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Field correlations in electromagnetically induced transparency
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The interaction of a bichromatic quantized field with three-level atomsAncanfiguration is analyzed. We
calculate the correlation functions of the field emitted by the atoms when the driven field is in a coherent state.
We consider the cases where the atoms are inside and outside a cavity.
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I. INTRODUCTION nomena, excludes the appearance of significant squeezing.

) ) o ] However, coherence between atomic levels may be useful in

When we illuminate an atom with light which has a fre- anphancing squeezing as was demonstrated recently by Li,
quency that matches the frequency of a particular atomigsaq and zhys). They numerically studied the steady-state

transition, a resonance condition occurs and there is 'arges’pectrum of the optimum phase quadrature in the resonance
fluorescence.  Electromagnetically induced transparencgrescence of a coherently driven four-level atom. They

(EIT) [1] is a technique that can be used in certain cases tg, ;ng quadrature squeezing for a range of spectrum frequen-

eliminate this fluorescence. This means transforming an othyies and related enhancing of squeezing to the coherence of
erwise opaque medium into a transparent one. This phenonge two upper levels.

enon has been observed in systems of three-level atoms in a |, 3 recent papei9], an experiment to measure the spec-
A configuration, where the two quasidegenerate lower levelgm of the intensity-intensity correlations of the probe and

may perform optical transitions to the upper level by inter-pmp fields in EIT was reported. The authors found, at reso-

acting with the electromagnetic field. The physical explananance, super-Poissonian statistics in the intensity fluctuations
tion of this phenomenon is related to the existence of a darknq that the two initially uncorrelated fields become corre-

state, which is_a state of the atom that is decoupl_ed from thgyed after interacting with the atoms. In this paper we ana-
electromagnetic field when resonance occurs. This dark stajg;e in detail the steady-state spectrum of the correlation
is given by a certain linear combination of the two lower fnction fluctuations of the field emitted by three-level atoms
levels [2]. If the atom is in this state, the absorption prob-j, 4 A configuration interacting with two fieldgoump and
ability is zero. For real atoms the radiative spontaneou%robe modes. We focus our analysis on the case\cfys-
emission rates are different from zero. However, if we canemg with intrinsic features. By this we mean that the two
neglect the decoherence between the two lower levels, WRap; frequencies associated with the two optical transitions
may show the very interesting property that the steady statgre equal, the two spontaneous emission rates from the upper
of this system is still the same dark st48}. ___to the lower levels are equal, and the decoherence of the two
When the system is not exactly in a dark state, radiation igo\er levels is small compared with that due to the sponta-
emitted from the atoms. The steady-state quadratures of thgsoys emission rates. In Sec. Il we obtain analytical expres-
irradiated fields for driven three-level atoms imaconfigu-  gjons for the steady-state spectrum of the correlation func-
ration have been extensively studied. Most of these studiegyns of the resonance fluorescence emitted by the atom. We
were oriented in finding squeezing in one_of the quadra_lture§tudy two casesa) each mode of the fielthump and probe
For two-level atoms, the largest squeezing is found in thgs jn resonance with an optical transition of the atom, énd
out—pf—phase quadrature of the fluorescence field and is P'®nly one mode(pump field is in resonance and the other
portional to the difference between the upper-level populayp ope field is scanned in frequency. In Sec. Il we again
tion and the probability of a transition between the two levels;gnsider the two cases of Sec. Il and numerically study the
[4]. In EIT, the upper-level population and the dipole mo- cqrelation functions of the output field when the atoms are

ments between the upper and lower levels vanish at résaside a two-mode cavity, which is fed by input coherent-
nance and there is no fluorescence. Nevertheless, squeeziggie fields. In Sec. IV we present our conclusions.

is expected[5,6] when the system has rather asymmetric
parameters and is outside the two-photon resonance. Squeez-
ing is also expected when the two lower levels are in reso-
nance with the upper level but decoherence among them is

so high that the atom behaves almost as a two-level gIgm Consider the atom as if it were a three-level atom iA a
From these considerations it appears that coherence betWG@Snfiguration(see Fig. 1 The two lower-energy levels are

the two lower levels, which is responsible for the EIT phe'designated byl) and|2) while the upper level is designated
by |0). Levels 1 and 2 are quasidegenerate, level 1 is meta-
stable, and electromagnetic optical transitions from the upper
*Electronic address: pbb@if.ufrj.br level to levels 1 and 2 are allowed. This is a good approxi-
"Electronic address: zagury@if.ufrj.br mation, for example, in experiments involvifgRb vapor,
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following Heisenberg-Langevin equations for the atom and

3 { - |0> field operators are obtained:
1 l dgtwl = (=20 = T)(L + Wy +Wy) — 210007 + 214019

— 1,500+ Q520+ . (4a)
FIG. 1. An atom inA configurationI'; andT', represent radia- d.

tive decaying constantg’;, represents a phenomenological phase d_tW2 = 5(_ [y = 209) (1 + Wy +Wp) = i€Q400; +1€4010
decay.

- 2i02(}02+ 2i926'20+ ?WZ' (4b)
where electromagnetic transitions among the ground state
(15S12,F=3),|5S,/,,F=2)) and the excited|5P3/,,F'=3)) d. O+ o\
levels are important. at’0=\ T +i0y | oy0+ 1 Wy — Q0075+ i,
The semiclassical atom-field interaction Hamiltonian, in
the rotating-wave approximation and in the interaction rep- (4c)
resentation, is given bj10]
d. r{+0r,  \. . . =
&0'20: - 2 +|52 0'20+|02W2_|Ql(]'21+f20,
|nt_h(glo'10ale 1t +920' aze %24+ H. C)+Hes (1)
(4d)
where 6/ =[i)(j|, and a; and «, are the amplitudes of the d. .
field modes with frequencies; and w,, which couple with PTLES (=T12=10) 021 = 104020+ 102001+ f21, (4€)

the transitions among levels 1,0 and 2,0, respectivély.
= w1~ wp; and 6,= w,— wy, are the frequency detunings of the wherew;=a6y,—6;; and 6,=6,- 6, and we define the phases
fields with respect to the atomic transitions with frequencysuch that();=g;«; is real and positivel'; and I', are the
wo1 andwg,, respectivelyH .. describes the interaction of the decaying constants from levéd) to levels|1) and |2), re-
atom with the modes of the quantized field and will bespectively. We also have included a phenomenological phase
treated as a reservoir. decay term,I’;,, which accounts for the loss of coherence
We consider an approach similar to the usual one used iamong the lower levels mainly due to collisions. We also
resonance fluoresceng#l] of two-level atoms. The field is  added the Langevin fluctuation operatey, associated with
decomposed into two: the initial field plUS the irradiated fleldthe decay terml"lz, in order to Sat|5fy the fluctuation-
from the atoms. The far-field expression of the latter dependgissipation theorem and maintain the correct commutation
on the dipole operatorg); and is given by relations of the operators.

The Langevin fluctuation operatof‘s are assumed to be

Ert)= byt = 110) + mpi ot —1/C) + Hec., ) o6 correlated, with zero mean:

(fo=0, 5
where o
<fx(t)fy(t,)> = nyé(t - t,)l (6)
w5 wherex andy label the fluctuation operators. It will be useful
=7 dre c2 aL(Poi X 1) Xr], (3 to rewrite Egs.(4) and the Hermitian conjugate of Egs.
(4c—4e), in a more compact form, as a matrix equation
po; being the atom dipole momery, the electric permeabil- EG:A 0+ ﬁ, (7)
ity and r the position vector. We want to note that if the dt

initial quantum state that describes the pump and probe fields

is a product of coherent states with amplitudesnd «,, the Where the column vectos andF have components

results obtained using the above semiclassical formalism co- 0" = (G2 001, 0712, Wa, Wo, 521, 0710, 0720) »
incide with those obtained from the quantum formalism
[12.13. FT=(fon for. f12 le' fwz, f21,f10,f20), (8

Following the usual resonance fluorescence approach for
the time evolution of the Heisenberg operators, the reservoiind the matrixA is easily obtained from Eqg4) and their
operators inH,.s are interpreted as Langevin fluctuation Hermitian conjugates.
operators, analogous to the Langevin fluctuation forces in The atom diffusion coefficient can be obtained using the
classical statistical mechanics. Making the additional transgeneralized Einstein relationd4]. The nonzero diffusion
formation oo =ogexplid) and o1,=071,xpi(d1-68,), the  coefficients are given by
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lew1 = (4F1 + 1_‘2)<a'00>, Im Oo2
DW2W2 = (Fl + 4F2)<6'00>,

lew2 = DW2W1 = (21 + 21 0o

DW10'01 = D0'10W1 = (2Fl + F2)<a-01>’ ) ) ) I L 1 L I 62/1"
-8 -6 -4 -2 2 4 6 8

Dw,0p, = D020W1: (21 +T'5)(002), FIG. 2. EIT absorption curve. The parameters Rig=0, Q,

=02=2F, and 51:0.
DWZ(TOl = D(rlOW2 = (Fl + 2F2)<a-01>1 _

_ fwr/ L (1) 2 .

Doy = Doy, = (1 + 2000, 80U )= |_areiTho e, a2
D00, = L1000 + (' + To) (o), where(:A, B:)=(:AB:)—(AXBY), : ...: meaning normal order-

ing. The normal ordering we choose here is the one shown in
Do, = L2000 + (T + T5) {02, the components of the vector operators defined in (By.

The 6 quadrature of the field is given by

D =D =T1400), . N -
01712~ Doy = 114902 Yit) = [EO(t)expli) + EOexp—-io)lin,  (13)

*

Dogaras = Doy = L1200 where E® ~ &, and E©)~ G, are the operators for the
positive- and negative-frequency parts of tttemode of the
Doy, = T1{000 + 2l'1{(019), radiated field.
The dynamics of fluctuations around the steady state is
Doyyop, = L2000 + 2l'1(020), independent of the initial conditions. Therefore, we can use

Fourier transforms to solve Eq@l) for the operatorsy; as a
. _ function of the Fourier transforms of the Langevin fluctua-
Daloooz— D0200'01_ 1+ T3 =)o), 9 tion operators. Taking the Fourier transform of K@), we

The steady-state solutions of the operator equations fo?btam the matrix equation

the average of the variables are obtained by setting the time R _ -

derivatives equal to zero and using the fact that the average 0(w) = (iwl = A)'F(w), (14

of the Langevin fluctuation forces is zero. In this case we . R

have an algebraic linear system of equations that can bahere 0,(w)=(1/V2m) (", 0i(t)expliwt)dt and Fi(w)

solved by a straightforward calculation. The general solution:(l NET) fi“mlei(t)exp(i wt)dt are the Fourier transforms of

of this system of equations is given in the Appendix.
The absorption coefficient of the fields proportional to

the imaginary part ofr;y. Using Eq.(A3) of the Appendix

and in the case 06;=0 andl';,, 5,<Q¢,Q, we have

0,(t) andF;(t), respectively.

The Fourier transforms of the quadrature autocorrelation
function AY}(w) and of the quadrature probe-pump correla-
tion function AC(6, ¢, w) may be obtained through linear

020 (F N (F1+F2)522> combinations of functionsS;(w), which are the Fourier
e 2(0,2+ Q%) transforms of the two-time atom operator correlation func-
Im(oz0) = Q2+ QA (,0.2+T,0,7) (10 tions. They may be obtained using the Wiener-Khinchine

theorem and are given L0
In this case the absorption is zero if we do not have any
source of decoherence in the lower levdl,=0) and &, (6i(w)0j(w")) = Sj(w) Sw+ ). (15)
=0. In Fig. 2 we show a typical EIT absorption curve, when
the pump(field 1) is in resonancésd; =0) and the probéfield  From Eq.(14) we may easily calculate the functioSg(w):
2) frequency is scanned.

We are mostly interested in calculating the spectrum of S(w)=(A+iw)™-D-(AT-iw])™, (16)
the field quadrature correlation functiondY(w) and
AC(0, ¢, w), defined as whereD8(w+w')=(F -FT). The components of the diffusion
o matrix D are the diffusion coefficients given in E¢).
AYib,(w) = f dre“‘”(:\?ig(t),%(t +7)1), (11) Using these results, we obtain the analytical solution for
—o the spectrum of quadrature correlation functions:
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AY}(0) = Spy(0)expli26) + Spe(w)exp ~(120) + 2Sig(w) Ay | T
(17) 2 4 6
and -0.02
AC(01, 0, ) = S )€ 479 + Sy ) (1+02) ~0.04
+Siw)€"7 % + S(w)e! % (18) _0.06
In the Appendix we give some general results for these cor- (8 Q=Tr/2
relations. AC
When the system is in resonance dhd=0, it is easy to N
see from Eq(A5) of the Appendix that the steady state is the 02 T
dark statg?] 015 -
0,]1) - 04[2) !
|DS>:%. (19) 0.1
V[ Qqf? + Q] 005
Therefore, in this situation, the medium is completely trans- ‘ ' T
parent and\C(6y, 6,, w) andAY)(w) vanish, as can be easily 2 4 ¢ T/l
seen from Eqs(A9) and (A10). (b) @=2r
FIG. 3. Normalized probe-pump correlatid'CN as a function
A. Observation at the laser frequency of the dephasing constah,/T. &,=6,=0.
We start by studying the spectrum of the correlation func-
tions at the laser frequency—that is, wher 0. between the stat®) and a state perpendicular to the dark

When the system is in resonance dhg>0 the correla- state, with a frequency2 || [2]. Using this fact, the results
tions are different from zero. In EqéA9) and(A10) of the  for the correlation might be explained as follows: When
Appendix we give general results for the correlationswat I';,=0 the steady state is a dark state and the correlation is
=0 and forl';,<1I';,T"5. We consider here the interesting and zero. WhenI';,>0, the system is most of the time in the

special case whef;=Q,=Q, I')=T">=T" andI'j,<T": dark state but from time to time a fluctuation causes the atom
) " to leave it. Before it goes back to the dark state, in
AYy(w=0)=AYy(w=0) the typical time 1T, it tries to visit the statd0) with a
| R ) - frequencyy2|Q|. WhenT' <2|Q)|, the atom visits the state
= 2|Q|21“2[|Q| +2I% + (|Q]° -T*)cog26)], |0), on average, more than once, emitting photons to both

modes of the field, which should then be positively corre-
(200 lated. Wherl > 2|/, the atom does not have time to make
a complete transition to the staf@ and should emit less

P KT P than one photon, on average, to one of the fields. In this case,
AC(0y,05,0=0) = 2|Q|2F2[(2|Q| - I")cos 6ycos 6, the correlation is negative. AB,,<I the absolute value of
the correlations increases linearly with,, as is shown in
+I?sin 6;sin 6,]. (21)  Egs.(20) and(21), due to the increasing probability to leave

the dark state, afterwards it goes through an extremum and
éfrjen it decreases as the dissipation process begins to become
important. Figures @) and 3b) show how the normalized
eprobe—pump correlation

We can easily see thaY\(w=0) is always positive.
Therefore, there is no squeezing at the frequency of the las
in any quadraturéf,(w=0).

In the case of small fluctuations, the spectrum of th
quadrature correlation functions in phase with the fidlds ACN = AC/\/(l +AYYH(1+AY?) (22
=0) is approximately proportional to the Fourier transforms
of the intensity-intensity correlations. This means that/@
AY?,(w) in Eq. (20) is proportional to the Fourier transform

of the field intensity autocorrelation ansiC(0,0,w) in Eq. the detunings,, of the probe field. In Eq¥AL1) and(A12)

(21) is proportional to the Fourier transform of the probe- of the Appendix we give the correlation functions for any
pump intensity correlation. These quantities have been re_uadrature in the cas@,=0,=0 and I,=T,=T and I';,

cently measured in laboratofg]. _ 9 . :
From Eq.(21), we easily see that fd? < 2| Q)], the spec- =0. Here we give the results for the spectrum of the in-phase

trum of the probe-pump intensity correlationa@t 0, which and out-of-phase quadrature autocorrelations,

is proportional to AC(0,0,0, is positive, while for AY3(w = 0) = 85716/ + 4/0|*2I'* + 102
I'>2|Q], these correlations are negative. If there is no 2 FP— 2
damping(I'=0) or dephasindI';,=0), the systemunless it +210 )5%+ 8B + 410 )6‘21
would be prepared in the dark stpteakes Rabi oscillations +(T+ 2202+ 910/ + &IUN, (29

ries withI'y,, for Q=I"/2 andQ=2I", respectively.
We now consider the case when the pump field is in reso-
nance(5;=0) and study the correlation functions as we vary
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ACyn
0.03~ T
e C
0, /T
(a) w=0Q
ACy
_18..‘\6[_2;'2 i: i\zy 6_/r
0.01
Co L 0.02
8§-6-4-21 2 4 6 862/r
(b) w =0.640 (b) w = 0.640
AY} ACy
0.15 8

b= 1 1 A 62/1" . ) / ) ) \ ) )
—“6'-40.63\/N2 468 R s e ol
(c) w=130 (c) w=1.3Q
AY} ACN
02 0.14
g e s e A7 ryeraee an s weraerar SCEY N
(d) w=1.90 (d) w =190

FIG. 4. In-phase quadratuszg as a function ofs,, for differ-

ent values ofw. 6;=0, Q=2T".

FIG. 5. Normalized probe-pump correlati?eCN as a function
of &,, for different values ofw. 6,=0, Q=2T.

AYfT,z(w =0)= 4r25§(1zag|8 +8|Q4(3r? + 7|Q|2)5§ emission(at the frequency of the incoming figldhould in-
4 o1 4 5 crease with the absorption.
+2(I*+ 370 + 909 & + 3QPHIN, In Fig. 5a) we showAC(0,0,w=0) as a function of
(24 6,/T, for Q1=0,=2I", which are close values to typical used
. in a recent experimerj@]. For larges,> () we should have
and the spectrum of the probe-pump in-phase quadrature COlpicorrelation since the atom remains most of the time in
relation function, stateg0) and|1). When, is very small, the system behaves
AC(0,0,0=0) = 4|Q|25g[32|9|8 - 8lQ2(2r* + 32 Q2 closg to the r_(asonant situatio'n' and we shpuld egpect anticor-
relation for y2Q <T" and positive correlation fox2Q>T".
+5/Q) % - 2(-T*+ 111202+ 140/  when y2Q>T, the initial positive correlation turns into

—(I2+8/Q) &8N (25) negative correlation foﬁg at the value of the real root of Eq.
2 (25). For O>T, this value iss,~0.760)|.
where The initial curvature, fol’< (), of Figs. 4a) and Fa),
when =0, can be easily calculated from the above equa-
N=T(8|Q + 2Q2&E + 2r282 + &), (26) ot y a
In Fig. 4(a) we showAYg(w:O) as a function o%,/I". We 2
observe that the curve fqllo_ws approxim_ately the transpar- AC(0,0,0=0) ~ —2 -, (27)
ency curve(see Fig. 2 This is expected since fluorescence 410
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) 55 WhenQ>T this last equation has three maxima, one at
AYo(w=0)~7r 53 (28) =0 and the other two ab=+20. As we mentioned be-
fore, AYS is proportional to the Fourier transform of the field
r 5% intensity autocorrelation variance. Its inverse Fourier trans-

AY? (0=0) = (290  form added to the field intensity squared gives, as a function
of time, the conditional probability of detecting a second
photon after the measuring of a first photon. Since the fre-
quency of visiting thd0) state 520, we expect that after a
We begin by studying the case of both fields in resonancephoton is measured, we should wait an average time equal to
FOIIOWing the procedure outlined in the beginni_ng of Sec. ”,1/(\59) before another photon be measured. The second
\{'vr?ezzvgxcpa:g::sl,?c:ﬁg t:ri gcir;ﬁgaelrgé&rssgﬁnﬁgf;a\’/‘v‘lAvail giVmaxima in Eq2(30) is a consequence of this fact. There is no
oy s 1osls 1 he AT T 0,0, s e SaE=0) 1 e ienely cuacratur or a vl

<Q,I. The resu_lt for the_ spectrum of the in-phase quadra- The spectrum of the out-of-phase quadrature autocorrela-
ture autocorrelation function is . :
tion can be written as

[ J4/Q1 + 0X(T? + 0?) + 2|Q)AT? - v?)]
(r?+ wz)[4|Q|2(|Q|2 - d) + 0’ (I +0?)]’
(30)

04
B. Dependence of the correlations on the frequency
of observation

AYi(w) =

- 0} (I? + 0?) (4% + v?) + 480522 + 50?) — 404w (1602 + 37w?) + 20%w?(12I* + 35 %w? + 17w?)
(404 - 40%0? + [2w? + Y4 w? + BP0 + 0° + 8020 (% - 2w?) + 160412 + 40?)]

AYlez(w) =Ty,

(31)
WhenQ>T this autocorrelation is negative only df® is very large.
The spectrum of the probe-pump in-phase quadrature correlation is given by
4Q4+ 2F2+ 2 _2921‘*2_'_3 2
AC(0,0.0) = [y T+ o T+ o) = QI+ 307) (32

T2+ A4 - 0°) + * [+ )]

When <20 the last equation shows that the correlation is positive, except when the valdsoinside the interval
(w_,w,), where

w- =\30%-T%2 7 504 -T202 +T¥/4. (33)
Now we turn our attention to the case in which only one of the fields is in resorare8). We also have obtained general
results in the situation of negligible phase decoherdhge=0). Up to second order i@, they reduce to
8 _ 1m6 2 _ 4_(220)4(1‘2_'_ w2) + w4(r2+ w2)2+ 204(,02(F2+ 50)2)

80
AYgw) =I'6; 2022 + 0?) (404 - 4020% + T%0? + )2

(34)

In Fig. 4 we show the results for the full expressionAO{S Fag(zg“— 20°0° + 0 + 0¥

(no perturbation expansion a®) as a function ofs,/I", for AC(0,0,0) = 20212 + 0?)(40% — 4020 + T202 + )’
several values of the frequency of observatioiWe observe

in the figure thang is negative wherw=1.3 and 8,/T" is (39
small. In fact it is easy to see from E@4) , valid for small

&, that there is always a region a)fwhereA_Yg is negative.
When Q=T this happens for 0.89) < w=y2Q).

In Fig. 5 we show the results for the full expression of
AC(0,0,w) as a function ofs,/T", for several values of the
frequency of observationw. A simple expression for Now we consider the case ¢f three-level atoms, occu-
AC(0,0,w) may be obtained also for smaf): pying a volume of dimensions small compared with the

which shows thaC(0,0,w) is always positive whed, is
small.

Ill. CORRELATIONS IN THE CAVITY OUTPUT FIELD
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wavelength of the input lasers, inside a cavity that sustaindifferential equations. These latter equations are equivalent
two modes of the electromagnetic field with frequenciesto the original ones up to second order in the operdtbés
wg1t 61 and wpt 8, quasiresonant with the transitions be- Thesec-number equations can then be solved using usual
tween leveld1) and|0) and between level®) and|0) of the  differential stochastic method47]. To define this transfor-
atom, respectively. The annihilation field operators inside thenation uniquely we define an order, which we call “normal”
cavity are denoted b§; anda,. We use input-output theory order, for the operators in the differential equations. The nor-
to relate the inside field with the outside fidlth] and work  mal order we choose is

in the interaction representation, where the Hamiltonian is o

given by Eq.(1). The intracavity field operators satisfy the a5,a], 20 Y01, 210 Wi, Wa, 201,210, 220.80, 8. (39)

equations We will use thec-number variable&;j, Wy, W, a, and

a; for the corresponding operatoks;, Wy, W, a', anda,
The stochastic average otaenumber variable is equal to the
mean value of the corresponding operator and the stochastic
d. A Yo — average of the product of two-number variables corre-
d_taz(t) == i02%0(t) = ?az(t) +\y8in(t),  (36)  sponds to the mean value of the normal-ordered multiplica-
tion of the two corresponding operators—for example,
where,; :E_E:;U_ﬁ are the c_oIIective operators that represents, (t)3,,(t")=3,(t")SoJ(t) is equal t0<i02(t)512(t’)>.
the sum of individual atomic operatorsi = i)(j|* associated The newc-number equations for the system look the same
with the kth atom. The input and output annihilation opera- 55 the operator equations except that we should replace the
tors, which are associated with the pumping and outpuf angevin fluctuation operators by modified Langevin fluc-
fields, are related byl195] tuation forces. These modified Langevin fluctuation forces
Ay (D) + Agguf®) = N (t) still have zero mean and are swifunction correlated. How-
Lin tou Yadatt ever, the diffusion coefficients associated with these new
. . —. Langevin fluctuation forces are modified so that the operator
Azin(t) + Azoult) = V7222(1). (37)  equations of normal-ordered products coincide with the
In the above equations, we defingas the damping rate C-number equations of the corresponding products. A very
of the cavity modd. Writing & ,=(& m>+?ai, one can show clear explanation of this procedure is given by Davidovich

d. . “ —a
aal(t) =—ig1210(t) - %al(t) +\Vy1&yin(t),

, - . [16].

that, for a cavity at zero temperature, the operatgrsatisfy We have calculated these new normal-ordered diffusion

[19] coefficients. Of course they satisfy the symmetry relation
Oty =0 D,y=Dyx The nonzero coefficientsand the symmetrical
(Faf4(t)) =0, oneg are given by

<%ai(t)f;j(t/)> = ydt-1)8;, Dw,w, = (411 + T'5) %00~ 1(421 301 + Q2202 — C.C),

<?;i(t)f;j(t,)> =0, Dw,w, = (I'y + 41'5) 200 =~ 1(4Q5302 + 4201~ C.C),
<?ai(t)faj(t,)> =0. (39) Dw,w, = (2I'; + 2I'p) 209 = 2i(Qp%02 + 21201~ C.C),

From Eqs(36) it is easy to see th&gi represents the Lange- D =TS+ 2080 = (10,3, + C.C.

vin fluctuation operator associated with the fielehside the F1gtpy T 1500 2211 (19222 )

cavity. . o

The Langevin equations for the atomic operators are ob- Dy, = Dy, = 1315,

tained using the interaction Hamiltonian. These equations are
analogous to Eqg4) of Sec. Il and may be written by sub-

2 Dy oy = D*E =T'12201,
stituting a; (e) by & (&), &y by 3, and the one-atom 0 etz

Langevin fluctuation operatdf, by the collective Langevin Dw.s. = D:NE =i0,3 5,
) ~ ) 1410 101

fluctuation operatoF,. As the atoms are assumed to be in-
d_ependent c_)f each other, the new collective Q|ﬁus:|on coeffl— Dus,, = D:N@lz: _ 2iQ*1220+ 210,301,
cients are given by the sum of all one-atom diffusion coeffi-
cients. . )

These new differential operator equations are not as easy Dw,s,,= Dw2201: ~iQp%,,
to solve as the system of equations in Sec. I, since now we
have a set of first-order nonlinear equations, where products Dus,, = DW2212: —iQ1350+ 10,301,

of two operators appear on the right-hand side of the equa-
tions. What is usually done is to transform these operator D _p — %I
differential stochastic equations intenumber Ito stochastic Si80 T PSrgr | S0
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Ds 5= D*Ezogw: — 107302 — 105301, AY andAC, given in Eqs(11) and(12). The operator¥, are
now defined as
Dtz ™ Daigy = 20320 Vi) = & aulDexpli6) + &l o (Dexd=16).  (44)
DEmElz: D*E s. =200+ 1Q(Wp = W) +1Q 315 Of course the above results are only valid if the steady-
21710 . . . g .
state solutions are stable. This can be verified by calculating
(40) the eigenvalues of the matriR. If the real part of all the
A similar calculation ofc-number diffusion coefficients for €igenvalues is negative, all the fluctuations decrease as time
three-level atoms interacting with traveling waves was donéncreases. Below we study regions of stability of the solu-
by Fleischhauer and Richt§t§]. tions in the casd’ =I',=I" and Q2,=Q,=Q. For 6,=0 and

The steady-state solutions of teenumber equations for ['1,=0 the stability of the system is characterized by only
the average of the stochastic variables are obtained by settirigree parameters,/I", Q/T", and the cooperative parameter
the time derivatives equal to zero and using the fact that th&=N ¢?/(y T). When 8,=0 the system is stable for argy
average of the modified Langevin fluctuation forces is zeroand {2/I'>0 since the medium is transparent. In Fig. 6 we
Of course one should verify if these solutions are stable. have studied the regions of stability for the parametgrf$’

As before, we are mostly interested in the dynamics ofand C, when 2/T'=5,10,15,20. Theigure shows an in-
fluctuations around the steady-state. In order to calculate thigrease of the region of stability, in the vicinity @,=0 as
dynamics, we express the solutions of the stochastic vari/I" increases. This is connected with the increasing of the
ables as the sum of the steady state value plus fluctuationg)T window [see Eq(10)].
that is, for any stochastic variabt®, we makeO(t)=(O) We have checked numerically that the behavior of the
+60(t), with 5O0<(0). In the system equations, the atomic output correlation functions is characterized by the coopera-

operators scale as the number of atodsand the fluctua- tive parameterC defined above and by)/I" when »=0.
tion forces scale asN [16], if the number of atoms inside Whenw # 0 the output (;orrelatlon functions also depend on
the cavity is big enoughiyN>1) and the fluctuations are Y- For @ small cooperation numb€=Ng?/(yI) <1, the at-
small and we can neglect terms of order greater thandDin ~ ©MS do not interact strongly with the radiation emitted and
Neglecting those terms, the differential equations for the corlhei qualitative behavior of the output corrglatlori1 functions
responding stochastiznumber equations can be easily writ- AY IS Very similar to the correlation functionsY, ,, of
ten in a matrix form the resonance fluorescence case, discussed in Sec. Il.
In Fig. 7 we show how the spectrum of the in-phase
d probe-pump quadrature correlatiaxC(0,0,w=0), varies as
—00=B- + 41 - . - o ’
dtao 0+ G, (41) we increaseC. We notice that in Figs.(@)—7(c) the correla-
tion function AC(0,0,w=0) is positive in the EIT window

where the column vector8O and G have components: (-10=< 8,/T'<10) and follows approximately the EIT ab-

0 = (8ay, 6ay, 630z, 8201, 62 12, W, OWo, 8391, 821, sorption curve, shown in Fig. 8. Negative correlations appear
for larger values of the cooperative paramefefsee Fig.

%20, 081, 682), 7(d)]. The appearance of these negative correlations, in the

. EIT window, can be explained as follows: an excess of

G' = (far, fazs foz fou Fazs s Fuy F21, Fro F2o Fans Fa2) - quadrature intensity in any one of the output fields—say,

field mode 1—implies necessarily that field 1 momentarily
ncreases inside the cavity. This makes the EIT window
transparency wid€2] temporarily and therefore fluctuations
in field 2 decrease.

The spectrum of the in-phase quadrature correlation func-

<5oi(w)5o;(w')> =§j(@dw+o'), (42) tion AY% is shown in Fig. 9 for several values Gf Up toC
) around 0.5, the curves follow the general trend of the absorp-

wherg_(---) means stochastic average an®(w)  tion curve. As we increas€, new maxima appear closer to
=(1/\2m)[Z, Oi(texpliwt)dt is the Fourier transform of 5,=0. In order to understand the origin of it, we studied the

The B matrix can be easily obtained from the expansion u
to first order insO of the system’s equations. The spectrum
of the double correlation of the irradiated field$(w), is
now given by

Oi(b). value of the incoming field needed to build up an amplitude
Taking the Fourier transform of Eg41), multiplying by  « in both modes inside the cavifsee Eq.(36)]. For fixed
807, and taking the stochastic average, we obtain amplitudea of the pump field inside the cavity, we expected

Sw)=B+iwl) LD B -iwl)L (43) (and found numericallythat any increment in the incoming

probe field corresponds to an increment in fluorescence.

where D 8(w+w')=(G-G"). The components of the sym- Therefore the maxima and minima AfYS, as a function of

metric diffusion matrixD are thec-number diffusion coeffi-  &/I', observed in Fig. @) coincide with the maxima and

cients given in Eq(40). minima in the probe incoming fieldl(a,;,(t))] needed to
We numerically calculate the spectrum functions given bybuild up the probe field with amplitude inside the cavity.

Eq. (43). By using the Fourier transform of Eq&37), we  Using these results and the analytical solutions for the mean

obtain the spectrum of the output field correlation functionsvalues of the operators, we found that in the case bhat
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Figure 10 shows the spectrum of the in-phase quadrature

correlation functionAY3 for C=8 as a function of,/T" for
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FIG. 9. In-phase quadrature functim{g as a function o®,, for

different values ofC. ,=0,w=0, Q=10T', andy;=7,=0.15T". lower levels is small and the detuning of one of the modes of
the fields is small. We found that the correlations between the
several values of the observation frequengyWe obtain a  two modes of the field can be positive or negative and char-
very small squeezing, as can be seen from the figure. acterize the regions of parameters in which this happens. We
The spectrum of the out-of-phase quadrature correlatiodlso found a very small squeezing in the in-phase and out-
function AY2,, was also calculated and presents a behavioPf-phase quadratures for some regions of the observation fre-
similar to AY?. quencies. This does not contradict previous regbitsvhich
refer to total squeezing.
IV. CONCLUSIONS For ﬁxed QIT, if the coqperative pa'rametél is small,
the cavity correlation functions have, in general, the same
We have studied the correlation functions of the fieldsshape as a function @%/I" as the corresponding correlation
emitted by three-level atoms, interacting with two modes offunction rotated byz/2 in the fluorescence case. @ is
the electromagnetic field in a coherent state, outside and inarge, this does not happen. We found that when the coop-
side a cavity. This was done when both modes of the field arerative parameter of the cavity increases, positive correla-
in resonance and when one of the modes is in resonance atidns may turn into negative correlations in certain regions of
the other one is scanned. the probe frequency. We also found that new maxima appear
When the atoms are outside the cavity, simple analyticain the spectrum of the in-phase autocorrelation function as
expressions were obtained when the decoherence in thee increase the cooperative parameter.
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APPENDIX: GENERAL RESULTS

The steady-state solutions of the operator equatidnéor the average of the operators are obtained by setting their time
derivatives equal to zero and using the fact that the average of the Langevin fluctuation operators is zero. We obtain an
algebraic linear system of equations that is solved using Wolfram’s Mathematica computer program and get

(Wy) = {= T4 L(I + 48) (I5,+ 89 Q5 + [— 20 (I + AT, 85 + AU55,8,) + 41,157 10505 — 4T, 07105
— AT (Tl - 26,8,)05 - 4120205 - AT T QSHM, (A1)

(Wp) = {= Tl (I + 485 (I, + &) + [~ 20 (7 + AT 8,8, + 4T, 55) + 4L T 6710505 — 4T T 0503
— AP, T (T + 28,8,)Q — 4120505 - 4T, Q%M (A2)

(010 = (20 T(28, = i) (TT, + 60405 + 403051 T1(28; —iTy) + 2058,] ~ Tol'( &} = 40T (= T35 - 6) 2,09/,
(A3)

(0200 = (2,028, = iITY(T2,+ )20, + 402Q3UT  JT5(28, - iTy) + 2T'16,] + T, 18} + A0, (— i+ 8,)Q50Q,)/IM,
(A4)

(020 =[2151(268, = iT)(= & = iT1) 30, — 4T, Q50, + 2T T(26; +iT)(8 +iT 1) Q05 - 4120303 - 4, I'Q, Q3M,
(A5)
where
M = Dol (IF + 485) (1, + &) QF + AT (Tl + 28,8) Q7 + AU, Q0 + Ty + 48) (M, + 8) Q5
+ (AT + BT+ Typ) + T3y + 2T'1) + 28(8y + )] + Tl T3 + 3Tl 15+ 28,(81 + )1} + BT ) 0305
+ 4T, + 205 + 601 )T Q05+ AT T(T 1 — 26,8,) Q5 + 42T, + T, + 611 ) [ Q205 + 4T, T,Q5 (AB)
andl'=I"1+T,.
The correlation functiondY?(w) and AC(#,, 6,,w) are obtained from Eq15) and are expressed as
AYY(w) = Syy(0)€?" + Sg(w) €2 + 28 w) (A7)
and
AC(y, 6, 0) = S )€ 1% + Sy )€ 172 + S () €2 ) + Syg(w)e 1772 (A8)

We calculated the elements of the spectra of the double correlation functions of the irradiate8fietdsn both fields,
probe and pump, are in resonance and at the observation laser frequency. After manipulating the elégpents eing Egs.
(A7) and(A8), we obtain a lengthy general expression for the correlations. Whes1'1,I'5,Q4,(,, they reduce to

AYY 0= 0) = 2I'1 ,0205(2T 5Ty + T9)202 + [(T'y + T',)% + 4T,02]05 + 4T ,Q5 + cog26){- 2I'5(T, + T,) Q2
+[(Ty + T (I = 2T, = T + 407105 + AT Q3D /[(Ty + T (QF + Q)AT,05 + I105)7] (A9)

and
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4 cog 60, — 6,)Q2035 + cog 6, + 6,)[40203 — (' + T)(T'1Q%+ T,02)]
(T +T)(QF + Q)AT,05+T,03) '

We also calculate®; when only field 1 is in resonance. Takihg,=0, I';=T",=I", and{2;=,=( and using Eqs(A7) and
(A8), we obtain

AC(60y, 65,0 =0) = 45T sin 6;{- 2T sin 6,[— 3208 + 420485 + (T'* + 4T%Q02) 55+ (T2 + O?) 85] + c0S 6,5,
X[- 8Q8(5I'? + 1202) + 202(- T + Q)(I' + Q)(I'? + 40?) 85 + (2I'* + 11I'20% + 204 53 + (2T'2 + 502) 551}
+02c0s 6y(T" sin 6,8,[804(5I'2 + 20?) + 2(T'* + 51202 + 100%) 8 + (52 + 40?) 55 + 53] + cos 6,[ 3208
- 8(2I*02 + 31204 + 50%) 85 + 2(I' - 11202 - 1004 85 — (I% + 802) 85 V/[T'(8Q* + 2265 + 20255 + 53)°]
(A11)

AC(6y, 65,0 = 0) = 2I'1,00,Q (A10)

and
AY%(w=0) = 26,{41*55[- (T sin 6) + cos 65,]? + 640 °cos (4T sin 6+ cos 66,) + 80817126, + 855— 2I" sin 26(T"?
+45)
+C0S W5,(3T% + 865)] + 8085,[16I'2 — 20T sin 205, + 21685 + cos H(— 16['2 + 2165)] + T Q255 6156, + 7T 55
+T cos 23,(~ 6% + &) = 2 sin 20(= 2I' + 3025 + &5)] + 2045 200 + 33285 + 95, — 21 sin 265,(91 + 585)
+c0s W(— 4T*+ 150255 + 965 [T [8Q* + 2(I'2 + 02 55 + 55°). (A12)
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