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A method to study the rotational dynamics of a molecule interacting with a single short laser pulse or a train
of pulses is proposed. The method is based on the observation that for such pulses the time propagator, in the
st ,t8d formalism, can be expressed as a function of approximate Floquet states given by eigenstates of the
one-period time-averaged rotational Hamiltonian multiplied by appropriate Fourier functions for thet8 coor-
dinate. Each zeroth-order eigenstate can be improved by diagonalizing a small configuration-interaction matrix
formed from virtual Hartree-type wave functions. The resulting approximate propagators are more efficient
than the usual sudden propagator as they allow one to obtain, in a single step, the propagated wave function at
the end of the last pulse of a pulse train.
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Molecular alignment and orientation in laser fields has
attracted increasing attention[1] since Friedrich and Hersch-
bach [2] showed theoretically that large alignment can be
obtained when a molecule is subject to an intense nonreso-
nant laser pulse. Depending on the intensity and duration of
the laser and the rotational constant of the molecule the time
evolution can be fully adiabatic or nonadiabatic[3]. In the
nonadiabatic case field-free alignment is possible as the mol-
ecule ends up after the pulse dies in a rotational wave packet
that gives rise to revivals in the alignment. Recently[4] it
has been shown that trains of such pulses properly timed can
create robust and enhanced alignment. Also, it has been
shown[5] that rotational wave packets corresponding to cy-
clic states of thest ,t8d Hamiltonian [6] produce sustained
alignment when submitted to a periodic pulse train.

Although efficient methods exist to solve the time-
dependent Schrödinger equation[7] for simple systems such
as a diatomic molecule in a linearly polarized laser field,
their effectiveness is greatly reduced when the complexity of
the system increases(see Refs.[8–10] for recent studies on
polyatomic systems). The need for fast algorithms is espe-
cially acute as normally the Schrödinger equation must be
solved iteratively to implement any of the many varieties of
quantum control algorithms[11].

Methods for solving the time-dependent Schrödinger
equation based on the use of an extended Hilbert space
which includes time as a coordinate[6] are being actively
studied, as they allow one to overcome the time-ordering
problem for the propagator. Thus, it is possible to use the
arsenal of numerical methods developed for time-
independent systems. For example, perturbative expansions
of the st ,t8d propagator have been studied recently at great
length [12]. Also, a high-frequency treatment of the Floquet
problem has been proposed in which the rotational degrees
of freedom are adiabatically separated from the fast oscilla-
tions of the laser field[13].

In the st ,t8d formalism a wave function can be written as
an expansion in the basis set of generalized Floquet eigen-
states of the operatorSst8d=−i"] /]t8+Hst8d. By taking ad-
vantage of the periodicity of the eigenvalues and eigenvec-

tors of Sstd a wave function that obeysSstdcstd=0 can be
expanded as a function of the Floquet statesfe j

belonging to

the first Brillouin zonese j P f−p /T,p /Tgd, with T the period
chosen for the pulse[14,15]:

ucstdl = o
j8

expf− ie j8st − t0d/"gufe j8
stdlkfe j8

st0ducst0dl,

s1d

where the inner product is taken in the Hilbert space corre-
sponding to the zeroth-order spatial Hamiltonian. For strong
perturbations the number of time basis functions needed to
obtain converged results may lead to a very large Floquet
matrix. In this case, it is more advantageous to diagonalize,
instead ofSstd, the time evolution operator, as explained in
detail by Moiseyev in Ref.[16]. Thus, the number of Fourier
time functions needed to represent the time evolution opera-
tor, even for very strong perturbations, is small for a suffi-
ciently short time interval, which can be always achieved by
breaking the whole time interval into a sequence of identical
small steps[6,16].

The Hamiltonian for a linear molecule in a high-
frequency nonresonant linearly polarized laser field for an
isolated vibronic state, after averaging the square of the elec-
tric field over the period of the pulse to eliminate the fast
oscillations of the laser, is[3]

Hstd = BJ2 −
1

4
E0

2gstdfsai − a'dcos2u + a'g, s2d

whereB is the rotational constant,J is the angular momen-
tum operator,ai and a' are the components of the static
polarizability, parallel and perpendicular to the molecular
axis, andE0 is the strength of the electric field. The time
profile gstd is chosen to be a Gaussian centered att=0,
exps−t2/s2d, characterized by a full width at half maximum
of t>s5/3ds (the pulse duration). The eigenstates ofHstd /B
depend on dimensionless interaction parametersvi

=E0
2ai / s4Bd and v'=E0

2a' / s4Bd. The dimensionless form
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of Hstd /B suggests using" /B as a reduced unit of time and
B/" as a reduced unit of frequency[3].

Vorobeichik and Moiseyev[17], following Gavrila’s work
[18] on high-frequency Floquet problems, showed that the
eigenstates of the generalized Floquet operator describing the
tunneling process in a periodic double-well potential are well
approximated by one eigenfunctionfk

0sud of the time-
independent operatore−T/2

T/2 Hstddt, multiplied by one appro-
priate basis function for thet8 coordinate—i.e., ckm

0

=fk
0ei2pnt8/T. The eigenvalues of the zeroth-order Floquet op-

erator are, in this approximation,Ekn
0 =Ek

0+2pn" /T where
k=1,2, ... andn=0, ±1, ±2, ... .

The present Brief Report is based on the observation that
the interaction of molecular polarizability with theenvelope
of a nonresonant pulse can be considered a high-frequency
perturbation for a sufficiently short pulsessø0.005" /Bd.
This implies that simple Gavrila-type zeroth-order wave
functions, such as those of Ref.[17], give good approxima-
tions to the eigenstates of thest ,t8d matrix corresponding to
the Hamiltonian, Eq.(2). These zeroth-order wave functions
can be further optimized by doing a Hartree-type separation
of the Floquet eigenvalue problem[see Eqs.(3) below]. Di-
agonalization of thest ,t8d Hamiltonian in a small basis set of
selected virtual Hartree-type wave functions allows further
improving of each approximate Floquet eigenstate at a very
low cost.

It should be taken into account, to evaluate the method,
that for a single ultrashort pulse the propagator in the sudden
approximation [19], Ustf ,t0d=expf−si /"dBJ2tfgexpfisvi

−v'dcos2ugA, whereA=e−T/2
T/2 exps−t2/s2ddt, gives excellent

results, so the utility of the present approach could be ques-
tioned. However, for a periodic pulse train the use of the
sudden approximation is not convenient as it gives the
evolved wave function only until the end of the first pulse of
the sequence. The resulting wave function must then be sub-
mitted as initial state for a new propagation corresponding to
the second pulse, etc. On the other hand, the approximate
st ,t8d propagator allows one to calculate the wave function at
the end of the last pulse of the train in a single step. Another
deficiency of the sudden approximation is that it is appropri-
ate only for times near the end of each pulse of the sequence,
while the approximate propagator gives a qualitatively cor-
rect wave function at all times.

There are similarities between the present approach and
that studied in Ref.[13]. Both methods propose approximate
treatments for the Floquet eigenvalue problem of molecules
in intense fields. However, Keller, Dion, and Atabek used an
adiabatic separation between the fast degree of freedom[the
t8 dependence of the oscillating term cos2s2pnt8d] and the
slow rotational degree of freedom. This is valid for a con-
tinuous field or for a slow-varying pulse envelope. Therefore,
the method is useful for adiabatic perturbations due to a long
pulse with a central frequencyn that does not need to be
extremely high. In the present approach the frequency of the
fast oscillating term cos2s2pntd is considered to be so high
that it can be eliminated by simply averaging over the period
of the pulse, giving the Hamiltonian, Eq.(2). Then, the
method uses a Hartree-type separation between thet8 depen-
dence of the laser envelope and the rotational degree of free-

dom. Therefore, the present scheme is appropriate to study
nonadiabatic interactions due to very short lasers.

Figure 1 shows, for the initial stateuJ=0l, the time evo-
lution of the alignment,kcstducos2uucstdl. For the exact re-
sults,cstd was calculated using Eq.(1) with fe j

’s resulting

from diagonalizing the Floquet matrix in theuJlei2pnt8 primi-
tive basis set. The approximate results correspond to acstd
wave function calculated by using Eq.(1) where eachfe j
was replaced by one eigenfunction ofe−T/2

T/2 Hstddt multiplied

by one ei2pnt8 function. The upper panel corresponds to a
pulse withs=0.005 and it shows almost perfect agreement
between the approximate and the exact evolution except for
the earlier times of the pulse. The agreement is also very
good after the pulse dies for the further field-free evolution.
The lower panel corresponds to a longer and more intense
pulse. In this case the agreement is worse but still the time
evolution of the alignment is qualitatively well calculated by
using an approximatecstd. The simplicity of the approximate
calculations should be realized. They require only the diago-
nalization of the rotational matrices corresponding to the
one-period-averaged Hamiltonian—i.e., a 838 matrix (up-
per panel) or 11311 matrix(lower panel). Zeroth-ordercstd
functions depend on the quality of the approximate eigen-
functions and eigenvalues ofSstd. Thus, for the calculation
corresponding to the shorter pulse in Fig. 1 the exact Floquet
states that give a greater contribution to the dynamics are(in
B/" units) e1=−24.5, e2=−6.3, ande3=5.1. The approxi-
mate Floquet eigenvalues aree1=−24.6, e2=−6.4, ande3
=5.0. For the longer pulse shown in Fig. 1 the agreement is
not that good.(Exact e’s are −24.6, −21.3, −3.5, and 8.8.

FIG. 1. Time evolution of the alignment,kcstducos2uucstdl, with
cstd given by Eq.(1), during a single pulse and further field-free
evolution for an initial stateuJ=0l. Upper panel corresponds to a
pulse withs=0.005,T=0.05,vi=200, andv'=0. Lower panel is
for a pulse withs=0.01, T=0.1, vi=400, andv'=0. Solid lines
correspond to the exactcstd built from eigenvectors obtained by
diagonalizing the Floquet matrix in a basis set composed by the
product of 8 uJl states and 41ei2pnt8/T states(upper panel) and
11 uJl states and 81ei2pnt8/T states(lower panel). Dashed lines are
calculated with approximatecstd functions(see text). In the lower
panel the dash-dotted line is calculated withcstd given by eigen-
functions resulting from a multiconfigurational calculation(see
text) with Dk=2, Dn=4, andDe=1000. The dotted line corresponds
to Dk=3, Dn=6, andDe=1000.
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Approximatee’s are −26.0, 11.0, −4.9, and 7.7.) These ap-
proximate zeroth-order eigenstates are given in this approach
by only one basis function, while their composition in the
primitive basisuJlei2pnt/T is more complex. For example, the
eigenstatee1=8.8 ffJ=0

0 sudun=1lg is given by a linear com-
bination of 15 primitive basis functionsuJ,nl (with J values
between 0 and 6 andn between −1 and 5).

Zeroth-orderst ,t8d wave functions can be improved by
using second-order perturbation corrections. This kind of
perturbative treatment is “expected to give good results when
the frequency of the field is larger than a classical frequency
of the system in the time-averaged potential”[17]. Instead of
the perturbative treatment, it is shown in the next paragraphs
that each approximate Floquet eigenstate can be improved by
diagonalizing a matrix representation ofSstd built up from a
few selected zeroth-order basis functions. Further reduction
of the st ,t8d matrix can be achieved by using improved
zeroth-order basis functions resulting of a Hartree-type sepa-
ration of the eigenvalue Floquet problem. This can be
achieved by realizing that the original eigenvalue problem
can be formally divided into two eigenvalue problems as in
the self-consistent method:

fBJ2 − Dvkxst8duexps− t82/s2duxst8dl cos2ugfsud = eufsud,

F− i
]

] t8
− Dvkfsuducos2uufsudl exps− t82/s2dGxst8d

= et8xst8d, s3d

whereDv=vi−v'. Both eigenvalue problems can be solved
by diagonalizing small matrices. The total energy in this ap-
proximation is

e = eu + et8 − kfsudxst8du − Dv cos2ue−t2/s2
ufsudxst8dl,

and the total wave function is simplyfsudxst8d. The term
pseudo-Hartree was used in the title because this approach is
not really self-consistent for the particular problem studied
here, since the matrix elementkxst8duexps−t2/s2duxst8dl is a
constant independent ofxst8d. Consequently the method is
not able to use the information on thet8 wave function to
improve the rotational eigenfunction. However, ast ,t8d ma-
trix built from these basis functions leads to better eigenfunc-
tions than a matrix built from Gavrila-type zeroth-order basis
functions, as thexst8d basis functions are linear combinations

of the ei2pnt8/T functions. Notice that the rotational Hartree-
type wave functions are the same as the corresponding to the
one-period-averaged Hamiltonian, but thet8 functions de-
pend on the shape offsud. Therefore, the procedure is the
following: (i) Chose, as initial states for Eqs.(3), fsud= uJl,
xst8d=ei2pnt8/T for the differentuJl states in the primitive ba-
sis set, withn such that the quasienergy forfsudxst8d be-
longs to the first Brillouin zone,(ii ) obtain a set of virtual
fsud andxst8d functions after the first iteration of the method
for eachJ value, (iii ) for each initial uJl state construct a
configuration-interaction(CI) st ,t8d matrix by selecting a
subset of thefksudxnst8d and diagonalize to obtain an im-
proved Floquet state,(iv) orthogonalize the eigenstates cor-

responding to the differentJ values, and(v) build the propa-
gator. The selection of the basis functions in step(iii ) could
be optimized by using artificial intelligence methods[20],
but a simpler way was chosen consisting of fixing two
thresholds(Dk andDn) in the quantum numbers, and another
one in the energysDed as was suggested for rovibrational
problems in Ref.[21].

Figure 1(lower panel) shows the convergence of the cal-
culation to the exact alignment for a single pulse when the
basis set of zeroth-order wave function increases. For the
smallest basis sets(dash-dotted line) the calculation shows,
at the beginning of the pulse, oscillations in the alignment
that indicate that the approximate Floquet eigenstates are lin-
ear combinations of the exact eigenstates. When the basis set
is slightly increased(dotted curve) the CI calculation con-
verges toward the exact alignment. For this calculation the
maximum size of the matrices diagonalized for one approxi-
mate eigenstate was 91, while the size of thest ,t8d matrix in
the primitive basis set was 891. The eigenvalues of the Flo-
quet states that contribute to the time evolution for the CI
calculation with thresholdsDn=3, Dk=6, andDe=1000 are
−23.8, −20.9, −3.5, and 9.0(compare these numbers with
those given above). The eigenvalue corresponding to the ex-
act eingenstatee=8.8 is nowe=9.0, and it is given, in the CI
basis set, byfCIsu ,t8d<−0.95fJ=0x50st8d+0.19fJ=2x49st8d
+0.12fJ=4x49st8d−0.17fJ=6x49st8d, where fJ,xlst8d are the
eigenfunctions of Eqs.(3), and l indicates the energy order-
ing.

Figure 2 illustrates the results of this procedure for a pulse
train consisting of six short pulses well separated in time.
The zeroth-order propagation(dashed line) is able to repro-
duce qualitatively the general trend of the time evolution
during the whole range of the problem. The propagations
done with CI-Hartree-type functions improve the curves, and
the dotted line is almost indistinguible, at the plot resolution,
in many regions, from the exact calculation. The maximum
number of Hartree-type basis functions needed to build the
largest CI matrix for this case was only 45.

FIG. 2. Time evolution of the alignment for the initial state
uJ=0l in a pulse train consisting of six pulses. Parameters defining
each pulse ares=0.005,vi=250, andv'=0. The period chosen in
the calculation wasT=0.1. The different curves are exact evolution
(solid line), zeroth-order propagation(dashed line), CI-Hartree
propagation withDk=1, Dn=2, andDe=1000 (dash-dotted line),
and CI-Hartree calculation withDk=2, Dn=4, andDe=1000(dot-
ted line).
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In the st ,t8d method the number of primitive basis func-
tions needed to get a correct propagator increases with the
ratio T/s. For a single pulse it is enough to choose aT value
for which the electric field is effectively zero. However, the
parameterT has a physical meaning for a pulse train, repre-
senting the delay between pulses, and it can be chosen as
large as desired[5]. Figure 3 shows results for a sequence of
three pulses with a large time delay between them corre-
sponding to a largeT/s value and, therefore, it represents a
difficult test for the method. Notice that the approximated
time evolution of the alignment during the first pulse is much
worse than that shown in Fig. 1(for the sames) due to the
larger period chosen now. However, more primitive func-
tions were also needed to obtain the exact results(11uJl
states and 101 time Fourier functions).

Summarizing, a simple method is proposed to calculate
the time evolution of molecular alignment in periodic trains
of short laser pulses. The method gives, for a single pulse in
the impulsive regimen, results of quality similar to the sud-
den approximation. However, the method is more conve-
nient, for pulse trains, than the sudden approximation, since
the propagation can be done in a single step for the whole
time interval.
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FIG. 3. Time evolution of the alignment for the initial state
uJ=0l in a sequence of three pulses withs=0.01, vi=250, and
v'=0. The period chosen in the calculation wasT=0.4. The dif-
ferent curves are exact evolution(solid line), CI-Hartree propaga-
tion with Dk=2, Dn=6, andDe=200 (dashed line), and CI-Hartree
calculation withDk=3, Dn=12, andDe=200 (dotted line).
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