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The interaction of a bichromatic quantized field with three-level atoms in aL configuration is analyzed. We
calculate the correlation functions of the field emitted by the atoms when the driven field is in a coherent state.
We consider the cases where the atoms are inside and outside a cavity.
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I. INTRODUCTION

When we illuminate an atom with light which has a fre-
quency that matches the frequency of a particular atomic
transition, a resonance condition occurs and there is larger
fluorescence. Electromagnetically induced transparency
(EIT) [1] is a technique that can be used in certain cases to
eliminate this fluorescence. This means transforming an oth-
erwise opaque medium into a transparent one. This phenom-
enon has been observed in systems of three-level atoms in a
L configuration, where the two quasidegenerate lower levels
may perform optical transitions to the upper level by inter-
acting with the electromagnetic field. The physical explana-
tion of this phenomenon is related to the existence of a dark
state, which is a state of the atom that is decoupled from the
electromagnetic field when resonance occurs. This dark state
is given by a certain linear combination of the two lower
levels [2]. If the atom is in this state, the absorption prob-
ability is zero. For real atoms the radiative spontaneous
emission rates are different from zero. However, if we can
neglect the decoherence between the two lower levels, we
may show the very interesting property that the steady state
of this system is still the same dark state[3].

When the system is not exactly in a dark state, radiation is
emitted from the atoms. The steady-state quadratures of the
irradiated fields for driven three-level atoms in aL configu-
ration have been extensively studied. Most of these studies
were oriented in finding squeezing in one of the quadratures.
For two-level atoms, the largest squeezing is found in the
out-of-phase quadrature of the fluorescence field and is pro-
portional to the difference between the upper-level popula-
tion and the probability of a transition between the two levels
[4]. In EIT, the upper-level population and the dipole mo-
ments between the upper and lower levels vanish at reso-
nance and there is no fluorescence. Nevertheless, squeezing
is expected[5,6] when the system has rather asymmetric
parameters and is outside the two-photon resonance. Squeez-
ing is also expected when the two lower levels are in reso-
nance with the upper level but decoherence among them is
so high that the atom behaves almost as a two-level atom[7].
From these considerations it appears that coherence between
the two lower levels, which is responsible for the EIT phe-

nomena, excludes the appearance of significant squeezing.
However, coherence between atomic levels may be useful in
enhancing squeezing as was demonstrated recently by Li,
Gao, and Zhu[8]. They numerically studied the steady-state
spectrum of the optimum phase quadrature in the resonance
fluorescence of a coherently driven four-level atom. They
found quadrature squeezing for a range of spectrum frequen-
cies and related enhancing of squeezing to the coherence of
the two upper levels.

In a recent paper[9], an experiment to measure the spec-
trum of the intensity-intensity correlations of the probe and
pump fields in EIT was reported. The authors found, at reso-
nance, super-Poissonian statistics in the intensity fluctuations
and that the two initially uncorrelated fields become corre-
lated after interacting with the atoms. In this paper we ana-
lyze in detail the steady-state spectrum of the correlation
function fluctuations of the field emitted by three-level atoms
in a L configuration interacting with two fields(pump and
probe) modes. We focus our analysis on the case ofL sys-
tems with intrinsic features. By this we mean that the two
Rabi frequencies associated with the two optical transitions
are equal, the two spontaneous emission rates from the upper
to the lower levels are equal, and the decoherence of the two
lower levels is small compared with that due to the sponta-
neous emission rates. In Sec. II we obtain analytical expres-
sions for the steady-state spectrum of the correlation func-
tions of the resonance fluorescence emitted by the atom. We
study two cases:(a) each mode of the field(pump and probe)
is in resonance with an optical transition of the atom, and(b)
only one mode(pump field) is in resonance and the other
(probe field) is scanned in frequency. In Sec. III we again
consider the two cases of Sec. II and numerically study the
correlation functions of the output field when the atoms are
inside a two-mode cavity, which is fed by input coherent-
state fields. In Sec. IV we present our conclusions.

II. FLUORESCENCE FIELD CORRELATIONS

Consider the atom as if it were a three-level atom in aL
configuration(see Fig. 1). The two lower-energy levels are
designated byu1l and u2l while the upper level is designated
by u0l. Levels 1 and 2 are quasidegenerate, level 1 is meta-
stable, and electromagnetic optical transitions from the upper
level to levels 1 and 2 are allowed. This is a good approxi-
mation, for example, in experiments involving85Rb vapor,
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where electromagnetic transitions among the ground state
su5S1/2,F=3l , u5S1/2,F=2ld and the excitedsu5P3/2,F8=3ld
levels are important.

The semiclassical atom-field interaction Hamiltonian, in
the rotating-wave approximation and in the interaction rep-
resentation, is given by[10]

Hint = "sg1ŝ108 a1
*eid1t + g2ŝ208 a2

*eid2t + H.c.d + Hres, s1d

where ŝi j8 = uilk j u, and a1 and a2 are the amplitudes of the
field modes with frequenciesv1 andv2, which couple with
the transitions among levels 1,0 and 2,0, respectively.d1
=v1−v01 andd2=v2−v02 are the frequency detunings of the
fields with respect to the atomic transitions with frequency
v01 andv02, respectively.Hresdescribes the interaction of the
atom with the modes of the quantized field and will be
treated as a reservoir.

We consider an approach similar to the usual one used in
resonance fluorescence[11] of two-level atoms. The field is
decomposed into two: the initial field plus the irradiated field
from the atoms. The far-field expression of the latter depends
on the dipole operatorsŝ0i8 and is given by

Êsr,td = h1ŝ018 st − r/cd + h2ŝ028 st − r/cd + H.c., s2d

where

hi = −
v0i

2

4pe0c
2r3fsp0i 3 r d 3 r g, s3d

p0i being the atom dipole moment,e0 the electric permeabil-
ity and r the position vector. We want to note that if the
initial quantum state that describes the pump and probe fields
is a product of coherent states with amplitudesa1 anda2, the
results obtained using the above semiclassical formalism co-
incide with those obtained from the quantum formalism
[12,13].

Following the usual resonance fluorescence approach for
the time evolution of the Heisenberg operators, the reservoir
operators inHres are interpreted as Langevin fluctuation
operators, analogous to the Langevin fluctuation forces in
classical statistical mechanics. Making the additional trans-
formation ŝ0j =ŝ0j8 expsid jd and ŝ12=ŝ128 exp isd1−d2d, the

following Heisenberg-Langevin equations for the atom and
field operators are obtained:

d

dt
ŵ1 =

1

3
s− 2G1 − G2ds1 + ŵ1 + ŵ2d − 2iV1ŝ01 + 2iV1ŝ10

− iV2ŝ02 + iV2ŝ20 + f̂w1
, s4ad

d

dt
ŵ2 =

1

3
s− G1 − 2G2ds1 + ŵ1 + ŵ2d − iV1ŝ01 + iV1ŝ10

− 2iV2ŝ02 + 2iV2ŝ20 + f̂w2
, s4bd

d

dt
ŝ10 = S−

G1 + G2

2
+ id1Dŝ10 + iV1ŵ1 − iV2ŝ12 + f̂10,

s4cd

d

dt
ŝ20 = S−

G1 + G2

2
+ id2Dŝ20 + iV2ŵ2 − iV1ŝ21 + f̂20,

s4dd

d

dt
ŝ21 = s− G12 − idrdŝ21 − iV1ŝ20 + iV2ŝ01 + f̂21, s4ed

whereŵj =ŝ00−ŝ j j anddr =d1−d2 and we define the phases
such thatVi =giai is real and positive.G1 and G2 are the
decaying constants from levelu0l to levels u1l and u2l, re-
spectively. We also have included a phenomenological phase
decay term,G12, which accounts for the loss of coherence
among the lower levels mainly due to collisions. We also

added the Langevin fluctuation operatorf̂12, associated with
the decay termG12, in order to satisfy the fluctuation-
dissipation theorem and maintain the correct commutation
relations of the operators.

The Langevin fluctuation operatorsf̂ ’s are assumed to be
d correlated, with zero mean:

k f̂ xl = 0, s5d

k f̂ xstd f̂ yst8dl = Dxydst − t8d, s6d

wherex andy label the fluctuation operators. It will be useful
to rewrite Eqs.(4) and the Hermitian conjugate of Eqs.
(4c)–(4e), in a more compact form, as a matrix equation

d

dt
ô = A · ô + F̂ , s7d

where the column vectorsô and F̂ have components

ôT = sŝ02,ŝ01,ŝ12,ŵ1,ŵ2,ŝ21,ŝ10,ŝ20d,

F̂T = s f̂02, f̂01, f̂12, f̂w1
, f̂w2

, f̂21, f̂10, f̂20d, s8d

and the matrixA is easily obtained from Eqs.(4) and their
Hermitian conjugates.

The atom diffusion coefficient can be obtained using the
generalized Einstein relations[14]. The nonzero diffusion
coefficients are given by

FIG. 1. An atom inL configuration.G1 andG2 represent radia-
tive decaying constants.G12 represents a phenomenological phase
decay.
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Dw1w1
= s4G1 + G2dkŝ00l,

Dw2w2
= sG1 + 4G2dkŝ00l,

Dw1w2
= Dw2w1

= s2G1 + 2G2dkŝ00l,

Dw1s01
= Ds10w1

* = s2G1 + G2dkŝ01l,

Dw1s02
= Ds20w1

* = s2G1 + G2dkŝ02l,

Dw2s01
= Ds10w2

* = sG1 + 2G2dkŝ01l,

Dw2s02
= Ds20w2

* = sG1 + 2G2dkŝ02l,

Ds10s01
= G1ks00l + sG1 + G2dks11l,

Ds20s02
= G2ks00l + sG1 + G2dks22l,

Ds01s12
= Ds21s10

* = G12kŝ02l,

Ds02s21
= Ds12s20

* = G12kŝ01l,

Ds12s21
= G1kŝ00l + 2G12kŝ11l,

Ds21s12
= G2kŝ00l + 2G12kŝ22l,

Ds10s02
= Ds20s01

* = sG1 + G2 − G12dks12l. s9d

The steady-state solutions of the operator equations for
the average of the variables are obtained by setting the time
derivatives equal to zero and using the fact that the average
of the Langevin fluctuation forces is zero. In this case we
have an algebraic linear system of equations that can be
solved by a straightforward calculation. The general solution
of this system of equations is given in the Appendix.

The absorption coefficient of the fieldi is proportional to
the imaginary part ofsi0. Using Eq.(A3) of the Appendix
and in the case ofd1=0 andG12,d2!V1,V2 we have

Imss20d <
G2V1

2V2SG12 +
sG1 + G2dd2

2

2sV1
2 + V2

2dD
sV1

2 + V2
2dsG2V1

2 + G1V2
2d

. s10d

In this case the absorption is zero if we do not have any
source of decoherence in the lower levelssG12=0d and d2

=0. In Fig. 2 we show a typical EIT absorption curve, when
the pump(field 1) is in resonancesd1=0d and the probe(field
2) frequency is scanned.

We are mostly interested in calculating the spectrum of
the field quadrature correlation functionsDYu

i svd and
DCsu ,f ,vd, defined as

DYu
i svd =E

−`

`

dteivtk:Ŷu
i std,Ŷu

i st + td:l, s11d

DCsu1,u2,vd =E
−`

`

dteivtk:Ŷu1

1 std,Ŷu2

2 st + td:l, s12d

wherek:Â,B̂:l=k:ÂB̂:l−kÂlkB̂l , : . . . : meaning normal order-
ing. The normal ordering we choose here is the one shown in
the components of the vector operators defined in Eq.(8).
The u quadrature of the field is given by

Ŷu
i std = fÊis+dstdexpsiud + Êis−dexps− iudg/hi , s13d

where Êis+d, ŝ0i and Êis−d, ŝi0 are the operators for the
positive- and negative-frequency parts of theith mode of the
radiated field.

The dynamics of fluctuations around the steady state is
independent of the initial conditions. Therefore, we can use
Fourier transforms to solve Eqs.(4) for the operatorsŝi j as a
function of the Fourier transforms of the Langevin fluctua-
tion operators. Taking the Fourier transform of Eq.(7), we
obtain the matrix equation

ôsvd = siv1 − Ad−1F̂svd, s14d

where ôisvd=s1/Î2pde−`
` ôistdexpsivtddt and F̂isvd

=s1/Î2pde−`
` F̂istdexpsivtddt are the Fourier transforms of

ôistd and F̂istd, respectively.
The Fourier transforms of the quadrature autocorrelation

function DYu
i svd and of the quadrature probe-pump correla-

tion function DCsu ,f ,vd may be obtained through linear
combinations of functionsSijsvd, which are the Fourier
transforms of the two-time atom operator correlation func-
tions. They may be obtained using the Wiener-Khinchine
theorem and are given by[10]

kôisvdôjsv8dl = Sijsvddsv + v8d. s15d

From Eq.(14) we may easily calculate the functionsSijsvd:

Ssvd = sA + iv1d−1 ·D · sA† − iv1d−1, s16d

whereDdsv+v8d=kF ·FTl. The components of the diffusion
matrix D are the diffusion coefficients given in Eq.(9).

Using these results, we obtain the analytical solution for
the spectrum of quadrature correlation functions:

FIG. 2. EIT absorption curve. The parameters areG12=0, V1

=V2=2G, andd1=0.
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DYu
2svd = S11svdexpsi2ud + S88svdexp −si2ud + 2S18svd

s17d

and

DCsu1,u2,vd = S12svdeisu1+u2d + S78svde−isu1+u2d

+ S17svdeisu2−u1d + S28svdeisu1−u2d. s18d

In the Appendix we give some general results for these cor-
relations.

When the system is in resonance andG12=0, it is easy to
see from Eq.(A5) of the Appendix that the steady state is the
dark state[2]

uDSl =
V2u1l − V1u2l
ÎuV1u2 + uV2u2

. s19d

Therefore, in this situation, the medium is completely trans-
parent andDCsu1,u2,vd andDYu

i svd vanish, as can be easily
seen from Eqs.(A9) and (A10).

A. Observation at the laser frequency

We start by studying the spectrum of the correlation func-
tions at the laser frequency—that is, whenv=0.

When the system is in resonance andG12.0 the correla-
tions are different from zero. In Eqs.(A9) and (A10) of the
Appendix we give general results for the correlations atv
=0 and forG12!G1,G2. We consider here the interesting and
special case whenV1=V2=V, G1=G2=G andG12!G:

DYu
2sv = 0d = DYu

1sv = 0d

=
G12

2uVu2G2fuVu2 + 2G2 + suVu2 − G2dcoss2udg,

s20d

DCsu1,u2,v = 0d =
G12

2uVu2G2fs2uVu2 − G2dcosu1cosu2

+ G2sin u1sin u2g. s21d

We can easily see thatDYu
i sv=0d is always positive.

Therefore, there is no squeezing at the frequency of the laser
in any quadratureYu

i sv=0d.
In the case of small fluctuations, the spectrum of the

quadrature correlation functions in phase with the fieldssu
=0d is approximately proportional to the Fourier transforms
of the intensity-intensity correlations. This means that
DY0

2svd in Eq. (20) is proportional to the Fourier transform
of the field intensity autocorrelation andDCs0,0,vd in Eq.
(21) is proportional to the Fourier transform of the probe-
pump intensity correlation. These quantities have been re-
cently measured in laboratory[9].

From Eq.(21), we easily see that forG,Î2uVu, the spec-
trum of the probe-pump intensity correlation atv=0, which
is proportional to DCs0,0,0d, is positive, while for
G.Î2uVu, these correlations are negative. If there is no
dampingsG=0d or dephasingsG12=0d, the system(unless it
would be prepared in the dark state) makes Rabi oscillations

between the stateu0l and a state perpendicular to the dark
state, with a frequencyÎ2uVu [2]. Using this fact, the results
for the correlation might be explained as follows: When
G12=0 the steady state is a dark state and the correlation is
zero. WhenG12.0, the system is most of the time in the
dark state but from time to time a fluctuation causes the atom
to leave it. Before it goes back to the dark state, in
the typical time 1/G, it tries to visit the stateu0l with a
frequencyÎ2uVu. WhenG,Î2uVu, the atom visits the state
u0l, on average, more than once, emitting photons to both
modes of the field, which should then be positively corre-
lated. WhenG.Î2uVu, the atom does not have time to make
a complete transition to the stateu0l and should emit less
than one photon, on average, to one of the fields. In this case,
the correlation is negative. AsG12!G the absolute value of
the correlations increases linearly withG12, as is shown in
Eqs.(20) and(21), due to the increasing probability to leave
the dark state, afterwards it goes through an extremum and
then it decreases as the dissipation process begins to become
important. Figures 3(a) and 3(b) show how the normalized
probe-pump correlation

DCN = DC/Îs1 + DY1ds1 + DY2d s22d

varies withG12, for V=G /2 andV=2G, respectively.
We now consider the case when the pump field is in reso-

nancesd1=0d and study the correlation functions as we vary
the detuning,d2, of the probe field. In Eqs.(A11) and(A12)
of the Appendix we give the correlation functions for any
quadrature in the caseV1=V2=V and G1=G2=G and G12
=0. Here we give the results for the spectrum of the in-phase
and out-of-phase quadrature autocorrelations,

DY0
2sv = 0d = 8d2

2f16uVu10 + 4uVu4s2G4 + 10G2uVu2

+ 21uVu4dd2
2 + 8uVu4s3G2 + 4uVu2dd2

4

+ sG4 + 2G2uVu2 + 9uVu4d + d2
6g/N, s23d

FIG. 3. Normalized probe-pump correlationDCN as a function
of the dephasing constantG12/G. d1=d2=0.
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DYp/2
2 sv = 0d = 4G2d2

2s128uVu8 + 8uVu4s3G2 + 7uVu2dd2
2

+ 2sG4 + 3G2uVu2 + 9uVu4dd2
4 + 3uVu2d2

6d/N,

s24d

and the spectrum of the probe-pump in-phase quadrature cor-
relation function,

DCs0,0,v = 0d = 4uVu2d2
2f32uVu8 − 8uVu2s2G4 + 3G2uVu2

+ 5uVu4dd2
2 − 2s− G4 + 11G2uVu2 + 10uVu4dd2

4

− sG2 + 8uVu2dd2
6g/N, s25d

where

N = Gs8uVu4 + 2uVu2d2
2 + 2G2d2

2 + d2
4d3. s26d

In Fig. 4(a) we showDY0
2sv=0d as a function ofd2/G. We

observe that the curve follows approximately the transpar-
ency curve(see Fig. 2). This is expected since fluorescence

emission(at the frequency of the incoming field) should in-
crease with the absorption.

In Fig. 5(a) we show DCs0,0,v=0d as a function of
d2/G, for V1=V2=2G, which are close values to typical used
in a recent experiment[9]. For larged2@V we should have
anticorrelation since the atom remains most of the time in
statesu0l andu1l. Whend2 is very small, the system behaves
close to the resonant situation and we should expect anticor-
relation for Î2V,G and positive correlation forÎ2V.G.
When Î2V.G, the initial positive correlation turns into
negative correlation ford2

2 at the value of the real root of Eq.
(25). For V@G, this value isd2<0.76uVu.

The initial curvature, forG!V, of Figs. 4(a) and 5(a),
when v=0, can be easily calculated from the above equa-
tions:

DCs0,0,v = 0d <
d2

2

4GV2 , s27d

FIG. 4. In-phase quadratureDY0
2 as a function ofd2, for differ-

ent values ofv. d1=0, V=2G.
FIG. 5. Normalized probe-pump correlationDCN as a function

of d2, for different values ofv. d1=0, V=2 G.
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DY0
2sv = 0d <

d2
2

4GV2 , s28d

DYp/2
2 sv = 0d <

Gd2
2

V4 . s29d

B. Dependence of the correlations on the frequency
of observation

We begin by studying the case of both fields in resonance.
Following the procedure outlined in the beginning of Sec. II,
we have calculated the general expressions forDYi andDC.
These expressions are cumbersome and here we will give
only the results in the caseG1=G2=G, V1=V2=V, andG12
!V ,G. The result for the spectrum of the in-phase quadra-
ture autocorrelation function is

DY0
2svd =

G12f4uVu4 + v2sG2 + v2d + 2uVu2sG2 − v2dg
sG2 + v2df4uVu2suVu2 − v2d + v2sG2 + v2dg

.

s30d

When V@G this last equation has three maxima, one at
v=0 and the other two atv= ±Î2V. As we mentioned be-
fore, DY0

2 is proportional to the Fourier transform of the field
intensity autocorrelation variance. Its inverse Fourier trans-
form added to the field intensity squared gives, as a function
of time, the conditional probability of detecting a second
photon after the measuring of a first photon. Since the fre-
quency of visiting theu0l state isÎ2V, we expect that after a
photon is measured, we should wait an average time equal to
1/sÎ2Vd before another photon be measured. The second
maxima in Eq.(30) is a consequence of this fact. There is no
squeezingsDY0

2,0d in the intensity quadrature for any value
of v, as can be seen from Eq.(30).

The spectrum of the out-of-phase quadrature autocorrela-
tion can be written as

DYp/2
2 svd = G12

− v4sG2 + v2ds4G2 + v2d + 48V6s2G2 + 5v2d − 4V4v2s16V2 + 37v2d + 2V2v2s12G4 + 35G2v2 + 17v4d
s4V4 − 4V2v2 + G2v2 + v4df4G4v2 + 5G2v4 + v6 + 8V2v2sG2 − 2v2d + 16V4sG2 + 4v2dg

.

s31d

WhenV.G this autocorrelation is negative only ifv2 is very large.
The spectrum of the probe-pump in-phase quadrature correlation is given by

DCs0,0,vd = G12
4uVu4 + v2sG2 + v2d − 2uVu2sG2 + 3v2d

sG2 + v2df4uVu2suVu2 − v2d + v2sG2 + v2dg
. s32d

When G,Î2V the last equation shows that the correlation is positive, except when the value ofv is inside the interval
sv−,v+d, where

v7 = Î3V2 − G2/2 7 Î5V4 − G2V2 + G4/4. s33d

Now we turn our attention to the case in which only one of the fields is in resonancesd1=0d. We also have obtained general
results in the situation of negligible phase decoherencesG12=0d. Up to second order ind2 they reduce to

DY0
2svd < Gd2

28V8 − 16V6v2 − 4V2v4sG2 + v2d + v4sG2 + v2d2 + 2V4v2sG2 + 5v2d
2V2sG2 + v2ds4V4 − 4V2v2 + G2v2 + v4d2 . s34d

In Fig. 4 we show the results for the full expression ofDY0
2

(no perturbation expansion ond2) as a function ofd2/G, for
several values of the frequency of observationv. We observe
in the figure thatDY0

2 is negative whenv=1.3V andd2/G is
small. In fact it is easy to see from Eq.(34) , valid for small
d2, that there is always a region ofv whereDY0

2 is negative.
WhenV@G this happens for 0.89V&v&Î2V.

In Fig. 5 we show the results for the full expression of
DCs0,0,vd as a function ofd2/G, for several values of the
frequency of observationv. A simple expression for
DCs0,0,vd may be obtained also for smalld2:

DCs0,0,vd <
Gd2

2s2V4 − 2V2v2 + G2v2 + v4d
2V2sG2 + v2ds4V4 − 4V2v2 + G2v2 + v4d

,

s35d

which shows thatDCs0,0,vd is always positive whend2 is
small.

III. CORRELATIONS IN THE CAVITY OUTPUT FIELD

Now we consider the case ofN three-level atoms, occu-
pying a volume of dimensions small compared with the
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wavelength of the input lasers, inside a cavity that sustains
two modes of the electromagnetic field with frequencies
v01+d1 and v02+d2 quasiresonant with the transitions be-
tween levelsu1l andu0l and between levelsu2l andu0l of the
atom, respectively. The annihilation field operators inside the
cavity are denoted byâ1 and â2. We use input-output theory
to relate the inside field with the outside field[15] and work
in the interaction representation, where the Hamiltonian is
given by Eq.(1). The intracavity field operators satisfy the
equations

d

dt
â1std = − ig1Ŝ10std −

g1

2
â1std + Îg1â1instd,

d

dt
â2std = − ig2Ŝ20std −

g2

2
â2std + Îg2â2instd, s36d

whereSi j =ok=1
N si j

k are the collective operators that represent
the sum of individual atomic operators,si j

k = uilk j uk associated
with the kth atom. The input and output annihilation opera-
tors, which are associated with the pumping and output
fields, are related by[15]

â1instd + â1outstd = Îg1â1std,

â2instd + â2outstd = Îg2â2std. s37d

In the above equations, we definegi as the damping rate

of the cavity modei. Writing âi in=kâi inl+ f̂ ai, one can show

that, for a cavity at zero temperature, the operatorsf̂ ai satisfy
[15]

k f̂ ai
† std f̂ ajst8dl = 0,

k f̂ aistd f̂ aj
† st8dl = gidst − t8ddi j ,

k f̂ ai
† std f̂ aj

† st8dl = 0,

k f̂ aistd f̂ ajst8dl = 0. s38d

From Eqs.(36) it is easy to see thatf̂ ai represents the Lange-
vin fluctuation operator associated with the fieldi inside the
cavity.

The Langevin equations for the atomic operators are ob-
tained using the interaction Hamiltonian. These equations are
analogous to Eqs.(4) of Sec. II and may be written by sub-

stituting a1 sa2d by â1 sâ2d, ŝi j by Ŝi j , and the one-atom

Langevin fluctuation operatorf̂ x by the collective Langevin

fluctuation operatorF̂x. As the atoms are assumed to be in-
dependent of each other, the new collective diffusion coeffi-
cients are given by the sum of all one-atom diffusion coeffi-
cients.

These new differential operator equations are not as easy
to solve as the system of equations in Sec. II, since now we
have a set of first-order nonlinear equations, where products
of two operators appear on the right-hand side of the equa-
tions. What is usually done is to transform these operator
differential stochastic equations intoc-number Ito stochastic

differential equations. These latter equations are equivalent
to the original ones up to second order in the operators[16].
Thesec-number equations can then be solved using usual
differential stochastic methods[17]. To define this transfor-
mation uniquely we define an order, which we call “normal”
order, for the operators in the differential equations. The nor-
mal order we choose is

â2
†,â1

†,Ŝ02,Ŝ01,Ŝ12,Ŵ1,Ŵ2,Ŝ21,Ŝ10,Ŝ20,â1,â2. s39d

We will use thec-number variablesSi j , W1, W2, ai
* , and

ai for the corresponding operatorsŜi j , Ŵ1, Ŵ2, âi
†, and âi.

The stochastic average of ac-number variable is equal to the
mean value of the corresponding operator and the stochastic
average of the product of twoc-number variables corre-
sponds to the mean value of the normal-ordered multiplica-
tion of the two corresponding operators—for example,

S02stdS12st8d=S12st8dS02std is equal tokŜ02stdŜ12st8dl.
The newc-number equations for the system look the same

as the operator equations except that we should replace the
Langevin fluctuation operators by modified Langevin fluc-
tuation forces. These modified Langevin fluctuation forces
still have zero mean and are stilld function correlated. How-
ever, the diffusion coefficients associated with these new
Langevin fluctuation forces are modified so that the operator
equations of normal-ordered products coincide with the
c-number equations of the corresponding products. A very
clear explanation of this procedure is given by Davidovich
[16].

We have calculated these new normal-ordered diffusion
coefficients. Of course they satisfy the symmetry relation
Dxy=Dyx. The nonzero coefficients(and the symmetrical
ones) are given by

DW1W1
= s4G1 + G2dS00 − is4V1S01 + V2S02 − c.c.d,

DW2W2
= sG1 + 4G2dS00 − is4V2S02 + V1S01 − c.c.d,

DW1W2
= s2G1 + 2G2dS00 − 2isV2S02 + V1S01 − c.c.d,

DS12S21
= G1S00 + 2G12S11 − siV2S12 + c.c.d,

DS02S12
= DS20S21

* = − iV2
*S12,

DS02S21
= DS20S12

* = G12S01,

DW1S10
= DW1S01

* = iV2S12,

DW1S21
= DW1S12

* = − 2iV1
*S20 + 2iV2S01,

DW2S10
= DW2S01

* = − iV2S12,

DW2S21
= DW2S12

* = − iV1
*S20 + iV2S01,

DS10S10
= DS01S01

* = 2iV1S10,
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DS01S02
= DS20S10

* = − iV1
*S02 − iV2

*S01,

DS20S20
= DS02S02

* = 2iV2S20,

DS01S12
= DS21S10

* = G12S02 + iV2sW1 − W2d + iV1S12.

s40d

A similar calculation ofc-number diffusion coefficients for
three-level atoms interacting with traveling waves was done
by Fleischhauer and Richter[18].

The steady-state solutions of thec-number equations for
the average of the stochastic variables are obtained by setting
the time derivatives equal to zero and using the fact that the
average of the modified Langevin fluctuation forces is zero.
Of course one should verify if these solutions are stable.

As before, we are mostly interested in the dynamics of
fluctuations around the steady-state. In order to calculate this
dynamics, we express the solutions of the stochastic vari-
ables as the sum of the steady state value plus fluctuations,
that is, for any stochastic variableO, we makeOstd<kOl
+dOstd, with dO! kOl. In the system equations, the atomic
operators scale as the number of atoms,N, and the fluctua-
tion forces scale asÎN [16], if the number of atoms inside
the cavity is big enoughsÎN@1d and the fluctuations are
small and we can neglect terms of order greater than 1 indO.
Neglecting those terms, the differential equations for the cor-
responding stochasticc-number equations can be easily writ-
ten in a matrix form

d

dt
dO = B · dO + G, s41d

where the column vectorsdO andG have components:

dOT = sda2
* ,da1

* ,dS02,dS01,dS12,dw1,dw2,dS21,dS10,

dS20,da1,da2d,

GT = sfa1
* , fa2

* , f02, f01, f12, fw1
, fw2

, f21, f10, f20, fa1, fa2d.

The B matrix can be easily obtained from the expansion up
to first order indO of the system’s equations. The spectrum
of the double correlation of the irradiated fields,Sijsvd, is
now given by

kdOisvddOj
*sv8dl = Sijsvddsv + v8d, s42d

where k¯l means stochastic average andOisvd
=s1/Î2pde−`

` Oistdexpsivtddt is the Fourier transform of
Oistd.

Taking the Fourier transform of Eq.(41), multiplying by
dO†, and taking the stochastic average, we obtain

Ssvd = sB + i v 1d−1 ·D · sB† − i v 1d−1, s43d

where D dsv+v8d=kG·GTl. The components of the sym-
metric diffusion matrixD are thec-number diffusion coeffi-
cients given in Eq.(40).

We numerically calculate the spectrum functions given by
Eq. (43). By using the Fourier transform of Eqs.(37), we
obtain the spectrum of the output field correlation functions

DY andDC, given in Eqs.(11) and(12). The operatorsŶu are
now defined as

Ŷu
i std = âi outstdexpsiud + âi out

† stdexps− iud. s44d

Of course the above results are only valid if the steady-
state solutions are stable. This can be verified by calculating
the eigenvalues of the matrixB. If the real part of all the
eigenvalues is negative, all the fluctuations decrease as time
increases. Below we study regions of stability of the solu-
tions in the caseG1=G2=G and V1=V2=V. For d1=0 and
G12=0 the stability of the system is characterized by only
three parametersd2/G, V /G, and the cooperative parameter
C=N g2/ sg Gd. When d2=0 the system is stable for anyC
and V /G.0 since the medium is transparent. In Fig. 6 we
have studied the regions of stability for the parametersd2/G
and C, when V /G=5,10,15,20. Thefigure shows an in-
crease of the region of stability, in the vicinity ofd2=0 as
V /G increases. This is connected with the increasing of the
EIT window [see Eq.(10)].

We have checked numerically that the behavior of the
output correlation functions is characterized by the coopera-
tive parameterC defined above and byV /G when v=0.
WhenvÞ0 the output correlation functions also depend on
g. For a small cooperation numberC=Ng2/ sgGd!1, the at-
oms do not interact strongly with the radiation emitted and
the qualitative behavior of the output correlation functions
DYu

i is very similar to the correlation functionsDYu+p/2
i of

the resonance fluorescence case, discussed in Sec. II.
In Fig. 7 we show how the spectrum of the in-phase

probe-pump quadrature correlation,DCs0,0,v=0d, varies as
we increaseC. We notice that in Figs. 7(a)–7(c) the correla-
tion function DCs0,0,v=0d is positive in the EIT window
(−10ød2/Gø10) and follows approximately the EIT ab-
sorption curve, shown in Fig. 8. Negative correlations appear
for larger values of the cooperative parameterC [see Fig.
7(d)]. The appearance of these negative correlations, in the
EIT window, can be explained as follows: an excess of
quadrature intensity in any one of the output fields—say,
field mode 1—implies necessarily that field 1 momentarily
increases inside the cavity. This makes the EIT window
transparency wider[2] temporarily and therefore fluctuations
in field 2 decrease.

The spectrum of the in-phase quadrature correlation func-
tion DY0

2 is shown in Fig. 9 for several values ofC. Up to C
around 0.5, the curves follow the general trend of the absorp-
tion curve. As we increaseC, new maxima appear closer to
d2=0. In order to understand the origin of it, we studied the
value of the incoming field needed to build up an amplitude
a in both modes inside the cavity[see Eq.(36)]. For fixed
amplitudea of the pump field inside the cavity, we expected
(and found numerically) that any increment in the incoming
probe field corresponds to an increment in fluorescence.
Therefore the maxima and minima ofDY0

2, as a function of
d2/G, observed in Fig. 9(d) coincide with the maxima and
minima in the probe incoming fieldfkâ2instdlg needed to
build up the probe field with amplitudea inside the cavity.
Using these results and the analytical solutions for the mean
values of the operators, we found that in the case thatN
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@1, V@G, the minima(besides the one at zero, associated
with the dark state) are atd2< ±Î2 V, <14G in Fig. 9(d).
The maxima closer to zero are in the positionsd2< ±0.7 V.

Figure 10 shows the spectrum of the in-phase quadrature
correlation functionDY0

2 for C=8 as a function ofd2/G for

FIG. 6. Regions of stability(black) and instability(white) of the
stationary solutions.(a) V=5 G, (b) V=10 G, (c) V=15 G, (d) V
=20 G.

FIG. 7. Normalized probe-pump correlationDCN as a function
of d2, for different values ofC. d1=0,v=0, V=10 G, andg1=g2

=0.15G.

FIG. 8. Cavity EIT absorption curve.G12=0,V=10 G, and
d1=0.
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several values of the observation frequencyv. We obtain a
very small squeezing, as can be seen from the figure.

The spectrum of the out-of-phase quadrature correlation
function DYp/2

2 was also calculated and presents a behavior
similar to DY0

2.

IV. CONCLUSIONS

We have studied the correlation functions of the fields
emitted by three-level atoms, interacting with two modes of
the electromagnetic field in a coherent state, outside and in-
side a cavity. This was done when both modes of the field are
in resonance and when one of the modes is in resonance and
the other one is scanned.

When the atoms are outside the cavity, simple analytical
expressions were obtained when the decoherence in the

lower levels is small and the detuning of one of the modes of
the fields is small. We found that the correlations between the
two modes of the field can be positive or negative and char-
acterize the regions of parameters in which this happens. We
also found a very small squeezing in the in-phase and out-
of-phase quadratures for some regions of the observation fre-
quencies. This does not contradict previous results[5] which
refer to total squeezing.

For fixed V /G, if the cooperative parameterC is small,
the cavity correlation functions have, in general, the same
shape as a function ofd2/G as the corresponding correlation
function rotated byp /2 in the fluorescence case. IfC is
large, this does not happen. We found that when the coop-
erative parameter of the cavity increases, positive correla-
tions may turn into negative correlations in certain regions of
the probe frequency. We also found that new maxima appear
in the spectrum of the in-phase autocorrelation function as
we increase the cooperative parameter.

FIG. 9. In-phase quadrature functionDY0
2 as a function ofd2, for

different values ofC. d1=0,v=0, V=10 G, andg1=g2=0.15G.

FIG. 10. In-phase quadratureDY0
2 as function ofd2, for different

values ofv. d1=0, V=10 G, g1=g2=0.15G, andC=8.
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Our results for the intensity-intensity fluctuations of the
fields do not agree with the theoretical predictions presented
in [9]. In fact the authors analyzed the equations for the
steady state of the system in a parameter region where the
solutions are unstable. We also did not obtain any result
showing either super-Poissonian statistics in the intensity-
intensity fluctuations or large positive probe-pump intensity
correlation at resonance, in contradiction with the experi-
mental results of Ref.[9]. These discrepancies are probably
due to phase noise in the fields[19].
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APPENDIX: GENERAL RESULTS

The steady-state solutions of the operator equations(4) for the average of the operators are obtained by setting their time
derivatives equal to zero and using the fact that the average of the Langevin fluctuation operators is zero. We obtain an
algebraic linear system of equations that is solved using Wolfram’s Mathematica computer program and get

kw1l = h− G1GtsGt
2 + 4d1

2dsG12
2 + dr

2dV2
2 + f− 2G12sGt

3 + 4G1d1
2 + 4G2d1d2d + 4G2Gtdr

2gV1
2V2

2 − 4G2GtV1
4V2

2

− 4G1GtsG12Gt − 2d1drdV2
4 − 4Gt

2V1
2V2

4 − 4G1GtV2
6j/M , sA1d

kw2l = h− G2GtsGt
2 + 4d2

2dsG12
2 + dr

2dV1
2 + f− 2G12sGt

3 + 4G1d1d2 + 4G2d2
2d + 4G1Gtdr

2gV1
2V2

2 − 4G1GtV1
2V2

4

− 4G2GtsG12Gt + 2d2drdV1
4 − 4Gt

2V1
4V2

2 − 4G2GtV1
6j/M , sA2d

ks10l = „2G1Gts2d1 − iGtdsG12
2 + dr

2dV1V2
2 + 4V1

3V2
2hG12fG1s2d1 − iGtd + 2G2d2g − G2Gtdrj − 4G1Gts− iG12 − drdV1V2

4
…/M ,

sA3d

ks20l = „2G2Gts2d2 − iGtdsG12
2 + dr

2dV1
2V2 + 4V1

2V2
3hG12fG2s2d2 − iGtd + 2G1d1g + G1Gtdrj + 4G2Gts− iG12 + drdV1

4V2…/M ,

sA4d

ks21l = f2G2Gts2d2 − iGtds− dr − iG12dV1
3V2 − 4G2GtV1

5V2 + 2G1Gts2d1 + iGtdsdr + iG12dV1V2
3 − 4Gt

2V1
3V2

3 − 4G1GtV1V2
5g/M ,

sA5d

where

M = G2GtsGt
2 + 4d2

2dsG12
2 + dr

2dV1
2 + 4G2GtsG12Gt + 2d2drdV1

4 + 4G2GtV1
6 + G1GtsGt

2 + 4d1
2dsG12

2 + dr
2dV2

2

+ „4G12hG1
3 + 3G1

2sG2 + G12d + G1f3G2sG2 + 2G12d + 2d1sd1 + d2dg + G2fG2
2 + 3G2G12 + 2d2sd1 + d2dgj + 8Gt

2dr
2dV1

2V2
2

+ 4sG1 + 2G2 + 6G12dGtV1
4V2

2+ 4G1GtsG12Gt − 2d1dr…V2
4 + 4s2G1 + G2 + 6G12dGtV1

2V2
4 + 4G1GtV2

6 sA6d

andGt=G1+G2.
The correlation functionsDYu

2svd andDCsu1,u2,vd are obtained from Eq.(15) and are expressed as

DYu
2svd = S11svdei2u + S88svde−i2u + 2S18svd sA7d

and

DCsu1,u2,vd = S12svdeisu1+u2d + S78svde−isu1+u2d + S17svdeisu2−u1d + S28svdeisu1−u2d. sA8d

We calculated the elements of the spectra of the double correlation functions of the irradiated fieldsSij when both fields,
probe and pump, are in resonance and at the observation laser frequency. After manipulating the elements ofSij and using Eqs.
(A7) and (A8), we obtain a lengthy general expression for the correlations. WhenG12!G1,G2,V1,V2, they reduce to

DYu
2sv = 0d = 2G12V1

2V2
2
„2G2sG1 + G2d2V1

2 + fsG1 + G2d3 + 4G2V1
2gV2

2 + 4G1V2
4 + coss2udh− 2G2

2sG1 + G2dV1
2

+ fsG1 + G2dsG1
2 − 2G1G2 − G2

2d + 4G2V1
2gV2

2 + 4G1V2
4j…/fsG1 + G2dsV1

2 + V2
2d2sG2V1

2 + G1V2
2d2g sA9d

and
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DCsu1,u2,v = 0d = 2G12V1V2
4 cossu1 − u2dV1

2V2
2 + cossu1 + u2df4V1

2V2
2 − sG1 + G2dsG1V2

2 + G2V1
2dg

sG1 + G2dsV1
2 + V2

2d2sG2V1
2 + G1V2

2d
. sA10d

We also calculatedSij when only field 1 is in resonance. TakingG12=0, G1=G2=G, andV1=V2=V and using Eqs.(A7) and
(A8), we obtain

DCsu1,u2,v = 0d = 4d2
2
†G sin u1h− 2G sin u2f− 32V8 + 4G2V4d2

2 + sG4 + 4G2V2dd2
4 + sG2 + V2dd2

6g + cosu2d2

3f− 8V6s5G2 + 12V2d + 2V2s− G + VdsG + VdsG2 + 4V2dd2
2 + s2G4 + 11G2V2 + 2V4dd2

4 + s2G2 + 5V2dd2
6gj

+ V2cosu1sG sin u2d2f8V4s5G2 + 2V2d + 2sG4 + 5G2V2 + 10V4dd2
2 + s5G2 + 4V2dd2

4 + d2
6g + cosu2f32V8

− 8s2G4V2 + 3G2V4 + 5V6dd2
2 + 2sG4 − 11G2V2 − 10V4dd2

4 − sG2 + 8V2dd2
6gd‡/fGs8V4 + 2G2d2

2 + 2V2d2
2 + d2

4d3g
sA11d

and

DYu
2sv = 0d = 2d2h4G4d2

5f− sG sin ud + cosud2g2 + 64V10cosus4G sin u + cosud2d + 8V6d2
2f17G2d2 + 8d2

3− 2G sin 2usG2

+ 4d2
2d

+ cos 2ud2s3G2 + 8d2
2dg + 8V8d2f16G2 − 20G sin 2ud2 + 21d2

2 + cos 2us− 16G2 + 21d2
2dg + GV2d2

4f6G3d2 + 7Gd2
3

+ G cos 2ud2s− 6G2 + d2
2d − 2 sin 2us− 2G4 + 3G2d2

2 + d2
4dg + 2V4d2

3f20G4 + 33G2d2
2 + 9d2

4 − 2G sin 2ud2s9G2 + 5d2
2d

+ cos 2us− 4G4 + 15G2d2
2 + 9d2

4dgj/hGf8V4 + 2sG2 + V2dd2
2 + d2

4g3j. sA12d
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