
Polarization squeezing in vertical-cavity surface-emitting lasers

Yu. M. Golubev,1 T. Yu. Golubeva,1 M. I. Kolobov,2 and E. Giacobino3
1Physics Institute, St. Petersburg State University, 198904 Petrodvorets, St. Petersburg, Russia

2Laboratoire PhLAM, Université de Lille 1, F-59655 Villeneuve d’Ascq Cedex, France
3Laboratoire Kastler Brossel, Université Pierre et Marie Curie, F-75252 Paris Cedex 05, France

(Received 22 June 2004; published 17 November 2004)

We further elaborate the theory of quantum fluctuations in vertical-cavity surface-emitting lasers(VCSEL’s),
developed by[Hermier et al. Phys. Rev. A65, 053825(2002)]. In particular, we introduce quantum Stokes
parameters to describe the quantum self-correlations and cross correlations between two polarization compo-
nents of the electromagnetic field generated by this type of laser. We calculate analytically the fluctuation
spectra of these parameters and discuss experiments in which they can be measured. We demonstrate that in
certain situations VCSEL’s can exhibit polarization squeezing over some range of spectral frequencies. This
polarization squeezing has its origin in sub-Poissonian pumping statistics of the active laser medium.
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I. INTRODUCTION

In the last years there has been an increasing interest in
the polarization properties of vertical-cavity surface-emitting
lasers(VCSEL’s). This interest is motivated in the first case
by the potential applications of this type of laser in high-rate
optical communications[1]. But there is also a more funda-
mental reason for understanding the polarization behavior in
VCSEL’s—namely, a possibility of generating the intensity-
squeezed light using sub-Poissonian pumping of the active
medium[2,3]. To date, squeezing in VCSEL’s has been dem-
onstrated experimentally for both single-mode operation and
in a multi-transverse-mode regime[4,5]. In single-mode op-
eration with only one linearly polarized mode above thresh-
old the fluctuations in a subthreshold mode with polarization
orthogonal to the lasing mode can present high intensity
noise[6,7] and, moreover, be highly correlated with the in-
tensity fluctuations of the oscillating mode. This phenom-
enon can result in the deterioration of squeezing observed in
experiments with polarization-sensitive optical elements.
Therefore, polarization dynamics in VCSEL’s plays an im-
portant role for a correct description of their quantum fluc-
tuations.

At present, the standard theory that accounts for the dy-
namics of two polarization components of the electromag-
netic field in VCSEL’s is the so-called “spin-flip” model de-
veloped by San Miguel, Feng, and Moloney[8]. On the basis
of this model several authors have formulated semiclassical
theories of light fluctuations in VCSEL’s[6,7,9–11]. How-
ever, a semiclassical description is inappropriate for
intensity-squeezed light and, therefore, calls for a fully quan-
tum model of quantum fluctuations in VCSEL’s. The “quan-
tum spin-flip” model was developed recently in Ref.[12].
This model takes into account, on the one hand, the dynam-
ics of two polarization components of the electromagnetic
field and, on the other hand, the pumping statistics of the
active laser medium. In particular, the quantum spin-flip
theory allows for sub-Poissonian pumping statistics in which
case VCSEL’s can generate the intensity-squeezed light.

In this paper we further elaborate the quantum spin-flip
model of VCSEL’s, developed in[12]. In particular, we ap-

ply quantum Stokes parameters to describe the quantum self-
correlations and cross-correlations of two polarization com-
ponents of the electromagnetic field generated by VCSEL’s.
We analytically calculate the fluctuation spectra of the quan-
tum Stokes parameters and discuss experiments in which
they can be measured. We demonstrate that for the sub-
Poissonian pumping statistics VCSEL’s can exhibit polariza-
tion squeezing in some range of spectral frequencies.

The paper is organized as follows. In Sec. II we give a
short resume of the quantum spin-flip model developed in
Ref. [12] and calculate analytically the spectral densities of
quantum fluctuations of the quadrature components. In Sec.
III we introduce the quantum Stokes parameters and their
fluctuation spectra and discuss experiments where these fluc-
tuations spectra can be measured. Using the results obtained
in Sec. II we analytically calculate the fluctuation spectra of
the quantum Stokes parameters. In Sec. IV with help of the
analytical results obtained in Sec. III we illustrate graphically
the possibilities of the observation of polarization squeezing
in VCSEL’s. We also provide the figures of typical cross-
correlation spectra of photocurrents and cross-correlation
spectra of the Stokes parametersS2 andS3 that can be mea-
sured experimentally. In Sec. V we summarize the results.

II. QUANTUM SPIN-FLIP THEORY OF VCSEL’S

A. Resume of the model

In this section we shall give a brief resume of the quan-
tum spin-flip model of VCSEL’s developed in Ref.[12]. We
shall define the physical parameters of this model and pro-
vide the equations which will be used in the following sec-
tions. For more details we refer the reader to Ref.[12].

The semiclassical four-level spin-flip model of VCSEL’s
was developed by San Miguel, Feng, and Moloney[8]. This
model describes very well the dynamics of these semicon-
ductor lasers and is widely used for the understanding of
such phenomena—for example, as polarization switching.
The spin-flip model takes into account the spin sublevels of
the total angular momentum of the heavy holes in the va-
lence band and of the electrons in the conduction band.
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These four sublevels interact with two circularly polarized
electromagnetic waves in the laser resonator, and it is this
interaction that is responsible for the complicated polariza-
tion dynamics manifested by this type of laser.

The four-level scheme of the semiconductor medium is
shown in Fig. 1. Two lower levelsub±l correspond to the
unexcited state of the semiconductor medium with zero
electron-hole pairs while the upper levelsua±l correspond to
the excited states with an electron-hole pair created[13].
Two pairs of levelsua+l , ub+l and ua−l , ub−l are coupled via
an interaction with the left and right circularly polarized
electromagnetic waves in the laser cavity described by the
field operatorsâ+std and â−std. As explained in Ref.[8],
physically these two pairs of transitions are associated with
two z componentsJz= ±1/2 of thetotal angular momentum
J=1/2 of the electrons in the conduction band and corre-
spondingz componentsJz= ±3/2 for J=3/2 of the heavy
holes in the valence band. The constantsga and gb are the
decay rates of the populations of the upper and lower levels,
g' (not shown in Fig. 1) is the decay rate of the polarization,
andgc is the spin-flip rate that accounts for mixing of popu-
lations with opposite values ofJz. The last parameter was
introduced in Ref.[8] to describe the spin-flip relaxation pro-
cess. This parameter is responsible for the coupling of two
transitions with different circular polarizations and, as a re-
sult, for various polarization dynamics of VCSEL’s.

It should be noted that the authors of Ref.[8] have con-
sidered the situations of equal relaxation constants of the
upper and lower levels,ga=gb. However, it is known from
the literature[2,3] that this is not the most favorable condi-
tion for the generation of sub-Poissonian light. Therefore, the
quantum spin-flip theory in Ref.[12] was developed for ar-
bitrary values ofga andgb. In this paper we shall also con-
sider this general situation.

Moreover, it has been mentioned in the literature(see, for
example, Ref.[12]) that this model describes correctly a
semiconductor laser if we assume the decay rategb of the
lower levels to be very large compared to the other decay
constants—namely,ga,gc, andk. From the classical point of
view both situationsgb=ga and gb@ga result in the same
dynamical behavior of VCSEL’s. However, it turns out that
the statistical properties of two models withgb=ga and gb
@ga are very different. A detailed discussion of this differ-
ence is out of the scope of this paper and we shall address
this point elsewhere.

We have indicated in Fig. 1 the pump process with mean
total pumping rate 2R which is then separated with equal

probabilities between two sublevelsua+l andua−l. The quan-
tum spin-flip model of Ref.[12] takes into account the pos-
sibility of sub-Poissonian pumping of the laser medium us-
ing the technique of pump-noise suppression[2,3]. For a
stationary-in-time average pumping rate, the influence of the
pump statistics can be characterized by a single parameter
pø1 [14,15]. For p=1 the pump is perfectly regular while
for p=0 the pump has Poissonian statistics. Intermediate val-
ues of 0øpø1 correspond to sub-Poissonian pumping
while for pø0 the pump process possess excess classical
fluctuations and corresponds to super-Poissonian statistics.

This pump statistics was introduced into the quantum
spin-flip model using the Heisenberg-Langevin equations for

the operator-valued collective populationsN̂a±std and N̂b±std
of the upper and lower levels in Fig. 1 and for the collective

polarizationP̂±std. On the basis of the Heisenberg-Langevin
equations, the equivalentc-number Langevin equations were
derived for the collective atomic and field variables, corre-
sponding to the normal ordering of the atomic and field op-
erators[14,15]. Next, using the fact that the relaxation rates
gb of the lower levels andg' of the polarization in VCSEL’s
are much bigger than the relaxation ratega of the upper
levels, the macroscopicc-number populationsNb±std and the
macroscopicc-number polarizationP±std were adiabatically
eliminated. The resulting equations can be written in terms of
the total population of two upper levelsua+l and ua−l and of
the total inversion between them. The corresponding vari-
ables are defined asDstd=fNa+std+Na−stdg /2, and dstd
=fNa+std−Na−stdg /2. The equations for these variables and
the twoc-number field componentsa±std are

ȧ±std = − ka±std − ska + ivpda7std + cs1 − iad

3fDstd ± dstdga±std + F±std, s2.1d

Ḋstd = R− gDstd − cfua+stdu2 + ua−stdu2gDstd − cfua+stdu2

− ua−stdu2gdstd + FDstd, s2.2d

ḋstd = − gsdstd − cfua+stdu2 − ua−stdu2gDstd − cfua+stdu2

+ ua−stdu2gdstd + Fdstd. s2.3d

Here k is the cavity damping constant, andvp and ka de-
scribe the linear birefringence and the linear dichroism of the
semiconductor medium. The last parameter was not included
in the model in Ref.[12] and is introduced here as a gener-
alization. Next,a is the linewidth enhancement in semicon-
ductor lasers:

a =
n − v

g'

, s2.4d

wheren is the frequency of the semiconductor energy gap
and v is the resonator frequency. We have also defined the
relaxation rategs as gs=ga+2gc and have introduced the
shorthand

FIG. 1. Four-level scheme of the active medium of VCSEL.
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c =
g2

g's1 + a2d
, g = ga, s2.5d

where g is the coupling constant of the interaction of the
electromagnetic field with the polarization.

The functionsF±std, FDstd, and Fdstd are thec-number
Langevin forces. Their nonzero correlation functions were
calculated in Ref.[12]. In general the results are rather cum-
bersome but they are simplified in the vicinity of the station-
ary solutions. For completeness we shall give these correla-
tion functions for the stationary solutions at the end of this
section.

B. Stationary semiclassical solutions

Semiclassical equations of VCSEL’s are obtained from
Eqs.(2.1)–(2.3) by dropping thec-number Langevin forces.
In this subsection we shall give the stationary solutions of
these equations which characterize the stationary generation
of VCSEL’s. For an investigation of quantum fluctuations in
VCSEL’s we shall use the standard assumption that these
fluctuations are small compared to the corresponding station-
ary values. This will allow for linearization of Eqs.
(2.1)–(2.3) around stationary solutions with respect to the
quantum fluctuations.

Stationary solutions of Eqs.(2.1)–(2.3) have been inves-
tigated in detail in[8,16]. WhenvpÞ0 andkaÞ0 there are
in general four types of stationary solutions: two of them
have linear polarization along thex andy axes and two other
elliptical polarization. We shall consider only linearly polar-
ized solutions because this type of solution is usually real-
ized in experiments. In this case the circularly polarized field
components have equal amplitudes and can be written in the
form

a±std = QeisDt±cd, s2.6d

where the real amplitudeQ is normalized so thatQ2= ua+u2
= ua−u2 gives the mean number of photons in the correspond-
ing circularly polarized field mode. Two other parametersD
and c determine the type of polarization of the stationary
solution (2.6).

We recall that the linearly polarized field components
axstd andaystd are related to the circularly polarized ones as

axstd =
a+std + a−std

Î2
, aystd =

a+std − a−std
Î2i

. s2.7d

For the x-polarized solutionc=0 and for they-polarized
solutionc=p /2. The frequency detuningsD in Eq. (2.6) are
different for these solutions and are equal to

Dx,y = − fkx,ya ± vpg, s2.8d

where the upper sign corresponds to thex-polarized solution
and the lower sign to they-polarized one. Here we have
introduced the shorthandkx=k+ka and ky=k−ka. The
x-polarized stationary solution reads

ax = Î2QeiDxt, ay = 0, s2.9d

while they-polarized stationary solution is given by

ax = 0, ay = Î2QeiDyt. s2.10d

For both solutions we have

Q = ÎIssr − 1d, s2.11d

wherer =R/Rth is the dimensionless pumping rate,Rth is the
threshold pumping rate, andIs is the saturation intensity; the
two latter are given by

Rth =
gkx,y

c
, Is =

g

2c
. s2.12d

Note that for ka.0 the threshold pumping rate for the
y-polarized solution is lower that for thex-polarized one.

The stationary values of the atomic variablesd0 and D0
for these linearly polarized solutions are equal to

d0 = 0, D0 =
R

g + 2cQ2 =
kx,y

c
. s2.13d

In the case of VCSEL’s as in general for solid-state and semi-
conductor lasers the question of the stability of stationary
solutions is very important. The stability analysis of these
stationary solutions was performed in a number of publica-
tions, as, for example, Refs.[16,17], and we refer the reader
to these papers for details. In our analysis of quantum fluc-
tuations we shall assume that the corresponding stationary
operation regime of VCSEL’s is stable. Since for a low
pumping rate only thex-polarized solution is stable, we shall
restrict our analysis of quantum fluctuations only for this
type of stationary solution.

C. Linearization around stationary solutions

To calculate the quantum fluctuations around the station-
ary solution we shall linearize Eqs.(2.1)–(2.3) around the
steady state given by Eq.(2.6). As mentioned above we shall
consider here only thex-polarized stationary solution. Add-
ing small fluctuations to the stationary solutions we can write
the field and the atomic variables as

a±std = fQ + da±stdgeiDt, Dstd = D0 + dDstd, dstd = ddstd.

s2.14d

In this equation and in what follows we have dropped the
index x in Dx since we shall be concerned only with the
x-polarized solution. Substituting these expressions into Eqs.
(2.1)–(2.3) and linearizing, we arrive at the following equa-
tions for small fluctuations:

d

dt
da±std = ska + ivpdfda±std − da7stdg + cs1 − iad

3QfdDstd ± ddstdg + F±stde−iDt,

d

dt
dDstd = − sg + 2cQ2ddDstd − kxQfda+std + da−std + c.c.g

+ FDstd,
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d

dt
ddstd = − sgs + 2cQ2dddstd − kxQfda+std − da−std + c.c.g

+ Fdstd. s2.15d

It is convenient to introduce the fluctuations of the linearly
polarized components of the fielddaxstd anddaystd, defined
according to Eq.(2.7), for which the set of coupled equations
(2.15) decouples into two sets of independent equations for
daxstd and daystd with Langevin forcesFxstd and Fystd de-
fined similar to Eq.(2.7). Moreover, we shall define the fluc-
tuations of the amplitude and phase quadrature components
dXxstd anddYxstd of the x-polarized field component,

dXxstd =
1

2
fdaxstd + dax

*stdg, dYxstd =
1

2i
fdaxstd − dax

*stdg,

s2.16d

and similarly for they-polarized component. For these fluc-
tuations we obtain the equations

d

dt
dXxstd = Î2cQdDstd + Rxstd,

d

dt
dYxstd = − Î2acQdDstd + Txstd,

d

dt
dDstd = − GdDstd − 2Î2kxQdXxstd + FDstd s2.17d

and

d

dt
dXystd = 2kadXystd − 2vpdYystd − Î2acQddstd + Rystd,

d

dt
dYystd = 2kadYystd + 2vpdXystd − Î2cQddstd + Tystd,

d

dt
ddstd = − Gsddstd + 2Î2kxQdYystd + Fdstd, s2.18d

where the new Langevin forcesRxstd andSxstd are defined as

Rxstd =
1

2
fFxstde−iDt + Fx

*stdeiDtg,

Txstd =
1

2i
fFxstde−iDt − Fx

*stdeiDtg,

Rystd =
1

2
fFystde−iDt + Fy

*stdeiDtg,

Tystd =
1

2i
fFystde−iDt − Fy

*stdeiDtg. s2.19d

In Eqs.(2.17) and (2.18) we have introduced

G ; g + 2cQ2 = gr, Gs ; gs + 2cQ2 = gs + gsr − 1d,

s2.20d

as convenient shorthand.

D. Spectral densities of quantum fluctuations

To solve Eqs.(2.17) and(2.18) we take the Fourier trans-
form of the field and atomic fluctuations,

dXxsVd =
1

Î2p
E

−`

+`

dXxstdeiVtdt, s2.21d

and similar for the other variables, which converts these dif-
ferential equations into algebraic ones. The spectral correla-
tion functions of these quadratures ared correlated,

kdXisVddXisV8dl = sdXi
2dVdsV + V8d,

kdYisVddYisV8dl = sdYi
2dVdsV + V8d,

kdXisVddYisV8dl = sdXidYidVdsV + V8d, s2.22d

with sdXi
2dV, i =x,y, andsdYi

2dV being the spectral densities
of the corresponding quadratures andsdXidYidV their cross-
spectral density.

After a simple algebra we obtain the following expres-
sions for the fluctuations of the amplitude quadratures
dXxsVd anddXysVd and the phase quadraturedYysVd:

dXxsVd =
1

DxsVd
hsG − iVdRxsVd + Î2cQFDsVdj,

s2.23d

dXysVd =
1

DysVd
hf2kxgsr − 1d − s2ka + iVdsGs − iVdgRysVd

− f2akxgsr − 1d + 2vpsGs − iVdgTysVd

+ Î2cQs2vp + 2aka + iaVdFdsVdj, s2.24d

dYysVd =
1

DysVd
h2vpsGs − iVdRysVd − s2ka + iVdsGs − iVd

3TysVd + Î2cQs− 2avp + 2ka + iVdFdsVdj,

s2.25d

with

DxsVd = − iVsG − iVd + 2kxgsr − 1d,

DysVd = sGs − iVdfs2vpd2 + s2ka + iVd2g + 2kxgsr − 1d

3s2avp − 2ka − iVd. s2.26d

The other phase quadraturedYxsVd will not appear in the
observables that we shall discuss below. Using the results
obtained in Ref.[12] and taking into account the stationary
solutions(2.6) and (2.13) we obtain the following nonzero
correlation functions of the Langevin forcesRistd ,Tistd, with
i =x,y, andFDstd ,Fdstd for the stationary regime of VCSEL’s
in approximation of the small fluctuations:
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kRxstdRxst8dl = kRystdRyst8dl = kTxstdTxst8dl = kTystdTyst8dl

= kxdst − t8d,

kFDstdFDst8dl =
kx

c
GS1 −

1

2
pDdst − t8d,

kFdstdFdst8dl =
kx

c
Gsdst − t8d,

kFDstdRxst8dl = kFdstdTyst8dl = − Î2kxQdst − t8d.

s2.27d

Equations(2.23)–(2.26) together with correlation functions
(2.27) allow us to evaluate an arbitrary correlation function
of the laser light emitted by the VCSEL. The spectral densi-
ties of the amplitude quadraturessdXx

2dV, sdXy
2dV are given

by

sdXx
2dV =

kx

uDxsVdu2
hV2 + g2rf1 − sr − 1dp/2gj, s2.28d

sdXy
2dV =

kx

2uDysVdu2
hV4 + AXV2 + 4BXj, s2.29d

with AX andBX determined as

AX = f2ka − gsr − 1dg2 + f2vp + agsr − 1dg2 − 4kgsr − 1d

+ gsfgs + gsr − 1dsa2 + 2dg,

BX = fkags − kgsr − 1dg2 + fvpgs + akgsr − 1dg2 + gsgsr − 1d

3saka + vpd2. s2.30d

The spectral density of the phase quadrature component
sdYy

2dV is equal to

sdYy
2dV =

kx

2uDysVdu2
hV4 + AYV2 + 4BYj, s2.31d

with AY andBY given by

AY = 4ska
2 + vp

2d + gs
2 + gsr − 1ds4avp + gsd,

BY = gs
2ska

2 + vp
2d + gsgsr − 1dfvp

2sa2 + 2d + ka
2g2

+ vp
2g2sr − 1d2sa2 + 1d. s2.32d

Finally the cross-spectral densitysdXydYydV reads

sdXydYydV =
− kxgsr − 1d
2uDysVdu2

hakxV
2 + 2kvpgsr − 1dsa2 + 1d

+ 2gsfksaka + vpd + akaska − avpdgj. s2.33d

These analytical results will be used below for the evaluation
of the spectral densities of the quantum Stokes parameters,
their cross-spectral densities, and for the cross-correlation
spectra of the photocurrents.

III. QUANTUM POLARIZATION STATES OF LIGHT:
GENERAL DISCUSSION

A. Quantum Stokes parameters

There are two equivalent descriptions of the polarization
properties of light in classical optics either by the polariza-
tion matrix or in terms of the classical Stokes parameters
[18]. During the last decade the quantum-mechanical version
of the classical Stokes parameters was introduced in the lit-
erature and very actively used in quantum optics to describe
the quantum fluctuations of polarization of the electromag-
netic field [19–22]. There have been several theoretical pro-
posals for generation of polarization-squeezed light
[21,23–27] and a few experiments in which such kind of
light was observed[28–31].

We shall use the language of the quantum Stokes param-
eters for the characterization of the quantum fluctuations of
polarized light in VCSEL’s. In this section we shall express
the fluctuation spectra of the quantum Stokes parameters
through the spectral densities of the quadrature components
evaluated above. In the next section we shall apply these
results for the particular case of VCSEL’s.

Let us write the operatorÊ
W std of the electromagnetic field

at the output of the VCSEL in terms of thex- andy-polarized
components:

Ê
W std = âxstdeWx + âystdeWy, s3.1d

whereâxstd andâystd are the photon annihilation operators in
the Heisenberg representation. In what follows we shall omit
the time argument when this does not create ambiguities. The

quantum Stokes operatorsŜm ,m=0,1,2,3, areintroduced
similarly to their classical counterparts(see, for example,
[27] ):

Ŝ0 = âx
†âx + ây

†ây,

Ŝ1 = âx
†âx − ây

†ây,

Ŝ2 = âx
†ây + ây

†âx,

Ŝ3 = isây
†âx − âx

†âyd. s3.2d

Using the commutation relations for the photon annihilation
and creation operators,

fâi,âj
†g = di j si, j = x,yd, s3.3d

it is easy to verify that the operatorŜ0 commutes with all the
others,

fŜ0,Ŝmg = 0 sm = 1,2,3d, s3.4d

and that the operatorsŜ1, Ŝ2, and Ŝ3 satisfy commutation
relations similar to the components of the angular momen-
tum operator:
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fŜ1,Ŝ2g = 2iŜ3, fŜ2,Ŝ3g = 2iŜ1, fŜ3,Ŝ1g = 2iŜ2. s3.5d

The noncommutativity of these three Stokes operators does
not allow their simultaneous measurement in any real physi-

cal experiment. The mean valueskŜml ,m=1,2,3, and the

variancesDSm=ÎksŜm−kŜmld2l are given by the uncertainty
relations[19]

DS1DS2 ù ukŜ3lu, DS2DS3 ù ukŜ1lu, dS3dS1 ù ukŜ2lu.
s3.6d

When thex- andy-polarized components of the electromag-
netic field are in coherent statesuaxl and uayl, i.e.,

âxuaxl = axuaxl, âyuayl = ayuayl, s3.7d

one can speak about thecoherent polarization stateof the
electromagnetic field. The mean values of the quantum
Stokes parameters in this state are obtained by replacingâx
→ax andây→ay in Eq. (3.2). For example, for the first two
parameters one obtains

kŜ0l = uaxu2 + uayu2 = kn̂xl + kn̂yl = kn̂l,

kŜ1l = uaxu2 − uayu2 = kn̂xl − kn̂yl, s3.8d

wherekn̂l is the mean total number of photons in the elec-
tromagnetic wave. The variances of all four quantum Stokes
parameters in this case are equal and given by[27]

DSm
2 = kn̂xl + kn̂yl = kn̂l, m = 0,1,2,3. s3.9d

This property of the coherent polarization state allows one to
define apolarization-squeezed statesimilar to the definition
of a single-mode squeezed state. According to[21] one can
speak about polarization squeezing if one of the four vari-
ancesDSm of the Stokes parameters becomes smaller than
that in the coherent state—i.e.,DSm

2 , kn̂l for at least onem.
Classical Stokes parametersSm ,m=0,1,2,3(without car-

ets), are obtained as the mean values of their quantum ver-

sions defined in Eq.(3.2), Sm=kŜml. From the classical point
of view, all polarization properties of light are completely
described by these four parameters:S0 determines the total
beam intensity, while three other parameters characterize the
polarization state of the light beam. This polarization state in
classical optics is often represented in a Poincaré sphere with
S1, S2, andS3 forming its three orthogonal axes.

In quantum optics to completely characterize polarization
properties of light in addition to the mean valuesSm of the
quantum Stokes parameters one has to determine their vari-
ancesDSm. In general all these variances can be different and
one can speak of an uncertainty ellipsoid in the Stokes-
Poincaré space[22]. In the general case, when different
Stokes components are correlated, there are three additional
parameters which determine the orientation axes of this un-
certainty ellipsoid.

While a general description is outside of the scope of our
paper, we shall illustrate below graphically that in the case of

VCSEL’s different quantum Stokes componentsŜm can have
different variancesDSm. The quantum fluctuations of polar-

ization in VCSEL’s are therefore characterized by an uncer-
tainty ellipsoid in the Stokes-Poincaré space.

B. Measurement of the classical Stokes parameters

Four classical Stokes parametersSm can be measured in
an experimental setup shown in Fig. 2. This measurement
scheme consists of a compensator, a polarizing beam splitter
(PBS), and two photodetectors. Letdx and dy denote the
phase changes produced by the compensator in thex and y
components of the electromagnetic field given by Eq.(3.1).
Next, letw denote the angle between the transmission axis of
the PBS and thex axis. Then the field amplitudesâ1 and â2
of the transmitted and reflected waves after the PBS can be
written as

â1 = eidxsâxcosw + âye
−iusinwd,

â2 = eidxs− âxsinw + âye
−iucoswd, s3.10d

whereu=dx−dy is the phase difference between thex andy
components introduced by the compensator.

The secondary waves after the PBS are photodetected and
one observes the mean values of the photocurrentski1l
=hckâ1

†â1l and ki2l=hckâ2
†â2l, whereh is the quantum effi-

ciency of photodetection andc is the velocity of light(we
have put the charge of the electron equal to unity so that the
photocurrents are measured in the number of electrons per
second). For simplicity in what follows we shall consider the
situation ofh=1. Using Eq.(3.10) we can write the mean
photocurrentki1l measured in the transmission branch of the
PBS as

ki1l ; ki1sw,udl =
1

2
hcfS0 + S1cos 2w + sS2cosu

+ S3sin udsin 2wg, s3.11d

whereSm are the classical Stokes parameters.
Equation(3.11) is the well-known formula for measuring

the four classical Stokes parameters. The first three of them
are obtained by removing the compensatorsu=0d and rotat-
ing the transmission axis of the PBS to the anglesw
=0° ,45°, and 90°, respectively. The fourth parameterS3 is
measured by using a compensator withu=90° or so-called
quarter-wave plate and setting the transmission axis of the
PBS tow=45°. The four photocurrents are found to be, re-
spectively,

FIG. 2. Experimental setup for measurement of the classical
Stokes parameters.
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ki1s0 ° ,0°dl =
1

2
hcsS0 + S1d,

ki1s45 ° ,0°dl =
1

2
hcsS0 + S2d,

ki1s90 ° ,0°dl =
1

2
hcsS0 − S1d,

ki1s45 ° ,90°dl =
1

2
hcsS0 + S3d. s3.12d

Solving Eq.(3.12) for Sm we can obtain all classical Stokes
parameters from these four measurements.

C. Observation of the fluctuation spectra of the quantum
Stokes parameters

In quantum optics in addition to the mean values of the

quantum Stokes parameterskŜml their quantum fluctuations
are also taken into account. In this paper to describe the
quantum fluctuation we shall introduce the fluctuation spec-
tra of the quantum Stokes parameters.

Let us split the quantum Stokes operatorsŜmstd given by

Eq. (3.2) into the stationary mean valueSm=kŜml and small

fluctuationdŜmstd:

Ŝmstd = Sm + dŜmstd. s3.13d

Taking the Fourier transform ofdŜmstd,

dŜmsVd =
1

Î2p
E

−`

+`

dŜmstdeiVtdt, s3.14d

we can introduce the normally ordered spectral correlation

functions of the fluctuationsdŜmsVd similar to the spectral
correlation functions of the quadrature components in Eq.
(2.22)—namely,

k:dŜmsVddŜmsV8d:l = sdSm
2dVdsV + V8d,

k:dŜmsVddŜnsV8d:l = sdSmdSndVdsV + V8d sm Þ nd.

s3.15d

Here sdSm
2dV are the spectral densities of the corresponding

fluctuations andsdSmdSndV their cross-spectral densities. The
symbol : . . . : means normal ordering of operators.

To measure the spectral densitiessdSm
2dV and the cross-

spectral densitiessdSmdSndV of the quantum Stokes param-
eters given by Eq.(3.15) we can use an experimental setup
similar to one that we have used for the measurement of the
classical Stokes parameters(see Fig. 3). The difference is
that instead of detecting the mean photocurrentski1l andki2l
after the PBS, one observes now the photocurrent fluctuation
spectrasdip

2dV ,p=1,2 defined as

sdip
2dV =E

−`

+`

dt eiVtkdips0ddipstdl, s3.16d

wherekdips0ddipstdl is the correlation function of the photo-
current fluctuationsdipstd= ip−kipl andkipl is the mean value
of the photocurrent. Alternatively, one can add and subtract
the individual photocurrents in the secondary channels and to
investigate the sumi+std= i1std+ i2std and the difference
i−std= i1std− i2std of two photocurrents. In this case informa-
tion about the fluctuation spectra of the quantum Stokes pa-
rameters is contained in the fluctuation spectra

sdi±
2dV =E

−`

+`

dt eiVtkdi±s0ddi±stdl. s3.17d

The photocurrent fluctuation spectrasdip
2dV andsdi±

2dV can be
easily expressed through the spectral densitiessdSm

2dV and
the cross-spectral densitiessdSmdSndV of the four quantum
Stokes parameters. The results are conveniently presented in
terms of the following linear combination of the three Stokes

operators,Ŝ1, Ŝ2, andŜ3:

Ŝ= Ŝ1cos2w + sŜ2cosu + Ŝ3sinudsin2w, s3.18d

which is sometimes called a polarization observable[29,30].
We obtain the following expressions for the fluctuation spec-
tra sdip

2dV and sdi±
2dV, normalized to the shot-noise levels:

sdi1
2dV/ki1l = 1 +

k

2kn1l
fsdS0

2dV + 2sdS0dSdV + sdS2dVg,

s3.19d

sdi2
2dV/ki2l = 1 +

k

2kn2l
fsdS0

2dV − 2sdS0dSdV + sdS2dVg,

s3.20d

sdi−
2dV/ki+l = 1 +

2k

knl
sdS2dV, s3.21d

sdi+
2dV/ki+l = 1 +

2k

knl
sdS0

2dV, s3.22d

where the corresponding spectral densities and cross-spectral
densities of are defined according to Eq.(3.15). Here ki+l
=ki1l+ki2l is the shot-noise level of the photocurrent sum
and difference,kn1l=kâ1

†â1l and kn2l=kâ2
†â2l are the mean

FIG. 3. Experimental scheme for measurement of the spectral
densities and cross-spectral densities of the quantum Stokes
parameters.
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photon numbers in the corresponding secondary channels af-
ter the PBS, andknl=kn1l+kn2l.

Equations(3.19)–(3.22) are analogous of Eq.(3.11) for
measuring the spectral densities of the quantum Stokes pa-
rameters. It is clear from these equations that with the proper
choice of anglesu and w all nonzero spectral densities and
cross-spectral densities of the Stokes operators can be mea-
sured.

D. Relations between the spectral densities of the quantum
Stokes parameters and of the quadrature components

In Sec. II D we have provided analytical results for the
fluctuations of the quadrature componentsdXxsVd, dXysVd,
anddYysVd and for their spectral densities and cross-spectral
densities[see Eqs.(2.28)–(2.33)]. Now we shall express the
spectral densities of the quantum Stokes operators through
the spectral densities of these quadrature components. As
before, we shall restrict ourselves to the case of the
x-polarized stationary solution whenknxl=2Q2 and knyl=0.

Using the same normal rule of correspondence between
the operators and theirc-number representations as in Ref.
[12] we shall introduce thec-number variablesSmstd corre-

sponding to the quantum Stokes operatorsŜmstd. Since in Eq.
(3.2) the Stokes operators are normally ordered, the same
relation holds true forSmstd and thec-number variablesaistd
andai

*std, i =x,y.
Linearizing thec-number variablesSmstd around their sta-

tionary valuesSm as

Smstd = Sm + dSmstd, s3.23d

we can express the fluctuationsdSmstd through the fluctua-
tions of the field componentsdaxstd anddaystd:

dS0std = dS1std = Î2Qfdaxstd + dax
*stdg,

dS2std = Î2Qfdaystd + day
*stdg,

dS3std = − Î2iQfdaystd − day
*stdg. s3.24d

Taking into account Eq.(2.16) we obtain the following re-
sults relating the spectral densities of the Stokes operators
with those of the quadrature components:

sdS0
2dV = sdS1

2dV = 8Q2sdXx
2dV,

sdS2
2dV = 8Q2sdXy

2dV,

sdS3
2dV = 8Q2sdYy

2dV,

sdS2dS3dV = 8Q2sdXydYydV. s3.25d

With the help of these relations we arrive at

sdi1
2dV/ki1l = 1 + 8kfcos2wsdXx

2dV + sin2wsdXu
2dVg,

s3.26d

sdi2
2dV/ki2l = 1 + 8kfsin2wsdXx

2dV + cos2wsdXu
2dVg,

s3.27d

sdi−
2dV/ki+l = 1 + 8kfcos22wsdXx

2dV + sin22wsdXu
2dVg,

s3.28d

sdi+
2dV/ki+l = 1 + 8ksdXx

2dV. s3.29d

To simplify Eqs.(3.26)–(3.28) we have introduced the short-
hand notation

dXusVd = cosu dXysVd − sinu dYysVd, s3.30d

with its spectral densitysdXu
2dV given by

sdXu
2dV = cos2usdXy

2dV − 2 sinu cosusdXydYydV

+ sin2usdYy
2dV. s3.31d

The mean values of the individual photocurrentski1l andki2l
and of the photocurrent sumki+l=ki1l+ki2l are equal to

ki1l = 2Q2k cos2w, ki2l = 2Q2k sin2w, ki+l = 2Q2k.

s3.32d

In the next section we shall investigate in detail the spectral
densities of the quantum Stokes parameters and their cross-
spectral densities.

IV. POLARIZATION STATES OF LIGHT IN VCSEL’s

A. Polarization squeezing

The spectral densitiessdSm
2dV of the quantum Stokes pa-

rameters can be measured using any of three equations
(3.19)–(3.21). Here we shall use Eq.(3.21) corresponding to
observation of the noise spectrumsdi−

2dVsw ,ud of the photo-
current difference. With the help of Eq.(3.18) we can bring
the photocurrent noise spectrumsdi−

2dVsw ,ud to the form

sdi−
2dVsw,ud/ki+l = 1 +

2k

Q2hsdS1
2dVcos22w

+ sin22wfsdS2
2dVcos2u

− sdS2dS3dV2 sinu cosu + sdS3
2dVsin2ugj.

s4.1d

In this equation we have explicitly indicated the dependence
of the observed noise spectrum on the angleu introduced by
the compensator and anglew of the polarization beam split-
ter.

The spectral densitiessdS0
2dV=sdS1

2dV and sdS2
2dV of the

Stokes parametersS0,S1, andS2 are measured by removing
the compensatorsu=0d and setting the transmission axis of
the PBS to the anglesw=0° andw=45°. The spectral density
of the parameterS3 is obtained by using a compensator with
u=90° (quarter-wave plate) and settingw=45°. The corre-
sponding photocurrent fluctuation spectra are given by

sdi−
2dVs0° ,0°d/ki+l = 1 +

2k

Q2sdS1
2dV, s4.2d

sdi−
2dVs45° ,0°d/ki+l = 1 +

2k

Q2sdS2
2dV, s4.3d
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sdi−
2dVs45° ,90°d/ki+l = 1 +

2k

Q2sdS3
2dV. s4.4d

In Fig. 4 we have shown the photocurrent fluctuation spectra
given by Eqs.(4.2)–(4.4) for physical parameters close to
that used in experiment[12] —namely, k=100 GHz, g
=1 GHz, g'=1000 GHz,gs=50 GHz,vp=40 GHz,a=−3,
r =6, andp=1. The parameterka, describing the dichroism
of the laser crystal, was set equal to zero in Fig. 4(a), to ka
=10 GHz in Fig. 4(b), and toka=50 GHz in Fig. 4(c).

Let us first discuss the case without dichroism[Fig. 4(a)].
As seen from Fig. 4(a), the spectral densitysdS1

2dV of the
Stokes parameterS1 has a peak at a characteristic frequency
V1, while two other spectrasdS2

2dV andsdS3
2dV for the Stokes

parametersS2 andS3 exhibit peaks at another(higher) char-
acteristic frequencyV2. These peaks are well known from

the theory of solid-state and semiconductor lasers and have
their physical origin in the relaxation oscillations due to a
periodic energy exchange between the active medium and
the laser radiation. Since in our case there are two upper
levelsua+l andua−l in the active laser medium, we have two
subsystems where periodic energy exchange takes place in-
dependently. The first subsystem is described by the total
populationD of the upper levels and the Stokes parameterS1
[see Eqs.(2.17)], and its frequency of the relaxation oscilla-
tions is equal toV1. In the second subsystem relaxation os-
cillations take place between the population differenced and
the two Stokes parametersS2 andS3 at the frequencyV2 [see
Eqs.(2.18)].

The second important feature that one can observe in Fig.
4(a) is the reduction of quantum fluctuations of the Stokes
parameterS1 below the standard quantum limit at low fre-
quenciesV in the case of regular pumping,p=1. Thus, we
can speak of the phenomenon ofpolarization squeezingwith
respect toS1 in VCSEL’s with regular pumping. This result is
to be expected. In fact, as follows from Eqs.(3.2), for the
x-polarized stationary solution the Stokes parameterS1 coin-
cides with the total number of photons in the laser field. It is
well known from the literature[2] that a regularly pumped
two-level laser can exhibit sub-Poissonian photon statistics;
i.e., the fluctuations of its photon number could be reduced
below the standard quantum limit. One could therefore say
that the polarization squeezing with the respect toS1 in a
regularly pumped VCSEL is the consequence of the sub-
Poissonian statistics of photons.

However, it is worth noting that the relation between the
sub-Poissonian statistics of photons and the regular pumping
statistics in VCSEL’s is not so direct as in the case of a
two-level laser considered in[2]. Indeed, due to the degen-
eracy of the upper laser level on two sublevelsua+l and
ua−l, the regular pumping of the total populationD of the
upper level remains random for each individual sublevel due
to the partition noise. It turns out that in the case of an
x-polarized stationary solution this partition noise does not
contribute to the fluctuations of the total photon number and
of the Stokes parameterS1. The reason for this is that, as
follows from Eqs.(2.17), the fluctuations of the Stokes pa-
rameterS1 are coupled only with the fluctuations of the total
populationD and not with fluctuations of the populations of
individual sublevels.

The role of dichroism is illustrated in Figs. 4(b) and 4(c).
As seen from these figures, the appearance of dichroism in
the system has two major consequences. First, the quantum
noise reduction below the standard quantum limit in the
spectral densitysdS1

2dV of the first Stokes parameter is dete-
riorated by the factork / sk+kad. This deterioration has a
clear physical explanation. Nonzero dichroism introduces
random losses of the laser radiation inside the resonator at
the rateka. The total decay rate of the laser field inside the
resonator is now given byk+ka, while the outcoupling rate
determined by the transmission of the cavity mirror is equal
to k.

The second consequence of dichroism in the system is
suppression of the relaxation oscillations at the frequencyV2
related to the Stokes parametersS2 andS3. We can see from
Fig. 4(b) that for small values ofka (ka=10 GHz whilek

FIG. 4. Photocurrent fluctuation spectra for the Stokes param-
etersS1,S2, andS3: (a) without dichroism,ka=0, (b) with dichro-
ism, ka=10 GHz, and(c) with ka=50 GHz. The values of other
parameters are:k=100 GHz, g=1 GHz, g'=1000 GHz, gs

=50 GHz,vp=40 GHz,a=3, andp=1.
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=100 GHz) the peak of relaxation oscillations atV2 becomes
more pronounced. This is explained by the fact that for these
values of ka we approach closer to the instability region.
However, with increasingka as in Fig. 4(c) the relaxation
oscillations atV2 rapidly disappear.

The three spectral densitiessdS1
2dV ,sdS2

2dV, andsdS1
2dV in

Fig. 4 can be also interpreted in terms of the uncertainty
ellipsoid that we have mentioned in Sec. III A. Since the
spectral densities depend on the frequencyV, one has to
speak about the frequency-dependent uncertainty ellipsoid
with tree major axis determined by the corresponding spec-
tral densities. These spectral densities are normalized to the
shot-noise level so that a sphere of unit radius in the Stokes-
Poincaré space corresponds to the standard quantum limit
realized for a coherent polarization state. As follows from
Fig. 4(a), for example, for a polarization-squeezed state in
the area of low frequencies, wheresdS1

2dV is below the stan-
dard quantum limit, the uncertainty ellipsoid has the shape of
a pancake. Instead, in the vicinity of the frequency of relax-
ation oscillationsV1 this uncertainty ellipsoid takes a cigar-
like shape withsdS1

2dV larger than two other components.

B. Cross-correlation spectrum of photocurrents

Using the experimental setup shown in Fig. 3 one can also
measure the cross-correlation function of fluctuations be-
tween the photocurrents i1std and i2std—i.e.,
kdi1s0ddi2stdl—or the corresponding cross-correlation spec-
trum of fluctuations:

sdi1di2dV =E
−`

+`

dt eiVtkdi1s0ddi2stdl. s4.5d

Usually it is more customary to work with the normalized
cross-correlation spectrum of the photocurrent fluctuations:

C12sVd =
sdi1di2dV

Îsdi1
2dV

Îsdi2
2dV

. s4.6d

Using the Cauchy-Schwartz inequality one can demonstrate
that this spectrum is normalized asuC12sVduø1. Hence,
C12sVd=−1 corresponds to the maximum anticorrelations
between the two photocurrents, whileC12sVd=1 to the maxi-
mum correlations. Experimentally this spectrum can be mea-
sured as

C12sVd =
sdi+

2dV − sdi1
2dV − sdi2

2dV

2Îsdi1
2dVsdi2

2dV

. s4.7d

The normalized cross-correlation spectrumC12sVd can be
expressed through the spectral densities and cross-spectral
densities of the amplitude quadrature componentsdX1 and
dX2 as

C12sVd =
8ksdX1dX2dV

Î1 + 8ksdX1
2dV

Î1 + 8ksdX2
2dV

. s4.8d

Using the relations between the field amplitudesâ1 andâ2 of
the transmitted and reflected waves after the PBS and the
incoming amplitudesâx and ây, given by Eq.(3.10), we ob-
tain

sdX1dX2dV = cosw sinwfsdXx
2dV − sdXu

2dVg,

sdX1
2dV = cos2wsdXx

2dV + sin2wsdXu
2dV,

sdX2
2dV = sin2wsdXx

2dV + cos2wsdXu
2dV. s4.9d

These relations allow us to express the cross-correlation
spectrumC12sVd in terms of the spectral densitiessdXx

2dV

and sdXu
2dV calculated earlier.

In Fig. 5 we have plotted the cross-correlation spectrum
C12sVd for w=p /4 andu=0. In this case the general result
for C12sVd given by Eqs.(4.8) and (4.9) is simplified to

C12sVd =
4kfsdXx

2dV − sdXy
2dVg

1 + 4kfsdXx
2dV + sdXy

2dVg
. s4.10d

Figure 5(a) shows this cross-correlation spectrum for the
case without dichroism and the same values of physical pa-
rameters as in Fig. 4. As follows from Fig. 5(a), the cross
correlations are absent at high frequenciesV larger than
30 GHz. At lower frequencies of the order of 15 GHz the
curve ofC12sVd shows anticorrelations which turn to corre-

FIG. 5. Cross-correlation spectrum C12sVd for w=p /4 and u
=0: (a) without dichroism, ka=0 and (b) with dichroism, ka

=10 GHz andka=50 GHz. The inset in(a) illustrates the role of the
statistical parameterp at low spectral frequencies. All other param-
eters are as in Fig. 4.
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lations at still lower frequencies of the order of 5 GHz. In the
area of low frequenciesV smaller then 1 GHz one has again
anticorrelations.

This oscillating behavior of the cross-correlation spectrum
C12sVd is in full agreement with behavior of the fluctuation
spectra of the Stokes parametersS1 and S2 in Fig. 4(a). In-
deed, the cross-correlation functionC12sVd is proportional to
the difference of the spectral densities of the quadrature com-
ponentssdXx

2dV−sdXy
2dV [or the corresponding Stokes param-

eters sdS1
2dV−sdS2

2dV]. Therefore, for sdXx
2dV. sdXy

2dV we
have correlations between the two photocurrents, while in
the opposite case anticorrelations.

Figure 5(b) illustrates the same cross-correlation spectrum
in presence of dichroism for different values of parameterka.
As mentioned above, the essential role of dichroism is in the
suppression of the relaxation oscillations. Whenka ap-
proaches the critical valueka=10 GHz of the instability bor-
der, the relaxation oscillations grow up and reinforce anticor-
relations. A further increase ofka results in a suppression of
the relaxation oscillations and respectively in a transforma-
tion of anticorrelations into correlations forka larger than
50 GHz.

C. Cross correlations between the Stokes parameters
S2 and S3

For thex-polarized stationary solution that we consider in

this paper, the linearized field operatorÊ
W std from Eq. (3.1)

can be approximately written as

Ê
W std = eiDtfÎ2Q + dX̂xstd + idŶxstdg

3FeWx +
1

Î2Q
fdX̂ystd + idŶystdgeWyG . s4.11d

This representation of the linearized field operator is very
useful as it clarifies the physical meaning of the quantum
fluctuations of the four quadrature components that appear in

Eq. (4.11). The fluctuationsdX̂xstd and dŶxstd describe, re-
spectively, the quantum fluctuations of the amplitude and the

phase of the electromagnetic fieldÊ
W std. The quantum fluctua-

tions of two other quadrature componentsdX̂ystd anddŶystd
characterize the quantum fluctuations of thepolarization of

the field Ê
W std. To see this more clearly let us compare Eq.

(4.11) with the classical expression often used in the litera-
ture on VCSEL’s(see, for example, Ref.[6]):

Ê
W std < eiDtuEufeWx − sdf + idxdeWyg. s4.12d

In this expression we have neglected the amplitude and
phase fluctuations of the field and have introduced the fluc-
tuationsdf anddx, df!1, dx!1, of two anglesf andx,
which characterize the optical polarization state on the
Poincaré sphere. The first anglef s0øføpd is called the
polarization angle and it determines the direction of the po-
larization ellipse. The second anglex s−p /4øxøp /4d is
the ellipticity angle. For anx-polarized field both of these

angles are zero. Comparing Eqs.(4.11) and (4.12) we con-
clude that these two classical fluctuations can be associated

with their quantum counterparts asdf→−dX̂y/Î2Q and

dx→−dŶy/Î2Q. Taking into account Eq.(3.24) we can also

write df→−dŜ2/4Q2 anddx→−dŜ3/4Q2.
Thus, the quantum fluctuations of the Stokes parameterS2

characterize the fluctuations of the polarization angle and
those of theS3 the fluctuations of the ellipticity angle. In the
Sec. IV A we have evaluated the fluctuation spectra of the
Stokes parametersS2 andS3. However, as follows from Eq.
(3.25) these two parameters are also cross correlated. Hence,
we shall introduce the cross correlation spectrumC23sVd be-
tween these two parameters in the same way as we did for
characterization of the cross correlations of two photocur-
rents:

C23sVd =
sdS2dS3dV

ÎsdS2
2dV

ÎsdS3
2dV

. s4.13d

This cross-correlation spectrum is normalized asuC23sVdu
ø1 and can be experimentally determined from the measure-
ments of the following three photocurrent fluctuation spectra:

sdi−
2dVs45° ,0°d/ki+l = 1 +

2k

Q2sdS2
2dV, s4.14d

sdi−
2dVs45° ,90°d/ki+l = 1 +

2k

Q2sdS3
2dV, s4.15d

sdi−
2dVs45° ,45°d/ki+l = 1 +

k

Q2fsdS2
2dV + sdS3

2dV

+ 2sdS2dS3dVg. s4.16d

We have numerically evaluated the cross-correlation spec-
trum C23sVd for the same values of physical parameters as in
the previous subsection. In Fig. 6 we illustrate these spectra
in the absence of dichroismska=0d and for two different
values ofka equal to 10 and 50 GHz.

As follows from this figure, in the absence of dichroism
the cross-correlation spectrum shows negative correlations at

FIG. 6. Cross-correlation spectrum C23sVd without dichroism,
ka=0 and with dichroism,ka=10 GHz andka=50 GHz for the
same values of physical parameters as in Fig. 4.
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low frequenciesV less than 10 GHz. These anticorrelations
appear due to the coupling between the Stokes parametersS2
and S3 via the population differenced. For higher frequen-
cies this coupling becomes less efficient and forV higher
than 30 GHz the fluctuations ofS2 andS3 become indepen-
dent sC23→0d.

For nonzero dichroism the anticorrelations betweenS2
and S3 at low frequencies first disappear and then turn into
positive correlations for larger values ofka—-for example, at
ka=50 GHz. Thus, dichroism changes the nature of correla-
tions betweenS2 andS3.

V. CONCLUSIONS

In conclusion we have presented a generalized and fully
analytical theory of quantum fluctuations in VCSEL’s, pro-
posed for the first time in Ref.[12]. The original results of
our investigation are the analytical expressions for the spec-
tral densities of the quadrature field components and of the
corresponding quantum Stokes parameters. These analytical
results facilitate the comparison between the theory and ex-
perimental measurements. Moreover, we have included into
the theory a nonzero linear dichroism of the semiconductor
medium that was neglected in Ref.[12].

Our theory is very closely related to possible experimental
observation of the quantum fluctuations in VCSEL’s that can
be performed in a correlation-type measurement shown in
Fig. 3. We have calculated analytically and illustrated graphi-
cally the typical fluctuation and cross-correlation spectra that
could be observed in this type of measurement. Our theoret-
ical results allow for direct comparison with experiments.

We predict theoretically polarization squeezing in
VCSEL’s when the quantum fluctuations of the Stokes pa-
rameterS1 are reduced below the standard quantum limit.
This phenomenon has its origin in regular pumping statistics
of the active laser medium. However, the regularity in the
pumping statistics alone is not sufficient for polarization

squeezing in this type of laser due to the partition noise
between two upper sublevels in the laser medium. The sec-
ond important feature of VCSEL’s that guarantees polariza-
tion squeezing is their dynamical behavior, which couples
the statistical properties of the Stokes parameterS1 only with
those of thetotal population of two upper sublevels.

We have analyzed the role of linear dichroism and have
concluded that it mainly influences the relaxation oscillations
in VCSEL’s. These oscillations are typical for solid-state and
semiconductor lasers. The particularity of VCSEL’s is that in
this case there are two types of relaxation oscillations with
clearly distinct characteristic frequenciesV1 and V2. The
first oscillations(with frequencyV1) are related to the total
population of two upper sublevels and they contribute to the
fluctuation spectrum of the Stokes parameterS1. The second
type of relaxation oscillation(with frequencyV2) is con-
nected to the population difference and its peak appears in
the fluctuation spectra of the Stokes parametersS2 andS3. It
turns out that the dichroism dumps the relaxation oscillations
of the second type and does not influence those of the first
type. To understand this result let us recall that the relaxation
oscillations appear in the lasers of the second type when the
resonator losses are more rapid compared with those of the
laser medium. As follows from Eqs.(2.17) and(2.18) dichro-
ism increases the losses for they-polarized light component
coupled with the population differenced and does not
change those of thex-polarized component related to the
population sumD.
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