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Using a model potential representation combined with a variationally stable method, we present a precise
calculation of the electric dipole polarizabilities of the sodium negative ionsNa−d. The effective two-electron
eigensolutions for Na− are obtained from a hyperspherical coupled-channel calculation. This approach allows
efficient error control and insight into the system’s properties through one-dimensional potential curves. Our
result of 1018.3 a.u. for the static dipole polarizability is in agreement with previous calculations and supports
our results for the dynamic polarizability, which has scarcely been investigated hitherto.
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Negative ions have been commonly used as a ground test
for theoretical and numerical approaches owing to the great
importance of the electronic correlation in a short-range po-
tential. Such studies have been founded on the advances of
experimental techniques, allied to the interest in fields rang-
ing from atmosphere studies[1,2] to astrophysics[3–5]. The
alkali-metal negative ions can be related to the hydrogen
negative ion concerning the optically active two-electron
correlation characteristic of the spectral lines. Only few
weakly bound states have been observed for such systems.
Indeed, the best known species possess a single bound state.

Owing to the large number of physical and chemical prop-
erties related to polarizabilities, there exists an extensive in-
terest in their accurate calculation. For instance, the dynamic
or frequency-dependent polarizability is closely related to the
van der Waals dispersion coefficients in the long-range inter-
actions of atomic and molecular species. A comprehensive
review of electric dipole polarizabilities was given by Bonin
and Kadar-Kallen[6], in which both theoretical methods and
experimental techniques were examined.

The present work investigates the static as well as the
dynamic electric dipole polarizability of the sodium negative
ion sNa−d. Results for the static dipole polarizability from
different methods are found in the literature[7–13]. Contrary
to the polarizability of the lithium negative ionsLi−d, on
which available data in the literature have been focused
[14–20], the values for the frequency-dependent polarizabil-
ity of Na− have only been estimated from formulas derived
by Lammet al. [10] and Deloneet al. [11]. Lammet al. [10]
used an asymptotic form for the wave function and a one-
parameter pseudopotential. Deloneet al. [11] employed a
quasiclassical description with a one-particle short-range po-
tential for the alkali-metal negative ion as well as the
asymptotic character of the wave function to achieve the be-
havior of the frequency dependence. Both were analytically
derived results and in fact, to our knowledge, there does not
exist any other result in the literature for the dynamic polar-
izability of the sodium anion. The scarceness of results from

other authors evidences the difficulties involved in this kind
of calculation. One of the reasons is the very small electron
affinity of the neutral sodium, requiring accurate and stable
methods in the achievement of wave functions. The lack of
experimental data on the polarizabilities of Na− motivates
this work, since accurate theoretical results can aid in devel-
oping further experiments.

As an alternative to the all-electron description of the sys-
tem, the interactions of the valence electrons with both the
nucleus and the electronic closed shells are described
through a model potential[21]. This approach has been suc-
cessfully employed for alkali-metal atoms and anions due to
a rather compact core that has little effect on the outer va-
lence electrons, especially the more diffuse, larger orbitals of
a negative ion. The core polarizability owing to the one- and
two-electron fields, also taken into account, improves the
calculations, leading to a very precise electron affinity[22].

In order to provide precise results, Gao and Starace’s
second-order variationally stable approach is employed in
this work [23], avoiding the explicit summation over inter-
mediate states and allowing the determination of polarizabil-
ities using only the ground-state wave function. This is an
important aspect, considering the efforts demanded by the
second-order perturbation calculations, which require the full
description of the complete bound and continuum states of
the sodium ion. Within this variational approach, a basis
formed by Slater orbitals provides fast convergent results, as
shown for the one- and two-electron systems studied so far
[23–25]. Moreover, applications to larger atomic systems us-
ing the Hartree-Fock description for the target can also be
found [24,26]. Additionally, a molecular systemsH2d was
treated employing the variationally stable method, with good
results[27].

For the wave function calculation, the hyperspherical
adiabatic approach(HAA ) is applied[28]. This is an efficient
method to study strongly correlated few-body systems for
both theoretical and numerical aspects. The HAA provides a
one-dimensional potential curve description of the energy
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levels, with precise results, using few coupled radial chan-
nels. For the potential model of the sodium ion, the HAA is
especially suited due to the upper and lower energy bounds
obtained from simple uncoupled approaches[29,30], both
using only the lowest potential curve, with and without the
diagonal nonadiabatic radial coupling, respectively. Such be-
havior has also been observed for the sodium anion model-
potential approach[22].

The model potential used in this study to represent each
valence electron interaction with the positive ionic core is
defined as(atomic units are used throughout the paper)

Vsrd = −
1

r
fZc + sZ − Zcde−a1r + a2re

−a3rg −
ac

2r4fW3sr/rcdg2,

s1d

whereZ=11 is the nuclear charge,Zc=1 is the core’s charge,
and ac=0.9457 a.u. is the Na+ polarizability [31]. The re-
maining empirical parameters are obtained by a fitting pro-
cedure in order to reproduce the experimental binding ener-
gies[32] of the neutral system. For the sodium atom, the set
of parameters used is the one calculated in Liu and Starace’s
paper[33]. The last term in Eq.(1) is a long-range nonlocal
contribution due to the core polarization. The cutoff function
Wnsrd (cf. Ref. [22]) represents the reduction of electron po-
larization effects over the core as the electrons approach the
nucleus. The core polarization due to the two-electron effects
is considered through the dielectronic polarization potential

V12sr 1,r 2d = −
ac

r1
2r2

2 cosu12W3sr1/rcdW3sr2/rcd. s2d

For the sodium anion in the two-electron picture, hyper-
spherical coordinates are introduced, correlating the two
electron spherical radial variablesr1 and r2 by means of a
Cartesian-polar-like transformation, i.e.,R=sr1

2+r2
2d1/2 and

a=tan−1sr1/ r2d. The spherical angular coordinateshui ,fij of
the electrons are not changed. An important practical aspect
of the adiabatic approach is the convergence monitoring of
the energy calculations by controlling the numberNc of
coupled radial channels considered in the adiabatic expan-
sions[22]. For genuine two-electron systems, such as H− and
the isoelectronic series of helium, the uncoupled radial equa-
tion sNc=1d is usually sufficient to furnish the bound states,
even for the loosely bound negative ion.

The perturbative matrix element for a second-order tran-
sition between an initial stateuil and a final stateufl is written
as

Ti→f
s2d svd = kf uD

1

Ei + v − Ĥ
Duil, s3d

where D=e ·sr 1+r 2d is the electric dipole operator in the
length form,e is the light polarization vector,Ei is the energy

of the initial state,v is the photon frequency, andĤ is the
unperturbed Hamiltonian. Using the variationally stable
method of Gao and Starace[23–25], the transition matrix
element[Eq. (3)] can be cast in the form

Ti→f
s2d svd = kf uDull + kl8uDuil − kl8uEi + v − Ĥull, s4d

where ull and kl8u are unknown intermediate functions re-
lated to uil and kf u by one-photon transitions, respectively.
The transition rate in Eq.(4) is variationally stable to second
order with respect to any deviations of the intermediate func-
tions from their exact values[23]. In other words, the first-
order corrections cancel out mutually in this unique combi-
nation of the three matrix elements. For the two-electron
problem, the Hamiltonian in hyperspherical coordinates is
used due to the suitability of this representation. In addition,
the initial- and final-state wave functions as well as the in-
termediate functions are adiabatically expanded in the hyper-
spherical form. In order to evaluate the integrals, the un-
known functions are expanded in Slater orbitals comprising a
free parameterbm, whose determination is further described.
The coefficients of the expansions are attained imposing the
variational principle[23–25]. In terms of the second-order
transition matrix element, the frequency-dependent polariz-
ability is calculated by replacing the final-state wave func-
tion kf u by the initial-state wave functionki u as follows:

asvd = − fTi→i
s2d s+ vd + Ti→i

s2d s− vdg. s5d

In the static limit, i.e., the photon frequencyv→0, the ex-
pression for the polarizability is reduced toas0d
=−2Ti→i

s2d s0d.
Preceding our results for the static and dynamic dipole

polarizability of the Na− ground state, some general compu-
tational aspects are briefly discussed. All calculations have
been accomplished in the length gauge. In each numerical
calculation, REAL*16 (quadruple) precision is used in our
codes to minimize numerical error propagation and to deal
accurately with a mix of small and large numbers. The hy-
perspherical potential curvesUmsRd have been obtained as
briefly described above and presented in detail in Ref.[22].
In order to achieve the static and dynamic dipole polarizabil-
ities, potential curves as well as nonadiabatic couplings for
both 1Se and1Po states are required by the selection rules. In
this paper, the calculations of Ref.[22] have been extended
to 1Po states. The number of coupled hyperspherical angular
channels is related to the maximum value of the electronic
angular momental1

max= l2
max= lmax of each optically active

electron, set to provide the desired convergence for the po-
tential curves and nonadiabatic couplings for all values ofR.
For the individual angular momenta, the maximum value
lmax=4 has been used for both1Se and 1Po states, whose
corresponding potential curves are shown in Fig. 1. In the
calculation of the hyperradial functions,Nc=3 coupled equa-
tions[22] have been used. This set of parameters provides an
electron affinity of 0.020 117 a.u.s547.407 meVd for the so-
dium atom [22], which compares very well with the
experimental value of 0.020 136 a.u.s547.926 meVd [34].
Figure 1 shows the corresponding ground-state energy
s−0.417 949 Ryd as a horizontal dashed-line segment in the
lowest potential curve. An indication of the hyperspherical
method efficiency is the precision of the quasiseparable ap-
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proximation(one radial channel), which led to a Na− bound
state result with relative error to the experimental value of
only 0.51%. A further inclusion ofNc=3 coupled channels
drops the error to only 0.009%.

The choice of parameterbm is arbitrary and, for consis-
tency reasons, the ground-state energyEi used in Eq.(4) is
the corresponding hyperspherical value for the number of
channels included in our calculations. In order to reduce nu-
merical error in theNc=3 calculation, the value ofbm

=0.71 was chosen by an error minimization procedure for 13
terms in the expansions. As a result, the three matrix ele-
ments of Eq.(4) are identical within 24 digits of accuracy,
showing an excellent convergence. Additionally, the ability
of the coupled-channel hyperspherical method to provide not
only accurate and precise electron affinities(for Na, the rela-
tive error to the experimental value is 0.09%[22]) but also
good quality wave functions[25,35] has been shown. Indeed,
Masili and Starace[25(b)] stressed that the variationally
stable method combined with the HAA furnishes results for
polarizabilities that possess almost the same level of accu-
racy as for the ground-state energy.

Table I presents a comparison of our best value for the
static polarizability with available theoretical results of other

authors. Two of the listed results are rather too low[11] or
too high [7], although Langhoff and Hurst[7] highlighted
that their polarizability value is unreliable due to the difficul-
ties in constructing the Hartree-Fock wave functions. Our
static polarizability result compares best with the value of
Moccia and Spizzo[12] using a diagonalization method in an
L2 basis.

Varying the photon frequencyv in the transition matrix
[Eq. (4)], one obtains the dynamic polarizability. In Fig. 2,
our uncoupled resultsNc=1d and the calculation using the
three most important channelssNc=3d are compared with
estimates from asymptotic calculations of Lammet al. [10].
One notes that the simple uncoupled calculation is compa-
rable to the result of Lammet al. [10], evidencing the quality
of the combined methods. As far as we are aware, there
exists only one other result for the dynamic polarizability, by
Deloneet al. [11], but their quasiclassical treatment using a
one-particle model potential neglects the crucial correlation
interaction between the two outermost electrons, and conse-
quently does not lead to precise results for the polarizability.
Indeed, as shown in Table I, their static polarizability value is
2.60-2.86 times smaller than the others listed. However, the
behavior of the dynamic polarizability is similar to the re-
sults of Lammet al. [10] and to our present calculation,
especially for small values of the photon frequency, as seen
in Fig. 2. A further inclusion of additional channels in our
calculation plays a minor role in the convergence. In fact,
this small contribution to both energies and polarizabilities
has also been observed for H− [25(a)].

In summary, a calculation of the static and frequency-
dependent dipole polarizability of the sodium negative ion
sNa−d has been presented. This paper adds results to the
scarcely investigated dynamic polarizability of the sodium
anion. The variational procedure employed is a practical ap-
proach to be applied as an alternative to the direct perturba-
tion calculation, which requires the knowledge of the wave
function of all unperturbed bound and continuum states of
the sodium negative ion. The variational approach requires
only the ground-state solution and yet provides fast-
convergent and precise results. The Gao and Starace’s varia-

FIG. 1. (Color online) Hyperspherical1Se and 1Po potential
curves for Na− states. The horizontal dashed-line segment repre-
sents the bound-state energy(in rydbergs).

TABLE I. Comparison of our present best calculation for the
static electric dipole polarizability of Na− with theoretical results of
other authors.

Present result 1018.3

N.C. Pyperet al. (1993) (Ref. [13]) 1090.2

R. Moccia and P. Spizzo(1991) (Ref. [12]) 1032.7

N.B. Deloneet al. (1986) (Ref. [11]) 381.1

G. Lammet al. (1978) (Ref. [10]) 1089.7

D.L. Moores and D.W. Norcrossa (1974) (Ref. [9]) 989.9

D.L. Moores and D.W. Norcrossb (1974) (Ref. [9]) 1058.9

R.F. Stewartet al. (1974) (Ref. [8]) 1069

P.W. Langhoff and R.P. Hurst(1965) (Ref. [7]) 1982

aLength gauge result.
bVelocity gauge result.

FIG. 2. (Color online) Comparison of the dynamic polarizability
with results from the literature.
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tionally stable method combined with the coupled-channel
hyperspherical description of the wave function of the effec-
tive two-electron Na− has proved to be capable of providing
very precise and accurate results for the second-order pertur-
bative process. Those are compelling results and strongly
suggest the calculation of two-photon detachment cross sec-
tions of Na−. Likewise, this methodology can be extended to
other alkali-metal negative ions of interest.
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