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Closed-orbit theory for photodetachment of H™ in a static electric field
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Standard closed-orbit theory is applied to derive the photodetachment cross sectiomahélpresence of
a static electric field. The result agrees with the one derived earlier using a quantum approach involving a
momentum-space wave function and stationary-phase approximation. The advantage of the present derivation
is the ability to separate the oscillation term and the smooth background term in the photodetachment cross
section and to identify the two terms with different physical origins.
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More than a decade after Bryant and co-workgre] wave functionyy satisfies the Schrodinger equation with a
observed the “ripple” structure in the photodetachment crossource tern{14],
section of H in the presence of a static electric field of a few
hundred kV/cm, in contrast with the smooth photodetach-

ment cross section in the absence of an electric field, photo- (E-H)du=24, 1)
detachment of negative ions in a static electric field contin-
ues to attract theoretical and experimental attent[@rs). where E is the energy of detached electron apdis the

Rau and Wong provided a quantitative the@®y for the initial wave function of H. In the present study we follow
observed ripple structure. They derived and expressed theef. [10] and take the one-electron approximation. The ini-
photodetachment cross section in an electric field in terms afial wave function in configuration space is given Q)
an integral involving Airy function. “Frame-transformation =B(e™'/r), B is a “normalization” constant and is equal to
theory” was used in their derivation. The ripple structure wasy 315 52, andk, has a numerical value 0.235 588 3 and is
_exp‘l‘alnec_i as an“mterfere_:r],ce between a detached electron gQyated to the binding enerds;, of H by k,=12E,. H is the
ing “up hill” and “down hill" by Rau and Wong9]. Atabout 5 miitonian governing the motion of the detached electron
the same time, Du and Delgd0] presented a formula de- in the combined atomic potentimp(r) and the static electric

rived using a quantum approach involving a momentum}‘eld; it can be written asH:p2/2+Vp(r)+Fz. Because the

space wave function and stationary-phase approximation. By . . .
applying an asymptotic method, they were able to write th itial state is anS state, the detached electron carries one

photodetachment cross section in an electric field as a sum ghgular momentum right after being detached near the
a smooth background term plus an oscillation term. Thiglucleus; it IS a good approximation to ”?9|%(r) here.

form is consistent with the general result of closed-orbit The physical solution of Eq(l) requires that only an
theory[11,12, the ripple structure was therefore interpretedoutgoing wave be present at largeOnce we have the de-
as arising from the interference between the detached eletached electron wave functiofiy(q) satisfying the correct
tron going out from the nucleus and the electron wave reoutgoing boundary condition, the oscillator-strength density

turning to the nucleus. can be calculated by using the formyile?]
Closed-orbit theory not only provides a clear physical pic-
ture for the oscillations in the photodetachment or photoion- (E;-E)
ization cross sections, it is also a quantitative tool being used Df(E,F)=- TIm(zmwd). (2

to calculate and to analyze very complicated oscillations in
the spectra for atoms in external fielfis3]. It is therefore
surprising to know that closed-orbit theory has not yet beerf he oscillator-strength density is proportional to the photo-
applied to study the photodetachment cross sectionghH detachment cross section.
the presence of a static electric field. This system is perhaps We now construct the solution of E(L) near the nucleus
the simplest for closed-orbit theory because there is only ongsing closed-orbit theorf12]. First, the wave functionyy is
closed orbit. It is the purpose of this paper to fill in this separated into a direct part and a returning p@gt (¥g)qir
existing gap. It will be shown that the result from closed-+ () The direct part represents the detached electron
orbit theory is the same as the one derived eafliéf using  wave initially going out from the nucleus after photodetach-
a quantum approach involving a momentum-space waveent and it satisfies the equation
function and stationary-phase approximation. Furthermore,
by going through the closed-orbit theory derivation, we are p?
able to separate the oscillation term and the smooth back- (E— —)(wd)dir=z¢i, 3
ground term and to identify each term with its physical ori- 2
gins. Atomic units will be used unless otherwise noted.

Assuming that the static electric field and the photon po-which is obtained from Eq1) after dropping the static elec-
larization are in thez direction. The photodetached electron tric field term. The outgoing solution i€4]
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4BKi Y (kr)cog 6. @) g=AdS ™ (), (A= OR), (8)

(5 + k) whereSis a phase integrglpdqalong the closed orbit from

wherek= \EE is the momentum of the detached electron andIhe surface out and back to the origir0,/2 is the phase

1 . . . : correction at the turning point of the closed orbit, &t an
h;"(kr) is the outgoing spherical Bessel functiplb]. The 5 mpjitude, which counts for the spreading of the wave as it

overlap integral of the direct part with the source gives thepropagates along the closed orbit and can be calculated by
smooth backgrounlL6] considering neighboring trajectories of the closed orbit. We

(Ya)air(q) = -

2(E,~E) 8\2R2E312 have previously derived a formula féx applicable in this
Dfy=- #Im<zdfi|(l//d)dir> = \‘—, (5) cylindric symmetric situatiori14:
T 3(E, +E)® =
If there is no static electric field, the detached electron will A= \/(R+ kt)2|k— ftcos )|’ 9

propagate away from the “source” region near the nucleus as

a spherical wave and never return. The smooth backgroungheret is the time going from the surface out and back to the
term will be the full cross section in this case. When there irigin andé, is the outgoing direction of the closed orbit and
a static electric field, most of the outgoing waves will not equals zero here. In evaluating the expressiongfam Eq.
return except a pencil of waves propagating along the only8), we note that the result is independenfoés it must be.
closed orbit of the system. This wave, initially traveling in The result is

the z direction, is slowed down first by the electric field. Its oBFi
propagation direction is then turned to the negatiwdirec- = Zei(sco'””/z)' (10)
tion, it is accelerated by the static electric field, and it even- k(kp + k%)

tually passes through the detached electron source regiopnere S =42E%2/3F is the action integral around the
where it interferes with the detached electron soufig. 4  |osed or?bit.
of Ref. [10]). The phase difference between the returning e overlap integral of the returning wave in E@) with

wave and the direct wav@ly)qir near the nucleus determines o 5oy rce gives the oscillation in the oscillator-strength den-
whether the interference enhances or inhibits the total Prosity:

duction of detached electrons. The returning wave function

- 2(E;-E) 2FB?
(g)rer Ne@r the nucleus represgnts the electron wave coming pf —_ f 5 (25| (e = -cogSo).
back to the nucleus after traveling along the closed orbit. The T (Ex+E)
phase and amplitude of this returning wave can be calculated (12)

by propagating and following the direct wave in E@)
along the closed orbit until it comes back close to theCombining Eqs(5) and(11) we obtained the total oscillator-
nucleus. The general procedure is described elsewtigfe  strength density in an electric field:

To obtain the returning wave function associated with the 8\"EBZE3’2 2FR2
closed orbit, we draw a sphere of radiRdarge enough so Df(E,F) = 3+
that the asymptotic approximatioh\”(kr)=e®/kr is 3(Ep+E) (Ep+E)
valid. It also must be small enough so that the electric fieldrollowing Eq. (1) of Ref. [10], the photodetachment cross
potential term is much smaller than the initial kinetic energysection is o(E,F)=(272/c)Df(E,f). When the numerical
term of the detached electron inside the sphere—thaHs, yalues[17] c=137.037 and3=0.315 52 are used, the result
<k?/2. The direct outgoing wave on the surface of thisis exactly the same as E(0) of Ref. [10] derived earlier

3€04Sy). (12

sphere is then using a quantum approach involving a momentum-space
IBIC gilki-m) wave function and s_tati_onary—phase approximation. .

(a)gir =~ 15 ——55c046) . (6) The present derivation based on standard closed-orbit

(kp + k%) kr theory clearly separates the smooth background term and the

The phase and amplitude changes as it propagates out fro(r)r?C'"atlon term. We can identify the two terms with different

the surface and along the closed orbit. When it comes back tBhyS'C.al origins. .T.h.e smooth_ background term represents the
. . AN intensity of the initial outgoing detached electron, and the
a region(a few atomic units in sizenear the nucleus, the

) . scillation term is the signature of the interference between
returning wave can be approximated by a plane wave travel; . X e
o ) NS he returning wave propagating along the only closed orbit in
ing in the negativez direction:

this system and the initial outgoing detached electron wave.
() el @) = g€, 7) The oscillation has a periodZ T on the energy scale, where
T is the classical closed-orbit time. The amplitude of the
whereg is calculated according to the general metfib?] as  oscillation measures the wave spreading as it propagates
a product of initial outgoing wave in thedirection, an am- along the closed orbit. Oscillations in the spectra are best
plitude A, and a phase factor: analyzed by scaled energy spectrosclj.
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