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An ad hocquantization scheme for the electromagnetic field in a weakly dispersive, transparent dielectric
leads to the definition of canonical and kinetic forms for the momentum of the electromagnetic field in a
dispersive medium. The canonical momentum is uniquely defined as the operator that generates spatial trans-
lations in a uniform medium, but the quantization scheme suggests two possible choices for the kinetic
momentum operator, corresponding to the Abraham or the Minkowski momentum in classical electrodynamics.
Another implication of this procedure is that a wave packet containing a single dressed photon travels at the
group velocity through the medium. The physical significance of the canonical momentum has already been
established by considerations of energy and momentum conservation in the atomic recoil due to spontaneous
emission, the Cerenkov effect, the Doppler effect, and phase matching in nonlinear optical processes. In
addition, the data of the Jones and Leslie radiation pressure experiment is consistent with the assignment of one
"k unit of canonical momentum to each dressed photon. By contrast, experiments in which the dielectric is
rigidly accelerated by unbalanced electromagnetic forces require the use of the Abraham momentum.
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I. INTRODUCTION

In classical electrodynamics, a medium is traditionally de-
scribed by its macroscopic linear susceptibility. The long his-
tory and great utility of this phenomenological method have
inspired a substantial body of work aimed at devising a simi-
lar description for the quantized electromagnetic field in a
dielectric medium[1–6]. This has proven to be a difficult
and subtle task.

A useful ad hocscheme for the quantization of the elec-
tromagnetic field in a dispersive dielectric has been indepen-
dently suggested by Loudon[7] and Milonni [8]. In the
present paper we will use Milonni’s version of this scheme.
This simple and plausible formulation leads in a natural way
to the definition of several forms of electromagnetic momen-
tum; a “canonical” momentum associated with spatial trans-
lations, and two “kinetic” momenta that result from quantiz-
ing the familiar Abraham or Minkowski momenta of
classical electrodynamics. We shall see that all of these op-
erators can be physically meaningful, but that they have dif-
ferent domains of applicability.

The existence of more than one form of momentum may
seem surprising, but there is an analogous situation in semi-
classical electrodynamics. In the nonrelativistic limit, the ki-
netic energy part of the Hamiltonian for this problem is

H =
1

2m
sp − eAd2, s1d

where m is the mass,e is the charge,A is the classical
vector potential(we shall use calligraphic symbols for all
classical variables), and

p =
"

i
= s2d

is the “canonical” momentum[9]. The Heisenberg equation
of motion i"dr /dt=fr ,Hg shows that the velocity operator
v=dr /dt is given by

mv = p − eA, s3d

and this defines the “kinetic” momentummv.
The kinetic momentum in Eq.(3) evidently has the ex-

pected classical limit, i.e., the product of mass and velocity,
but it does not serve as the generator of spatial translations.
To see this, we note that spatial translations along different
axes commute, so that the corresponding generators must
also commute. An explicit calculation using Eq.(3) yields

fmvi,mv jg = i"eei jkBk Þ 0, s4d

whereB= = 3A is the magnetic field, and the Einstein
summation convention is used for repeated vector indices.
This shows thatmv cannot be the generator of spatial trans-
lations forBÞ0. On the other hand, it is well known that the
canonical momentump in Eq. (2) is the operator that gener-
ates spatial translations, but solving Eq.(3) for p shows that
it does not have the expected classical limit. Thus both the
canonical and kinetic momenta are physically meaningful,
but they play distinct roles in the theory.

In the following sections, we shall see that Milonni’s
quantization scheme leads to an analogous situation. In the
electromagnetic case there is a unique “canonical” momen-
tum operatorPcan that generates spatial translations, but there
are at least two possibilities for the kinetic momentum. This
peculiar situation is related to the long standing controversy
in classical electrodynamics regarding the “correct” defini-
tion of the electromagnetic momentum density in a medium
[10,11]. The traditional contenders for this title are the Abra-
ham,

gAsr ,td =
kEsr ,td 3Hsr ,tdl

c2 , s5d

and the Minkowski,
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gMsr ,td = kDsr ,td 3Bsr ,tdl, s6d

forms of the momentum density, wherek¯l indicates an
average over the period of the carrier wave. At present there
seems to be a fairly strong consensus that the Abraham form
is to be preferred for the electromagnetic momentum density
[11–16], but new proposals continue to appear. In the work
of Obukhov and Hehl[17], for example, the energy momen-
tum tensor is automatically symmetric, and it leads to the
momentum densitygOHsr ,td=«0kEsr ,td3Bsr ,tdl. In the
present paper we only consider nonmagnetic materialssm
=m0d, for which gOHsr ,td=gAsr ,td, but it would be interest-
ing to see an application of the Obukhov-Hehl approach to
dispersive dielectrics. As pointed out by Loudon[6], the
various forms of the momentum are potentially useful in
different contexts. It should also be noted that Brevik[18]
has argued that there is no unique solution to the problem of
identifying the “true” electromagnetic energy-momentum
tensor, since there is no unique prescription for the separa-
tion of the total energy-momentum tensor into a field part
and a matter part. DeGroot and Suttorp[19] have pointed out
that the problem of deriving the forms of the energy, the
linear momentum, and the angular momentum for polarized
media cannot be solved as long as macroscopic arguments
are utilized; microscopic arguments starting from statistical
mechanics are necessary.

In Sec. II, we present Milonni’s procedure for the quanti-
zation of electromagnetic fields in a weakly dispersive, trans-
parent dielectric medium. In Sec. III, we show that identify-
ing the total electromagnetic momentum with the uniquely
defined generator of spatial translations is equivalent to as-
suming that a photon with wave vectork has momentum"k,
just as in the vacuum. The importance of the generator of
spatial translations in this connection was previously noted
by Brevik and Lautrop[20], but their work was limited to
nondispersive materials. In Sec. IV, we show that quantiza-
tion of the familiar Abraham and Minkowski versions of the
total electromagnetic momentum leads to alternative sugges-
tions for the form of the single-photon momentum. In Sec. V
we discuss experimental tests of the predictions of this quan-
tization method.

II. QUANTIZATION IN A DISPERSIVE DIELECTRIC

Milonni’s method of quantization of the electromagnetic
field in a weakly dispersive, transparent dielectric has the
twin virtues of simplicity and agreement with the much more
elaborate formalisms developed in some of the other refer-
ences cited in the Introduction. This approach is directly
based on the approximations used in the classical theory, so
we begin by considering a classical field described by the
vector potential,

Asr ,td =As+dsr ,td + c.c., s7d

where the analytic signalAs+dsr ,td is given by

As+dsr ,td =E d3k

s2pd3o
s

Asskdesskdeisk·r−vskdtd. s8d

For the quasimonochromatic fields of interest, the power
spectrum,uAsskdu2 is concentrated at a particular frequency
v0 with spectral widthDv!v0. The medium is assumed to
be weakly dispersive with respect to this wave packet, i.e.,

Dn = DvUS ] nsvd
] v

D
v=v0

U ! unsv0du. s9d

For classical fields satisfying Eqs.(7)–(9) the effective
energy is[12]

Uem=
dfv0esv0dg

dv0

1

2
E d3rkE2sr ,tdl +

1

2m0
E d3rkB2sr ,tdl,

s10d

where k¯l denotes an average over the carrier period
2p /v0. By using Eq.(8) one can carry out the volume inte-
grals to get

Uem=E d3k

s2pd3o
s
Hv2skd

dfv0esv0dg
dv0

+
k2

m0
JuAsskdu2,

s11d

and the narrow width of the power spectrum allows this to be
rewritten in the more suggestive form

Uem=E d3k

s2pd3o
s
Hv2skd

dfvskde„vskd…g
dvskd

+
k2

m0
JuAsskdu2.

s12d

This step is both dangerous and useful. The danger comes
from the apparent generality of Eq.(12), which might lead
one to forget that it was derived for a quasimonochromatic
field. The utility comes from the observation that this expres-
sion is also valid for a superposition of quasimonochromatic
fields, provided that the differences between the carrier fre-
quencies are large compared to the spectral widths of the
individual wave packets. In this situation we shall say that
the total field is “quasimultichromatic.” With these caveats
held firmly in mind, we use the relatione(vskd)
=e0n

2(vskd) to rewrite Eq.(12) as

Uem= 2e0E d3k

s2pd3o
s

v2skdnskd
vgrskd/c

uAsskdu2, s13d

where

vgrskd =
dv

dk
=

c

nskd + vskdsdn/dvdk
s14d

is the group velocity andvphskd=c/nskd is the phase velocity
The next step is to express the energy as the sum of en-

ergies"vskd of radiation oscillators. To this end we define
new amplitudesasskd by the rule
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Asskd =Î "fvgrskd/cg
2e0nskdvskd

asskd, s15d

so that uasskdu2 (with dimensionsL3) is a k-space density.
The resulting expression,

Uem=E d3k

s2pd3o
s

"vskduasskdu2, s16d

for the total energy opens the way to the standard quantiza-
tion rule

asskd → asskd,as
*skd → as

†skd, s17d

where the operatorsasskd and as
†skd satisfy the canonical

commutation relations,

fasskd,as8
† sk8dg = s2pd3dss8d

s3dsk − k8d. s18d

In this scheme the Hamiltonian and the positive-frequency
part of the field are respectively given by

Hem=E d3k

s2pd3o
s

"vskdas
†skdasskd s19d

and

A s+dsr d =E d3k

s2pd3o
s

Î "vgrskd
2e0nskdvskdc

asskdesskdeik·r .

s20d

The excitations created byas
†skd are quasiparticles that con-

tain some admixture of electromagnetic and atomic degrees
of freedom, i.e., they are “dressed” photons. This is in the
spirit of Einstein’s original model of light quanta in the
vacuum, since each dressed photon carries energy"vskd ac-
cording to Eq.(19). Furthermore, one can show that the ap-
pearance of the group velocity in the normalization factor in
Eq. (20) guarantees that a single-photon wave packet, propa-
gating at the group velocity, carries the energy"vskd asso-
ciated with the carrier wave.

The classical quasimultichromatic approximation implies
that a plot of the power spectrumuasskdu2 must consist of a
set of narrow peaks centered on the carrier frequencies of the
wave packets making up the classical field, but this condition
makes no sense when applied to the operatoras

†skdasskd. In
the quantum theory this kind of information is carried by the
states, so we need to choose a subspaceHqm of the total
electromagnetic Fock space that corresponds to the classical
quasimultichromatic field[21]. The number states

unIl ; uns1
sk1d,ns2

sk2d,¯l s21d

that satisfy

asj

† sk jdasj
sk jdunIl = nsj

sk jdunIl, s22d

provide a basis for the entire Fock space, so the subspace
Hqm can be defined as the set of all linear combinations of
number states satisfying the condition thatnsskd=0 unless
vskd lies in a narrow band centered on one of the carrier

frequencies. The operator expressions(19) and(20) are valid
only when applied to state vectors inHqm.

III. CANONICAL MOMENTUM

The quantization scheme presented in Sec. II involves the
following assumptions:(a) The medium can only respond
through the electronic polarization of the atoms; no center-
of-mass motion is allowed.(b) The material response is spa-
tially homogeneous, at least on the scale of optical wave-
lengths.(c) The medium is isotropic. Assumption(c) (which
is valid for vapors, liquids, and glasses) justifies the use of a
scalar dielectric function. The quantization scheme can be
generalized to crystals by using a dielectric tensor instead.

The combination of assumptions(a) and (b) implies that
the positional and inertial degrees of freedom of the constitu-
ent atoms are irrelevant in this model. As a consequence of
these assumptions, the generator,Pcan, of spatial translations
is completely defined by its action on the field operators,

fAj
s+dsr d,Pcang =

"

i
= Aj

s+dsr d. s23d

Using the expansion(20) to evaluate both sides leads to

fasskd,Pcang = "kasskd. s24d

The operator

Pcan=E d3k

s2pd3o
s

"kas
†skdasskd s25d

obviously satisfies this condition. Any alternative formPcan8
would have to satisfyfasskd ,Pcan8 −Pcang=0 for all modesks,
which is only possible if the operatorZ ;Pcan8 −Pcan is actu-
ally a c-number. In this caseZ can be set to zero, for ex-
ample by assuming that the vacuum state is an eigenstate of
Pcan with zero eigenvalue, or equivalently that the vacuum
state is invariant under spatial translations. By analogy with
Eq. (2) we will call Pcan the “canonical momentum” of the
field. From Eq.(25) we then see that a photon with wave
vectork propagating in a dispersive medium is assigned the
momentum"k, just as in the vacuum.

One physical justification for the interpretation ofPcan as
a form of electromagnetic momentum is provided by the
empirical fact that this"k-type of momentum is conserved in
nonlinear optical processes, such as spontaneous parametric
down-conversion. In this process an initial photon with en-
ergy and momentums"v0,"k0d spontaneously decays into
two down-converted photons with energies and momenta
s"v1,"k1d and s"v2,"k2d, respectively, so as to conserve
energy and canonical momentum through the well-verified
phase-matching conditions[24]

"v0 = "v1 + "v2,"k0 = "k1 + "k2. s26d

Further pieces of evidence are that the spontaneous emission
of a photon with wave vectork in the medium results in an
atomic recoil momentumprec="k, and that the Cerenkov
and Doppler effects are also simply explained by the assign-
ment of a momentum"k to each emitted photon[11,25].
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An isotropic medium is invariant under continuous rota-
tions, so an extension of the above argument shows that the
rotation generatorJcan is again entirely defined by its action
on the fields

fAj
s+dsr d,sJcandig = Sr 3

"

i
=D

i
Aj

s+dsr d + i"e jikAk
s+dsr d.

s27d

Substituting Eq.(20) into this condition yields the commu-
tator

fasskd,sJcandig =
"

i
esj

* skdSk 3
]

] k
D

i
Ho

r

arskderjskdJ
+ "s

ki

k
asskd, s28d

and inspection shows thatJcan is given by the standard form
[26]

Jcan=E d3k

s2pd3Haj
†skdS"k 3

1

i

]

] k
D

i
ajskd

+
k

ko
s

"sas
†skdasskdJ , s29d

where

askd = o
s

asskdesskd. s30d

IV. KINETIC MOMENTA

The quantization scheme we are using starts with the stan-
dard classical expression for the electromagnetic energy in a
dispersive dielectric, so it would seem natural to construct
the operators for momentum and angular momentum by ap-
plying the same quantization rule(17) to the appropriate
classical expressions. Since it is precisely the identification
of the appropriate expressions that is disputed in the Abra-
hamvs Minkowski controversy, we must consider both pos-
sibilities. Integrating Eqs.(5) and(6) over all space leads to
the rival expressions

PA =E d3r gAsr ,td =E d3k

s2pd3

Sskd
c2

k

k
s31d

and

PM =E d3r gMsr ,td =E d3k

s2pd3

Sskd
vph

2 skd
k

k
, s32d

for the total momentum, where

Sskd = 2e0c
2kvskdo

s

uAsskdu2 s33d

is the time-averaged magnitude of the Poynting flux. Apply-
ing the quantization rule(17) to PA andPM produces the
operators

PA =E d3k

s2pd3o
s

"vskd
vgrskd

c2

k

k
as

†skdasskd,

=E d3k

s2pd3o
s

vgrskdvphskd
c2 "k as

†skdasskd, s34d

and

PM =E d3k

s2pd3o
s

"vskdn2skd
vgrskd

c2

k

k
as

†skdasskd,

=E d3k

s2pd3o
s

vgrskd
vphskd

"k as
†skdasskd. s35d

Conversely, the classical limit ofPAsPMd isPAsPMd. Com-
paring these expressions to the canonical momentum(25)
shows that—just as for the kinetic momentum in Eq.(3)—
neither of these kinetic momentum operators is the generator
of spatial translations.

Sinceas
†skdasskd is the number operator for photons in the

ks mode, the expressions(34) and (35) imply that a single
dressed photon in a dispersive dielectric has the momentum

pA =
vgrskd
cnskd

"k =
vgrskdvphskd

c2 "k , s36d

for the Abraham form, and

pM =
nskdvgrskd

c
"k =

vgrskd
vphskd

"k s37d

for the Minkowski form. It has been experimentally verified
[22] that a single-photon wave packet propagates at the
group velocityvgrskd,c in a passive, transparent medium,
such as glass. Roughly speaking, the peak of the wave packet
indicates the most likely “position” of the photon, when it is
regarded as a particle. This suggests that the dressed photon
might be regarded as a relativistic particle with velocity
vgrskd, and this would in turn lead to the definition of an
effective mass asupu /vgr.

In the Abraham picture, a dressed photon in a dispersive
medium has the effective mass

mA
ef f =

pA

vgrskd
=

"vskd
c2 . s38d

This is what is sometimes called the relativistic mass, and
should not be confused with the rest mass. Thus the single-
quantum energy"vskd determines the relativistic inertial
mass of the dressed photon. This is consistent with Planck’s
law of inertia for electromagnetic energy[27], which states
that for any closed system containing a dielectric, the ratio of
the momentum density to the energy flux is given by 1/c2.
Planck’s law of inertia was formulated classically for nondis-
persive media, but this definition of the effective mass gen-
eralizes it to the quantum level, and includes dispersive di-
electrics. Thus we interpret Planck’s law of inertia to mean
that each dressed photon contributes an inertial mass, given
by Eq. (38), to a blackbody cavity which is filled with a
uniform dielectric, and which is undergoing rigid-body ac-
celeration. We should also note that Planck’s law of inertia is
automatically satisfied by the Obukhov-Hehl form of the
energy-momentum tensor.
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In the Minkowski picture, the dressed photon propagating
inside the dielectric medium possesses an effective mass

mM
ef f =

pM

vgrskd
=

"vskd
vph

2 skd
= n2skd

"vskd
c2 , s39d

which differs from the Abraham expression by the extra fac-
tor n2skd in the numerator.

Comparing the three expressions(34), (35), and (25) for
PA, PM, andPcan, respectively, shows thatPA=PM can only
hold if n2skd=1, i.e., for the vacuum, and thatPA=Pcan is
only possible in the unlikely special case thatvgrskdvphskd
=c2. On the other hand, equality betweenPcan andPM occurs
for any nondispersive medium, i.e., whenever there is a
range of frequencies for whichvdnsvd /dv!nsvd. In this
case the phase and group velocities coincide, andPcan=PM.
This situation occurs automatically in the low-frequency or
static limit v→0, since Eq.(14) shows thatvgrs0d=vphs0d.
This is a good approximation for dielectrics in the low-
frequency limit, as was pointed out by Gordon[16]. Thus, in
the low-frequency limit the Minkowski momentum should
be identified with Gordon’s pseudo-momentum, or in the lan-
guage of this paper, with the canonical momentum.

Most of the previous treatments of the Minkowski mo-
mentum have been restricted to nondispersive media[23], so
an alternative procedure would be to interpret the canonical
momentum as the appropriate generalization of the
Minkowski momentum to dispersive media. In this approach,
the definition(35) of the Minkowski momentum would be
dropped and replaced by the classical limit of the definition
(25) of the canonical momentum.

Similar results follow from the alternative classical ex-
pressions of the total angular momentum. The classical an-
gular momentum defined by the Abraham momentum den-
sity is

JA =E d3r r 3 gAsr ,td, s40d

so the corresponding quantum operator is

JA =E d3k

s2pd3

vgrskdvphskd
c2 Haj

†skdS"k 3
1

i

]

] k
D

i
ajskd

+
k

ko
s

"sas
†skdasskdJ . s41d

Similarly the Minkowski angular momentum

JM =E d3r r 3 gMsr ,td s42d

leads to the operator

JM =E d3k

s2pd3

vgrskd
vphskdHaj

†skdS"k 3
1

i

]

] k
D

i
ajskd

+
k

ko
s

"sas
†skdasskdJ . s43d

V. EXPERIMENTAL TESTS

A. Radiation-pressure experiment of Jones and Leslie

An important experiment which bears on the question of
the momentum of light in dielectric media was carried out by
Jones and Leslie[28]. In this work the radiation pressure of
a light beam striking a mirror immersed in various optically
dense liquids was measured with high accuracy. Each mea-
surement was compared to the radiation pressure of the same
light beam striking the same mirror in air. The experimental
data showed that the mechanical momentum imparted to the
mirror is directly proportional to the index of refractionnsvd
of the medium to within ±0.05%. Several alternative hypoth-
eses, such as proportionality to the “group index”

ngrsvd = nsvd + vdn/dv s44d

or inverse proportionality tonsvd, were excluded by many
standard deviations.

At the heart of this experiment is a “radiation-pressure
mirror,” fabricated from multilayer dielectric coatings with
high reflectivity and low absorption at the 632.8 nm wave-
length of the helium-neon laser used in the experiment. This
mirror is located near the bottom of the apparatus, where it is
attached by epoxy to a thin, central vertical wire. The mirror
and wire can be immersed in a variety of dielectric liquids. A
high-intensity, 15 mW helium-neon laser beam is directed
near normal incidence towards this lower mirror, and the
radiation pressure exerted by the laser beam generates a
torque upon the wire. In the experiment, the resulting torque
is measured both before and after a dielectric liquid is poured
into the space surrounding the mirror.

A second, “twist-detecting” mirror(called an “optical le-
ver”) is attached to the same wire near the top of the appa-
ratus, and is also immersed in the liquid. In this way, the
central wire connecting the two mirrors transmits the me-
chanical torque generated by the radiation pressure from the
lower to the upper mirror. The wire is wrapped around the
upper mirror many times so as to form a current-carrying coil
which, in the presence of a uniform magnetic field, exerts a
torque on the upper mirror. The reflected light signal from
the upper mirror is detected by a pair of balanced photo-
diodes, and is used as the primary input into a feedback
circuit that controls the current in the coil, so that the torque
generated by its interaction with the magnetic field exactly
cancels the torque arising from the radiation pressure exerted
by the laser beam on the lower mirror.(The radiation pres-
sure exerted upon the upper mirror by the low-intensity light
beam for monitoring the angular displacement of the “optical
lever” is negligible.) The central wire is grounded at the
bottom of the metallic apparatus, and is insulated from the
top, in order for a current to be fed through the wire.

The use of a counterbalancing torque generated in the
upper mirror guarantees that no mechanical motion of the
lower mirror, or of the fluid, ever occurs during a measure-
ment, i.e., these arenull measurements. Nonlinearities in the
system do not affect the position of the null, and also there is
no need to include any hydrodynamic effects(including elec-
trostrictive pressure effects) in the calculation of the radia-
tion pressure. After the system has been balanced and comes

CANONICAL AND KINETIC FORMS OF THE… PHYSICAL REVIEW A 70, 053826(2004)

053826-5



into mechanical equilibrium, a measurement of the current
passing through the coil around the upper mirror is a direct
measure of the radiation pressure exerted by the laser beam
on the lower mirror.

The experiment employs synchronous detection to cancel
out systematic errors. The laser beam is periodically trans-
lated from the left side to the right side of the radiation-
pressure mirror with respect to the central wire. This is done
symmetrically, so that the radiation-pressure-generated
torque periodically reverses sign. The electronic feedback
system is designed so that the current sent to the coil
wrapped around the upper mirror is also reversed in sign in
synchronism with the periodic switching of the laser beam.
Derivative feedback to the coil around the upper mirror is
used to achieve critical damping of this torsional-oscillator
system.

We will analyze this experiment by assuming that each
photon in the beam carries momentump that is normal to the
mirror. Let us call the rate of arrival of photons normally

incident at the mirrorṄinc. For a perfectly reflective mirror
the momentum transfer per photon at normal incidence is 2p,
so the magnitudeFrad= uFradu of the force due to the flux of
photons striking the mirror at normal incidence is

Frad = Ṅinc2upu. s45d

The entrance window to the apparatus is antireflection
coated, and there is negligible absorption in the liquid; there-
fore the rate of arrival of laser photons at the mirror is the
same as the rate of arrival of laser photons at the entrance
window. If the entire laser output is focused through the

entrance window onto the surface of the mirror,Ṅinc is
closely approximated by

Ṅinc =
Plaser

"vL
, s46d

wherePlaser is the output power of the laser and"vL is the
energy per laser photon.

There are three possible choices forp. For p=pcan="k,
the force on the mirror is

sFraddcan= Ṅinc2"k = nsvLdFṄinc2
"vL

c
G = nsvLdF2

Plaser

c
G ,

s47d

where we have used the dispersion relationk=nsvLdvL /c.
For p=pM or p=pA the relations(37) and (36) yield the
corresponding forces

sFraddM =
n2

ngr
F2

Plaser

c
G s48d

and

sFraddA =
1

ngr
F2

Plaser

c
G , s49d

wherengr is the group index defined in Eq.(44).
In each case we want to calculate the ratio

R=
Fradsdielectricd

Fradsaird
s50d

of the radiation-pressure forces on the mirror with and with-
out the liquid. Sincen=ngr=1 in air, the three alternative
values are

Rcan= nsvLd, s51d

RM =
n2svLd
ngrsvLd

, s52d

and

RA =
1

ngrsvLd
, s53d

for the canonical, Minkowski, and Abraham momenta, re-
spectively.

The results of evaluating the alternative values(51)–(53)
of the ratioR using the data provided by Jones and Leslie are
presented in Table I. For each dielectric we show the average
experimental valueRexp and the corresponding standard de-
viation s, together with the predicted values and their differ-
ences from the experimental value expressed as a multiple of
s. For example, in the case of benzene the observed ratio
differs from the Minkowski prediction(52) by 22 standard
deviations and from the Abraham prediction(53) by 405
standard deviations.

TABLE I. Ratios of radiation pressure in liquid to that in air(data from[28] ).

Liquid Rexpt Rcan RM RA

methanol 1.3281±sss=0.0018d 1.3275s−0.3sd 1.3134s−8.2sd 0.7453s−324sd
acetone 1.3553±sss=0.0018d 1.3563s+0.6sd 1.3359s−10.8sd 0.7262s−350sd
ethanol 1.3594±sss=0.0022d 1.3606s+0.5sd 1.3437s−7.1sd 0.7259s−288sd
isopropanol 1.3762±sss=0.0020d 1.3756s−0.3sd 1.3577s−9.3sd 0.7175s−329sd
CCl4 1.4614±sss=0.0021d 1.4581s−1.6sd 1.4313s−14.3sd 0.6732s−375sd
toluene 1.4898±sss=0.0018d 1.4921s+1.3sd 1.4528s−20.5sd 0.6525s−465sd
benzene 1.4970±sss=0.0021d 1.4974s+0.2sd 1.4518s−21.5sd 0.6475s−405sd
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Therefore the Jones and Leslie experiment demonstrates
that near normal incidence the radiation pressure on a mirror
immersed in a dielectric liquid is given by the rate of transfer
of the canonicalmomentum"k per photon within an accu-
racy of ±0.05%. In this connection it is important to note that
the theories of Gordon[16] and Loudon[6] both predict that
the radiation pressure force on a mirror immersed in a dis-
persionless dielectric will be determined by the Minkowski,
rather than the Abraham, momentum. As we have noted
above, the Minkowski and canonical momenta agree for dis-
persionless materials, but we have further demonstrated in
Table I that the experimental results for optical frequency
radiation in a dispersive medium decisively favor the canoni-
cal momentum over the Minkowski momentum, as well as
over the Abraham momentum.

B. Experimental relevance of the Abraham momentum

Of the three momenta we have studied, only the canonical
momentum is required to explain atomic recoil in spontane-
ous emission, the Cerenkov and Doppler effects, and all con-
ventional nonlinear and quantum optics experiments involv-
ing the phase-matching relations. In addition, the radiation-
pressure experiment of Jones and Leslie is consistent with
the choice of the canonical momentum for the dressed pho-
tons. When, if ever, are the Abraham or Minkowski forms of
momentum needed? In this connection, there have been im-
portant experiments demonstrating the relevance of the Abra-
ham momentum by James[29] and by Walkeret al. [30].
(For a review of these experiments, see Brevik[18].) These
experiments, which were first proposed by Marx and Györ-
gyi [31], involve toroidal or annular, dielectric-filled regions
subjected to crossed electric and magnetic fields, with low-
frequency time variations. In particular, in the experiment of
Walker et al., the Abraham force due to the time-varying
polarization current crossed into the magnetic field was veri-
fied to within an accuracy of ±5%. This implies that the
Minkowski theory is in disagreement with the experimental
data of Walkeret al., by 20 standard deviations.

Note that these toroidal experiments involved “closed”
systems, in the sense that the dielectric medium and electro-
magnetic fields are entirely enclosed, for example, within the
toroidal torsional bob of the torsional oscillator used by
Walker et al. Thus in these experiments the dielectric me-
dium experiencesacceleratedmotion during measurements.
No external forces are present, and the whole enclosed sys-
tem of fields and dielectric rotates together as a rigid body.
By contrast, the Jones and Leslie configuration involves an
“open” system, in which an external torque is used in feed-
back to prevent any accelerated motions of the mirror and
the dielectric liquid during measurements.

Furthermore, two papers by Lai[14,15] have convinc-
ingly demonstrated theoretically that in the low-frequency or
static limit, the Minkowski momentum density would give
unphysical results for the measurement of the total angular
momentum in all such closed-system experiments in which
acceleration of the dielectric is allowed. Thus the experi-
ments by James and by Walkeret al., and the papers by Lai,

all provide strong evidence that the Abraham, rather than the
Minkowski momentum, is required for a correct description
of all such closed systems that undergo accelerated motions.
This is consistent with Planck’s law of inertia for electro-
magnetic energy. Since the canonical momentum is identical
to the Minkowski momentum in the static limit, these results
also rule out the canonical momentum as being physically
relevant in these kinds of experiments. However, one of the
assumptions of the Milonni theory is that center-of-mass mo-
tions of atoms of the medium are not allowed. Hence it is not
surprising the canonical momentum derived from this theory
does not apply to these experiments.

VI. CONCLUSIONS

Thead hocquantization scheme employed above leads in
a natural way to several forms of momentum for the electro-
magnetic field in a dispersive medium. The first is the ca-
nonical momentum which is uniquely defined as the genera-
tor of spatial translations. The conservation law for the
canonical momentum is validated by the atomic recoil in
spontaneous emission, the Cerenkov and Doppler effects,
and the phase-matching conditions in nonlinear optics. Fur-
thermore, the canonical momentum correctly predicts the re-
sults of the Jones and Leslie radiation-pressure experiment.
The explicit appearance of the group velocity in thead hoc
scheme suggests that experiments to measure quantum fluc-
tuations of the electromagnetic field in a variety of dielectric
media would be of great interest.

The second form, the kinetic momentum, is not unique,
since the operators are derived by quantizing the classical
expressions of the Abraham and Minkowski momenta. The
experiments discussed in Sec. V B demonstrate the experi-
mental relevance of the Abraham, as opposed to the canoni-
cal, momentum for closed systems. Since these experiments
have all been carried out for classical, low-frequency fields,
they do not provide direct evidence for the meaning of the
operatorsPA or PM. Investigating the quantum significance
of the Abraham or Minkowski momenta would again require
experiments sensitive to quantum fluctuations.

In addition to these experimental questions, there are also
issues of theoretical consistency that have to be faced. The
conjectured form(38) of the Abraham effective photon mass
is based on the implicit assumption that the dressed photon
model can be applied to accelerated media. This is inconsis-
tent with the basic assumption in the quantization scheme
that no center-of-mass acceleration of the atoms occurs. One
possible way to resolve this contradiction would be to imitate
Milonni’s scheme by starting with a classical expression for
the electromagnetic energy in an accelerated medium.

ACKNOWLEDGMENTS

It is a pleasure to acknowledge stimulating discussions
with Iver Brevik, J. David Jackson, Ulf Leonhardt, Peter
Milonni, Rodney Loudon, and Achilles Speliotopoulos. This
work was supported in part by the NSF.

CANONICAL AND KINETIC FORMS OF THE… PHYSICAL REVIEW A 70, 053826(2004)

053826-7



[1] P. D. Drummond, Phys. Rev. A42, 6845(1990).
[2] R. J. Glauber and M. Lewenstein, Phys. Rev. A43, 467

(1991).
[3] B. Huttner and S. M. Barnett, Phys. Rev. A46, 4306(1992).
[4] R. Matloobet al., Phys. Rev. A52, 4823(1995).
[5] T. Gruner and D.-G. Welsch, Phys. Rev. A53, 1818(1996).
[6] R. Loudon, J. Mod. Opt.49, 821 (2002).
[7] K. J. Blow, R. Loudon, S. J. D. Phoenix, and T. J. Shepherd,

Phys. Rev. A42, 4102(1990).
[8] P. W. Milonni, J. Mod. Opt.42, 1991(1995).
[9] R. P. Feynman, R. B. Leighton, and M. Sands,The Feynman

Lectures on Physics(Addison-Wesley, New York, 1965), p.
21-4.

[10] L. D. Landau and E. M. Lifschitz,Electrodynamics of Con-
tinuous Media(Addison-Wesley, Reading, MA, 1984).

[11] V. L. Ginzburg,Applications of Electrodynamics in Theoretical
Physics and Astrophysics(Gordon and Breach Science Pub-
lishers, New York, 1989).

[12] J. D. Jackson,Classical Electrodynamics(John Wiley & Sons,
Inc., New York, 1999), Chap. 6.8.

[13] Ref. [12], Chap. 6.7.
[14] H. M. Lai, Am. J. Phys.48, 658 (1979).
[15] H. M. Lai, Am. J. Phys.49, 366 (1981).
[16] J. P. Gordon, Phys. Rev. A8, 14 (1973).
[17] Y. N. Obukhov and F. W. Hehl, Phys. Lett. A311, 277(2003).
[18] I. Brevik, Phys. Rep.52, 133 (1979).

[19] S. R. de Groot and L. G. Suttorp,Foundations of Electrody-
namics(North-Holland, Amsterdam, 1972), Chap. V.7.

[20] I. Brevik and B. Lautrop, Mat. Fys. Medd. K. Dan. Vidensk.
Selsk. 38, 1 (1970).

[21] I. H. Deutsch and J. C. Garrison, Phys. Rev. A43, 2498
(1991).

[22] A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, Phys. Rev. Lett.
68, 2421(1992).

[23] I. Brevik (personal communication).
[24] B. E. A. Saleh and M. C. Teich,Fundamentals of Photonics

(John Wiley & Sons, Inc., New York, 1991), p. 746.
[25] V. L. Ginzburg, Sov. Phys. Usp.16, 434 (1973).
[26] L. Mandel and E. Wolf,Optical Coherence and Quantum Op-

tics (Cambridge University Press, Cambridge, England, 1995),
Chap. 10.6 .

[27] M. Planck, Phys. Z.9, 828 (1908).
[28] R. V. Jones and B. Leslie, Proc. R. Soc. London, Ser. A360,

347 (1978).
[29] R. P. James, Proc. Natl. Acad. Sci. U.S.A.61, 1149(1968).
[30] G. B. Walker, D. G. Lahoz, and G. Walker, Can. J. Phys.53,

2577(1975); G. B. Walker and D. G. Lahoz, Nature(London)
253, 339 (1975); G. B. Walker and G. Walker,ibid. 263, 401
(1976); 265, 324 (1977).

[31] G. Marx and G. Györgyi, Ann. Phys.(Leipzig) 16, 241
(1955).

J. C. GARRISON AND R. Y. CHIAO PHYSICAL REVIEW A70, 053826(2004)

053826-8


