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Evolution of any finite open quantum system always admits a Kraus-type representation,
although it is not always completely positive
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We argue that a full account of the set of quantum states prevents one from applying the rigorous definition
of complete positivity. However, we give three equivalent proofs that any quantum evolution of a finite system
always admits a Kraus-type decomposition, i.e., a Kraus decomposition but with Kraus matrices dependent on
the initial state upon which they apply.
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Initial correlations between an open quantum system and Let us begin by recalling the mathematical definition of
its surrounding environment have traditionally played a re-the set of quantum states for an arbitrary physical sy$tdm
markable role to elucidate whether the reduced evolution ofthe set7*1($)) of trace-class unit-trace self-adjoint linear
the open system is completely positiv€P) or not [1-3]. operators upon a complex separable Hilbert sgacehis is
This property appears as an important ingredient in the studgt convex set,but it is not a linear spaceThis is a relevant
of general evolutiongboth unitary and projectiveof this  feature often not duly considered. The reader may convince
kind of physical systenfd—7]. himself very easily:;uip;+uop, is not a valid state foany

Until recently, these initial correlations were thought to beu4, u,. As a consequence, one cannot claim in a rigorous
unsurpassable for the evolution to be CP in a totally generahathematical sense that the evolution operatet):7*1
sense[8]. However, some results have been found showing— 7+ is linear, since for an operator to be linear its domain
that this is not the case in particular situations, i.e., that demust be a lineafsubspace[12]. At most, evolution opera-
spite the initial correlations the evolution is C®,10]. tors preserve convexity, i.eA(t)[w1p1+ up2]= i A(t) 1]

The physical picture where complete positivity in prin- + u,A(t)[p,] for all p;,p,e 754$) and all uy, u, [0,1]
ciple arises is surprisingly simple: consider a system and itSuch thatu,+u,=1. This is how linearity is usually under-
environment with no interaction between them; then undektood when referring to quantum evoluticef., e.g.,[13]).
the assumption of no evolution for the latter, the joint system  As a first point, however, this distinction shows relevant
must evolve from a valid stat@ensity operatgrto another  consequences for the mathematical usage of complete posi-
valid state(density operatgr And one expects that this must tivity, since this is a property to be applied linear opera-
be so even in the presence of initial correlations betweerors, thus, in a rigorous sense, an evolution operator will
them. We will argue that despite this crystal-clear reasoningnever be CRcf., e.g.,[14,15 for the mathematical definition
it does not imply the complete positivity of quantum evolu- of complete positivity. Complete positivity should be used

tions, as suggested in some placefs, e.g.,[11]). (and in fact it is useplin the following manner. A quantum
We devote this work to elucidate further this issue and toevolution operator\ (t): 7% $) — 7 () is said to be CP

show that the application of the mathematical notion of com-, . A ;
o ) ) if its extensionA(t): 7($) — 7($) is CP, wherel($)) denotes
plete positivity should be used with care and that indeed on e linear subspace of trace-class self-adjoint linear operators

can find explicit examples of open systems whose evolutior
is not CP. However, on the contrary, we also prove that an)(/)n 9. . . .
' ’ Consequently, the question of whether a given evolution

evolution always admits a Kraus-type decomposition, i.e., an ; :
- operator admits more than one extension must be answered
expression of the form

in order for it to be CP in a meaningful way. This is solved
with the following result.
ALe] = % Myt )P Mt p), (1) Proposition.Lgt A:CCA—C be a map from a convex
subsetC of a vector spac@! to itself. Then(i) if C is con-
where the Kraus matricéd,(t; p) depend on the initial den- tained in a subspac® C 2, A admits more than one linear
sity operatorp upon which they apply. Only when this de- extension or®; (i) let{e}; . be elements o€, if the linear
pendence drops out can one be sure that the evolution is trulull of {&}icx is 2, i.e., V{g}=%, then any linear extension
CP. A of A is unique.
Proof. The first part can be easily proven, sinceAifis
defined only on a subset contained in a subspac# £, its
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action on the elements of a basis not contained in such astablishes thai is CP if and only if 7{{A] is positive?’

subspace® is not defined and can, therefore, be arbitrarily From a physical standpoint, interest in complete positivity

defined. arises after showing that it is a necessary and sufficient con-
For the second part, notice that, by hypothesis, one cadition for a linear map to admit the Kraus decomposition

find x such thatX=Zxe,. The image ofX can also be [17,18, i.e., the form given by

written as

ADX] = X MM, (7)

A[X] = % Yi€- 2 K

where the set of so-called Kraus matri¢bs} is not unique.
Let now A; and A, be two linear extensions of. Then,  This form plays a prominent role in disciplines like the

for all X e 2, we have Foundations of Quantum Theof$] and Quantum Informa-
tion [19]. Using the selected Weyl badi§, the set of Kraus

AlX] =D ye,, (39  matrices is determined bwny square root of Je[A]*
k =QQ": the coordinates a¥l, in the basid; are the elements

~ _ 2 of the pth column ofQ. Any other set of Kraus matrices can
AZ[X]_%yﬁ )ek' (3D) be ob{)ained with th(g sa|3r/1e procedure though starting with
QEQU, whereU is any arbitrary unitary matrix.
From the linearity, we can write As a straightforward example, let us briefly discuss the
~ @ well-known depolarizing channel on qubif9] Alp]=up
Al[ek]zz‘]kpep' (48 4[(1-w)/2]1, with x<[0,1]. This quantum evolution ad-
mits a unique linear extension given b~y[X]:,uX+[(1
Ale]= E I, (4b) - )/2]tr[X]l,, whereX e My(C), which after using the Ja-
miotkowski isomorphism yields the point spectrum @ A ]
thus given by (1-u)/2 (triple) and(1+3w)/2, thus it is positive,
henceA is CP. For the extreme cage=0, of interest for later
<1)—Exn\]gl%, (58  results, a posible set of Kraus matrices is given My
—(1/\2)EIJ with i,j=1,2, smceQ (1/\2)ﬂ4 But another
Y2 = %32 (5b)  one can be found after usir@=QU with
1 1 00
Now notice that ifX e C, we will havey(l)—y for all m, 110 o0 1 -i
that is,JV =32 for all X e C; but, sinceJV andJ® do not U= Slo o1 |
depend orX, we will haveJ =32 for all Xe 2, i.e., A A L -10 0

=A,.
O M;=3l My=305 M3=30,, andM,=50,, which straight-
Since our main concern refers to finite systems, we willforwardly drives one to
focus on algebras of complex matrices, i.e., the set of quan-
tum states will be the convex subset of unit-trace positive
complex matricesof dimensionN; the linear spac@l will be
the vector spacé(C) of complex matrices and the exten-

1
Ip= E(p + oypox+ oypoy + TP0). (8)

] . i i ~ With these tools, we will then show that any quantum
sion of the evolution operators will be linear mapft) such  eyolution of a finite system always admits a Kraus-type de-

as?\(t):MN(‘C)HMN(C). composition, i.e., a form like
On the other hand, in order to know whether a given .
linear map is CP or not, one needs criteria of complete posi- A®)[pl = % M (t; p)pMy(t; p). 9

tivity, preferably of straightforward use. In this respect, we

have centered on the Jamiotkowski isomorphism |n general, four equivalent proofs can be given. For sim-
T LIMN(C)] = MN(C) @ My(C), where L[M\(C)] de-  piicity, let us first focus on two-level systems, that is, on
notes the vector space of linear mapshify(C), defined by  qubits. LetA(t) denote a general quantum evolution. Let us

N consider the related linear map given bﬁp(t)[x]
JdA]= > A[Ej]® Ej, (6) =tr[XJA(t)[p], for all X e M(C). This maps all initial quan-
ij=1
where E;; =|i)(j| and the subscripE makes explicit refer- 3An accesible direct simple proof of this result can be found in

ence to this choice of Weyl bask;. This criterion then [18: o _
As usual, * denotes complex conjugation. Note tstaicto sensu

- Q is not the square root Qfg[A]* [20]; the difference introduced
%positive Hermitian semidefinite matrices. for simplicity’s sake is just a matter of definition.
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whole evolution depend on the initial point of the Bloch
space, i.e., a different initial state implies different general-
ized depolarizing channels, hence relati@n
The fourth proof was outlined if24], though the authors
do not make explicit reference to the dependence of the
Kraus matrices on the initial density operator. The generali-
zation to any finite-dimensional quantum system is straight-
forward once one realizes that in the first, third, and fourth
; proofs, the dimension of the system was not used at all.
' Note, however, that one cannot conclude from this result
p0 that any quantum evolution is CP; only when the dependence
) . o of the Kraus matrices on the initial statedrops out is com-
_ FIG. 1. Schematic construction of an approximating polygonalmete positivity assured. It is clear that there are circum-
line. stances in which this dependence is spurious, as in unitary
evolutions or in the preceding depolarizing channel. But one
tum states in the same statdt)[p] at timet. Now 7\,, is can also find examples in which the evolution cannot adopt a

clearly CP, sincejE[K 1=0 and it admits a set of Kraus truly Kraus decomposition, i.e., itis not CP. Let us co_nS|der
P a two-level system(usually considered as representing an

matricesMy(t; p), since Je[A,(0)]* = Q(t; p)Q'(t; p), thus atom) interacting with squeezed light, whose frequency is
~ B _ o tuned to that of the atomic transition. It can be shown that the
A,OIX] ‘% Mi(t; ) XM(t; p), (10 evolution of such an atomic system is given, in Bloch de-
composition languagf21,22, by [25]
which, when applied to quantum staies 7 *%($), reduces dx(®)
to TR »X(), (149
A Oo] = 2 My(t; p)oM{(t: p) (12)
k e (14b
and in particular whemr=p, thus dt Kie
A 0p] = p() = AD[p] = 2 Myt p)pM{(t:p)  (12) dzt)
’ C ‘ — ==y, (149

for eachp.
Equivalently, if p(t)=A(t)[p]=0, which is always the
case, one can find a matriq(t;p) such that p(t)

where x(t), y(t), and z(t) denote the Bloch vector compo-
nents of the atomic system, and y, v,, andy are positive
constantgcf. [25] for their origin and meaningAfter a little

— . Tre. — . Tre- H
=a(t:p)a'(t:p) =q(t; p)Ioa'(t; p) and using Eq(8) bit of algebra, one finds that this evolution admits the fol-
1 . lowing linear extension in the Weyl ba5511=%(12+02),
A®lp] = EQ(UP)(P + oypox+ oypoy + apa)q'(t;p), EZZZ%(HZ_UZ)! E12:%(O-X+ig-y), andE,;= EIZ:
(13

R()[Ex] = [e‘ﬁ‘(l + 1) - 1] En (153
which clearly shows a Kraus-type form. Y2/ Ve
A third more geometrical proof can be obtained working
in Bloch space[21,22, whose general structure combined ADIE,.] = —yzt<1 _l) + 2 E 15b
with general properties of quantum dynamical m{2g al- (O[Ez]= | e Y, 22 (150

low us to view quantum evolutions as time-continuous
curves in a convex compact subsetdf -1, whereN stands

for the dimension of the quantum system. The result then
follows from noticing that(i) any such time-continuous
curve can be understood as the limit of a polygonal line, as in ~ e W — e W e W+ e

Fig. 1, and(ii) each straight segment of the approximating AM[Ey]= Eip+ E,;. (15d)
polygonal line is a CP map given by 2 2

Yz

AM[E] =S

MW+ e Nt e W — e Nt

> 12t > 215

(150

After applying the Jamiotkowski isomorphism, one finds

p(t) Je[A(t)]#0, since two of its eigenvalues are(ef”!
-e"Y/2, one of which is clearly negative provideg,

whent e [t,_1,t], which can be viewed asgeneralized de-  # vy,. Thus the unique linear extension of such a quantum

polarizing channel This channel is proven to be CP upon a evolution is not CP.

direct application of the preceding criterion. It is clear that As a conclusion, we claim that complete positivity should

these generalized depolarizing channels which build up thenly be applied to quantum evolution in the sense explained

t—tyy t —t
A(t) = p(t-1) +
te =t te =t
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above, i.e., to the unique linear extension of the quantum dp(t) ) 1

evolution map. This stems from the fact that the set of quan- at i[H,p(0]+W[p(t)] - E{W[HJ,P(U}, (16)

tum states is not a linear space and, thus, rigorous definitions

cannot be applied. Notice that this also entails a revision ofvhere ¥ denotes a CP map. From our results and recon-
the physical justification of complete positivity alluded to in Structing the proof of this theorem as fi], the complete
the third paragraph: the mathematical definition is not arPOStivity assumption may drop out and still we have a struc-
exact translation of this physical picture. As a possible clever'™® similar to Eq(16) for any Markovian evolution,

remark, it can be alleged that working in the Heisenberg dp(t) _ . 1

picture, where observables do evolve, i.e., where self-adjoint ? = ~i[H.pO1+ ¥ (p(O)pt)] - E{W(p(t))[ﬂ]’p(t)}’
operators are time-dependent, the alluded restriction of the 17)
application of complete positivity disappears. But let us re-

member that this representation rests on the duality betwee?tit now the map¥(p) depends on the density operator and
the space of all trace-class self-adjoint operatfi®) and  admits a Kraus-type form,

thg space of linear opergtoﬁ(sﬁ) (cf: [4.1]), so the cr|t|C|s'm PX[X] =S Mk(X)XME(X). (18)
still holds. One may object that this is too mathematically k

rigorous, but notice that from a minimal set of physical axi- N h in th dv of th diti hich th
oms for quantum theor§26] only those trace-class unit-trace ote that again the study of the conditions upon which the
dependence of the Kraus matrices upon the initial state ap-

self-adjoint operators are physically justified as quantum . .
states ) " tr?ose belonging t%+'1(5§))/ JHowever it ?nust pears is the key concept. The case of hon-Markovian evolu-

! tion still awaits equal exploration.
alwa)_/s be _p_resent that a Kraus-type fo_rm, which shows a We conclude with Pechukd] (cf. also[2,3]) that quan-
physical origin[5,17], can always be ascribed to such quan-y,, eyolution need not be completely positive. Furthermore,
tum evolutions. Only in certain circumstances do these evosyricto sensyit is never CP, though the role of the initial
lutions adopt a truly Kraus decomposition, thus being CP. Icorrelations with the environment should be further eluci-
this sense, the question of initial correlations and completgated in the form of the dependence of the Kraus matrices
positivity has been reformulated, and the connection betweefipon the initial state of the system.
them and the dependence of Kraus matrices upon initial Though we have dealt only with finite systems, we are
states appears as a new possibility to understand the role ebnvinced that the generalization to infinite-dimensional sys-
those initial correlations. tems is just a technical matter and there should be no physi-
This result also entails relevant consequences for theal difference in the conclusions.
structure of the evolution equation of quantum states. Lind- We acknowledge financial support from the Spanish Min-
blad’s theorem[11,27 establishes such a structure in theistry of Science and Technology through Project No.
case of Markovian evolutions under the complete positivityFIS2004-01576. M.F. also acknowledges financial support
hypothesis, namely from Oviedo University(Ref. No. MB-04-514.
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