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Multiconfigurational pseudo-Hartree approach for the (t,t’) propagator of a molecule
in short laser fields
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A method to study the rotational dynamics of a molecule interacting with a single short laser pulse or a train
of pulses is proposed. The method is based on the observation that for such pulses the time propagator, in the
(t,t") formalism, can be expressed as a function of approximate Floquet states given by eigenstates of the
one-period time-averaged rotational Hamiltonian multiplied by appropriate Fourier functions ftrdber-
dinate. Each zeroth-order eigenstate can be improved by diagonalizing a small configuration-interaction matrix
formed from virtual Hartree-type wave functions. The resulting approximate propagators are more efficient
than the usual sudden propagator as they allow one to obtain, in a single step, the propagated wave function at
the end of the last pulse of a pulse train.
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Molecular alignment and orientation in laser fields hastors of S(t) a wave function that obeyS(t)¢(t)=0 can be
attracted increasing attentif] since Friedrich and Hersch- expanded as a function of the Floquet statesbelonging to
J

bach [2] showed theoretically that large alignment can bey,q fire griliouin zone(j € [-m/T,w/T]), with T the period
obtained when a molecule is subject to an intense nonresg;

nant laser pulse. Depending on the intensity and duration O(fhosen for the pulsgl4,15:

the laser and the rotational constant of the molecule the time )

evolution can be fully adiabatic or nonadiabat8. In the (1) = 2 exid - i€ (t=to)/h][ e, (D) e, (to) | #t0)),
nonadiabatic case field-free alignment is possible as the mol- i’

ecule ends up after the pulse dies in a rotational wave packet (1)

that gives rise to revivals in the alignment. Recendy it

has been shown that trains of such pulses properly timed cashere the inner product is taken in the Hilbert space corre-
create robust and enhanced alignment. Also, it has beesponding to the zeroth-order spatial Hamiltonian. For strong
shown[5] that rotational wave packets corresponding to cy-perturbations the number of time basis functions needed to
clic states of the(t,t’) Hamiltonian[6] produce sustained obtain converged results may lead to a very large Floquet
alignment when submitted to a periodic pulse train. matrix. In this case, it is more advantageous to diagonalize,

Although efficient methods exist to solve the time- instead ofS(t), the time evolution operator, as explained in
dependent Schrédinger equatiaf for simple systems such detail by Moiseyev in Ref{16]. Thus, the number of Fourier
as a diatomic molecule in a linearly polarized laser field,time functions needed to represent the time evolution opera-
their effectiveness is greatly reduced when the complexity ofor, even for very strong perturbations, is small for a suffi-
the system increasd¢see Refs[8—10 for recent studies on ciently short time interval, which can be always achieved by
polyatomic systems The need for fast algorithms is espe- breaking the whole time interval into a sequence of identical
cially acute as normally the Schrédinger equation must beémall stepg6,16.
solved iteratively to implement any of the many varieties of The Hamiltonian for a linear molecule in a high-
guantum control algorithmgl1]. frequency nonresonant linearly polarized laser field for an

Methods for solving the time-dependent Schrodingerisolated vibronic state, after averaging the square of the elec-
equation based on the use of an extended Hilbert spadéc field over the period of the pulse to eliminate the fast
which includes time as a coordinaté] are being actively oscillations of the laser, i3]
studied, as they allow one to overcome the time-ordering L
problem for the propagator. Thus, it is possible to use the —R12_ TK2 _
arsenal of numerical methods developed for time- H(t)=BJ 4E°g(t)[(aH @, )cost+a,], 2
independent systems. For example, perturbative expansions
of the (t,t') propagator have been studied recently at greawhereB is the rotational constand, is the angular momen-
length[12]. Also, a high-frequency treatment of the Floquettum operator,qy and a, are the components of the static
problem has been proposed in which the rotational degreggolarizability, parallel and perpendicular to the molecular
of freedom are adiabatically separated from the fast oscillaaxis, andE, is the strength of the electric field. The time
tions of the laser field13]. profile g(t) is chosen to be a Gaussian centeredt=a0,

In the (t,t’) formalism a wave function can be written as exp(—t?/?), characterized by a full width at half maximum
an expansion in the basis set of generalized Floquet eige®f 7= (5/3)c (the pulse duration The eigenstates ¢(t)/B
states of the operat@®(t')=-ind/at' +H(t’'). By taking ad- depend on dimensionless interaction parametess
vantage of the periodicity of the eigenvalues and eigenvec=Eje,/(4B) and w, =E3a, /(4B). The dimensionless form
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of H(t)/B suggests using /B as a reduced unit of time and 085
B/# as a reduced unit of frequen¢g].

Vorobeichik and Moiseyey17], following Gavrila’s work
[18] on high-frequency Floquet problems, showed that the
eigenstates of the generalized Floquet operator describing the ~ o4of
tunneling process in a periodic double-well potential are well 935[
approximated by one eigenfunctiopp(6) of the time- o
independent operatcfrI’Tz,zH(t)dt, multiplied by one appro-
priate basis function for thet’ coordinate—i.e., ¥,
= #%e2™'IT The eigenvalues of the zeroth-order Floguet op-
erator are, in this approximatiory,=Eg+2mn#i/T where
k=1,2,.. anch=0,+1,£2, .. . e

The present Brief Report is based on the observation that '
the interaction of molecular polarizability with trevelope

of a nonresonant pUISe can be considered a high-frequency FIG. 1. Time evolution of the alignmeny(t)|cos 6| (1)), with
pertur'batl(.)n for a S.uffICIentIy short pulser=0.005:/B). () given by Eq.(1), during a single pulse and further field-free
This implies that simple Gavrila-type zeroth-order waveeg,g|ytion for an initial statéJ=0). Upper panel corresponds to a
functions, such as those of R¢l7], give good approxima- pulse witho=0.005,T=0.05, »;=200, andw, =0. Lower panel is
tions to the eigenstates of tligt’) matrix corresponding to  for a pulse witho=0.01, T=0.1, =400, andw, =0. Solid lines
the Hamiltonian, Eq(2). These zeroth-order wave functions correspond to the exaak(t) built from eigenvectors obtained by
can be further optimized by doing a Hartree-type separatiodiagonalizing the Floquet matrix in a basis set composed by the
of the Floquet eigenvalue problefsee Eqs(3) below]. Di-  product of 8|J) states and 4&2™"'/T states(upper panel and
agonalization of thét,t") Hamiltonian in a small basis set of 11 |J) states and 8#2™!'/T states(lower pane). Dashed lines are
selected virtual Hartree-type wave functions allows furthercalculated with approximate(t) functions(see text In the lower
improving of each approximate Floquet eigenstate at a verganel the dash-dotted line is calculated witft) given by eigen-
low cost. functions resulting from a multiconfigurational calculatigsee

It should be taken into account, to evaluate the methodtext) with Ak=2, An=4, andAe=1000. The dotted line corresponds
that for a single ultrashort pulse the propagator in the suddete Ak=3, An=6, andAe=1000.
approximation [19], U(t;,to) =exd—(i/A)BJI%Jexdi(w,

— (T2 2 .

~,)COSHIA, whgreA—f T exp—t?/ o), gives excellent nonadiabatic interactions due to very short lasers.
r_esults, so the utility of the present approach could be ques- Figure 1 shows, for the initial stald=0), the time evo-
tioned. However, for a periodic pulse train the use of the,tion of the alignment{y(t)|cog6|y(t)). For the exact re-

sudden approximation is not convenient as it gives thesults,¢(t) was calculated using Eql) with ¢ej'3 resulting

evolved wave function only until the end of the first pulse of , - o ot i
the sequence. The resulting wave function must then be suffo™ diagonalizing the Floquet matrix in thae>™ primi-

mitted as initial state for a new propagation corresponding t¢'Ve Pasis set. The approximate results correspond fota
the second pulse, etc. On the other hand, the approximaté@ve function calculated by using E(l) where eachd,
(t,t') propagator allows one to calculate the wave function atvas replaced by one eigenfunction @7, H(t)dt multiplied
the end of the last pulse of the train in a single step. Anotheby one &2 function. The upper panel corresponds to a
deficiency of the sudden approximation is that it is appropri-pulse withoc=0.005 and it shows almost perfect agreement
ate only for times near the end of each pulse of the sequencbetween the approximate and the exact evolution except for
while the approximate propagator gives a qualitatively corthe earlier times of the pulse. The agreement is also very
rect wave function at all times. good after the pulse dies for the further field-free evolution.
There are similarities between the present approach antihe lower panel corresponds to a longer and more intense
that studied in Ref{13]. Both methods propose approximate pulse. In this case the agreement is worse but still the time
treatments for the Floquet eigenvalue problem of moleculegvolution of the alignment is qualitatively well calculated by
in intense fields. However, Keller, Dion, and Atabek used arusing an approximaté(t). The simplicity of the approximate
adiabatic separation between the fast degree of fredtltan calculations should be realized. They require only the diago-
t’ dependence of the oscillating term é@rit’)] and the nalization of the rotational matrices corresponding to the
slow rotational degree of freedom. This is valid for a con-one-period-averaged Hamiltonian—i.e., &8 matrix (up-
tinuous field or for a slow-varying pulse envelope. Therefore per panelor 11X 11 matrix(lower pane). Zeroth-orden(t)
the method is useful for adiabatic perturbations due to a lonfunctions depend on the quality of the approximate eigen-
pulse with a central frequency that does not need to be functions and eigenvalues &t). Thus, for the calculation
extremely high. In the present approach the frequency of theorresponding to the shorter pulse in Fig. 1 the exact Floquet
fast oscillating term cd$2m1t) is considered to be so high states that give a greater contribution to the dynamicgiare
that it can be eliminated by simply averaging over the period/# units) €;=-24.5, ,=-6.3, ande;=5.1. The approxi-
of the pulse, giving the Hamiltonian, Eq2). Then, the mate Floquet eigenvalues aeg=-24.6, e,=-6.4, ande;
method uses a Hartree-type separation betweet! epen- =5.0. For the longer pulse shown in Fig. 1 the agreement is
dence of the laser envelope and the rotational degree of fre@ot that good.(Exact €'s are —24.6, —21.3, —-3.5, and 8.8.
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o
3
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dom. Therefore, the present scheme is appropriate to study
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Approximatee's are -26.0, 11.0, -4.9, and 7)7These ap- "nWre——— "
proximate zeroth-order eigenstates are given in this approact 1.0} : ; .
by only one basis function, while their composition in the 09 ' ]
primitive basis|J)e>™T is more complex. For example, the 08l : 1]
eigenstates; =8.8 [#)_,(#)|n=1)] is given by a linear com- 8 070
bination of 15 primitive basis functiong,n) (with J values 9 0'6 i
between 0 and 6 ana between -1 and)5 v Tt

Zeroth-order(t,t’) wave functions can be improved by g'i?

using second-order perturbation corrections. This kind of I
perturbative treatment is “expected to give good results when ~ 03
the frequency of the field is larger than a classical frequency 02— — o+ 1 .~ 1+ . 1
of the system in the time-averaged potent{dl7]. Instead of ol e 0 _0'2 0 04 0.5
the perturbative treatment, it is shown in the next paragraphs e (orezs)

that each approximate Floquet eigenstate can be improved by
diagonalizing a matrix representation &) built up from a

FIG. 2. Time evolution of the alignment for the initial state

. . . |J=0) in a pulse train consisting of six pulses. Parameters defining
few selected zeroth-order basis functions. Further reductmhach pulse are=0.005,w,= 250, andw, =0. The period chosen in

) . . . .
of the (t,t) mat_rlx Can_ be achle_ved by using improved the calculation wa3=0.1. The different curves are exact evolution
zeroth-order basis functions resulting of a Hartree-type SePasolid line), zeroth-order propagationdashed ling Cl-Hartree

ration of the eigenvalue Floquet problem. This can bepropagation withAk=1, An=2, andAe=1000 (dash-dotted ling

achieved by realizing that the original eigenvalue probleMang Cl-Hartree calculation withk=2, An=4, andAe=1000(dot-
can be formally divided into two eigenvalue problems as inteq ling.

the self-consistent method: ) ) .
responding to the different values, andv) build the propa-

[BJIZ = Aw(x(t")|exp(= t'?/a?)|x(t')) coSA]¢(6) = €4p(6), gator. The selection of the basis functions in stiéip could
be optimized by using artificial intelligence methop0],
J but a simpler way was chosen consisting of fixing two
—i— — Aw(p(6)|cogb|p(6)) exp(—t'?lo?) |x(t') thresholdgAk andAn) in the quantum numbers, and another
. one in the energyAe) as was suggested for rovibrational
=€ x(t), (3)  problems in Ref[21].

_ Figure 1(lower pane) shows the convergence of the cal-
whereAw=w,—w, . Both eigenvalue problems can be solvedculation to the exact alignment for a single pulse when the
by diagonalizing small matrices. The total energy in this ap-basis set of zeroth-order wave function increases. For the

proximation is smallest basis setglash-dotted lingthe calculation shows,
2,2 at the beginning of the pulse, oscillations in the alignment
€= eyt € —(H(O)x(t)| — Aw coSe 77| H(O) x(1')), that indicate that the approximate Floquet eigenstates are lin-

o ear combinations of the exact eigenstates. When the basis set
and the total wave function is simplg(6)x(t'). The term s gjightly increaseddotted curvg the CI calculation con-
pseudo-Hartree was used in the title because this approachyigrges toward the exact alignment. For this calculation the
not really self-consistent for the particular problem studiedmaximum size of the matrices diagonalized for one approxi-
here, since the matrix elemetg(t’)|exp(-t2/?)|x(t')) is @  mate eigenstate was 91, while the size of th&') matrix in
constant independent of(t’). Consequently the method is the primitive basis set was 891. The eigenvalues of the Flo-
not able to use the information on thewave function to quet states that contribute to the time evolution for the ClI
improve the rotational eigenfunction. However(tat’) ma-  calculation with thresholddn=3, Ak=6, andAe=1000 are
trix built from these basis functions leads to better eigenfunc=23.8, ~20.9, -3.5, and 9.@&ompare these numbers with
tions than a matrix built from Gavrila-type zeroth-order basisthose given aboveThe eigenvalue corresponding to the ex-

functions, as the(t’) basis functions are linear combinations gct gingeps:)atezl?fti,s) Eov(xge;Q.O, an((jtit) Lsogil"e”' in ”E?,)C'
of the &2™!'/T functions. Notice that the rotational Hartree- ~oor S€t y$~(0,") = ~0.95b;=0x50 A9h3=0x49

type wave functions are the same as the corresponding to tﬁ'eo'lz;’%:zti(gg(t )—f 0é17<i§:6)(49g| ), &’Yhetre G;J{)(l(t ) are tge
one-period-averaged Hamiltonian, but tHefunctions de- ~€'9€ntunctions o qg3), and! indicates the energy order-

: ing.
Foe"rg\j,vicr)]g_t?g é?]zzz Q:gei)ﬁigz;e;f;gse,f;?%&;(:zd(gi |'§'> the Figure 2 illustrates the results of this procedure for a pulse

2 ) ) g train consisting of six short pulses well separated in time.
x(t')=€?m""T for the different|J) states in the primitive ba-  The zeroth-order propagatiqdashed lingis able to repro-

sis set, withn such that the quasienergy faf(0)x(t') be-  quce qualitatively the general trend of the time evolution

Iongs to the first Brillouin ZOHE(”) obtain a set of virtual during the whole range of the prob|em. The propagations
#(6) andx(t’) functions after the first iteration of the method done with Cl-Hartree-type functions improve the curves, and
for eachJ value, (iii) for each initial|J) state construct a the dotted line is almost indistinguible, at the plot resolution,

configuration-interaction(Cl) (t,t’) matrix by selecting a in many regions, from the exact calculation. The maximum
subset of thep,(6)xn(t") and diagonalize to obtain an im- number of Hartree-type basis functions needed to build the
proved Floquet statdjv) orthogonalize the eigenstates cor- largest Cl matrix for this case was only 45.
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In the (t,t’) method the number of primitive basis func- 22—
tions needed to get a correct propagator increases with the | : : :
ratio T/o. For a single pulse it is enough to chooseé walue I
for which the electric field is effectively zero. However, the 08}
parameteiT has a physical meaning for a pulse train, repre-
senting the delay between pulses, and it can be chosen a
large as desirefb]. Figure 3 shows results for a sequence of 04 I
three pulses with a large time delay between them corre-

0>

<CO0Ss

sponding to a largd/ o value and, therefore, it represents a 02} : o :' .
difficult test for the method. Notice that the approximated I ' ' 1
time evolution of the alignment during the first pulse is much = w6 o85 oA o6 8  ib
worse than that shown in Fig. (for the sameo) due to the Time (h/27B)

larger period chosen now. However, more primitive func-

tions were also needed to obtain the exact resdligJ) FIG. 3. Time evolution of the alignment for the initial state
states and 101 time Fourier functions |3=0) in a sequence of three pulses with=0.01, w,=250, and

Summarizing, a simple method is proposed to calculate,, =0. The period chosen in the calculation wes0.4. The dif-
the time evolution of molecular alignment in periodic trains ferent curves are exact evolutigsolid line), Cl-Hartree propaga-
of short laser pulses. The method gives, for a single pulse ition with Ak=2, An=6, andAe=200(dashed ling and Cl-Hartree
the impulsive regimen, results of quality similar to the sud-calculation withAk=3, An=12, andAe=200 (dotted ling.
den approximation. However, the method is more conve-
nient, for pulse trains, than the sudden approximation, since Financial support from the Ministerio de Ciencia y Tec-
the propagation can be done in a single step for the wholaologia of Spain, under Project No. BFM2001-2315 is ac-
time interval. knowledged.
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