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In this Rapid Communication, we show that a simple process of two-step double ionization taking place in
an atomA, following the absorption of a single photon, produces a spin-entangled state of two electrons. The
degree of entanglement of this state can be tuned to the desired value by selecting appropriate total spin
quantum numbers of the electronic states of each of the three atomic species(i.e., A,A+,A2+) participating in
the process in Russell-Saunders coupling. These entangled states are readily characterized by measuring only
energies of two emitted electrons, without requiring the entanglement witness, or any other such protocol.
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The rapidly developing field of quantum information is
based on the existence of nonseparable(i.e., entangled) states
of more than one particles in quantum mechanics. Conse-
quently, the production and characterization of entangled
states of two or more particles is currently of great interest.
Although, the recently implemented[1,2] entanglement wit-
ness(EW) [3] is, hitherto, probably the only protocol avail-
able for characterization and/or detection of entanglement;
there have nevertheless been several methods proposed for
generating two entangled particles in which neither[1,2,4],
both [5–7], or one of the two[8] possesses rest mass differ-
ent from zero. Among these[1,2,4–8], however, the paramet-
ric down conversion(PDC) [9] has so far been the most
successful and widely used method for producing a pair of
entangled photons. Even in demonstrations on realization of
an EW, the experiments were performed on nonseparable
states of two[1] or more[2] polarized photons produced by
PDC.

Many applications of entanglement, nevertheless, require
nonseparable states of two or more particles possessing rest
mass different from zero. For such particles can interact and
be detected, unlike photons, without being destroyed. In this
Rapid Communication, we discuss a very simple process in
atoms for generating states of two electrons, sayse1,e2d,
which are entangled with respect to their spins. The proposed
method, in addition, has several distinct advantages over the
other procedures[4–9] hitherto suggested for generating
nonseparable states of two or more particles.

For example,(i) it can produce two electronsse1,e2d in a
maximally chaotic[1(a)] s0; I /4 state, in a pure, maximally
entangled, singlet spin states1sû1,û2d, or in a state which is
a mixture of these two possible extreme states ofse1,e2d.
Here,I is a unit matrix,û1sq1,w1d andû2sq2,w2d are the spin
quantization directions ofse1,e2d, respectively.(ii ) The de-
gree ps=0–1d of entanglement of the state constituted by
mixing s0 ands1 can be predetermined, and hence “tuned,”
according to one’s requirements. The proposed method thus
produces two electrons with a tunable degree of spin-
entanglement.(iii ) Such entangled states are completely
characterized by measuring merely energies ofse1,e2d, with-
out using any EW protocol or detecting the spins of the elec-
trons.

Let us consider emission ofse1,e2d from an atomA in two
different, but sequential, steps shown in Eq.(1). There,Er

=hnr is the energy of the photon absorbed in the electric
dipole sE1d approximation; photoelectrone1 is ejected from
one of the inner shells ofA; the subsequent nonradiative,
spontaneous decay of the excited photoionA+*

in the second
step in(1) emitse2, called Auger electron,

hnru1,mrl + Au0l → A+*
uel + e1sm1,û1,kW1d,

A+*
uel → A2+ufl + e2sm2,û2,kW2d. s1d

Here, the propagation vector of theis=1,2dth electronei

is kW i =ski ,ui ,fid such that its kinetic energy is given byei

="2ki
2/2m; also,mis=± 1

2
d is the projection of the spin ofei

along ûisqi ,wid. The respective ketsu0l, uel, and ufl in Eqs.

(1) represent the antisymmetrized electronic states ofA, A+*
,

and of the dicationA2+ possessing the energiesE0, Ee, and
Ef. Thus in (1), while energye1=hnr −sEe−E0d of e1 varies
with that of the photon absorbed; energye2=sEe−Efd of e2 is

fixed and is completely determined from that ofA+*
andA2+.

Ket u1,mrl in Eq. (1) specifies[10] the polarization of the
absorbed photon:mr = +1 and −1 are for photons with posi-
tive and negative helicities, respectively; whereasmr =0 cor-
responds to a linearly polarized photon.(An unpolarized
electromagnetic wave is taken to be an even mixture of pho-
tons with negative and positive helicities.) Accordingly, a
photon in au1, +1l or u1,−1l state is incident, but a photon in
u1,0l state has its electric field vector, along the polar(i.e.,
OZ) axis of our coordinate system.

Both steps in the process(1) are completely described by
the density operator

r f = K2F2r1F2
†, with f6,7g r1 = K1F1sr0 ^ rrdF1

† s2d

being the density operator for the first step of photoionization
in (1). In r1, F1=Îm/"2F is the photoionization operator
with the operatorF in the E1 approximation defined, for
example, in[11]; rr = u1,mrlk1,mru andr0= u0lk0u are the re-
spective density operators[6,7] of the ionizing radiation and
of the unpolarized atomA, assumed to be uncorrelated be-
fore the interaction between the two takes place.r f in (2), on
the other hand, contains the Auger emission operatorF2 [12].
The quantitiesK1 and K2, whose explicit forms are not of
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interest for the present discussion, are given in Refs.[11,12],
respectively.

In this Rapid Communication, we want to investigate en-
tanglement properties ofse1,e2d without considering spin-

orbit interaction(SOI) in any of the speciesA,A+*
,A2+, and

in the continua of the two sequentially ejected electrons. It,
in other words, means that Russell-Saunders(i.e., LS) cou-
pling becomes applicable to whole of the process(1). More-
over, in the absence of SOI and due to the spin-independent
nature of both of the operatorsF1 [11] andF2 [12], the total
spin before and after each of the two steps in the process(1)
is conserved, i.e.,

SW0 = SWe + sW1 and SWe = SW f + sW2. s3d

Here,S0, Se, andSf are the spins of the respective electronic
statesu0l of A, uel of A+*

, and ufl of A2+ participating in the
process(1), whereassi [with usWiu=s1/2di] is the spin angular
momentum of the electronei in (1) quantized alongûi.

Now the most general form of the density operatorsr0

^ rrd, which represents in(2) an unpolarized atomA in the
LS coupling plus a noninteracting photon, can be written as

sr0 ^ rrd =
1

s2L0 + 1ds2S0 + 1d o
ML0

MS0

u0;1,mrlk0;1,mru. s4d

Here,u0;1,mrl;u0lu1,mrl represents a state of the noninter-
acting(photon + atom) system;L0 is the total orbital angular
momentum ofA in its u0l electronic state;ML0

andMS0
are

the projections of the respective angular momentum vectors

LW0 and SW0 along the polar axis of our coordinate system.
Further in (4), we have averaged over all the degenerate
states ofA. The density matrix(DM), calculated for the op-
erator(2) in the LS coupling, simplifies to a product of two
independent terms in the following form

kf ;m1,û1,kW1;m2,û2,kW2ur fuf ;m18,û1,kW1;m28,û2,kW2l

=
d3ssmrd

de1 dk̂1 dk̂2

spsû1,û2dm1,m2;m18,m28
. s5d

The first termd3ssmrd /de1 dk̂1 dk̂2 on the right-hand side
of (5) contains, among other things, the directions of propa-

gationsk̂1, k̂2d, energiesse1,e2d as well as phase shifts of two
emitted electronsse1,e2d, and the state of polarization of the
ionizing radiation. It, in addition, has total orbital angular
momentasL0,Le,Lfd of (A,A+*

,A2+), products of the dynami-
cal amplitudes forE1 photoionization(calculated using the
electronic states ofA and of A+*

) and for Auger emission
(determined by the electronic states ofA+*

and ofA2+). Also,
the first term in(5) has an implicit dependence upon the
spins(S0, Se, Sf) of the atomic species(i.e., A,A+*

,A2+). It is,
however, totally independent of the quantization directionsûi
as well as of the spins of the electronsse1,e2d emitted in(1).

Hence,d3ssmrd /de1 dk̂1 dk̂2 in (5) describes purely angular
correlation betweense1,e2d. Its explicit form, given else-
where[13], is not needed for the present discussion.

The second term

spsû1,û2dm1,m2;m18,m28

= s− 1dS0+Sf−2Se+m18+m28s2Se + 1d o
s n m1 m2

s− 1ds+ns2s+ 1d

3S1/2 1/2 s

m1 − m18 m1
DS1/2 1/2 s

m2 − m28 m2
DH1/2 1/2 s

Se Se S0
J

3H1/2 1/2 s

Se Se Sf
J

3fDm1,n
s sw1,q1,0dg*fDm2,−n

s sw2,q2,0dg* , s6d

on the right-hand side of(5) is, on the other hand, as4
34d matrix which does not contain any of those physical
variables which are present in the angular correlation and,
hence, is totally independent of the dynamical effects con-
tributing to the process(1). Obviously, matrix(6) is com-
pletely determinedby the spins of all the five particles(i.e.,
A,A+*

,A2+,e1, ande2) involved in the process(1) and by the
directionssû1,û2d of spin quantization of both of the ejected
electronsse1,e2d. The variables, present in(6), is a dummy
summation index. Hence, the second term(6), in the DM (5),
represents a purely spin correlation betweense1,e2d. The
subscript “p” to s in (5), and elsewhere in this Rapid Com-
munication, is a parameterp=psS0;Se;Sfd containing the de-
pendence of the spin correlation matrix(6) on the three spin
quantum numbersS0, Se, andSf [see, for example, Eqs.(9a)
and (9b)]. Further in(6), following the definitions given by
Edmonds[14], each(with two rows and three columns) of
the two big parentheses and two curly brackets, andD8s are
the 3-j symbols, 6-j symbols, and the rotational harmonics,
respectively.

Although it is not possible to give the details of the deri-
vations of Eqs.(5) and(6) in this Rapid Communication for
the reasons of space, the separation present in(5) of the DM
into its two parts describing purely angular and purely spin
correlations betweense1,e2d in the absence of SOI is, never-
theless, completely rigorous and independent of all dynami-
cal models.

It is obvious from the spin conservation conditions(3), as
well as from the two 6-j symbols[14] present in(6), that
each of the spinsS0 and Sf must be equal toSe±1/2. The
only two possibilities are, therefore,S0=Sf anduS0−Sfu=1. In
the following, we investigate the spin entanglement between
se1,e2d in both of these cases. This property of the two elec-
trons will be completely determined by the matrix(6) as the
angular correlation in(5) is alwayspositive and acts as a
multiplicative factor. Therefore, unless stated otherwise, we
write the DM (5) as

kf ;m1,û1,kW1;m2,û2,kW2ur fuf ;m18,û1,kW1;m28,û2,kW2l

→ spsû1,û2dm1,m2;m18,m28
. s7d

(i) S0=Sfs=Se±1/2d.
(a) Let us first consider the process(1) for the case

when S0=1/2,Se=0,Sf =1/2. The DM, obtained from(6)
and (7), is given by

N. CHANDRA AND R. GHOSH PHYSICAL REVIEW A70, 060306(R) (2004)

RAPID COMMUNICATIONS

060306-2



spsû1,û2dm1,m2;m18,m28
= s1/4ddm1m18

dm2m28
; ss0dm1,m2;m18,m28

s8ad

with dab the Kronecker delta functionf14g. This is a dia-
gonal matrix with each of the four eigenvalues ofs8ad
and of its partial transposesPTd equal to 1/4. It rep-
resents f1sadg a maximally chaotic state, corresponding
to a mixed separable state, of the two electronsse1,e2d.
One of the simplest possible examples of this result can be

the two-step DPIBs1s2 2s2 2p1 2Pd→B+*
s1s1 2s2 2p1 1Pd

→B2+s1s2 2s1 2p0 2Sd in the ground electronic configuration
of a boron atom. The sequentially emittedse1,e2d in this case
form thes0 state.

(b) Next we look at the transition(1) for S0=0,Se

=1/2,Sf =0. The DM, obtained from Eqs.(6) and (7), for
this case is

4spsû1,û2dm1,m2;m18,m28
; 4s1sû1,û2dm1,m2;m18,m28

=

m1,m2/m18,m28⇒ 1
2, 1

2
1
2,− 1

2 − 1
2, 1

2 − 1
2,− 1

2

⇓
1
2, 1

2 1 − û1 · û2 c1s2 − s1c2c s1c2 − c1s2c − s1s2 + s1 − c1c2dc
− is1s + is2s − isc1 − c2ds

1
2,− 1

2 c1s2 − s1c2c 1 + û1 · û2 − s1s2 − s1 + c1c2dc − s1c2 + c1s2c

+ is1s + isc1 + c2ds − is2s

− 1
2, 1

2 s1c2 − c1s2c − s1s2 − s1 + c1c2dc 1 + û1 · û2 − c1s2 + s1c2c

− is2s − isc1 + c2ds + is1s

− 1
2,− 1

2 − s1s2 + s1 − c1c2dc − s1c2 + c1s2c − c1s2 + s1c2c 1 − û1 · û2

+ isc1 − c2ds + is2s − is1s

s8bd

with û1·û2=c1c2+s1s2c, and the definitions: i ;Îs−1d ,
s1;sin q1, s2;sin q2, c1;cosq1, c2;cosq2, s;sinsw2

−w1d , c;cossw2−w1d.
The respective eigenvaluess0,0,0,1d of (8b) and

s 1
2 , 1

2 ,−1
2 , 1

2
d of its PT are completely independent of the

angles which specify the spin quantization directionssû1,û2d
of se1,e2d. These eigenvalues clearly show that the DM
(8b) represents a pure and entangled state ofse1,e2d. One
further finds, from the reduced matrix of(8b), that the degree
of nonseparability(participation ratio or Schmidt number)
[15] for this pure state is maximum, i.e.,K=2, which is
that of a Bell state. In conclusion, DM(8b) represents a
pure and maximally entangled state of two spin-half par-
ticles corresponding[7] to a singlet spin state ofe1 and e2.
Among the several possible, simple examples for this
case can be the two-step DPI in C,O, inert gases, etc. For
example, Cs1s2 2s2 2p2 1S/ 1Dd→C+*

s1s1 2s2 2p2 2S/ 2Dd
→C2+s1s2 2s2 2p0 1Sd. Here,e1 ande2 are in thes1 state.

(c) The density matrices for other transitions involving
the processes(1) with S0=Sf are also obtained from Eqs.(6)
and (7) and can be shown to be given by

spusû1,û2dS0=Sf
= psS0 = Sf,Seds1sû1,û2d + s1 − pds0. s9ad

with the parameter

psS0 = Sf ;Sed

= 50 for Se = 0

1

3SesSe + 1d
f 3

4 + SesSe + 1d − S0sS0 + 1dg2 for Se . 0.

s9bd

It is obvious from Eq.s9bd thatpù0, always; in addition, on
account of uS0−Seu=1/2,pø1. Also, psS0=1/2;Se=0;
Sf =1/2d=0 and psS0=0;Se=1/2;Sf =0d=1. With each of
these two allowed extreme values ofp, the DM s9ad rightly
reproduces statess8ad and s8bd for p=0 and p=1, respec-
tively. The eigenvalues ofs9ad and of its partial transpose, in
terms of p, are 1

4s1−pd , 1
4s1−pd , 1

4s1−pd , and 1
4s1+3pd

for the DM; 1
4s1+pd , 1

4s1+pd , 1
4s1–3pd , and 1

4s1+pd for
the PT ofs9ad. Thus, for all allowed valuess0 to 1d of p,
specified by Eq.s9bd, each of the four eigenvalues of
spu sû1,û2duS0=Sf

is always greater than or equal to zero; on
the other hand, onefi.e., 1

4s1–3pdg of the four eigenvalues
of the PT of this DM becomes negative forpù1/3. That
is, if p in Eqs. s9ad and s9bd exceeds 1/3sbut remaining
less than 1d, the corresponding DM represents an en-
tangled state which is a mixture of the statess0 ands1.

States of two or more particles which can be expressed in
the form of Eq.(9a), with 0øpø1 are known[1(a),3] as
Werner[16] states. Asp determines the amount of mixing of
s1sû1,û2d with s0, it is therefore called[1(a),3] the “mixing
parameter” or the “probability” for the Werner state(9a). The
important, as well as interesting, thing here is that a value of
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p in Eq. (9b) depends only on the total spins of each of the
speciesA, A+*

, andA2+ participating in the process(1). One
can, therefore, determine the values ofp a priori and, hence,
select the appropriate photoionizing and Auger transitions in
the process(1), according to one’s requirements of the de-
gree of mixing of thes1sû1,û2d and s0 states in order to
produce a spin-entangled state ofse1,e2d. In other words,
DPI in Eq. (1) provides a method for producing Werner
states(9a) and(9b) of two electrons with a tunable degree of
their spin entanglement.p can, therefore, be called also a
tuning parameter.

One can give several examples to illustrate the above-
mentioned points. While the transitionsNs1s2 2s2 2p3 4Sd
→N+*

s1s1 2s2 2p3 3Sd→N2+s1s2 2s1 2p2 4Pd, with psS0

=3/2,Sf =3/2,Se=1d=1/6, producese1,e2d in a mixed pro-
duct Werner state, the two electrons emitted sequentially in
transitions Ns1s2 2s2 2p3 2P/ 2Dd→N+*

s1s1 2s2 2p3 3P/3Dd
→N2+s1s2 2s2 2p1 2Pd are in an entangled Werner state with
psS0=Sf =1/2,Se=1d=2/3.

The other interesting thing about the method proposed
herein is that one needs not use EW protocol or any other
method(e.g., measurement of the spins of the ejected elec-
trons), for that matter, for detecting and/or characterizing the
nonseparability of the state ofse1,e2d. A simple measurement
of the energies of the photoelectron and of Auger electron
will readily identify the electronic states of each of the spe-
ciesA, A+*

, and ofA2+ in theLScoupling. This will, in turn,
determine their spinsS0, Se, and Sf, respectively. One can,
subsequently, calculate the degreep of spin entanglement of
se1,e2d using Eq.(9b).

(ii ) uS0−Sfu=1 (with S0=Se±1/2,Sf =Se71/2).
The DM (7) in this case can be shown from Eq.(6) to

reduce to the following form:

spusû1,û2duS0−Sf u=1 = − s1/3ds1sû1,û2d + s4/3ds0. s10d

The eigenvalues of this matrix and of its PT are, re-
spectively, s1/3,1/3,1/3,0d and s1/6,1/6,1/2,1/6d.
Thus s10d represents a mixed and separable state of the
electrons se1,e2d. A relevant example for the present
case can be the two-step DPICs1s2 2s2 2p2 1S/ 1Dd

→C+*
s1s1 2s2 2p2 2S/ 2Dd→C2+s1s2 2s0 2p2 3Pd. Further,

spu sû1,û2duuS0−Sf u=1 is not a Werner state as the coefficient of
the pure, maximally entangled spin states1 in s10d is always
negative.

Hence, production ofse1,e2d with a desired degree of en-
tanglement requires simultaneous existence of the Russell-
Saunders states(u0l,uel,ufl) with the appropriate values of
their respective spinssS0,Se,Sfd for the given atomic species.
One can always, in general, select or prepare an atomA in
the needed stateu0l; generation of the right state ofA+*

will,
however, require a proper value of the energy of the ab-
sorbed photon to cause theu0l→ uel ionizing E1 transition.
But, formation of the stateufl of A2+ will depend on the
various competing channels available for the nonradiative,
spontaneous decay of the excited phtoionA+*

. If more than
one triod(u0l,uel,ufl) of the appropriately allowed states exist
in a single atom, it will then be possible to obtain different
pairs of se1,e2d possessing correspondingly tuned, different
degrees of entanglement in a single experiment with that
atomic species. Otherwise, different atoms, with appropriate
triod (u0l,uel,ufl) of states need to be used in different experi-
ments for producingse1,e2d with different, desired degrees
of entanglement.

A final point, which probably also needs to be discussed
herein, is that in the present study we have not taken SOI in
either of the two steps of the process(1) into account. Inclu-
sion of SOI will mean that neither of the two Eqs.(3) will be
valid. This will, consequently, lead to a situation wherein
DM (5) cannot be separated into its angular and spin parts,
and hence cannot be written in the form of the product(5).
The dynamical effects will play a very important role in the
spin entanglement between sequentially emittedse1,e2d in
the presence of SOI. An immediate important consequence,
among others, of this on the process(1) will, therefore, be
that one can no longer determinea priori whetherse1,e2d are
entangled or not. The effects of SOI inB,C,N, etc. atoms,
considered for various examples herein, are well known to be
negligibly small. These effects certainly become important
for heavier atoms.
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