdenZssydfn. s32d

It follows from Eq.(31) that theseN operators commute with
each other if and only if the following condition is met for all
pairs of field elementss and t:

o
j=1

n

ssxdejstyd f j = o
j=1

n

stxdejssyd f j , s33d

where the operations are those ofFr; that is, they are modr.
It turns out that this condition can be very simply expressed
in terms of FN. We show in Appendix A that Eq.(33) is
satisfied for all values ofx, y, s and t if and only if the field
basesE=se1, . . . ,end and F=sf1, . . . ,fnd are related by an
equation of the form

f i = wẽi, i = 1, . . . ,n, s34d

wherew is any element of the fieldFN. Thus, because we
insist on translational covariance, we are not free to choose
the basesE andF arbitrarily. These bases enter into the defi-
nitions of the translation operatorsTa, and if the bases do not
satisfy Eq.(34), there is no functionQsld that is translation-
ally covariant with respect to these operators.5

Suppose now thatE andF do satisfy Eq.(34), so that the
N operatorsTssx,syd, for fixed x and y and all values ofs,
commute with each other. These unitary operators are trace-
less and mutually orthogonal in the sense that

TrsTssx,syd
† Tstx,tydd = 0 if sÞ t. s35d

It follows that they define aunique basis of simultaneous
eigenvectors(up to phase factors).6 Thus as long as this con-
dition on the field bases is satisfied, our requirement of trans-
lational covariance picks out a unique orthogonal Hilbert
space basis to associate with each striation.(We will see
shortly that translational covariance also requiresQ to assign
a different element of this basis to each line of the given
striation.) Moreover, it follows from the work of Bandyo-
padhyayet al. [27] that these Hilbert space bases are all
mutually unbiased. Specifically, Bandyopadhyayet al. show
the following: if a set ofN2−1 traceless and mutually or-

5As we have mentioned above, in some papers on quantum error
correction the authors have indexed the error operators with ele-
ments of the fieldFrn. These authors have also insisted that the
commutation relations among error operators be expressible in a
simple way in terms of the field algebra[37–40]. The condition Eq.
(34) does not seem to have appeared explicitly in these papers, but
it may well be implicit.

6Here again there is a connection with the theory of quantum
codes, in which one frequently considers sets of commuting error
operators: a quantum stabilizer code is in fact a joint eigenspace of
the operators of such a set[41–44]. However, in our case the com-
muting set ismaximal, so that the subspace defined by a set of
eigenvalues is spanned by a single vector. The vectors we define in
this way are thus examples of stabilizer states.
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thogonal N3N unitary matrices can be partitioned into
N+1 subsets of equal size, such that theN−1 operators in
each subset are commuting, then the bases of eigenvectors
defined by these subsets are mutually unbiased. Our opera-
tors Tsx,yd satisfy this hypothesis as long as the field basesE
andF satisfy Eq.(34).

Note that because there areN+1 striations, the above
argument—which again is closely related to Refs.[28,29]—
shows that one can constructN+1 mutually unbiased bases
in N complex dimensions whenN is a power of a prime. For
a general value ofN it is known [23,24] that the number of
mutually unbiased bases cannot exceedN+1, and other pa-
pers have shown in other ways that this number is exactly
N+1 whenN is a power of a prime[20,25–27]. Remarkably,
the maximum number of such bases appears to be unknown
for any value ofN that is not a power of a prime(but see
Refs.[26,30,45–47] which shed light on that problem).

Let us find the Hilbert space bases that our construction
assigns to the vertical and horizontal striations. The vertical
lines are invariant under translations by vectors of the form
s0,sd; so the Hilbert space basis associated with this striation
consists of the simultaneous eigenvectors of the operators
Ts0,sd. These operators take the form

Ts0,sd = Zsf1 ^ ¯ ^ Zsfn s36d

and are thus all diagonal in the standard basis; so their si-
multaneous eigenvectors are simply the standard basis vec-
tors

uk1l ^ ¯ ^ uknl. s37d

The horizontal lines are invariant under translations by the
vectorsss,0d; so the Hilbert space basis associated with this
striation consists of the simulataneous eigenvectors of

Tss,0d = Xse1 ^ ¯ ^ Xsen. s38d

One finds that these vectors are

u j1d ^ ¯ ^ u jnd, s39d

where the single-particle statesu jd, notationally distinguished
by the curved bracket, are given by

u jd =
1
Îr

o
k=1

r

h jkukl. s40d

(Again, h=e2pi/r.) Note that for these two special
striations—vertical and horizontal—the associated Hilbert
space bases do not depend on the choice of field bases. This
is typically not the case for other striations.

Let us see how this all works out for the caseN=4. First
we arbitrarily choosese1,e2d=sv ,1d as the field basis for the
horizontal translation variablex. One finds that the unique
dual of this basis issẽ1,ẽ2d=s1,v̄d. Thus in order to make
translational covariance possible we should choose the field
basis sf1, f2d for y to be either s1,v̄d or some multiple
thereof. We achieve a certain simplicity if we multiplys1,v̄d
by v to get sf1, f2d=sv ,1d. Then the basis fory is the same
as the basis forx. Having made these choices, we can write
down the unitary operator associated with any translation.

Consider, for example, the following three vectors which are
proportional to each other:s1,vd, sv ,v̄d, sv̄ ,1d. In terms of
our field bases, we can express these vectors ass0e1

+1e2,1f1+0f2d, s1e1+0e2,1f1+1f2d, s1e1+1e2,0f1+1f2d.
Thus according to Eq.(29) the unitary operators associated
with translations by these vectors are, respectively,

Ts1,vd = Z ^ X, Tsv,v̄d = XZ ^ Z, Tsv̄,1d = X ^ XZ, s41d

where in this caseX and Z are the ordinary Pauli matrices,
expressed in the standard basis as

X = S0 1

1 0
D, Z = S1 0

0 − 1
D . s42d

One can verify that the three operators of Eq.(41) commute
with each other. The unique basis of simultaneous eigenvec-
tors is

1

21
− 1

1

i

i
2 1

21
1

− 1

i

i
2 1

21
1

1

− i

i
2 1

21
1

1

i

− i
2 . s43d

This, then, is the basis that we associate with the striation
containing the linehs0,0d ,s1,vd ,sv ,v̄d ,sv̄ ,1dj.

In the same way we can figure out what Hilbert space
basis is associated with each of the other striations. Figure 3
shows the complete correspondence explicitly; each striation
is labeled, in the left-hand column, by a point belonging to
the line in that striation that passes through the origin. The
striations are listed in the same order as in Fig. 2. One can
verify that these five orthonormal bases are mutually unbi-
ased, as they must be.

So far our construction only assigns a Hilbert-space basis
to each striation. Given our definition ofTsx,yd in Eq. (29),
this assignment is completely determined once we have cho-
sen a field basis for each of the two dimensions of phase
space. We now turn to the question of assigning a specific
stateQsld to each linel of phase space. How much freedom
do we have in making this assignment?

Consider a striationS. Let B=hubslj be the basis associ-
ated with this striation, withsPFN. We now consider a spe-
cific line lS0 in S, namely, theray that is included inS; that
is, lS0 is the line inS that passes through the origin. We are
free to assign any of the statesubsl to lS0; this choice is
arbitrary. However, once we have made this choice, the vec-
tor assigned to any other line of the striation is determined by
Eq. (30):

QsTsx,ydlS0d = Tsx,ydQslS0dTsx,yd
† , s44d

since any line in the striation can be obtained by translating
lS0. The functionQsld is thus entirely determined once we
have assigned a quantum state to each of therays of phase
space. Moreover, it is clear from Eq.(44) that the same quan-
tum state cannot be assigned to two distinct lines of a stria-
tion: an operatorTsx,yd that translatesl into l8 cannot com-
mute withQsld, since it has a complete set of eigenvectors
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(not all degenerate) that are unbiased with respect to the
basis associated withl.

Let us summarize the choices we are allowed as we set up
a quantum net for theN3N phase space. First, we choose a
field basisE for the horizontal coordinate; any basis will do.
Next, we choose a field basisF for the vertical coordinate,
but here we are not so free.F must be a multiple of the
unique basis dual toE; that is, f i =wẽi for some nonzerow
PFN. These choices determine the unitary translation opera-
tors according to Eq.(29), which in turn define a unique
orthonormal basis to be associated with each striation. Now,
for each striationS, we choose a particular vectorubl in that
striation’s basis and letQslS0d= ublkbu, wherelS0 is the ray
defining that striation. The stateQsld assigned to any other
line l is then determined uniquely by the condition
QsTsx,ydlS0d=Tsx,ydQslS0dTsx,yd

† .
In the caseN=4, with the field basesE=F=sv ,1d as

before, we can define a quantum net by choosing, from each
of the five bases shown in Fig. 3, one state vector to be
associated with the corresponding ray in phase space. For
example, we might choose, for each basis, the vector in the
left-most column of that table. With this choice, the vertical
line through the origin is associated with the stateu00l [that
is, k1=k2=0 in Eq. (37)], and the other vertical lines, from
left to right in Fig. 1(a), are associated with the statesu01l,
u10l, andu11l respectively. If the system in question is a pair
of spin-1/2 particles and if we interpretu0l as u↑l and u1l as
u↓l, the vertical lines can be labeled as shown in Fig. 1(b):
↑↑, ↑↓, ↓↑, ↓↓. With this same choice, the horizontal lines are
associated with the statesu→→l and so on, as is also indi-
cated in Fig. 1(b).

In the next section we show how we can use a quantum
net to define a Wigner function.

V. DEFINING A WIGNER FUNCTION

A quantum net assigns a stateQsld to each linel in phase
space. The Wigner functionWsq,pd of a quantum system
should be such that whenWsq,pd is summed over the linel,
the result is the probability that the quantum system will be
found in the stateQsld. That is, if r is the density matrix of
the system, we insist that

o
aPl

Wa = TrfrQsldg. s45d

For a given quantum netQ, this condition completely deter-
mines the relation betweenr andW.

We now use Eq.(45) to expressWa explicitly in terms of
r. We begin by observing that through any pointa there are
N+1 lines, and that each pointbÞa lies on exactly one of
these lines. These geometrical facts allow us to write

Wa =
1

NFS o
l{a

o
bPl

WbD − o
g

WgG , s46d

where the first sum is over all lines that contain the pointa.
Using Eq.(45) we can rewrite this as

Wa =
1

NF o
l{a

TrfrQsldg − 1G =
1

N
TrsrAad, s47d

where

Aa = F o
l{a

QsldG − I . s48d

Equation(47) is our explicit formula forWa.
The operatorsAa have a number of special properties.
(1) Aa is Hermitian.
(2) Tr Aa=1.
(3) Tr AaAb=Ndab.
(4) oaPlAa=NQsld.

These can all be proven directly from the definition. For our
present purpose the most important is property(3), which we
now prove explicitly. Starting with Eq.(48), we can write

Tr AaAb = o
l{a

o
n{b

TrfQsldQsndg − 2o
l{a

Tr Qsld + Tr I .

s49d

The last two terms have the value −2sN+1d+N=−sN+2d.
The value of the double sum overl and n depends on
whethera andb are the same point. If they are, then of the
sN+1d2 terms in the sum,N+1 of them have the value 1
becausel=n, and the rest have the value 1/N, because bases
associated with different striations are mutually unbiased.
Thus in this case we have

FIG. 3. The five bases generated by the five striations.
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Tr AaAb = sN + 1d + NsN + 1d
1

N
− sN + 2d = N sa = bd.

s50d

If aÞb, then exactly one term in the double sum has the
value 1,N terms have the value 0 becausel andn are par-
allel but different, and the rest have the value 1/N because of
the mutual unbiasedness. This gives us

Tr AaAb = 1 +NsN + 1d
1

N
− sN + 2d = 0 sa Þ bd, s51d

which finishes the proof of property(3).
Property(3) shows that the operatorsAa constitute a com-

plete basis for the space ofN3N matrices. In particular, we
can write the density matrix as a linear combination

r = o
a

baAa, s52d

where the coefficientsba must be real sincer and theAa’s
are Hermitian. Multiplying both sides of Eq.(52) by Ab,
taking the trace, and using property(3) above, we find that
ba is in fact equal toWa as expressed in Eq.(47). We have
thus found an explicit expression for the density matrix in
terms of the Wigner function:

r = o
a

WaAa. s53d

We now list a number of properties of the Wigner func-
tion and its relationship to the density matrix.

(1) Wa is real.
(2) oaPlWa=TrfrQsldg. This is the property(45) that

we used to define the Wigner function.
(3) oaWa=1. This follows immediately from property 2:

break the sum overa into parallel lines, and the correspond-
ing probabilities must sum to one.

(4) Let W be the Wigner function corresponding to a den-
sity matrix r and letW8 correspond tor8, wherer8=TbrTb

†.
Then Wa8 =Wa−b. This is the translational covariance of the
discrete Wigner function and is the analogue of Eq.(10). The
proof is straightforward:

Wa8 =
1

N
Trsr8Aad =

1

N
TrsTbrTb

†Aad =
1

N
TrsrTb

†AaTbd

=
1

N
TrsrAa−bd = Wa−b. s54d

Here we have used the fact thatAa is a linear combination of
the identity operator and the projectionsQ, which were con-
structed to be translationally covariant in accordance with
Eq. s30d.

Of course the definition of the Wigner function depends
on the quantum netQ; different choices of the quantum net
will yield different definitions of the Wigner function. In
order to show some examples of Wigner functions, for the
remainder of this section we adopt the particular quantum net
for N=4 that we mentioned at the end of the preceding sec-
tion. Recall that for this quantum net, we have taken the field
bases to beE=F=sv ,1d, and we have chosen to associate

the rays of phase space with the states listed in the left-most
column of Fig. 3. With these choices we can compute the
operatorsAa and thereby find the Wigner function associated
with any stater. In Fig. 4 we give the result for certain
quantum states of a pair of spin-1/2 particles, representing
spin states as we did at the end of Sec. IV.

One can check that the sum over any line is the correct
probability of the state associated with that line. For ex-
ample, in the case of the singlet states1/Î2dsu↑ ↓ l− u↓ ↑ ld, if
both particles are measured in the up-down basis, the only
possible outcomes are↑↓ and↓↑, corresponding to the two
middle columns; similarly if both particles are measured in
the right-left basis, the only possible outcomes are→← and
←→.

The property(45) of the discrete Wigner function is the
one that makes it useful for tomography. Suppose that one
has an ensemble of systems with anN-dimensional state
space all prepared by the same process, so that each instance
should be describable by the same(possibly mixed) quantum
state. To find the values of the Wigner function, one can
perform, on N+1 subensembles, the orthogonal measure-
ments associated with theN+1 striations of phase space.
From the probabilities of the outcomes one can reconstruct
the Wigner function. In fact, from Eq.(47) one obtains the
following equation for this reconstruction:

Wa =
1

NF o
l{a

Psld − 1G , s55d

where Psld=TrfrQsldg is the probability of the outcome
associated with the linel.

FIG. 4. Wigner functions for three states of a pair of qubits.
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In this discussion we are assuming thatN=rn wherer is
prime. A system with such a value ofN can alternatively be
described using the Wigner function of Ref.[4], for which
the phase space is the direct sum ofn r3 r phase spaces. The
tomography on this 2n-dimensional phase space requires
sr +1dn different measurements, which is always greater than
the numberN+1=rn+1 required by our present scheme. In-
deed, for any value ofN, N+1 is the minimum number of
orthogonal measurements needed to reconstruct a general
quantum state, since a general density matrix contains
N2−1=sN+1dsN−1d independent real parameters and each
measurement provides onlyN−1 independent probabilities.7

VI. CLASSIFYING QUANTUM NETS

According to our construction in Sec. IV, a quantum net is
determined once we(i) specify the field basis for each of the
two axes of phase space, and(ii ) select, for each striation, a
vector (from the basis associated with that striation) to be
assigned to the line through the origin. For the purpose of
this section, let us assume that the choice of field bases is
fixed once and for all. We are still free to choose which
vector to associate with each ray. How many possible quan-
tum nets do these choices give us? The answer isNN+1, since
there areN+1 striations, and for each one we can choose
amongN basis vectors. But theseNN+1 quantum nets are not
all greatly different from each other, and in some cases the
definitions they generate of the Wigner function are closely
related. In order to get a sense of the range of significantly
different Wigner function definitions, we now begin to clas-
sify the possible quantum nets. For this purpose we define
two relations between quantum nets: equivalence and simi-
larity.

Let us call two quantum netsequivalentif they differ only
by a unitary transformation of the state space. That is, two
quantum netsQ and Q8 are equivalent if and only if there
exists a unitary transformationU such that, for each linel,
Q8sld=UQsldU†. For example,Q8 might be related toQ by
a translation of the phase space, which by construction im-
plies a unitary relation betweenQ andQ8.

How many equivalence classes of quantum nets are there?
To answer this question, note first that, regardless of what
states a quantum net assigns to the vertical lines, because
they are orthogonal—in fact they must be the basis states
uk1l ^ ¯ ^ uknl in some order—we can always find a unitary
transformation that will bring them to the same basis but in a
standard order, the stateu0l ^ ¯ ^ u0l being associated with
the vertical ray. Moreover, we still have freedom, by a fur-
ther unitary transformation, to change the phases of these
states arbitrarily. Thus the state assigned to thehorizontal
ray, a state that must already be one of the statesu j1d ^ ¯

^ u jnd [Eqs.(39) and(40)], can be brought, by changes in the
phases of its components, to the particular stateu0d ^ ¯

^ u0d. And this exhausts our unitary freedom. If two quantum
nets, after having their vertical and horizontal states brought
to a standard form in this way, are not now identical, then
they must not have been equivalent to begin with, since there
is no further unitary freedom. To find the number of equiva-
lence classes, we simply have to consider the freedom that
remains once the states associated with the vertical and hori-
zontal lines are fixed. We still haveN−1 striations left, and
for each one we still haveN vectors that we can assign to the
ray associated with that striation. Thus the number of equiva-
lence classes isNN−1.

Note that the above argument also shows that if two quan-
tum nets are equivalent, theymustbe related by a translation
of the phase space. Starting with a given quantum net, one
can generateN2 equivalent quantum nets by translation, us-
ing theN2 translation operators(including the identity). Thus
each equivalence class must have at leastN2 elements. But
since there areNN−1 equivalence classes and a total ofNN+1

quantum nets, each equivalence class must haveexactly N2

elements, namely, the ones obtained by translation.
In order to define the notion ofsimilarity, we consider a

different sort of transformation of the discrete phase space,
namely, alinear transformation. That is, we imagine map-
ping each pointa of phase space into a pointa8=La, where
L is linear over the fieldFN. If we think of a as a column
vector with componentsx and y, we can think ofL as a
232 matrix with elements in the field:

Sx8

y8
D = Sa b

c d
DSx

y
D . s56d

We call two quantum netsQ and Q8 similar if and only if
there exists a linear transformationL on the phase space,
together with a unitary transformationUL on the state space,
such that for every linel,

Q8sld = UL
†QsLldUL. s57d

That is,Q8 is unitarily equivalent not necessarily toQ itself
but to Q acting on a linearly transformed phase space. A
linear transformation can be regarded as a matter of changing
the basis vectors of phase space, as a unitary transformation
is a change of basis in the state space. In this sense two
quantum nets are similar if they are related to each other by
changes of basis in these two spaces. It turns out that Eq.
(57) can hold only ifL has unit determinant. For suppose that
Eq. (57) holds for someL and UL. Then from the fact that
bothQ andQ8 must be translationally covariant[Eq. (30)], it
follows that for all phase space vectorsa,

ULTaUL
† < TLa. s58d

In Appendix B we show that Eq.(58) can be satisfied for all
a only if L has unit determinant. We show further that for
everyunit-determinant linear transformationL, there exists a
unitary UL such that Eq.(58) holds.(See also Refs.[53,54]
which address a different formulation of the same general
problem.)

This latter fact has an important consequence for classi-
fying quantum nets. Given a quantum netQsld, suppose that
we construct another functionQ8sld=UL

†QsLldUL, whereL

7Moving away from the simple tomographic model, there are
many other schemes for the reconstruction of quantum states. In
particular, one can use non-orthogonal measurements or adaptive
measurements[48] or one can perform arbitrarily many distinct
measurements[49].
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is a unit-determinant linear transformation andUL is the uni-
tary operator whose existence is guaranteed by Eq.(58).
ThenQ8 is also a legitimate quantum net, translationally co-
variant with respect to the original translation operatorsTa.
Thus any function obtained from a quantum net by linearly
transforming all the lines of phase space, is itself a quantum
net up to a unitary transformation. We will use this fact
shortly in the classification of quantum nets.

In the rest of this section we characterize the similarity
classes of quantum nets forN=2, 3, and 4. For this purpose
it is helpful to introduce a unitarily invariant functionG of
three phase-space points[4]:

Gabg =
1

N
TrsAaAbAgd, s59d

whereAa is defined in Eq.(48). BecauseG is not affected by
a unitary transformation of the quantum net, it is constant
over each equivalence class. Indeed, it follows from the or-
thogonality relation TrAaAb=Ndab that the functionG com-
pletely characterizes the quantum net up to a unitary trans-
formation. Therefore, two quantum netsQ andQ8 aresimilar
if and only if the corresponding functionsG and G8 are re-
lated by a unit-determinant linear transformation of the phase
space, i.e., ifGabg8 =GLaLbLg. Thus G can be used to distin-
guish different similarity classes.

Similarity classes for N=2
For higher dimensions we will need to specify a field

basis for each of the two phase-space dimensions, but in the
case of a single qubit, there is no such choice, since the only
field basis consists of the single number 1. The number of
equivalence classes in this case is 22−1=2. To construct a
representative of each one, we first fixQsld for the vertical
and horizontal rays: to the vertical ray we assign the state
u0l and to the horizontal ray we assign the stateu0d
=s1/Î2dsu0l+ u1ld. As explained above, we have this freedom
within an equivalence class. The only choice remaining then,
which distinguishes the two equivalence classes, is the state
to be assigned to the diagonal rayld. This state must be one
of the two eigenstates ofXZ (that is, ofsy). Let us call these
statesuy+l and uy−l, defined byuy+l=s1/Î2dsu0l+ i u1ld and
uy−l=s1/Î2dsu0l− i u1ld. As it turns out, the two resulting
quantum nets are similar to each other. To see the similarity,
in Eq. (57) choose

L = S0 1

1 0
D andUL =

1
Î2

S1 1

1 − 1
D . s60d

One can verify that if we letQsldd= uy+lky+u, then after ap-
plying L and UL as in Eq.(57) we obtainQ8sldd= uy−lky−u,
but the states assigned to the vertical and horizontal rays are
unchanged. Thus there is only one similarity class forN=2.

Though we have not neededG to classify the similarity
classes in this case, for comparison with other values ofN it
will be helpful to see some of the values of this function.
Here we give the values ofG00g, where “0” indicates the
origin andg is an arbitrary phase space point. The values of

G00g are the same for both of the equivalence classes; so the
following picture is valid for both. In this picture the value of
G00g is written in the location defined byg (recall that the
lower left-hand corner is our origin, so the value written
there isG000).

s61d

Here the factor 1/4 multiplies each term in the array. As
must be the case, the two equivalence classes do differ in
other values ofG: whena, b, andg are all different,Gabg is
complex, and the values for the two equivalence classes are
related by complex conjugation.

As we have seen, each quantum net yields a particular
definition of the discrete Wigner function via Eq.(47). The
fact that there is only one similarity class forN=2 means,
then, that there is essentially only one definition of the dis-
crete Wigner function forN=2 within the present frame-
work. The allowed quantum nets differ from each other only
by a rotation of the qubit(equivalence) and/or an antiunitary
spin flip (similarity). Up to these modifications, the definition
given in Eq.(47) for N=2 agrees with the discrete Wigner
function defined in Refs.[11,4,8].

Similarity classes for N=3
For the three-element field there are two possible field

bases:(1) and(2). Let us fix(1) as our field basis for each of
the two phase-space dimensions. The number of equivalence
classes of quantum nets for a single qutrit is 33−1=9. Again
we focus on a particular representative from each equiva-
lence class by fixing the states assigned to the vertical and
horizontal rays: to the vertical ray we assign the stateu0l, and
to the horizontal ray we assign the stateu0). The difference
between equivalence classes then lies in the choices we make
for the other two striations. The bases associated with these
striations are

1
Î31h

1

1
2 1

Î311

h

1
2 1

Î311

1

h
2 s62d

and

1
Î31h̄

1

1
2 1

Î311

h̄

1
2 1

Î311

1

h̄
2 , s63d

whereh=e2pi/3. We need to choose one vector from each of
these bases to assign to the remaining two rays. We now use
the values ofG00g to help us identify the similarity classes.

If we choose the first vector listed in each of Eqs.(62) and
(63), we get the following values ofG00g (again, the position
in the table indicates the value ofg):
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s64d

On the other hand, if we make any other choice, we find that
the analogous table contains three zeroes lying along one of
the lines of phase space. Here is an example:

s65d

Now, in the 333 phase space there are exactly eight lines
that do not pass through the origin. Moreover, with a unit-
determinant linear transformation acting on the phase space,
we can move any of these eight lines into any other; thus,
starting with the zeroes as in Eq.(65), we can move them to
any other such line. We saw earlier that if we modify a quan-
tum net by applying a unit-determinant linear transformation
to the phase space, the resulting function is, up to a unitary
transformation, another quantum net. Therefore, as we use
such transformations to move the zeros among these eight
lines, we are generating eight inequivalent quantum nets that
by definition are in the same similarity class. We have thus
accounted for all nine equivalence classes and have found
that they lie in exactly two similarity classes: a class of eight
as exemplified by Eq.(65), and the special case shown in Eq.
(64) which is in a similarity class by itself.

Since there are two similarity classes forN=3, there are
also two quite different definitions of the discrete Wigner
function. The simpler one, whose quantum net yields theG
of Eq. (64), is the same as the one defined in Refs.[4,8]. The
other one, with aG like that shown in Eq.(65), appears to be
new. It necessarily has many of the features of the simpler
definition—e.g., the sums of the Wigner function along the
lines of any striation are the probabilities of the outcomes of
a measurement associated with that striation—but it lacks
some of the symmetry. It is not clear whether there is any
physical context in which one would choose to use this less
symmetric definition of the Wigner function. If there is, pre-
sumably it would be a context in which a particular quantum
state, associated with the line along whichG00g is zero, plays
a favored role.

Similarity classes for N=4
As always, we begin by fixing a pair of field bases for the

two dimensions of phase space. ForN=4, let us adopt the
bases we have used in our earlier example: we associate with
each dimension the basissv ,1d. With the bases fixed, the
number of equivalence classes of quantum nets in this case is
44−1=64. Referring to the list of bases in Fig. 3, we can
generate quantum nets from the 64 equivalence classes by
choosing one state vector from each of the last three bases.
To see how these 64 cases sort themselves into similarity
classes, we again rely onG00g. CalculatingG00g explicitly for
various cases, one obtains many different arrays, among
which the following four are representative:

s66d

s67d

Though the last two have comparable features, we note that
it is not possible to change one of them into the other by a
linear transformation of the phase space. The first two are
clearly not related to the others or to each other by linear
transformations since, for example, they have different val-
ues ofG000, which is invariant under linear transformations.

The fact that these four arrays are not related by linear
transformations shows that there are at least four similarity
classes. In fact, by counting the number of different func-
tions Gabg that one can obtain by unit-determinant linear
transformations(including the possibility of complex conju-
gation, which does not show up inG00g), one finds that the
four examples illustrated above generate 64 distinct equiva-
lence classes. We can conclude, then, that we have not left
anything out and that there are exactly four similarity
classes.

Suppose that one has chosen one state vector from each of
the five bases in Fig. 3, each vector being assigned to the
appropriate ray of phase space.(Now we are not fixing
a priori the vectors to be chosen from the first two bases.) It
would be good to have a simple algorithm that would deter-
mine to which of the four similarity classes the resulting
quantum net belongs. One could of course computeG00g for
the given quantum net and compare the result with the arrays
given in Eqs.(66) and (67). But in fact there exists a much
simpler method, as we now explain.

Let us label the four columns of Fig. 3 with elements of
F4: from left to right, we label the columns with the values 0,
1, v and v̄. (This is not an entirely arbitrary labeling. In
writing down the bases in Fig. 3, we consistently used the
same vertical translation operators to determine the order in
each of the last four bases. The first basis cannot be obtained
in this way and in that case we used the horizontal translation
operators.) The column labels can be used to specify which
vector we have chosen from each basis: Leta be the label of
the vector chosen from the first basis,b the label of the
vector chosen from the second basis, and so on. For conve-
nience we repeat in Fig. 5 the list of bases, with the new
labeling scheme. Thus ifb=v, for example, the state vector
chosen from the second basis(corresponding to the horizon-
tal ray) is s1/2dsu00l+ u01l− u10l− u11ld.

It turns out that there is a functionDsa,b,c,d,ed, taking
values inF4, such that the value ofD determines the simi-
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larity class of the quantum net defined bysa,b,c,d,ed. In
Appendix D we present a method for finding the functionD.
Here we simply state the result:

D = vsa + b + cd + v̄sa b c d ed1
0 1 1 1 1

0 0 1 v̄ v

0 0 0 v v̄

0 0 0 0 1

0 0 0 0 0
21

a

b

c

d

e
2 ,

s68d

where we are using ordinary matrix multiplication to express
the quadratic terms, all the operations being inF4. The cor-
respondence between the value ofD and the similarity class
is as follows: The valuesD=0 andD=1 correspond, respec-
tively, to the two similarity classes whoseG00g arrays are
shown in Eq.(66); the valuesD=v andD=v̄ likewise cor-
respond to the similarity classes of Eq.(67).

To give an example, consider the specific quantum net we
used earlier, obtained by choosing the first vector in each of
the five bases. In this casea=b=c=d=e=0 and therefore
D=0; so the above correspondence predicts(correctly) that
the quantum net obtained in this way is in the similarity class
with G000=25/16.

If we adopt the convention of representing each equiva-
lence class by the unique quantum net in that class that has
a=b=0, we obtain a simplified form ofD:

D = vc + cd+ vce+ v̄de sa = b = 0d. s69d

From this equation(or in other ways), one can easily deter-
mine the number of equivalence classes in each of the four
similarity classes. One finds that there are twenty values of
the triple sc,d,ed for which Dsc,d,ed=0, so that there are
twenty equivalence classes in the first similarity class shown
in Eq. (66). Similarly there are twenty equivalence classes in
the other similarity class shown that equation and twelve in
each of the two classes represented in Eq.(67). Thus the total
number of equivalence classes comes out to be 20+20+12
+12=64, as it should.

Similarity classes for larger N
For larger values ofN, it becomes more difficult to work

out all the possibilities for the functionGabg as we did above.
We now outline another method for determining the number
of similarity classes.

We have seen that applying a unit-determinant linear
transformation to a quantum netQ yields, up to unitary
equivalence, another quantum net in the same similarity
class. Thus we can regard the group of unit-determinant lin-
ear transformations as acting on the set of equivalence
classes of quantum nets, and from this point of view the
similarity classes are seen as theorbits of the group. Accord-
ing to a theorem in group theory, the numbert of distinct
orbits generated by a groupG acting on a finite set is given
by

t =
1

uGu ogPG

fsgd, s70d

whereuGu is the size of the group andfsgd is the number of
elements in the set that are fixed bygPG. Since elements
from the same conjugacy class fix the same number of ele-
ments, it is sufficient to calculate the number of quantum
nets fixed(up to unitary equivalence) by one element from
each conjugacy class and then multiply by the number of
elements in that class. Using this method, one finds that there
are 7 similarity classes forN=5.

While we have not performed this calculation for higher
values ofN, we know that the identity always fixes allNN−1

equivalence classes of quantum nets, and one can show that
the number of unit-determinant linear transformations is ex-
actly N3−N; so the number of similarity classes must be at
least

NN−1

N3 − N
. NN−4, s71d

which grows very rapidly for largeN. Therefore, within the
current framework, if one is going to use a discrete Wigner
function to describe, say, a large number of qubits, one has
perhaps too many possible definitions of the Wigner function
to choose from. Is there some further criterion that would
naturally restrict the choice to, say, a single similarity class?

WhenN is an odd prime, there always exists one similar-
ity class with more than the required symmetry. We saw this

FIG. 5. Labeling scheme for quantum nets forN=4.
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above in the caseN=3, where for one of the similarity
classes,G00g was independent ofg. In fact, wheneverN is an
odd prime, there exists a quantum net for which

Gabg =
1

N
h−sa∧b+b∧g+g∧ad, s72d

wheresx,yd∧ sx8 ,y8d=xy8−yx8 [4]. Indeed there is only one
such quantum net up to unitary equivalence, as can be seen
from the fact that every unit-determinant linear transforma-
tion leaves this particularGabg unchanged.8 So whenN is an
odd prime, there is one definition of the Wigner function(up
to unitary equivalence) that stands out because of its high
degree of symmetry.

The sole similarily class forN=2 does not possess quite
this degree of symmetry, but here one does not have the
problem of too many possibilities.

What if N is a power of a prime? We have studied in
detail only one such case,N=4. In that case, of the 64
equivalence classes, it turns out that there are exactly two for
which the matrixAa, defined in Eq.(48), has the following
special property: it is atensor productof two single-qubit
matrices.(For this condition it does not matter which pointa
we choose: ifAa is a tensor product, then so isAb, since the
translation operatorTb−a that relates them is itself a tensor
product.) In the notation of Fig. 5, these two special equiva-
lence classes are the ones for which, witha=b=0, the triple
sc,d,ed takes the values(0,0,0) andsv̄ ,v ,1d. They are both
in the same similarity class, sinceDs0,0,0d=Dsv̄ ,v ,1d=0.
Looking at the vectors in question, one sees that these two
quantum nets are complex conjugates of each other.

We can construct theA operators for these two special
cases as follows. LetAsx,yd

s2d , with x,yP h0,1j, be theA opera-

tors derived from either of the quantum nets forN=2. And
let us express a pointa in the 434 phase space asa
=sx1v+x2,y1v+y2d, in which we are using our standard
field bases forN=4. Then one can show that the following
two sets of tensor-product operators correspond to quantum
nets forN=4:

Aa = Asx1,y1d
s2d

^ Āsx2,y2d
s2d s73d

and

Aa8 = Āsx1,y1d
s2d

^ Asx2,y2d
s2d , s74d

where the bar indicates complex conjugation. Moreover
these two sets correspond to two distinct equivalence classes.

In Ref. [4], Wigner functions for composite dimensions
were constructed by taking tensor products ofA operators for
prime dimensions. We see now that at least forN=4, we can
use this simple tensor-product construction and at the same
time produce a Wigner function with the tomographic prop-
erties defined by the lines ofF4

2. [That is, the tomography

involves onlyN+1=5 measurements rather thansr +1d2=9
measurements.] It is interesting to ask whether something
similar can be done for any power of a prime. This consid-
eration might also be used to pick out one of the many pos-
sible definitions of the discrete Wigner function that our for-
mulation allows for largeN. But at present we do not know
whether such tensor-product structures exist, within our cur-
rent framework, for other powers of primes.

VII. CHANGING THE FIELD BASES

So far in our classification of quantum nets we have been
assuming fixed basesE andF in which to expand the phase-
space coordinatesq and p. We now ask how the range of
possibilities expands when we consider all allowed choices
of these bases. After the preceding discussion one might
wonder why we would want to consider additional possibili-
ties. Indeed for most practical purposes this is surely unnec-
essary, but for understanding the mathematical structure of
our formulation, our classification scheme would be incom-
plete if we did not allow other field bases.

Recall that we can choose any field basisE=se1, . . . ,end
for the horizontal coordinateq. The basis for the coordinate
p must then be of the formF=sf1, . . . ,fnd=swẽ1, . . . ,wẽnd
for some field elementw. What we want to know now is this:
which of these choices lead to quantum nets that are not
unitarily equivalent to the ones we have already discussed?

The question is easily resolved. Suppose that we switch
from one pair of field basessE,Fd to a different pairsE8 ,F8d.
The effect of this switch is to change the translation opera-
tors from

Tsq,pd = Xqe1Zpf1 ^ ¯ ^ XqenZpfn s75d

to

Tsq,pd8 = Xqe81Zpf81 ^ ¯ ^ Xqe8nZpf8n. s76d

If there exists a unitary operatorU such that for each pointa

UTaU† < Ta8 , s77d

then given any quantum netQ8sld based on the operatorsTa8,
we can define a corresponding quantum netQsld
=U†Q8sldU whose translation properties are determined by
the operatorsTa. Thus if Eq.(77) is satisfied for someU, the
change of field bases has not produced any new quantum
nets, up to unitary equivalence. Now, we can identify two
elementary kinds of change in the field bases that are al-
lowed by the conditionf j =wẽj: (i) changeej arbitrarily into
ej8, and simultaneously changef j into f j8=wẽj8 (with the same
w as before); (ii ) leaveej unchanged and changef j into f j8
=w8ẽj. Any allowed change of the field bases can be re-
garded as a combination of these two. Appendix C shows
that under a change of the first kind, there exists a unitary
operatorU such that Eq.(77) is satisfied. Thus these changes
do not produce any new equivalence classes of quantum
nets. On the other hand, if we make a change of the second
kind, we can write the resultingT8 as

Ta8 = TKa, s78d

where

8In arriving at Eq.(72) we have assumed that the field basis for
the vertical axis(consisting of just one field element sinceN is
prime) is the same as the basis for the horizontal axis. A different
choice has the effect of multiplying the exponent by a constant
factor.
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K = S1 0

0 w/w8
D . s79d

Except in the trivial case where we have made no change at
all, the determinant of this matrix is not unity, and therefore,
as shown in Appendix B, there exists no unitaryU such that
Eq. (77) is satisfied. Thus this second kind of change of basis
doesproduce new quantum nets. By performing such basis
changes, we can multiply byN−1 the number of equivalence
classes of quantum nets, since there areN−1 choices for the
nonzero field elementw.

In Fig. 6 we summarize in tabular form our classification
of quantum nets forN=2, 3, and 4. Each box in the figure
represents a similarity class, and the integer appearing inside
the box indicates the number of distinct equivalence classes
within the given similarity class. The similarity classes are
arranged in columns corresponding to different values of the
field elementw that expresses the relation between the bases
E andF. Thus, for example, there are altogether 192 distinct
equivalence classes forN=4. In general the number of
equivalence classes, now that we are allowing alternative
field bases, issN−1dNN−1.

VIII. DISCUSSION

The main new contribution of this paper has been to use
the general concept of a finite field to construct discrete
phase spaces, and to study generalizations of the Wigner
function defined on such spaces. In this formulation, there is

not a unique definition of the discrete Wigner function for a
given system; rather, the definition depends on the particular
quantum structure that one lays down on the discrete phase
space. This quantum structure, which we have called a quan-
tum net, assigns a pure quantum state to each line in phase
space. The assignment is severely constrained by the condi-
tion of translational covariance, which is analogous to a
similar property of the continuous Wigner function. In par-
ticular, the quantum states assigned to parallel lines are
forced by this condition to be orthogonal, and the orthogonal
bases assigned to distinct sets of parallel lines are forced to
be mutually unbiased. Because of this, our construction pro-
vides a method(closely related to the methods of Refs.
[28,29]) of generating complete sets of mutually unbiased
bases.

It is interesting to contrast the discrete Wigner functions
presented in this paper with the usual continuous Wigner
function. In addition to translational covariance, the usual
Wigner function has another remarkable property which can
be called covariance with respect to unit-determinant linear
transformations[34,50]. Let r be any density matrix for a
system with one continuous degree of freedom, and let
Wrsad be its Wigner function, wherea=sq,pd is a phase-
space point. Now consider any unit-determinant linear trans-
formation L acting on phase space. It is a fact that for any
suchL, there exists a unitary operatorUL such thatWrsLad
=Wr8sad, where r8=ULrUL

†. In other words, rotating the
phase space, or stretching it in one direction while squeezing
it in another by the same factor, is equivalent to performing a
unitary transformation on the quantum state. That is, this sort
of transformation of the Wigner function can in principle be
carried out physically. The analogous property typically does
not hold for our discrete Wigner functions. We can see this
even in the caseN=2. In that case the linear transformation

L = S0 1

1 0
D

interchanges horizontal lines with vertical lines while leaving
the diagonal lines unchanged. For any of our quantum nets,
this corresponds to an interchange between eigenstates ofX
and eigenstates ofZ, while the eigenstates ofXZ (or of sy)
remain unchanged. No unitary operator can effect such a
transformation; so thisL cannot be realized physically.

Note that in our formulation one does find a weaker ver-
sion of this property. Every unit-determinant linear transfor-
mation, while not necessarily corresponding to a unitary
transformation of the quantum state, does correspond to a
unitary transformation, up to a phase factor, of the translation
operators, as is shown in Appendix B. Moreover, there are
certain special quantum nets for which the associated Wigner
function does in fact have the stronger property. These are
the quantum nets discussed in Section VI, withG given by
Eq. (72). But such special quantum nets appear to exist only
for odd prime values ofN. If one wants to generalize the
Wigner function to other finite fields, including even the case
of a single qubit, evidently one must do without some of the
symmetry of the continuous Wigner function.

FIG. 6. Classification of quantum nets forN=2, 3, and 4.
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There is another interesting difference between the con-
tinuous case and the discrete case. It is central to our con-
struction that every line of discrete phase space corresponds
to a quantum state, as is also true for the continuous phase
space. However, in the continuous case, there is a specific
correspondence between lines and quantum states that arises
naturally: the quantum state assigned to the line defined by
aq+bp=c is precisely the eigenstate ofaq̂+bp̂ with eigen-
valuec. This correspondence is possible in part because the
parametersa, b, andc used in the equation for the line also
make sense as coefficients in the algebra of operators. In the
discrete case, on the other hand, the parametersa, b, andc
are elements of a finite field and cannot be combined in the
same way with operators on a complex vector space. This is
why, in the discrete case, there is not a unique quantum net
for a given phase space. The requirement of translational
covariance forces a certain correspondence betweenstria-
tions andbases, but not between lines and state vectors.

In this connection, it is interesting to ask what new pos-
sibilities would open up in the continuous case if one were to
approach the construction of distribution functions on con-
tinuous phase space along the lines we have followed in this
paper. That is, rather than adoptinga priori a particular cor-
respondence between lines and quantum states, suppose that
we were to allow, for each striation, a separate translation of
the quantum states assigned to that striation. Most of the
“generalized Wigner functions” that would thereby be al-
lowed would no doubt be quite ugly, but one can imagine
certain special quantum nets with useful properties.

At one level what we have been exploring in this paper is
the general concept of phase space. This concept is certainly
central to the physics of systems with continuous coordi-
nates. Just as certainly, it has been less central to the physics
of discrete systems. However, as we have seen, even in the
discrete case the notion of phase space, with axis variables
taking values in a field, meshes nicely with the complex-
vector-space structure of quantum mechanics. The sets of
parallel lines in phase space correspond perfectly with a
complete set of mutually unbiased bases for the state space,
and translations in phase space correspond to physically re-
alizable transformations of quantum states. Indeed, if one
were starting with the complex vector space and the concept
of mutually unbiased bases, and were trying to find a com-
pact way of expressing quantum states in terms of such
bases, one might be led naturally to phase space as the most
economical framework in which to achieve this expression.

At present we have no particular evidence that discrete
phase space holds as distinguished a place with respect to the
laws of physics as continuous phase space does. On the other
hand, as a practical matter discrete phase space descriptions
have been found useful in a variety of problems in physics
(see for example Refs.[5,7,16,17,51]), and we hope that our
phase space based on finite fields will find similar applica-
tions, especially in analyzing systems of qubits. Indeed, our
formulation(as presented in a preprint) has already been ap-
plied by Galvão to a question regarding pure-state quantum
computation [52]. Galvão makes explicit use of the full
range of definitions of the Wigner function that our scheme
allows. For other applications, it is likely that further re-
search will have to be done to identify, out of the set of

possible Wigner functions, a much smaller number in which
the processes of interest are most simply represented.
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APPENDIX A: COMMUTING TRANSLATION OPERATORS
AND THE CHOICE OF FIELD BASES

Recall the necessary and sufficient condition(33) for the
commutation of translation operators corresponding to paral-
lel translations:

o
j

ssxdejstyd f j = o
j

stxdejssyd f j . sA1d

Here we show that this condition is true for alls and t, and
for all sx,ydÞ s0,0d, if and only if the field bases satisfyf j

=wẽj for some nonzero field elementw.
We begin by assuming thatf j =wẽj and proving that Eq.

(A1) follows. From f j =wẽj it follows that trsei f jw
−1d=di j .

Thus we can write

S jssxdejstyd f j = Si jssxdeistyd f jtrsei f jw
−1d

= trf„Sissxdeiei…„S jstyd f j f j…w
−1g = trssxtyw−1d

= trstxsyw−1d = S jstxdejssyd f j , sA2d

which proves Eq.(A1).
Now we go the other direction. Assume Eq.(A1) and note

that for anyzPFN, zej=trsẽjzd. Thus

o
j

trsẽjsxdtrs f̃ jtyd = o
j

trsẽjtxdtrs f̃ jsyd. sA3d

Using the linearity of the trace, we can rewrite this equation
as

trFo
j

trs f̃ jtydẽjsxG = trFo
j

trs f̃ jsydẽjtxG . sA4d

For this to be true for allx, we must have

Fo
j

trs f̃ jtydẽjGs= Fo
j

trs f̃ jsydẽjGt. sA5d

It follows that the quotient

S jtrs f̃ jtydẽj

t
sA6d

is independent oft, though it might depend ony. That is,

o
j

trs f̃ jtydẽj = Ayt sA7d

for someAyPFN. But that this is true for allt implies that

f̃ jy = Ayej for all y and j , sA8d

which in turn implies thatAy is a constant timesy and thatf̃ j
is a constant timesej. Finally, the latter condition is equiva-
lent to
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f j = wẽj , sA9d

which is what we wanted to prove.

APPENDIX B: CHANGES IN THE TRANSLATION
OPERATORS DUE TO LINEAR TRANSFORMATIONS

1. A linear transformation that preserves the
translation operators up to a unitary transformation and

phase factors must have unit determinant

Recall the definition of the translation operators:

Tsq,pd = Xq1Zp1 ^ ¯ ^ XqnZpn, sB1d

where we have suppressed the notation indicating the field
bases in whichq andp are expanded, since we are not going
to be changing the bases in this section.

Let L be a linear transformation of the phase space, and
suppose that there exists a unitary operatorUL such that for
every pointa,

ULTaUL
† = eifsL,adTLa, sB2d

wheref is any real function ofL anda. We show now that
this can be the case only ifL has unit determinant.

Consider the operatorTaTbTa
†Tb

†. Using the fact thatZX
=hXZ, whereh=exps2pi / rd, and the fact thatZr =Xr = I, one
finds that this operator simplifies to

TaTbTa
†Tb

† = hsx·p−q·ydI , sB3d

wherea=sq,pd, b=sx,yd, and the dot productx·p stands for
Slxlpl. Now, if Eq. (B2) is true, it follows that

ULTaTbTa
†Tb

†UL
† = TLaTLbTLa

† TLb
† , sB4d

and sinceTaTbTa
†Tb

† is proportional to the identity operator,
we can say

TaTbTa
†Tb

† = TLaTLbTLa
† TLb

† . sB5d

From this and Eq.(B3) it follows that L must preserve the
quantity sx·p−q·yd, regarded as an element ofFr.

Let us now invoke the field basesE and F, which must
satisfy the conditionf j =wẽj for some field elementw. Since
trseiẽjd=di j , we can write

x · p − q · y = trfw−1sxp− qydg. sB6d

Thus the latter quantity must be conserved byL. Now, when
sq,pd and sx,yd are both transformed byL, the effect on
xp−qy is multiplication by the factor detL. So trfw−1sxp
−qydg must equal trfw−1sxp−qyddetLg for every sq,pd and
sx,yd. This is the same as saying that trsb detLd=trsbd for
every field elementb, which is true only if detL=1. Thus
any linear transformation for which Eq.(B2) is valid must
have unit determinant.

2. Every unit-determinant L preserves the translation
operators up to a unitary transformation and phase factors:

The caseN=rn with r an odd prime

Here we show that foreveryunit-determinant linear trans-
formation L on phase space, there exists a unitary transfor-

mation UL on state space such that for every phase-space
vectora,

ULTaUL
† < TLa, sB7d

restricting our attention for now to the case whereN is a
power of an odd prime. In this case we can, as we see below,
specify the phase factor that is implicit in Eq.(B7):

ULTaUL
† = hs1/2dsq8·p8−q·pdTLa. sB8d

Hereh=e2pi/r, sq,pd=a, andsq8 ,p8d=La. Also, in Eq.(B8)
and in what follows, the exponent is first computed as an
element of the fieldFr and is then interpreted as an integer in
the seth0, . . . ,r −1j. (For example, ifr =3, the expression
h1/2 is interpreted ash2, since inF3, 1 /2 has the value 2.) To
prove that such aUL exists, we define the following linear
mappingM on the space ofN3N matrices:

MsTad = hs1/2dsq8·p8−q·pdTLa. sB9d

This equation definesM on all the translation operators and
thus by linearity on all operators. Our aim is to show that the
M defined by Eq.(B9) is of the formMsBd=UBU† for some
unitary operatorU. We do this by showing first thatM pre-
serves multiplication; that is, for any phase-space vectorsa
andb,

MsTaTbd = MsTadMsTbd. sB10d

This we do by direct calculation, starting with

TaTb = sXq1Zp1 ^ ¯ ^ XqnZpndsXx1Zy1 ^ ¯ ^ XxnZynd

= hsx·pdTa+b. sB11d

Here sx,yd=b, and we have used the fact that

ZX= hXZ. sB12d

Thus

MsTaTbd = hs1/2dfsq8+x8d·sp8+y8d−sq+xd·sp+ydghsx·pdTLsa+bd.

sB13d

On the other hand,MsTadMsTbd is given by

MsTadMsTbd = hs1/2dsq8·p8−q·pdhs1/2dsx8·y8−x·ydTLaTLb

= hs1/2dsq8·p8−q·pdhs1/2dsx8·y8−x·ydhsx8·p8dTLsa+bd.

sB14d

Comparing the exponents in Eq.(B13) and (B14), one finds
that they are equal(as elements ofFr) as long asq8 ·y8
−x8 ·p8 is equal toq·y−x·p. But this condition is guaranteed
by the fact thatL has unit determinant[see Eq.(B6)]. SoM
does indeed preserve multiplication.

A linear transformation on the set of allN3N matrices
that preserves multiplication must be a conjugation; that is,
there must exist a matrixSsuch that for anyN3N matrix B,

MsBd = SBS−1. sB15d

But M has another special property that we now prove,
namely, that for anyN3N matrix B,
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MsB†d = fMsBdg†. sB16d

Let us show that Eq.(B16) is satisfied whenB is any of the
translation operatorsTa; it will then follow that the equation
is true for anyB. First, we have

Ta
† = Z−p1X−q1 ^ ¯ ^ Z−pnX−qn = hsq·pdT−a. sB17d

Thus

MsTa
†d = hsq·pdMsT−ad = hsq·pdhs1/2dsq8·p8−q·pdT−La

= hs1/2dsq·p+q8·p8dT−La sB18d

and

fMsTadg† = h−s1/2dsq8·p8−q·pdT−La
† = h−s1/2dsq8·p8−q·pdhsq8·p8dT−La

= hs1/2dsq8·p8+q·pdT−La. sB19d

From Eqs.(B18) and (B19) we see that

MsTa
†d = fMsTadg†, sB20d

from which Eq.(B16) follows. But Eq.(B16) cannot be true
for all B unless the matrixS in Eq. (B15) is unitary. This
proves the desired result whenN is a power of an odd prime.

3. Every unit-determinant L preserves the translation
operators up to a unitary transformation and phase factors:

The caseN=2n

The above proof does not work whenN is a power of 2,
because the division by 2 that appears in many of the expo-
nents cannot be done inF2n. For this case we explicitly con-
struct the desired unitary transformation, which we imagine
acting on a system ofn qubits. Since the caseN=2n is the
one most likely to be relevant for quantum computation, our
explicit construction may also have a practical value.

One can show that the group of unit-determinant linear
transformations onF2n

2 can be generated by the following
three elements of the group:

L1 = S1 0

1 1
D L2 = S1 1

0 1
D L3 = Sz 0

0 z−1D , sB21d

wherez is any primitive element of the multiplicative group
of F2n; that is, any nonzero element ofF2n can be written as
a power ofz. (Such az exists for any finite field[19].) Our
plan is first to choose a specific pair of field basesE andF
for the two phase-space coordinates, and then to find a uni-
tary Ui for eachLi, such that

UiTaUi
† < TLia

sB22d

whenTa is defined in the chosen bases. We will argue sepa-
rately that this result survives changes in the field bases. The
specific bases we choose for now are the following: for the
horizontal coordinate we use E=se1, . . . ,end
=s1,z,z2, . . . ,zn−1d, which is indeed a basis as long asz is a
primitive element, and for the vertical coordinate we use the
dual of E.

Consider first the transformationL1. Acting on a generic
phase-space pointa=sq,pd, it yields

S1 0

1 1
DSq

p
D = S q

q + p
D , sB23d

so that U1 must effect the transformation(up to a phase
factor)

Xq1Zp1 ^ ¯ ^ XqnZpn → Xq1Zq1+p1 ^ ¯ ^ XqnZqn+pn.

sB24d

Because the componentsqi andpi are not shuffled among the
various qubits in this case, it is not hard to find a suitableU1;
the following is one of a number of operators that would
suffice:

U1 = S1 0

0 i
D ^ ¯ ^ S1 0

0 i
D . sB25d

If we think of the qubits as spin-1/2 particles, this operator
rotates each qubit by 90° around thez axis. Similarly, one
finds thatU2 can be taken as a tensor product,

U2 =
1
Î2

S1 i

i 1
D ^ ¯ ^

1
Î2

S1 i

i 1
D , sB26d

which rotates each spin by 90° around thex axis. Note that
these definitions ofU1 andU2 would have the desired effect
regardless of the field bases we were using to expandq and
p.

We now consider the transformationL3. Our operatorU3,
which doesdepend on the chosen field bases, is constructed
from two basic gates: the controlledNOT operationCNOTi j acts
on qubitsi and j , taking uki ,kjl to uki ,kj +kil with each index
kPF2; and SWAPi j interchanges qubitsi and j . In terms of
these gates,U3 is

U3 = Sp
j=2

n

CNOT1j
ajDsSWAPd1nsSWAPd1sn−1d ¯ sSWAPd12.

sB27d

Here theaj’s are the coefficients in the expansion ofzn in the
basiss1,z,z2, . . . ,zn−1d:

zn = o
j=1

n

ajz
j−1. sB28d

We note for future reference thata1 must be equal to 1; if it
were not, we could divide both sides of Eq.(B28) by z and
conclude that 1,z,z2, . . . ,zn−1 are not linearly independent,
contradicting the fact that these elements form a basis.

To see thatU3 has the desired effect, it is sufficient to
check its action on the basic translation operatorsTs1,0d,
Tsz,0d , . . . ,Tszn−1,0d andTs0,f1d, Ts0,f2d , . . . ,Ts0,fnd, where thef i’s
constitute the dual basis. In the first of these sets, consider
for exampleTs1,0d. Applying L3 to the point (1, 0) gives
sz,0d, so that we wantU3 to effect the transformation

X ^ I ^ ¯ ^ I → I ^ X ^ I ^ ¯ ^ I . sB29d

The U3 of Eq. (B27) does accomplish this shift through the
SWAPoperations; theCNOT operations have no effect since by
the time they act, the operator in the first position is the
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identity. The same sort of shifting operation works also for
the other basic horizontal translation operators, with the ex-
ception ofTszn−1,0d. In this last case, sinceL3 takesszn−1,0d to
szn,0d, we wantU3 to have the following effect:

I ^ ¯ ^ I ^ X → Xa1 ^ ¯ ^ Xan. sB30d

One can verify that this is indeed the effect of theU3 defined
in Eq. (B27): now theSWAP operations shift the operatorX
from thenth position to the first position, and theCNOT op-
erations change the operatorI to X in every positionj for
which aj =1. Here we also need the fact, mentioned above,
that a1=1, since theCNOT operations will not affect the op-
eratorX in the first position.

Before we consider the vertical translation operators
Ts0,f id

, it is helpful to introduce a matrix representation of
multiplication byz. Let the matrixẑ, with components inF2,
be defined by

zei = o
j

ẑjiej . sB31d

One can show that, for any field basisE, the effect ofz on
the dual basis can be expressed as

zẽi = o
j

ẑi j ẽj . sB32d

That is, one uses the transpose of the original matrix. For our
particular basis, we have

zei = ei+1, i = 1, . . . ,n − 1 sB33d

and

zen = o
j=1

n

ajej . sB34d

It follows, then, that the effect ofz on the dual basis is given
by

zf1 = fn sB35d

and

zfi = f i−1 + ai fn, i = 2, . . . ,n. sB36d

Now, becauseL3 multiplies the vertical coordinate byz−1,
we wantU3 to takeTs0,f id

to Ts0,z−1f id
(up to a phase factor) for

each value ofi. This means thatU3
† should takeTs0,f id

to
Ts0,zfid

. Equations(B35) and(B36) tell us how to writezfi as
a sum of basis elements. AndU3

† is given by Eq.(B27) but
with the operators in the reverse order. By comparing the
effect of U3

† with the effect of multiplication byz, one can
check thatU3

† does indeed transformTs0, f id as desired.
Since every translation operator can be written as a product
of the basic horizontal and vertical translation operators, it
follows that Eq.(B22) holds for everyTa.

So far we have restricted our attention to translation op-
erators defined in terms of a particular pair of bases. The
following Appendix shows that Eq.(B22) can be extended to
any pair of basesE andF, as long asf i =wẽi for some field
elementw.

APPENDIX C: THE EFFECTS OF CHANGES
IN THE FIELD BASES

1. Changing from ei and wẽi to gi and wg̃i

The translation operators depend on the choice of two
bases for the field, one for each coordinate. Here we ask how
the translation operators change when we make a change of
the following form in these two bases. Let the initial bases be
E=se1, . . . ,end and F=sf1, . . . ,fnd=swẽ1, . . . ,wẽnd. The
translation operators in these bases are

Ta = Xqe1Zpf1 ^ ¯ ^ XqenZpfn, sC1d

where sq,pd=a. We now change the bases toG
=sg1, . . . ,gnd and H=sh1, . . . ,hnd=swg̃1, . . . ,wg̃nd, whereG
is an arbitrary basis andw is the same field element as in the
definition of F. The translation operators arising from these
bases are

Ta8 = Xqg1Zph1 ^ ¯ ^ XqgnZphn. sC2d

We show here that there exists a unitary operatorU such that
for every pointa,

Ta8 = UTaU†. sC3d

Our method is the same as in part 2 of Appendix B. We
define a linear mapM such that for everya,

MsTad = Ta8 , sC4d

the action ofM on other matrices being determined by lin-
earity. We show thatM preserves matrix multiplication and
the adjoint operation and must therefore be conjugation by a
unitary operator.

First we look at the relation between the components of
the same field element in two different bases. One can show
that

qgi = o
j

gi jqej, sC5d

where gi j =trsg̃iejd. Let ni j be the matrix that similarly ex-
presses the relation betweenF andH:

phi = o
j

ni j pf j . sC6d

We can see thatn andg are closely related:

ni j = trsh̃i f jd = trfsw−1gidswẽjdg = trsgiẽjd = sg−1d ji . sC7d

That is,n is the transpose of the inverse ofg.
We now show that for anya and b, MsTaTbd

=MsTadMsTbd. As we saw in Appendix B,

TaTb = hxe·pfTa+b, sC8d

wheresx,yd=b. Thus

MsTaTbd = hxe·pfTa+b8 . sC9d

On the other hand,

MsTadMsTbd = hxg·phTa+b8 . sC10d

Thus M preserves multiplication ifxg·ph=xe·pf. This is in-
deed the case:
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xg · ph = o
i

xgiphi = o
i
So

j

gi j xejDSo
k

nikpfkD = xe · pf ,

sC11d

where the last step follows from the fact thatnT is the inverse
of g.

We also need to show that for everya, MsTa
†d

=fMsTadg†. As in Appendix B, we have

MsTa
†d = hqe·pfT−a8 sC12d

and

fMsTadg† = hqg·phT−a8 . sC13d

But the exponents are again equal because of the relation
betweeng andn. ThusM must be conjugation by a unitary
operator, as we wanted to show.

2. Changing the value ofw that relates the basesE and F

The above result shows that a certain sort of change of
basis preserves the translation operators up to a unitary trans-
formation. In particular, this extends the result of part 3 of
Appendix B at least to some other pairs of bases, but not to
all allowed pairs. We also have to consider the case in which
E is left unchanged andF is changed fromswẽi , . . . ,wẽnd to
F8=sw8ẽi , . . . ,w8ẽnd wherew8Þw. As we argue in Sec. VII,
this change doesnot correspond to a unitary transformation
of the translation operators, even up to a phase factor. Nev-
ertheless, we can extend the result of part 3 of Appendix B to
bases obtained by such changes.

Let the translation operatorsTa be defined relative to the
original basesE andF, and suppose it is known that for any
unit-determinant linear transformationL, there exists a uni-
tary UL such that for anya,

ULTaUL
† < TLa. sC14d

Let Ta8 be the new translation operators, defined relative to
the basesE andF8. From the definition(29) of the transla-
tion operators it follows that

Ta8 = TKa, whereK = S1 0

0 w/w
8
D . sC15d

We want to show that the new translation operators also have
the above transformation property.

To prove this, letL be any unit-determinant linear trans-
formation, withUL satisfying Eq.(C14). Define a new uni-
tary transformationVL by the relation

VL = UKLK−1, sC16d

which exists sinceKLK−1 also has unit determinant. Then

VLTa8VL
† = UKLK−1TKaUKLK−1

† < TsKLK−1dKa = TKLa = TLa8 .

sC17d

ThusVL is a unitary transformation that correctly transforms
the translation operators, when the latter are defined relative
to the new bases. This finally extends the result of part 3 of
Appendix B to all pairs of bases that are allowed in our
construction.

APPENDIX D: EFFECT OF LINEAR TRANSFORMATIONS
AND TRANSLATIONS ON THE INDICES a, b, c, d, e

1. Linear transformations

Let L be a unit-determinant linear transformation, and let
UL be a corresponding unitary operator as in Eq.(B7). Then,
as we pointed out in Sec. VI, ifQsld is a quantum net, then

Q8sld = UL
†QsLldUL sD1d

is also a quantum net, covariant with respect to the same
translation operators. Moreover, starting with a given quan-
tum net, one can generate its entire similarity class via the
transformation(D1), with L ranging over the group of unit-
determinant linear transformations.

For the caseN=4, with our standard field basesE=F
=sv ,1d, we can label a quantum net by the indicesa, b, c, d,
ande of Fig. 5, which specify the quantum state assigned to
each ray of phase space. Now, if we perform the operation of
Eq. (D1) on a quantum net, it is helpful to know how these
indices change. In this section we present the relevant trans-
formations of the indices for each of the three generatorsL1,
L2, and L3 given in Appendix B. To defineL3, we need to
specify the field elementz that appears in Eq.(B21). Let us
choosez=v̄. Starting with Eq.(B27), one obtains in the cur-
rent setting the following unitary matrix to associate withL3:

U3 =1
1 0 0 0

0 0 1 0

0 0 0 1

0 1 0 0
2 . sD2d

The unitary operators associated withL1 andL2 are exactly
as given in Eqs.(B25) and(B26) but specialized to the case
of just two qubits.

Let sa,b,c,d,ed be the indices characterizing the quan-
tum net Q, and for a specific choice ofL, let
sa8 ,b8 ,c8 ,d8 ,e8d characterize the quantum netQ8 defined in
Eq. (D1). From this equation and the matricesUi given
above, one can work out how the primed indices are related
to the unprimed ones. Here we simply present the results:

L1: 1
a8

b8

c8

d8

e8
2 =1

1 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 0 0 0 1

0 0 0 1 0
21

a

b

c

d

e
2 +1

0

1

v

v̄

0
2 ,

sD3d

L2: 1
a8

b8

c8

d8

e8
2 =1

0 0 1 0 0

0 1 0 0 0

1 0 0 0 0

0 0 0 0 1

0 0 0 1 0
21

a

b

c

d

e
2 +1

1

0

v

0

v

2 ,

sD4d
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L3: 1
a8

b8

c8

d8

e8
2 =1

v 0 0 0 0

0 v̄ 0 0 0

0 0 0 0 v̄

0 0 v̄ 0 0

0 0 0 v̄ 0
21

a

b

c

d

e
2 +1

0

0

v̄

v

0
2 .

sD5d

2. Translations

In the same spirit, we can consider translations of the
434 phase space and ask how they affect the indices that
specify a quantum net. Given a quantum netQsld and a
translationTa, consider the(equivalent but different) quan-
tum net defined by

Q8sld = QsTald. sD6d

Q and Q8 can be specified by indicessa,b,c,d,ed and
sa8 ,b8 ,c8 ,d8 ,e8d as above, and one can ask how the two sets
are related. Let us consider two basic translations,Ts1,0d and

Ts0,1d. One finds that forTs1,0d the primed indices are obtained
from the unprimed ones by adding the vectors1,0,1,v ,v̄d.
In the case ofTs0,1d the added vector is(0, 1, 1, 1, 1). (The
latter result reflects the scheme by which we arranged the
vectors in Fig. 5.) From these two cases one can obtain cor-
responding transformations for an arbitrary translation via a
linear combination.

3. Searching for invariants

In Sec. VI we introduced the functionDsa,b,c,d,ed that
identifies the similarity class of any quantum net forN=4. To
say thatD has a constant value within each similarity class is
the same as saying that it does not change when the quantum
net is modified by either a translation or a unit-determinant
linear transformation. Thus, one way to obtain the functionD
is to look for an invariant under all of the transformations
given in the two preceding parts of this appendix. One can
show, in fact, that up to a constant factor and an additive
term, D is the only second-degree polynomial ina, b, c, d,
ande that is invariant in this sense.
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