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We argue that a full account of the set of quantum states prevents one from applying the rigorous definition
of complete positivity. However, we give three equivalent proofs that any quantum evolution of a finite system
always admits a Kraus-type decomposition, i.e., a Kraus decomposition but with Kraus matrices dependent on
the initial state upon which they apply.
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Initial correlations between an open quantum system and
its surrounding environment have traditionally played a re-
markable role to elucidate whether the reduced evolution of
the open system is completely positive(CP) or not [1–3].
This property appears as an important ingredient in the study
of general evolutions(both unitary and projective) of this
kind of physical system[4–7].

Until recently, these initial correlations were thought to be
unsurpassable for the evolution to be CP in a totally general
sense[8]. However, some results have been found showing
that this is not the case in particular situations, i.e., that de-
spite the initial correlations the evolution is CP[9,10].

The physical picture where complete positivity in prin-
ciple arises is surprisingly simple: consider a system and its
environment with no interaction between them; then under
the assumption of no evolution for the latter, the joint system
must evolve from a valid state(density operator) to another
valid state(density operator). And one expects that this must
be so even in the presence of initial correlations between
them. We will argue that despite this crystal-clear reasoning,
it does not imply the complete positivity of quantum evolu-
tions, as suggested in some places(cf., e.g.,[11]).

We devote this work to elucidate further this issue and to
show that the application of the mathematical notion of com-
plete positivity should be used with care and that indeed one
can find explicit examples of open systems whose evolution
is not CP. However, on the contrary, we also prove that any
evolution always admits a Kraus-type decomposition, i.e., an
expression of the form

Lstdfrg = o
k

Mkst;rdrMk
†st;rd, s1d

where the Kraus matricesMkst ;rd depend on the initial den-
sity operatorr upon which they apply. Only when this de-
pendence drops out can one be sure that the evolution is truly
CP.

Let us begin by recalling the mathematical definition of
the set of quantum states for an arbitrary physical system[4]:
the setT +,1sHd of trace-class unit-trace self-adjoint linear
operators upon a complex separable Hilbert spaceH. This is
a convex set,1 but it is not a linear space. This is a relevant
feature often not duly considered. The reader may convince
himself very easily:m1r1+m2r2 is not a valid state forany
m1,m2. As a consequence, one cannot claim in a rigorous
mathematical sense that the evolution operatorLstd :T +,1

→T +,1 is linear, since for an operator to be linear its domain
must be a linear(sub)space[12]. At most, evolution opera-
tors preserve convexity, i.e.,Lstdfm1r1+m2r2g=m1Lstdfr1g
+m2Lstdfr2g for all r1,r2PT +,1sHd and all m1,m2P f0,1g
such thatm1+m2=1. This is how linearity is usually under-
stood when referring to quantum evolution(cf., e.g.,[13]).

As a first point, however, this distinction shows relevant
consequences for the mathematical usage of complete posi-
tivity, since this is a property to be applied tolinear opera-
tors, thus, in a rigorous sense, an evolution operator will
never be CP(cf., e.g.,[14,15] for the mathematical definition
of complete positivity). Complete positivity should be used
(and in fact it is used) in the following manner. A quantum
evolution operatorLstd :T +,1sHd→T +,1sHd is said to be CP

if its extensionL̃std :TsHd→TsHd is CP, whereTsHd denotes
the linear subspace of trace-class self-adjoint linear operators
on H.

Consequently, the question of whether a given evolution
operator admits more than one extension must be answered
in order for it to be CP in a meaningful way. This is solved
with the following result.

Proposition.Let L :C,A→C be a map from a convex
subsetC of a vector spaceA to itself. Then(i) if C is con-
tained in a subspaceB,A, L admits more than one linear
extension onA; (ii ) let heijiPN be elements ofC, if the linear
hull of heijiPN is A, i.e., Vheij=A, then any linear extension

L̃ of L is unique.
Proof. The first part can be easily proven, since ifL is

defined only on a subset contained in a subspaceB of A, its
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1Indeed, a convex cone in the set of trace-class self-adjoint linear
operators onH.
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action on the elements of a basis not contained in such a
subspaceB is not defined and can, therefore, be arbitrarily
defined.

For the second part, notice that, by hypothesis, one can
find xk such thatX=okxkek. The image ofX can also be
written as

LfXg = o
k

ykek. s2d

Let now L̃1 andL̃2 be two linear extensions ofL. Then,
for all XPA, we have

L̃1fXg = o
k

yk
s1dek, s3ad

L̃2fXg = o
k

yk
s2dek. s3bd

From the linearity, we can write

L̃1fekg = o
p

Jkp
s1dep, s4ad

L̃2fekg = o
p

Jkp
s2dep, s4bd

thus

ym
s1d = o

n

xnJnm
s1d , s5ad

ym
s2d = o

n

xnJnm
s2d . s5bd

Now notice that ifXPC, we will have ym
s1d=ym

s2d for all m,
that is,Jnm

s1d =Jnm
s2d for all XPC; but, sinceJs1d andJs2d do not

depend onX, we will have Jnm
s1d =Jnm

s2d for all XPA, i.e., L̃1

=L̃2.
h

Since our main concern refers to finite systems, we will
focus on algebras of complex matrices, i.e., the set of quan-
tum states will be the convex subset of unit-trace positive
complex matrices2 of dimensionN; the linear spaceA will be
the vector spaceMNsCd of complex matrices and the exten-

sion of the evolution operators will be linear mapsL̃std such

as L̃std :MNsCd→MNsCd.
On the other hand, in order to know whether a given

linear map is CP or not, one needs criteria of complete posi-
tivity, preferably of straightforward use. In this respect, we
have centered on the Jamiołkowski isomorphism
J :LfMNsCdg→MNsCd ^ MNsCd, where LfMNsCdg de-
notes the vector space of linear maps inMNsCd, defined by

JEfLg ; o
i,j=1

N

LfEijg ^ Eij , s6d

where Eij ;uilk j u and the subscriptE makes explicit refer-
ence to this choice of Weyl basisEij . This criterion then

establishes thatL is CP if and only ifJEfLg is positive.3

From a physical standpoint, interest in complete positivity
arises after showing that it is a necessary and sufficient con-
dition for a linear map to admit the Kraus decomposition
[17,18], i.e., the form given by

LfXg = o
k

MkXMk
†, s7d

where the set of so-called Kraus matriceshMkj is not unique.
This form plays a prominent role in disciplines like the
Foundations of Quantum Theory[5] and Quantum Informa-
tion [19]. Using the selected Weyl basisEij , the set of Kraus
matrices is determined byany square root of4 JEfLg*
=QQ†: the coordinates ofMp in the basisEij are the elements
of the pth column ofQ. Any other set of Kraus matrices can
be obtained with the same procedure though starting with

Q̃;QU, whereU is any arbitrary unitary matrix.
As a straightforward example, let us briefly discuss the

well-known depolarizing channel on qubits[19] Lfrg=mr
+fs1−md /2gI2 with mP f0,1g. This quantum evolution ad-

mits a unique linear extension given byL̃fXg=mX+fs1
−md /2gtrfXgI2, whereXPMNsCd, which after using the Ja-
miołkowski isomorphism yields the point spectrum ofJEfLg
given bys1−md /2 (triple) ands1+3md /2, thus it is positive,
henceL is CP. For the extreme casem=0, of interest for later
results, a posible set of Kraus matrices is given byMij
=s1/Î2dEij with i , j =1,2, since Q=s1/Î2dI4. But another

one can be found after usingQ̃=QU with

U =
1
Î21

1 1 0 0

0 0 1 − i

0 0 1 i

1 − 1 0 0
2 ,

M1= 1
2I2, M2= 1

2sx, M3= 1
2sy, and M4= 1

2sz, which straight-
forwardly drives one to

I2 =
1

2
sr + sxrsx + syrsy + szrszd. s8d

With these tools, we will then show that any quantum
evolution of a finite system always admits a Kraus-type de-
composition, i.e., a form like

Lstdfrg = o
k

Mkst;rdrMk
†st;rd. s9d

In general, four equivalent proofs can be given. For sim-
plicity, let us first focus on two-level systems, that is, on
qubits. LetLstd denote a general quantum evolution. Let us

consider the related linear map given byL̃rstdfXg
; trfXgLstdfrg, for all XPM2sCd. This maps all initial quan-

2Positive Hermitian semidefinite matrices.

3An accesible direct simple proof of this result can be found in
[16].

4As usual, * denotes complex conjugation. Note thatstricto sensu
Q is not the square root ofJEfLg* [20]; the difference introduced
for simplicity’s sake is just a matter of definition.
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tum states in the same stateLstdfrg at time t. Now L̃r is

clearly CP, sinceJEfL̃rgù0 and it admits a set of Kraus

matricesMkst ;rd, sinceJEfL̃rstdg* = Qst ;rdQ†st ;rd, thus

L̃rstdfXg = o
k

Mkst;rdXMk
†st;rd, s10d

which, when applied to quantum statessPT +,1sHd, reduces
to

L̃rstdfsg = o
k

Mkst;rdsMk
†st;rd s11d

and in particular whens=r, thus

L̃rstdfrg = rstd = Lstdfrg = o
k

Mkst;rdrMk
†st;rd s12d

for eachr.
Equivalently, if rstd;Lstdfrgù0, which is always the

case, one can find a matrixqst ;rd such that rstd
=qst ;rdq†st ;rd=qst ;rdI2q

†st ;rd and using Eq.(8)

Lstdfrg =
1

2
qst;rdsr + sxrsx + syrsy + szrszdq†st;rd,

s13d

which clearly shows a Kraus-type form.
A third more geometrical proof can be obtained working

in Bloch space[21,22], whose general structure combined
with general properties of quantum dynamical maps[23] al-
low us to view quantum evolutions as time-continuous
curves in a convex compact subset ofRN2−1, whereN stands
for the dimension of the quantum system. The result then
follows from noticing that (i) any such time-continuous
curve can be understood as the limit of a polygonal line, as in
Fig. 1, and(ii ) each straight segment of the approximating
polygonal line is a CP map given by

Lkstd =
t − tk−1

tk − tk−1
rstk−1d +

tk − t

tk − tk−1
rstkd

when tP ftk−1,tkg, which can be viewed as ageneralized de-
polarizing channel. This channel is proven to be CP upon a
direct application of the preceding criterion. It is clear that
these generalized depolarizing channels which build up the

whole evolution depend on the initial point of the Bloch
space, i.e., a different initial state implies different general-
ized depolarizing channels, hence relation(1).

The fourth proof was outlined in[24], though the authors
do not make explicit reference to the dependence of the
Kraus matrices on the initial density operator. The generali-
zation to any finite-dimensional quantum system is straight-
forward once one realizes that in the first, third, and fourth
proofs, the dimension of the system was not used at all.

Note, however, that one cannot conclude from this result
that any quantum evolution is CP; only when the dependence
of the Kraus matrices on the initial stater drops out is com-
plete positivity assured. It is clear that there are circum-
stances in which this dependence is spurious, as in unitary
evolutions or in the preceding depolarizing channel. But one
can also find examples in which the evolution cannot adopt a
truly Kraus decomposition, i.e., it is not CP. Let us consider
a two-level system(usually considered as representing an
atom) interacting with squeezed light, whose frequency is
tuned to that of the atomic transition. It can be shown that the
evolution of such an atomic system is given, in Bloch de-
composition language[21,22], by [25]

dxstd
dt

= − gxxstd, s14ad

dystd
dt

= − gyystd, s14bd

dzstd
dt

= − gzzstd − g, s14cd

where xstd, ystd, and zstd denote the Bloch vector compo-
nents of the atomic system, andgx, gy, gz, andg are positive
constants(cf. [25] for their origin and meaning). After a little
bit of algebra, one finds that this evolution admits the fol-
lowing linear extension in the Weyl basisE11= 1

2sI2+szd,
E22= 1

2sI2−szd, E12= 1
2ssx+ isyd, andE21=E12

† :

L̃stdfE11g = Fe−gztS1 +
g

gz
D −

g

gz
GE11, s15ad

L̃stdfE22g = Fe−gztS1 −
g

gz
D +

g

gz
GE22, s15bd

L̃stdfE12g =
e−gxt + e−gyt

2
E12 +

e−gxt − e−gyt

2
E21, s15cd

L̃stdfE21g =
e−gxt − e−gyt

2
E12 +

e−gxt + e−gyt

2
E21. s15dd

After applying the Jamiołkowski isomorphism, one finds

JEfL̃stdgù” 0, since two of its eigenvalues are ±se−gxt

−e−gytd /2, one of which is clearly negative providedgx

Þgy. Thus the unique linear extension of such a quantum
evolution is not CP.

As a conclusion, we claim that complete positivity should
only be applied to quantum evolution in the sense explained

FIG. 1. Schematic construction of an approximating polygonal
line.
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above, i.e., to the unique linear extension of the quantum
evolution map. This stems from the fact that the set of quan-
tum states is not a linear space and, thus, rigorous definitions
cannot be applied. Notice that this also entails a revision of
the physical justification of complete positivity alluded to in
the third paragraph: the mathematical definition is not an
exact translation of this physical picture. As a possible clever
remark, it can be alleged that working in the Heisenberg
picture, where observables do evolve, i.e., where self-adjoint
operators are time-dependent, the alluded restriction of the
application of complete positivity disappears. But let us re-
member that this representation rests on the duality between
the space of all trace-class self-adjoint operatorsTsHd and
the space of linear operatorsLsHd (cf. [4]), so the criticism
still holds. One may object that this is too mathematically
rigorous, but notice that from a minimal set of physical axi-
oms for quantum theory[26] only those trace-class unit-trace
self-adjoint operators are physically justified as quantum
states, i.e., those belonging toT +,1sHd. However, it must
always be present that a Kraus-type form, which shows a
physical origin[5,17], can always be ascribed to such quan-
tum evolutions. Only in certain circumstances do these evo-
lutions adopt a truly Kraus decomposition, thus being CP. In
this sense, the question of initial correlations and complete
positivity has been reformulated, and the connection between
them and the dependence of Kraus matrices upon initial
states appears as a new possibility to understand the role of
those initial correlations.

This result also entails relevant consequences for the
structure of the evolution equation of quantum states. Lind-
blad’s theorem[11,27] establishes such a structure in the
case of Markovian evolutions under the complete positivity
hypothesis, namely

drstd
dt

= − ifH,rstdg + Cfrstdg −
1

2
hCfIg,rstdj, s16d

where C denotes a CP map. From our results and recon-
structing the proof of this theorem as in[7], the complete
positivity assumption may drop out and still we have a struc-
ture similar to Eq.(16) for any Markovian evolution,

drstd
dt

= − ifH,rstdg + C„rstd…frstdg −
1

2
hC„rstd…fIg,rstdj,

s17d

but now the mapCsrd depends on the density operator and
admits a Kraus-type form,

CsXdfXg = o
k

MksXdXMk
†sXd. s18d

Note that again the study of the conditions upon which the
dependence of the Kraus matrices upon the initial state ap-
pears is the key concept. The case of non-Markovian evolu-
tion still awaits equal exploration.

We conclude with Pechukas[1] (cf. also[2,3]) that quan-
tum evolution need not be completely positive. Furthermore,
stricto sensu, it is never CP, though the role of the initial
correlations with the environment should be further eluci-
dated in the form of the dependence of the Kraus matrices
upon the initial state of the system.

Though we have dealt only with finite systems, we are
convinced that the generalization to infinite-dimensional sys-
tems is just a technical matter and there should be no physi-
cal difference in the conclusions.
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