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We propose a way of universal quantum computation by doing joint measurements on distributed singlets.
We show how these joint measurements become local measurements when the singlets are interpreted as the
virtual components of a large valence-bond state. This proves the equivalence of the cluster-state-based quan-
tum computational model and the teleportation-based model, and we discuss several features and possible
extensions. We show that all stabilizer states have a very simple interpretation in terms of valence-bond solids,
which allows to understand their entanglement properties in a transparent way.
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The concept of teleportation[1] plays a crucial role in the
understanding of entangled quantum systems. It does not
only allow us to use entangled states as perfect quantum
channels, but also to implement nonlocal unitary operations.
Based on this idea it was shown that universal quantum com-
putation can be achieved if one can prepare a separable ini-
tial state and implement joint two-qubit measurements[2–6].
In the same spirit, but somehow orthogonal to these schemes,
Raussendorf and Briegel[7] showed that universal quantum
computation is possible by implementing local measure-
ments on the qubits of a highly entangled so-called cluster
state [8]. These studies highlighted the central role of en-
tanglement for quantum computation[9,10]. However, the
structure of general multiparticle entanglement is, for the
moment being, still very poorly understood, and it is some-
how mysterious that the cluster states enable universal quan-
tum computation. On this note, we show that the structure of
entanglement in cluster states is particularly simple and can
be well understood by looking at it as a so-called valence-
bond solid[11] with only nearest-neighbor bonds. This en-
ables us to show that the one-way computer[7] essentially
works in an equivalent way as the other measurement-based
proposals for quantum computation[12].

This paper is organized as follows: In the first part, we
show how universal quantum computation can be achieved
by doing joint measurements on a collection of maximally
entangled states of two qubits. The scheme derived is very
similar to the schemes presented in[3–6], but has the advan-
tage to be deterministic. We proceed by showing that the
joint measurements needed in the quantum computation
scheme can be converted into local measurements, at the
expense of initially preparing one big entangled initial state
instead of many singlets, a so-called valence-bond state[11].
We next show how all stabilizer or graph states(including
cluster states) have a very simple parametrization in terms of
valence-bond states. We conclude by mentioning several fea-
tures and extensions of valence-bond states.

Let us start with showing how universal quantum compu-
tation can be performed using joint measurements on a col-
lection of singlets. Imagine a quantum computer with all
logical qubits on a vertical line. It is well known that a uni-
versal set of quantum gates is given by arbitrary local unitary
transformations and the phase gate

Uph = u00lk00u + u01lk01u + u10lk10u − u11lk11u

between neighboring qubits.
A local unitary operationU on a qubitA [uCl in Fig. 1(a)]

can be implemented as follows:(1) take a singlet uHl
=su00l+ u01l+ u10l− u11ld /2 of qubits B and C (any other
maximally entangled would also be fine); (2) do a Bell mea-
surement between qubitsA andB in the basis

ual = sU†sa ^ 1duHl, a = 0,1,2,3, s1d

wheresa denote the Pauli matrices(includings0=1); (3) the
wave function corresponding to qubitC is now given by
saUufl, which is the wanted transformation up to an extra
multiplication with a Pauli operator conditioned on the mea-
surement outcome. This extra left multiplication with Pauli
operators, however, does not harm: A later one-qubit opera-
tion V can be chosen to be conditioned on the outcome(i.e.,
implementingVsa instead ofV). Furthermore, right multipli-
cation of the two-qubit phase gateUph with Pauli operators is
equivalent to left multiplication of it with different ones.
Therefore, the extra Pauli operators can be pushed through
the quantum circuit without affecting the computation. Note
also that, by linearity, exactly the same discussion holds true
if qubit A was initially entangled with other qubits.

Similarly, the phase gateUph can be implemented by add-
ing three extra pairs of maximally entangled statesuHl as
depicted in Fig. 1(b). Suppose two three-qubit measurements
are done[see Fig. 1(b)] in the complete bases

FIG. 1. (a) Implementation of a one-qubit gate by measuring in
the two-qubit basisual (1). The edges connected by the line denote
the maximally entangled stateuHl. (b) Implementation of a two-
qubit gate by three-qubit measurements in the basisual andubl (2).
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hualj = hublj = hssxdi
^ ssxd j

^ 1su0lu0lu0l ± u1lu1lu1ldj,

s2d

with i , j [ h0,1j and u± l=su0l± u1ld /Î2. This implements the
gate sH ^ HdUph with H the Hadamard gateH= u+lk0u
+ u−lk1u, up to a harmless extra multiplication with Pauli op-
erators. Together with the possibility of implementing local
unitaries, this proves that universal quantum computation
can be done by doing only generalized Bell measurements on
two and three qubits.

Let us summarize the ingredients needed for being able to
implement quantum computing along the lines sketched:(1)
it must be possible to create ancillary singlets;(2) two- and
three-qubit measurements of the form(1) or (2) can be
implemented between halves of these extra singlets and the
logical qubits. It is then trivial to translate a quantum circuit
into a measurement scheme on distributed singlets to per-
form universal quantum computation.

In practical implementations, it is very hard to perform
joint measurements. Let us therefore investigate whether the
joint measurements can be converted into local ones at the
expense of creating an initial highly entangled state suitable
for universal quantum computation. This would correspond
to transforming the teleportation-based quantum computation
[3–6] into a cluster-state quantum computation[7]. The point
of Bell or GHZ measurements is exactly the fact that the
outcome of the measurement does not contain any informa-
tion about the state, and hence it does not matter which out-
come one obtains. Therefore, even if for one or the other
reason only a two-dimensional(2D) subspace spanned by
two states in(1) or (2) would be physically accessible, the
whole procedure would work equally well. Indeed, in the
case of GHZ measurements, measurements in, e.g., the
u000l± u111l basis would allow to implement a phase gate up
to a local Pauli operator; in the case of Bell measurements,
measurements in the basisu00l±exps−i2jdu11l would allow
to implement all local unitaries of the form

U =
1
Î2
Sexpsijd − exps− ijd

expsijd exps− ijd D s3d

which form a complete set of quantum gates if supplemented
by the phase gate.

Consider now a quantum circuit translated into the
measurement-based computational model with distributed
singlets and joint measurements as explained before. The
trick now consists of interpreting the qubits in this scheme as
virtual qubits, in such a way that joint measurements on vir-
tual qubits correspond to single-qubit measurements on a
physical qubit. More specifically, consider a configuration of
singlets of virtual qubits on which joint measurements are
implemented. Everywhere one has to implement a two- or
three-qubit measurement, one projects the qubits under con-
sideration on a one-qubit subspace with the projectorP

= u0̃lk00u+ u1̃lk11u or P= u0̃lk000u + u1̃lk111u. The tildes denote
the physical Hilbert space. Starting from a configuration of
singlets and doing the appropriate projections on all places

such as to reduce the Hilbert space, one gets a state on which
local measurements allow for implementing a specific quan-
tum computing circuit.

Consider now a two-dimensionalN3M grid of vertices
with singlets that connect all nearest-neighbor vertices(see
Fig. 2). Projecting the four virtual qubits(two or three at the
boundaries) to one physical qubit using the projectorsP

= u0̃lk0000u+ u1̃lk1111u, one obtains a big state ofN·M qubits.
The open circles correspond to the physical qubits, and we
call the connections between neighboring qubits(being sin-
glets of virtual qubits) bonds. A measurement of a(physical)
qubit in theu0̃l , u1̃l basis destroys all bonds emanating from
it, i.e., the virtual singlets emanating from it disappear and
the projectors of the neighboring particles change into

u0̃lk000u+s−1dmu1̃lk111u=sz
msu0̃lk000u+ u1̃lk111ud, depending

on the measurement outcomem (note that one virtual qubit
disappears due to the broken bond). Any initial state that
would implement a specific quantum circuit can, in this way,
be generated from theseN·M qubits by doing appropriate
local measurements in this basis. This proves that it is pos-
sible to do universal quantum computation starting from the
specific entangled state depicted in Fig. 2 on which local
measurements are implemented. It turns out that this state is
exactly the cluster state[8], and therefore the derived model
for doing quantum computation is exactly equivalent to the
one-way computer introduced by Raussendorf and Briegel
[7].

States obtained by projecting halves of singlets onto
lower-dimensional Hilbert spaces are known in condensed-
matter physics as valence-bond solids or valence-bond states
(VBS) [11,13,14]. They are very interesting as they are al-
ways ground states of local Hamiltonians, and their entangle-
ment properties can easily be characterized. Cluster states, on
the other hand, are a subset of the so-called stabilizer states
[15], which are defined by specifying a complete set of com-
muting observablesOi, where eachOi is a tensor product of
the Pauli matricess0,sx,sy,sz. The stabilizer states are the

FIG. 2. Representation of a valence-bond solid. The solid circles
connected with a dotted line denote virtual singlets; a bigger open
circle denotes a projectionP of all virtual qubits inside it with

Hilbert spaceH2
^nsn[ h2,3,4jd to a physical single qubitH̃2. In the

present paper,P is always of the formP= u0̃lk00. . .0u+ u1̃lk11. . .1u.
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common eigenstates of these operators. Let us show that any
stabilizer state can be interpreted as a valence-bond state.
Stabilizer states can efficiently be prepared from a com-
pletely separable state by applying appropriate two-qubit
unitary operations to it(see, e.g.,[16]). The reason that sta-
bilizer states are very simple and manageable to work with is
due to the fact all these two-qubit unitary operations can be
chosen to commute with each other[17]. The trick is now to
implement these commuting two-qubit unitary transforma-
tions by a teleportation-like principle that consists of adding
virtual singlets, and then doing appropriate projections
[2,18]. More specifically, consider the two qubits 1 and 2 in
Fig. 3; an extra singletuHl1 2 is added, and then any unitary
transformation between 1 and 2 can be performed by project-
ing the two-qubit spaces labeled by 1,1 (2, 2) onto the qubits
1 (2) with appropriate projectorsP1sP2d. Iterating this
scheme, one sees that every stabilizer state can be interpreted
as a VBS, possibly with bonds extending over all sites. It
would be interesting in this respect to find a normal form for
stabilizer states that minimizes this number of bonds[20]. In
the case of the cluster states, however, only unitaries between
the nearest neighbors have to be implemented, and hence a
simple VBS as depicted in Fig. 2 is obtained.

As an example, let us explicitly construct the valence-
bond states corresponding to arbitrary cluster and graph
states[19,20], which form, up to local unitaries, the class of
all stabilizer states. To each graph state, one can associate a
graph parametrized by its adjacency matrixG. The number
of virtual qubits at each site in the VBS is of course equal to
the number of bonds on the given site, and is equal to the
number of vertices emanating from a given physical qubit.
The bonds are maximally entangled statesuHl= u00l+ u01l
+ u10l− u11l, and the projectors on each site are all of the

form P= u0̃lk00. . .0u+ u1̃lk11. . .1u. This simple construction
describes all possible graph and cluster states. As an ex-
ample, the graph state corresponding to the five-qubit error-
correcting code[22] is depicted in Fig. 4.

This VBS interpretation of cluster states makes their nice
and appealing properties very explicit. The fact that, e.g., a
singlet can be created between two arbitrary qubits by doing
appropriate local measurement on the other ones can readily
be understood by the concept of entanglement swapping
[21]. The entropy of a block of spins can readily be seen to
scale roughly as the number of qubits with emanating bonds
from it (i.e., proportional to the area of the surface of the
block). The fact that the sensitivity to noise of a cluster state
does not scale with the number of(physical) qubits [23], is
due to the fact that it is effectively made up bylocal singlet
pairs. This insight also enables to construct distillation pro-
tocols for cluster states by translating bipartite distillation
protocols to the valence-bond picture[24]. Note, however,

that complications can arise due to the fact that local noise
and operations can create correlations between the virtual
singlets.

The description of valence-bond states in terms of stabi-
lizer states is also interesting from the point of view of
condensed-matter theory. It is, e.g., well known that opera-
tions of the Clifford group acting on a stabilizer state can
efficiently be simulated classically. This implies that evolu-
tions generated by the Clifford group on VBS states can be
simulated efficiently, and correlation functions of products of
Pauli operators can be calculated.

The present study also opens the question whether there
exist ground states of(gapped) Hamiltonians involving only
two-body short-range interactions on a lattice that would en-
able to implement the presented measurement scheme(this is
not the case for cluster states). Such 2D valence bond solids
indeed exist for higher spins(e.g., spin 3/2), and it is trivial
to devise a toy model for which this holds. Consider, e.g., a
hexagonal lattice with spin-7/2 particles at each vertex. To
each particle corresponds an eight-dimensional Hilbert
space, which we can interpret as a system of three virtual
qubits. We associate each outgoing edge to one of these qu-

bits, and associate the HamiltonianSWSW +31 to two of these
qubits connected by an edge. The ground state on such a
hexagonal lattice with this two-body local Hamiltonian will
be unique, and the teleportation scheme can be implemented
perfectly on it. Note that the cluster state is very similar to
that construction, but there the three qubits are interpreted as
virtual qubits and a smart projection was used to reduce the
dimension of the effective Hilbert space.

More interestingly, the trick used to implement two-qubit
unitary gates by introducing a virtual singlet followed by a
projection—this is the way cluster states can be generated
from completely separable ones—can also be extended to the
case where the unitaries do not commute with each other.
Indeed, the cluster state can be made in the lab if an Ising
interaction can be implemented on neighboring qubits[25].
However, in some experimental set ups, it is not always pos-
sible to implement such commuting gates, as is the case, e.g.,
for quantum dots[26]; here one is essentially restricted to
implement two-qubit gates generated by the Heisenberg in-
teraction, which certainly do not commute when acting on
neighboring spins. However, if one can apply these unitary
gates sequentially(i.e., one has control over the sites on
which one implements the gate), then it is also possible to

FIG. 3. Implementing a global unitary transformation on qubits
1 and 2 by doing local projectionsP1 andP2 on them and a maxi-
mally entangled stateuHl.

FIG. 4. The valence-bond picture of the stateu0̃l in the five-

qubit error-correcting code; the stateu1̃l is obtained by applying
local sz operators to all physical qubits.
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construct valence-bond solids that could be suitable for
quantum computation.

The present results also show that the valence-bond solid
picture is very useful for understanding multipartite en-
tanglement. Indeed, VBS are particularly interesting from the
point of view of quantum information theory, as the simple
and elegant tools developed for bipartite quantum systems
can be applied to it(see, e.g.,[14]). Moreover, one can
readily see that the VBS form a dense subset of all possible
quantum states if the singlets are replaced by higher-
dimensional maximally entangled statesuIl=oi=1

D uiluil and if
the projectors can be chosen arbitrarily(e.g., in the case of
three qubits, every state can be made by considering two
singlets and projecting two qubits of them onto a qubit space
[27]). It would be very interesting to develop a general
theory of multiparticle entanglement based on this VBS pic-
ture, where one could construct entanglement measures that

quantify the valence-bond resources needed to describe the
state.

In conclusion, we have identified the entanglement prop-
erties of the cluster states that are responsible for the possi-
bility of universal quantum computation. The main insight
was given by the fact that the structure of entanglement in
these states is essentially bipartite and can be understood in
terms of valence bonds. This allowed to prove the equiva-
lence of the one-way computer with teleportation-based
computation schemes, and to clarify the special features of
the cluster states.
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Conquest, and the Kompetenznetzwerk der Bayerischen
Staatsregierung Quanteninformation.

[1] C. H. Bennettet al., Phys. Rev. Lett.70, 1895(1993).
[2] M. A. Nielsen and I. L. Chuang, Phys. Rev. Lett.79, 321

(1997).
[3] D. Gottesman and I. Chuang, Nature(London) 402, 390

(1999).
[4] E. Knill, R. Laflamme, G. Milburn, Nature(London) 409, 26

(2001).
[5] M. A. Nielsen, Phys. Lett. A308, 96 (2003).
[6] D. Leung, e-print quant-ph/0111122; e-print quant-ph/

0310189.
[7] R. Raussendorf and H. J. Briegel, Phys. Rev. Lett.86, 5188

(2001); Quantum Inf. Comput.6, 433 (2002).
[8] H. Briegel and R. Raussendorf, Phys. Rev. Lett.86, 910

(2001).
[9] R. Jozsa and N. Linden, Proc. R. Soc. London, Ser. A459,

2011 (2003.)
[10] G. Vidal, Phys. Rev. Lett.91, 147902(2003).
[11] I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Commun.

Math. Phys.115, 477 (1988).
[12] After the submission of this work, this connection was also

highlighted from a different perspective: P. Aliferis and D. W.
Leung, e-print quant-ph/0404082; A. M. Childs, D. W. Leung,
and M. A. Nielsen, e-print quant-ph/0404132; P. Jorrand and S.
Perdrix, e-print quant-ph/0404125

[13] M. Fannes, B. Nachtergaele, and R. F. Werner, Commun.

Math. Phys.144, 443 (1992).
[14] F. Verstraete, M. A. Martín-Delgado, and J. I. Cirac, Phys.

Rev. Lett. 92, 087201(2004).
[15] D. Gottesman, Phys. Rev. A54, 1862(1996).
[16] M. Nielsen and I. Chuang,Quantum Computation and Quan-

tum Information (Cambridge University Press, Cambridge,
UK, 2000).

[17] D. Gottesman, Ph.D thesis, Caltech(unpublished); e-print
quant-ph/9705052.

[18] J. I. Ciracet al., Phys. Rev. Lett.86, 544 (2001).
[19] D. Schlingemann and R. F. Werner, Phys. Rev. A65, 012308

(2002).
[20] M. Hein, J. Eisert, and H. J. Briegel, Phys. Rev. A69, 062311

(2004); M. Van den Nest, J. K. Dehaene and B. De Moor,ibid.
69, 022316(2004).

[21] M. Zukowski et al., Phys. Rev. Lett.71, 4287(1993).
[22] R. Laflammeet al., Phys. Rev. Lett.77, 198 (1996); C. H.

Bennettet al., Phys. Rev. A54, 3824(1996).
[23] W. Dür and H.-J. Briegel, Phys. Rev. Lett.92, 180403(2004).
[24] W. Dür, H. Aschauer, and H.-J. Briegel, Phys. Rev. Lett.91,

107903(2003).
[25] O. Mandelet al., Nature(London) 425, 937 (2003).
[26] D. Loss and D. P. DiVincenzo, Phys. Rev. A57, 120 (1998).
[27] A. Miyake and F. Verstraete, Phys. Rev. A69, 012101(2004).

F. VERSTRAETE AND J.I. CIRAC PHYSICAL REVIEW A70, 060302(R) (2004)

RAPID COMMUNICATIONS

060302-4


