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Standard closed-orbit theory is applied to derive the photodetachment cross section of H− in the presence of
a static electric field. The result agrees with the one derived earlier using a quantum approach involving a
momentum-space wave function and stationary-phase approximation. The advantage of the present derivation
is the ability to separate the oscillation term and the smooth background term in the photodetachment cross
section and to identify the two terms with different physical origins.
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More than a decade after Bryant and co-workers[1,2]
observed the “ripple” structure in the photodetachment cross
section of H− in the presence of a static electric field of a few
hundred kV/cm, in contrast with the smooth photodetach-
ment cross section in the absence of an electric field, photo-
detachment of negative ions in a static electric field contin-
ues to attract theoretical and experimental attentions[3–8].

Rau and Wong provided a quantitative theory[9] for the
observed ripple structure. They derived and expressed the
photodetachment cross section in an electric field in terms of
an integral involving Airy function. “Frame-transformation
theory” was used in their derivation. The ripple structure was
explained as an interference between a detached electron go-
ing “up hill” and “down hill” by Rau and Wong[9]. At about
the same time, Du and Delos[10] presented a formula de-
rived using a quantum approach involving a momentum-
space wave function and stationary-phase approximation. By
applying an asymptotic method, they were able to write the
photodetachment cross section in an electric field as a sum of
a smooth background term plus an oscillation term. This
form is consistent with the general result of closed-orbit
theory [11,12], the ripple structure was therefore interpreted
as arising from the interference between the detached elec-
tron going out from the nucleus and the electron wave re-
turning to the nucleus.

Closed-orbit theory not only provides a clear physical pic-
ture for the oscillations in the photodetachment or photoion-
ization cross sections, it is also a quantitative tool being used
to calculate and to analyze very complicated oscillations in
the spectra for atoms in external fields[13]. It is therefore
surprising to know that closed-orbit theory has not yet been
applied to study the photodetachment cross section of H− in
the presence of a static electric field. This system is perhaps
the simplest for closed-orbit theory because there is only one
closed orbit. It is the purpose of this paper to fill in this
existing gap. It will be shown that the result from closed-
orbit theory is the same as the one derived earlier[10] using
a quantum approach involving a momentum-space wave
function and stationary-phase approximation. Furthermore,
by going through the closed-orbit theory derivation, we are
able to separate the oscillation term and the smooth back-
ground term and to identify each term with its physical ori-
gins. Atomic units will be used unless otherwise noted.

Assuming that the static electric field and the photon po-
larization are in thez direction. The photodetached electron

wave functioncd satisfies the Schrödinger equation with a
source term[14],

sE − Hdcd = zci , s1d

where E is the energy of detached electron andci is the
initial wave function of H−. In the present study we follow
Ref. [10] and take the one-electron approximation. The ini-
tial wave function in configuration space is given bycisqd
=Bse−kbr / rd , B is a “normalization” constant and is equal to
0.315 52, andkb has a numerical value 0.235 588 3 and is
related to the binding energyEb of H− by kb=Î2Eb. H is the
Hamiltonian governing the motion of the detached electron
in the combined atomic potentialVpsrd and the static electric
field; it can be written asH=p2/2+Vpsrd+Fz. Because the
initial state is anS state, the detached electron carries one
angular momentum right after being detached near the
nucleus; it is a good approximation to neglectVpsrd here.

The physical solution of Eq.(1) requires that only an
outgoing wave be present at larger. Once we have the de-
tached electron wave functioncdsqd satisfying the correct
outgoing boundary condition, the oscillator-strength density
can be calculated by using the formula[12]

DfsE,Fd = −
2sEf − Eid

p
Imkzciucdl. s2d

The oscillator-strength density is proportional to the photo-
detachment cross section.

We now construct the solution of Eq.(1) near the nucleus
using closed-orbit theory[12]. First, the wave functioncd is
separated into a direct part and a returning part,cd=scdddir

+scddret. The direct part represents the detached electron
wave initially going out from the nucleus after photodetach-
ment and it satisfies the equation

SE −
p2

2
Dscdddir = zci , s3d

which is obtained from Eq.(1) after dropping the static elec-
tric field term. The outgoing solution is[14]
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scdddirsqd = −
4Bk2i

skb
2 + k2d2h1

s1dskrdcossud, s4d

wherek=Î2E is the momentum of the detached electron and
h1

s1dskrd is the outgoing spherical Bessel function[15]. The
overlap integral of the direct part with the source gives the
smooth background[16]

Df0 = −
2sEf − Eid

p
Imkzciuscdddirl =

8Î2B2E3/2

3sEb + Ed3 . s5d

If there is no static electric field, the detached electron will
propagate away from the “source” region near the nucleus as
a spherical wave and never return. The smooth background
term will be the full cross section in this case. When there is
a static electric field, most of the outgoing waves will not
return except a pencil of waves propagating along the only
closed orbit of the system. This wave, initially traveling in
the z direction, is slowed down first by the electric field. Its
propagation direction is then turned to the negativez direc-
tion, it is accelerated by the static electric field, and it even-
tually passes through the detached electron source region,
where it interferes with the detached electron source(Fig. 4
of Ref. [10]). The phase difference between the returning
wave and the direct wavescdddir near the nucleus determines
whether the interference enhances or inhibits the total pro-
duction of detached electrons. The returning wave function
scddret near the nucleus represents the electron wave coming
back to the nucleus after traveling along the closed orbit. The
phase and amplitude of this returning wave can be calculated
by propagating and following the direct wave in Eq.(4)
along the closed orbit until it comes back close to the
nucleus. The general procedure is described elsewhere[12].

To obtain the returning wave function associated with the
closed orbit, we draw a sphere of radiusR large enough so
that the asymptotic approximationh1

s1dskrd=eiskr−pd /kr is
valid. It also must be small enough so that the electric field
potential term is much smaller than the initial kinetic energy
term of the detached electron inside the sphere—that is,zF
!k2/2. The direct outgoing wave on the surface of this
sphere is then

scdddir = − i
4Bk2

skb
2 + k2d2cossud

eiskr−pd

kr
. s6d

The phase and amplitude changes as it propagates out from
the surface and along the closed orbit. When it comes back to
a region(a few atomic units in size) near the nucleus, the
returning wave can be approximated by a plane wave travel-
ing in the negativez direction:

scddretsqd = ge−ikz, s7d

whereg is calculated according to the general method[12] as
a product of initial outgoing wave in thez direction, an am-
plitude A, and a phase factor:

g = AeisS−p/2dscdddirsu = 0,Rd, s8d

whereS is a phase integralepdq along the closed orbit from
the surface out and back to the originq=0,p /2 is the phase
correction at the turning point of the closed orbit, andA is an
amplitude, which counts for the spreading of the wave as it
propagates along the closed orbit and can be calculated by
considering neighboring trajectories of the closed orbit. We
have previously derived a formula forA applicable in this
cylindric symmetric situation[14]:

A =Î R2k

sR+ ktd2uk − ft cossuidu
, s9d

wheret is the time going from the surface out and back to the
origin andui is the outgoing direction of the closed orbit and
equals zero here. In evaluating the expression forg in Eq.
(8), we note that the result is independent ofR as it must be.
The result is

g =
2BFi

kskb
2 + k2d2eisSco−p/2d, s10d

where Sco=4Î2E3/2/3F is the action integral around the
closed orbit.

The overlap integral of the returning wave in Eq.(7) with
the source gives the oscillation in the oscillator-strength den-
sity:

Df1 = −
2sEf − Eid

p
Imkzciuscddretl =

2FB2

sEb + Ed3cossScod.

s11d

Combining Eqs.(5) and(11) we obtained the total oscillator-
strength density in an electric field:

DfsE,Fd =
8Î2B2E3/2

3sEb + Ed3 +
2FB2

sEb + Ed3cossScod. s12d

Following Eq. (1) of Ref. [10], the photodetachment cross
section is ssE,Fd=s2p2/cdDfsE, fd. When the numerical
values[17] c=137.037 andB=0.315 52 are used, the result
is exactly the same as Eq.(30) of Ref. [10] derived earlier
using a quantum approach involving a momentum-space
wave function and stationary-phase approximation.

The present derivation based on standard closed-orbit
theory clearly separates the smooth background term and the
oscillation term. We can identify the two terms with different
physical origins. The smooth background term represents the
intensity of the initial outgoing detached electron, and the
oscillation term is the signature of the interference between
the returning wave propagating along the only closed orbit in
this system and the initial outgoing detached electron wave.
The oscillation has a period 2p /T on the energy scale, where
T is the classical closed-orbit time. The amplitude of the
oscillation measures the wave spreading as it propagates
along the closed orbit. Oscillations in the spectra are best
analyzed by scaled energy spectroscopy[13].
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