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We further elaborate the theory of quantum fluctuations in vertical-cavity surface-emitting(ME&SEL's),
developed byHermieret al. Phys. Rev. A65, 053825(2002]. In particular, we introduce quantum Stokes
parameters to describe the quantum self-correlations and cross correlations between two polarization compo-
nents of the electromagnetic field generated by this type of laser. We calculate analytically the fluctuation
spectra of these parameters and discuss experiments in which they can be measured. We demonstrate that in
certain situations VCSEL's can exhibit polarization squeezing over some range of spectral frequencies. This
polarization squeezing has its origin in sub-Poissonian pumping statistics of the active laser medium.
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I. INTRODUCTION ply quantum Stokes parameters to describe the quantum self-

In the last years there has been an increasing interest ffPrrelations and cross-correlations of two polarization com-
the polarization properties of vertical-cavity surface-emittingPonents of the electromagnetic field generated by VCSELS.
lasers(VCSEL's). This interest is motivated in the first case We analytically calculate the fluctuation spectra of the quan-
by the potential applications of this type of laser in high-ratetum Stokes parameters and discuss experiments in which
optical communication§l]. But there is also a more funda- they can be measured. We demonstrate that for the sub-
mental reason for understanding the polarization behavior ifPoissonian pumping statistics VCSEL's can exhibit polariza-
VCSEL's—namely, a possibility of generating the intensity- tion squeezing in some range of spectral frequencies.
squeezed light using sub-Poissonian pumping of the active The paper is organized as follows. In Sec. Il we give a
medium[2,3]. To date, squeezing in VCSEL'’s has been dem-short resume of the quantum spin-flip model developed in
onstrated experimentally for both single-mode operation andRef. [12] and calculate analytically the spectral densities of
in a multi-transverse-mode regini4,5]. In single-mode op- quantum fluctuations of the quadrature components. In Sec.
eration with only one linearly polarized mode above threshdll we introduce the quantum Stokes parameters and their
old the fluctuations in a subthreshold mode with polarizatiorfluctuation spectra and discuss experiments where these fluc-
orthogonal to the lasing mode can present high intensitjuations spectra can be measured. Using the results obtained
noise[6,7] and, moreover, be highly correlated with the in- in Sec. Il we analytically calculate the fluctuation spectra of
tensity fluctuations of the oscillating mode. This phenom-the quantum Stokes parameters. In Sec. IV with help of the
enon can result in the deterioration of squeezing observed ianalytical results obtained in Sec. Il we illustrate graphically
experiments with polarization-sensitive optical elementsthe possibilities of the observation of polarization squeezing
Therefore, polarization dynamics in VCSEL's plays an im-in VCSEL's. We also provide the figures of typical cross-
portant role for a correct description of their quantum fluc-correlation spectra of photocurrents and cross-correlation
tuations. spectra of the Stokes paramet&sand S; that can be mea-

At present, the standard theory that accounts for the dysured experimentally. In Sec. V we summarize the results.
namics of two polarization components of the electromag-
netic field in VCSEL's is the so-called “spin-flip” model de- Il. QUANTUM SPIN-FLIP THEORY OF VCSEL'S
veloped by San Miguel, Feng, and Molong@j. On the basis
of this model several authors have formulated semiclassical
theories of light fluctuations in VCSEL$6,7,9-11. How- In this section we shall give a brief resume of the quan-
ever, a semiclassical description is inappropriate fortum spin-flip model of VCSEL's developed in R¢f.2]. We
intensity-squeezed light and, therefore, calls for a fully quanshall define the physical parameters of this model and pro-
tum model of quantum fluctuations in VCSEL's. The “quan- vide the equations which will be used in the following sec-
tum spin-flip” model was developed recently in Rgf2].  tions. For more details we refer the reader to R&2].

This model takes into account, on the one hand, the dynam- The semiclassical four-level spin-flip model of VCSEL's
ics of two polarization components of the electromagnetiovas developed by San Miguel, Feng, and Molof@ly This
field and, on the other hand, the pumping statistics of thenodel describes very well the dynamics of these semicon-
active laser medium. In particular, the quantum spin-flipductor lasers and is widely used for the understanding of
theory allows for sub-Poissonian pumping statistics in whichsuch phenomena—for example, as polarization switching.
case VCSEL's can generate the intensity-squeezed light. The spin-flip model takes into account the spin sublevels of

In this paper we further elaborate the quantum spin-flipthe total angular momentum of the heavy holes in the va-
model of VCSEL's, developed ifiL2]. In particular, we ap- lence band and of the electrons in the conduction band.

A. Resume of the model
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probabilities between two sublevets+) and|a—). The quan-
tum spin-flip model of Ref[12] takes into account the pos-
sibility of sub-Poissonian pumping of the laser medium us-
ing the technique of pump-noise suppressj@mg]. For a
|@s>=r Y% -|a.> stationary-in-time average pumping rate, the influence of the
\ — \ pump statistics can be characterized by a single parameter
- p=<1[14,19. For p=1 the pump is perfectly regular while
| for p=0 the pump has Poissonian statistics. Intermediate val-
\ I2-> ues of O<sp=<1 correspond to sub-Poissonian pumping
% while for p<0 the pump process possess excess classical
fluctuations and corresponds to super-Poissonian statistics.
FIG. 1. Four-level scheme of the active medium of VCSEL. This pump statistics was introduced into the quantum

. . ) . spin-flip model using the Heisenberg-Langevin equations for
These four sublevels interact with two circularly polarized P P 9 g--ang d

electromagnetic waves in the laser resonator, and it is thi§!€ operator-valued collective populatioNg.(t) and Np.(t)
interaction that is responsible for the complicated polariza®f the upper and lower levels in Fig. 1 and for the collective
tion dynamics manifested by this type of laser. polarizationP,(t). On the basis of the Heisenberg-Langevin
The four-level scheme of the semiconductor medium isequations, the equivalentnumber Langevin equations were
shown in Fig. 1. Two lower levelght) correspond to the derived for the collective atomic and field variables, corre-
unexcited state_ of th_e semiconductor medium with zerosponding to the normal ordering of the atomic and field op-
electron-hole pairs while the upper levéde:) correspond to  erators[14,15. Next, using the fact that the relaxation rates
the excited states with an electron-hole pair credtE].  , of the lower levels and/, of the polarization in VCSELs
Two pairs of levelga+), [b+) and|a-), |b-) are coupled via a6 mych bigger than the relaxation rage of the upper
an interaction_with the _Ieft and right C_ircularly _polarized levels, the macroscopicnumber populationsl,,(t) and the
e_tlectromagnetch: waves in Pl cavity de_scrlbed by thﬁwacroscopicx:—number polarizatiorP,(t) were adiabatically
field .operatorsa+(t) and. a(0). As fa'xplamed n Rgf.[8], __eliminated. The resulting equations can be written in terms of
physically these two pairs of transitions are associated withy, | population of two upper levels+) and|a—) and of
two z components),=+1/2 of thetotal angular momMeNtuM e yo1a1 inversion between them. The corresponding vari-
J=1/2 of theelectrons in the conduction band and COIe-hjes are defined a®(t) =[N,. () +N,_(1]/2, and d(t)

spondingz components),=+3/2 for J=3/2 of theheavy  _ _ ; :
holes in the valence band. The constaptsand vy, are the [Nai (0 Na‘(t)]/zi The equations for these variables and
the twoc-number field components.(t) are

decay rates of the populations of the upper and lower levels,
v, (not shown in Fig. 1is the decay rate of the polarization, _ ) )
and y is the spin-flip rate that accounts for mixing of popu- a(t) = = ka(t) = (kg +iwp)az(t) +c(1 -ia)
lations with opposite values af,. The last parameter was X[D(t) + d(t)]au(t) + F.(t), (2.1
introduced in Ref[8] to describe the spin-flip relaxation pro- - -
cess. This parameter is responsible for the coupling of two
transitions with different circular polarizations and, as a re-  p(t)=R- yD(t) - c[la, ()2 + |a_(®)[2ID (1) - c[|a,(t)[2
sult, for various polarization dynamics of VCSEL's.

It should be noted that the authors of Rgf] have con- = [a(®)[]d(t) + Fp(t), (2.2
sidered the situations of equal relaxation constants of the
upper and lower levelsy,=vy,. However, it is known from .
the literature[2,3)] that this is not the most favorable condi- d(t) = - yd(t) - clla.(B)]* - [a_®)]*ID(t) - c[|a.(t)]?
tion for the generation of sub-Poissonian light. Therefore, the +|a_(t)[2]d(t) + Fy(t). (2.3
quantum spin-flip theory in Refl12] was developed for ar-
bitrary values ofy, and y,. In this paper we shall also con-
sider this general situation.

Moreover, it has been mentioned in the literat(gee, for
example, Ref[12]) that this model describes correctly a

15+ \

%

Here « is the cavity damping constant, ang, and «, de-
scribe the linear birefringence and the linear dichroism of the
semiconductor medium. The last parameter was not included

. . in the model in Ref[12] and is introduced here as a gener-
semiconductor laser if we assume the decay sgtef the

alization. Next,« is the linewidth enhancement in semicon-
lower levels to be very large compared to the other decalljuctor lasers:
constants—namelyy,, v;, and«. From the classical point of
view both situationsy,=v, and y,> v, result in the same
dynamical behavior of VCSELs. However, it turns out that a=
the statistical properties of two models with=7y, and y, YL
> vy, are very different. A detailed discussion of this differ-
ence is out of the scope of this paper and we shall addresghere v is the frequency of the semiconductor energy gap
this point elsewhere. and w is the resonator frequency. We have also defined the

We have indicated in Fig. 1 the pump process with meanelaxation rateys as ys=7y.+2y. and have introduced the

total pumping rate R which is then separated with equal shorthand

, (2.9
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2 — = 20dA
° Y (1g+a2)' Y= Yar (2.9 8=0, 8,=\2Qe%. (2.19
* For both solutions we have
where g is the coupling constant of the interaction of the
electromagnetic field with the polarization. Q=lgr-1), (2.11

The functionsF.(t), Fp(t), and F4(t) are thec-number _ . . _ .
Langevin forces. Their nonzero correlation functions wereVherer=R/Ry, is the dimensionless pumping raiy, is the
calculated in Ref[12]. In general the results are rather cum- threshold pumping rate, aridis the saturation intensity; the
bersome but they are simplified in the vicinity of the station-tWo latter are given by
ary solutions. For completeness we shall give these correla-

tion functions for the stationary solutions at the end of this Ry = M, l= X (2.12
section. c 2c

_ _ _ _ Note that for x,>0 the threshold pumping rate for the
B. Stationary semiclassical solutions y-polarized solution is lower that for thepolarized one.

Semiclassical equations of VCSELs are obtained from The stationary values of the atomic variabtisand Do
Egs.(2.1)~(2.3) by dropping thec-number Langevin forces. for these linearly polarized solutions are equal to
In this subsection we shall give the stationary solutions of
these equations which characterize the stationary generation dy=0, Dg= R
of VCSEL's. For an investigation of quantum fluctuations in y+2cQ?

VCSEL's we shall use the standard assumption that these

fluctuations are small compared to the corresponding statiorl t€ case of VCSEL's as in general for solid-state and semi-
ary values. This will allow for linearization of Egs. conductor lasers the question of the stability of stationary

(2.1)—~2.3) around stationary solutions with respect to theSOIU_tions is very important. The sta_bility analysis of thv_ese
quantum fluctuations stationary solutions was performed in a number of publica-

Stationary solutions of Eqg2.1<2.3) have been inves- 1ONS. as, for example, Reffl6,17, and we refer the reader

tigated in detail in(8,16]. Whenw,# 0 and,# 0 there are to these papers for details. In our analysis of quantum fluc-
in general four types of stationary solutions: two of themtuations we shall assume that the corresponding stationary

have linear polarization along theandy axes and two other opera'tlon reglmle %f VC|SE,L'S 1S ista}ble: Slncle for ahlol\;v
elliptical polarization. We shall consider only linearly polar- PUMPIng rate only the-polarized solution is stable, we shall
ized solutions because this type of solution is usually real/eStrict our analysis of quantum fluctuations only for this
ized in experiments. In this case the circularly polarized fieldYPe ©f stationary solution.

components have equal amplitudes and can be written in the
form C. Linearization around stationary solutions

:K—é¥. 2.13

a.(t) = Qe (2.6) To calculate the quantum fluctuations around the station-

N _ ) ary solution we shall linearize Eq$2.1)—«2.3) around the
where the real amplitud® is normalized so tha@?=|a,|*  steady state given by E¢R.6). As mentioned above we shall
=|a_|* gives the mean number of photons in the correspondconsider here only the-polarized stationary solution. Add-

ing circularly polarized field mode. Two other paramet&rs  jng small fluctuations to the stationary solutions we can write
and ¢ determine the type of polarization of the stationarythe field and the atomic variables as

solution (2.6).
We recall that the linearly polarized field components a,(t)=[Q+ 5ai(t)]eim, D(t)=Dg+ 6D(t), d(t)=&d(t).
a,(t) anday(t) are related to the circularly polarized ones as (2.14)

a,(t) = M a(t) = M (2.77  In this equation and in what follows we have dropped the
\ Vel index x in A, since we shall be concerned only with the
x-polarized solution. Substituting these expressions into Egs.
(2.1)«2.3) and linearizing, we arrive at the following equa-

tions for small fluctuations:

For the x-polarized solutiony=0 and for they-polarized
solutiony=7/2. The frequency detunings in Eq. (2.6) are
different for these solutions and are equal to

=— d
Ay =~ Loy o, 29 9 50,0 = (6 + T [B80(0) ~ 2, (0] + o1 - )
where the upper sign corresponds to hgolarized solution dt
and the lower sign to thg-polarized one. Here we have X Q[8D(t) + &d(t)] + F.(t)e A,

introduced the shorthandy=«x+x, and x,=k—x, The

x-polarized stationary solution reads d
a,=\2QdM, a,=0, 2.9  gPO="(r+2Q)DO - kQls(l) + sa(t) +c.cl

while they-polarized stationary solution is given by + Fp(t),
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D. Spectral densities of quantum fluctuations

d

—&d(t) == (ys+ 2cQ) 8d(t) — da.(t) — da_(t) +c.c.

dt (0=~ (s + 26Q) 3(t) ~ QLAY ® ] To solve Egs(2.17) and(2.18 we take the Fourier trans-
+F4(1). (2.15 form of the field and atomic fluctuations,

It is convenient to introduce the fluctuations of the linearly 1 (v it

polarized components of the fielth(t) and da,(t), defined SX(Q) = V’ET . X (e dt, (2.21
according to Eq(2.7), for which the set of coupled equations

(2.19 decouples into two sets of independent equations fopng similar for the other variables, which converts these dif-

d3,(t) and da,(t) with Langevin forcesF,(t) and Fy(t) de-  ferential equations into algebraic ones. The spectral correla-
fined similar to Eq(27) Moreover, we shall define the fluc- tion functions of these quadratures areorrelated,
tuations of the amplitude and phase quadrature components

OX(t) and 6Y,(t) of the x-polarized field component, (SX(Q)8X(Q)) = (XD Q + Q)
1 . _1 o
X(1) = SLoa(t) + da, ()], oYx(t) = 188D - da, (1], (SY(Q)8V(Q)) = (YD) g8 + O,
(2.19

and similarly for they-polarized component. For these fluc-
tuations we obtain the equations

(OXi(Q)8Y(Q')) = (6X8Y)) o2+ Q'),  (2.22

with (8X?), i=x,y, and(8Y?)q, being the spectral densities
d _ 5 of the corresponding quadratures ai#iX;sY;)q their cross-
dtéxx(t) =\2cQD() + Ry(D), spectral density.

After a simple algebra we obtain the following expres-

d — sions for the fluctuations of the amplitude quadratures
d_téY W) = = 2acQaD(t) + T,(1), SX(Q2) and 8X,(Q) and the phase quadratus¥,(():
1 . =
d%éD(t) == TaD(1) - 212,Q8%,(0) + Fp(t) (2.17) DD =g oyt ORI +V2cQRp (),
(2.23
and
d —
d—téxy(t) = 21620X,(1) = 20,8 (1) = V2acQad(t) + Ry(1), SX,(Q) = ﬁ{[zkﬁ(r - 1) - 2k, + 1 Q)T — Q)R (Q)
y
d - —[2ary(r — 1) + 2wy(I's—i1Q) T (Q)
gt Oy = 26a0Yy(1) + 20,,(1) = V2CQAUM) + Ty(1), +\26Q(2wp + 2aky +1aQ)F4(Q)}, (2.24
a5d(t) =-T8d(t) + Z\EKXQb'Yy(t) +Fq4(t), (2.18 éYy(Q) — S :(]'Q) {pr(rs_ iQ)Ry(Q) - 2k, +1Q)(Ts—iQ)
where the new Langevin forcég(t) andS(t) are defined as X)'/Fy(Q) + \ECQ(— 20wy + i, + ID)F(Q)},
R = (R (0™ + Fy(0e™] @29
1 with
- = -iAt _ iAt
T0 = 5 0e™ - R (e, DA(Q) = i =€) + 2wer - 1),
R/(t) = %[Fy(t)e‘im +Fy (e, Dy(Q) = (T~ iQ)[(2p)* + (2K5 +1Q)?] + 2k, /(r = 1)

L X (2aw, = 2K, —1€)). (2.26
Ty = E[Fy(t)e - Fy(t)e'“]. (2.19 The other phase quadratu®,(Q) will not appear in the
) observables that we shall discuss below. Using the results
In Egs.(2.17) and(2.18 we have introduced obtained in Ref[12] and taking into account the stationary
I'=y+2c@=yr, Tg= y+2cQP=yo+ y(r-1), solutions(2.6) and (2.13) we obtain the following nonzero
(2.20 correlation functions of the Langevin forc&{t), T;(t), with
' i=x,y, andFp(t),F4(t) for the stationary regime of VCSEL's
as convenient shorthand. in approximation of the small fluctuations:

053817-4



POLARIZATION SQUEEZING IN VERTICAL-CAVITY... PHYSICAL REVIEW A 70, 053817(2004)

(RADR(L)) = (RADR,(L')) = (Ty (D) T(t)) = (T, ()T, (t')) Ill. QUANTUM POLARIZATION STATES OF LIGHT:
= kSt —t') GENERAL DISCUSSION
- KX - )

A. Quantum Stokes parameters

There are two equivalent descriptions of the polarization
properties of light in classical optics either by the polariza-
tion matrix or in terms of the classical Stokes parameters
[18]. During the last decade the quantum-mechanical version
of the classical Stokes parameters was introduced in the lit-
erature and very actively used in quantum optics to describe
the quantum fluctuations of polarization of the electromag-
netic field[19-23. There have been several theoretical pro-
posals for generation of polarization-squeezed light

(2.27) [21,23-27 and a few experiments in which such kind of

Equations(2.23~(2.26) together with correlation functions I9ht was observe28-31.
(2.27) allow us to evaluate an arbitrary correlation function Ve shall use the language of the quantum Stokes param-
of the laser light emitted by the VCSEL. The spectral densi-gters for the characterization of the quantum fluctuations of

ties of the amplitude quadraturééxﬁ)ﬂ, (5X§)Q are given polarized Iight in VCSEL's. In this section we shall express
by the fluctuation spectra of the quantum Stokes parameters

through the spectral densities of the quadrature components
) Ky 5 evaluated above. In the next section we shall apply these
(6X)a= W{Q +r[1-(r-Dp/2]}, (2.28  results for the particular case of VCSELS.
X -

ny="r( 1220 s -t
(Fo(tFo(t)) = Cr(l zp)aa ),
(FoOF(t) = T8t =),

(Fo(OR(t)) = (FgOT,(t")) = - \2K,Q8(t — t')

Let us write the operatd%(t) of the electromagnetic field

(5X§)Q _ Ky {05+ A Q2+ 4B, (2.29 igmgoonuetﬁgz of the VCSEL in terms of tireandy-polarized
2|Dy()P
with Ay and By determined as E(t) =a(t)é, + éy(t)éy, (3.1
Ax=[2k,= A = DI+ [20, + ay(r = ) = dxy(r - 1) whered,(t) anday(t) are the photon annihilation operators in

the Heisenberg representation. In what follows we shall omit
the time argument when this does not create ambiguities. The

By = e =112+ + r=1DP+ r—1 guantum Stokes operato§,,u=0,1,2,3, areintroduced
x= [kays = kAT =D+ [opyst arnlr =D+ vy = 1) similarly to their classical counterpartsee, for example,

+yd v+ Hr = D(a?+2)],

X(aKy+ ‘Up)z- (2.30 [27]):
The spectral density of the phase quadrature component & ata oAt
(8Y2)q is equal to o= &t &y,
K S —ata _ata
)= ——{Q*+AQ%+4B}, (23 S1= aax ~ aydy,
with A, andBy given by S,=ala, +ala,,
Ay= 4(K§+ wg) + y§ +y(r — D(dawy + v, e At
S=iaya—ady). (3.2
_ 2, 2 _ 2, 2 212
By = (kG + @p) + /(1 = Dlwy(a®+2) + 1] Using the commutation relations for the photon annihilation
+ w,%f(r —1D%a?+1). (2.32  and creation operators,
Finally the cross-spectral densityX,dY,), reads ERNE o (,j=xy), (3.3
—iAr—1) 2 2 it is easy to verify that the operat6 t ith all th
XY = Y 0242 F= (P +1 y perat& commutes with all the
( Yy y)Q 2|Dy(Q)|2 {ax, Kwp')’( )(a ) others,
+2 + + - . (2.33 A a
Y k(aky + wp) + ary(ka— awy) ]}, (2.33 (8.5,]=0 (1=1.2.3, (3.9)

These analytical results will be used below for the evaluation L R

of the spectral densities of the quantum Stokes parameterand that the operatorS,;, S,, and S; satisfy commutation
their cross-spectral densities, and for the cross-correlatiorelations similar to the components of the angular momen-
spectra of the photocurrents. tum operator:
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5.51=28, [5.51=28, [5,51=25. 35 i

The noncommutativity of these three Stokes operators does a
not allow their simultaneous measurement in any real physi- |_| ]
cal experiment. The mean valu¢s,),x=1,2,3, and the E g

. - - . . a i1
variancesAS, = \/((SM—<SM>)2> are given by the uncertainty |_|
relations[19] compensator res

ASAS, = [(Sy)], ASAS=[(S)], 85:68,= (Sl FIG. 2. Experimental setup for measurement of the classical

(3.6) Stokes parameters.

When thex- andy-polarized components of the electromag-

netic field are in coherent statgs,) and|a,), i.e ization in VCSEL's are therefore characterized by an uncer-
y/y T

tainty ellipsoid in the Stokes-Poincaré space.
éx|ax> = ax|ax>, éy|ay> = ay| ay>, (3.7)
one can speak about thmherent polarization statef the B. Measurement of the classical Stokes parameters

electromagnetic field. The mean values of the quantum Four classical Stokes paramet&s can be measured in
Stokes parameters in this state are obtained by replaging an experimental setup shown in Fig. 2. This measurement
— ay anda,— ay in Eq.(3.2). For example, for the first two scheme consists of a compensator, a polarizing beam splitter

parameters one obtains (PBS, and two photodetectors. Lef, and 8, denote the
S o 5 a A phase changes produced by the compensator ix el y
(So) = [af® + [ * = (g + (Ry) = (), components of the electromagnetic field given by &ql).
. Next, lete denote the angle between the transmission axis of
(Sp) = |anl® = |y = () = (), (3.8)  the PBS and the& axis. Then the field amplitudely anda,

. . of the transmitted and reflected waves after the PBS can be
where(n) is the mean total number of photons in the E|ec'written as

tromagnetic wave. The variances of all four quantum Stokes _ .
parameters in this case are equal and given27y a, = €Xa,cosp+ éye"esin ®),

AS =Ry +(R)=(), ©=0123. (3.9

This property of the coherent polarization state allows one to

define apolarization-squeezed stagémilar to the definition  where =46,- 6, is the phase difference between thandy

of a single-mode squeezed state. According2 one can  components introduced by the compensator.

speak about polarization squeezing if one of the four vari- The secondary waves after the PBS are photodetected and

ancesAS, of the Stokes parameters becomes smaller thanne observes the mean values of the photocurreigis

that in the coherent state—i.&\S; < (f) for at least oneu. = 7c(ala,) and(i,)=7c(aJa,), where is the quantum effi-
Classical Stokes paramete3s, u=0,1,2,3(without car-  ciency of photodetection and is the velocity of light(we

ety, are obtained as the mean values of their quantum veiave put the charge of the electron equal to unity so that the

sions defined in Eq3.2), SM:(SM)_ From the classical point photocurrents_ are r_nefasured in the number of ele_ctrons per

of view, all polarization properties of light are completely S€cond. For simplicity in what follows we shall consider the

described by these four paramete®s:determines the total Situation of »=1. Using Eq.(3.10 we can write the mean

beam intensity, while three other parameters characterize tHhotocurrenti;) measured in the transmission branch of the

polarization state of the light beam. This polarization state irPBS as

classical optics is often represented in a Poincaré sphere with

a,=€%(-asing +ae'cosy), (3.10

Si, S, andS; forming its three orthogonal axes. (i) =(i(¢,0) = }770[50+ S,c0s 2p + (S,c0s6
In quantum optics to completely characterize polarization 2
properties of light in addition to the mean valugg of the +Ssin H)sin 2¢] (3.11)

quantum Stokes parameters one has to determine their vari-
ancesAS,. In general all these variances can be different andrvheresﬂ are the classical Stokes parameters.
one can speak of an uncertainty ellipsoid in the Stokes- Equation(3.11) is the well-known formula for measuring
Poincaré spacg22]. In the general case, when different the four classical Stokes parameters. The first three of them
Stokes components are correlated, there are three additiongle obtained by removing the compensd@+0) and rotat-
parameters which determine the orientation axes of this UNng the transmission axis of the PBS to the angles
certainty ellipsoid. =0°,45°, and 90°, respectively. The fourth param&eis
While a general description is outside of the scope of ouimeasured by using a compensator with90° or so-called
paper, we shall illustrate below graphically that in the case ofyarter-wave plate and setting the transmission axis of the
VCSEL's different quantum Stokes compone8fscan have PBS toe=45°. The four photocurrents are found to be, re-
different variances\S,. The quantum fluctuations of polar- spectively,
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N A0)
(11(0°,0 )>:§7IC(S)+31): ! @idq
a
1 E |_|
(11(45°,09) = - (S + S, |_| % i
2 PBS
compensator
1 .
i,(90°,09)== -S), FIG. 3. Experimental scheme for measurement of the spectral
(il » ch(% S densities and cross-spectral densities of the quantum Stokes
parameters.
. 1
(12(45° ,909) = Z7e(Sp+ Sy). (312 -
(615)9=f dt 4 8i5(0) 8 (1)), (3.16
Solving Eq.(3.12 for S, we can obtain all classical Stokes ‘°°
parameters from these four measurements. where(di,(0)8i (1)) is the correlation function of the photo-
current fluctuationsi ,(t) =i, —(i,) and(i,) is the mean value
C. Observation of the fluctuation spectra of the quantum of the photocurrent. Alternatively, one can add and subtract
Stokes parameters the individual photocurrents in the secondary channels and to

In quantum optics in addition to the mean values of the!nvesngate the sum.(D=iy()+i,(t) and the difference

K 2 thei . ) i_(t)=i4(t)—ix(t) of two photocurrents. In this case informa-
quantum Stokes parametel$,) their quantum fluctuations o0 apout the fluctuation spectra of the quantum Stokes pa-

are also taken into account. In this paper to describe theymeaters is contained in the fluctuation spectra
quantum fluctuation we shall introduce the fluctuation spec-

tra of the quantum Stokes parameters.
Let us split the quantum Stokes operat8yt) given by
Eg. (3.2 into the stationary mean valug, =(S,) and small

(ﬂi)(ﬁj Cat CRCROPN()S (3.17

The photocurrent fluctuation spec(rza'g)g and(&'i)g can be
fluctuation 6S,,(t): easily expressed through the spectral densiti%), and
- . the cross-spectral densiti€sS,dS,), of the four quantum
S.()=S,+8S,(1). (3.13  stokes parameters. The results are conveniently presented in
terms of the following linear combination of the three Stokes

Taking the Fourier transform QTAS#(t), operators S_’I_ éz and é3

A 1 (™ . ) A on A A .
8S,(Q) = TJ 8S,(Hedt, (3.14 S=S5,c0s2p + (S,c0s 0+ S;sind)sin2p,  (3.18
N2mJ —»
which is sometimes called a polarization observdBi3Q.
we can introduce the normally ordered spectral correlatioWVe obtain the following expressions for the fluctuation spec-

: - - 2 2 - : ,
functions of the fluctuationsS,(€2) similar to the spectral tra (dig)q and(dig)q, normalized to the shot-noise levels:

correlation functions of the quadrature components in Eg. P

(2.22—namely, (8ol =1+ 2<n1>[(§%)0 +2(6%089)q + (65)al,
(:85,(0)85,(2"):) = (65) 0 8 + Q) (3.19
(:85,(0)85,(Q21):) = (83,85)08(Q + Q') (u# 7). (85)akiz) =1+ 2<f]2>[<5g>9 = 2(6%0)0 * (60l
(3.19 (3.20
Here(éSfL)Q are the spectral densities of the corresponding
fluctuations and S, 3S,), their cross-spectral densities. The (8D i) =1+ E(&SZ)Q, (3.21

symbol:...: means normal ordering of operators. (n)

To measure the spectral densit(eisi)ﬂ and the cross-
spectral densitie$sS,dS,), of the quantum Stokes param- P 2K
eters given by Eq(3.15 we can use an experimental setup (0ol =1 +®(5§))Q, (3.22
similar to one that we have used for the measurement of the
classical Stokes parameteisee Fig. 3. The difference is where the corresponding spectral densities and cross-spectral
that instead of detecting the mean photocurrénsand(i,) densities of are defined according to E§.15. Here i)
after the PBS, one observes now the photocurrent fluctuation(i,)+(i,) is the shot-noise level of the photocurrent sum
spectra(8i?)q,p=1,2 defined as and difference{n;)=(ala,) and (n,)=(ala,) are the mean
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photon numbers in the corresponding secondary channels af-  (5%)/(i,)=1 + 8K[(30522¢(5x)2()Q + sir122<p(5x§)9],
ter the PBS, andn)=(n,)+(n,).

Equations(3.19—3.22 are analogous of Eq3.11) for (328
measuring the spectral densities of the quantum Stokes pa- P 5
rameters. It is clear from these equations that with the proper (A2)af(i+) =1+ 8c(8Xq- (3.29

choice of angle) and ¢ all nonzero spectral densities and g simplify Eqs.(3.26)~(3.28 we have introduced the short-
cross-spectral densities of the Stokes operators can be m&gsnd notation

sured.
X)) = cos 6X,(Q2) — sind 5Y((2), (3.30
D. Relations between the spectral densities of the quantum o ) ) )
Stokes parameters and of the quadrature components with its spectral densityoXjy)o given by

In Sec. IID we have provided analytical results for the (6% = 00520(5X§)Q ~ 2 sind coA(6X8Y,)q
fluctuations of the quadrature componen¥((2), X ((), i 5
and6Y,(£2) and for their spectral densities and cross-spectral *siro(8Yy ). (3.3)
densities[see Eqs(2.28—2.33]. Now we shall express the The mean values of the individual photocurretits and(i,)

spectral densities of the quantum Stokes operators througdhd of the photocurrent sufi,)=(i,)+(i,) are equal to
the spectral densities of these quadrature components. As

before, we shall restrict ourselves to the case of the (i})=2Q%coe, (i) =2Q%sirfe, (i,)=2Q%.

x-pola}rized stationary solution when,)=2Q? and(n,)=0. (3.32
Using the same normal rule of correspondence between ) ) . . ]

the operators and theg-number representations as in Ref. In the next section we shall investigate in detail the spectral

[12] we shall introduce the-number variablesS,(t) corre- densities of the quantum Stokes parameters and their cross-

sponding to the quantum Stokes opera@(s). Since in Eq. spectral densities.

(3.2 the Stokes operators are normally ordered, the same
relation holds true fo,(t) and thec-number variables;(t) IV. POLARIZATION STATES OF LIGHT IN VCSEL's
anda; (1), i=x,y.
Linearizing thec-number variable$,(t) around their sta- -
tionary valuesS, as The spectral densme(sési)g of the quantum Stokes pa-
rameters can be measured using any of three equations
S.() =S, + 8S,(1), (3.23  (3.19~3.21). Here we shall use E¢3.21) corresponding to
observation of the noise spectru@i?)q (¢, 6) of the photo-
current difference. With the help of E¢3.18 we can bring
the photocurrent noise spectru@i?)(¢, 6) to the form

A. Polarization squeezing

we can express the fluctuatiods,(t) through the fluctua-
tions of the field component&a,(t) and da(t):

5S(t) = 8S,(t) = V2Q[ day(t) + dal ()],

2k
_ ) (82)a(e, 0/(i,) = 1+ 5{(85)acos2¢
85,(t) = \2Q[ sa,() + day(b)], Q

~ + sirf2¢[(655),cog0
0S(t) =~ V2iQ[day() - day(t)]. (3.29 - (85,855) 2 Sing cosh + (55) o Sirkal}.
Taking into account Eq(2.16 we obtain the following re- (4.2
sults relating the spectral densities of the Stokes operators ) o
with those of the quadrature components: In this equation we have explicitly indicated the dependence
b o of the observed noise spectrum on the artietroduced by
(60 = (65)q = 8QA8XD)q, the compensator and angjeof the polarization beam split-
ter.
(650 = 8Q%(6X0)q, The spectral densitie&dSh)o=(6S),, and (65)q, of the
Stokes parametels,,S;, andS, are measured by removing
(5§)Q= 8Q2(5Y2)Q, the compensatof#=0) and setting the transmission axis of
Y the PBS to the angleg=0° andp=45°. The spectral density
= 802 SX.SY ). 32 of the parameteg; is obtained by using a compensator with
_ (653)q _Q (%, y)g_] (3.29 6=90° (quarter-wave pladeand settingp=45°. The corre-
With the help of these relations we arrive at sponding photocurrent fluctuation spectra are given by
(819)o/(iy) = 1 + B[ coSp( 8X2) , + SirPe(8X5)q ], 2
e - " e (4200(0°, 001 =1+ (0, (42

(8i2) /(i) = 1 + Bl SirPp(8X2) o + coZp(8X)q ],
(3.27)
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the theory of solid-state and semiconductor lasers and have

@ their physical origin in the relaxation oscillations due to a
~ periodic energy exchange between the active medium and
A the laser radiation. Since in our case there are two upper
kY levels|a+) and|a—) in the active laser medium, we have two
> a) subsystems where periodic energy exchange takes place in-
~y dependently. The first subsystem is described by the total
i§_ \ populationD of the upper levels and the Stokes param8&ter
! ! [see Eqs(2.17)], and its frequency of the relaxation oscilla-
I S - - i tions is equal td),. In the second subsystem relaxation os-
I Q, Q, Q (GHz) cillations take place between the population differed@nd
the two Stokes paramete®s andS; at the frequency), [see

Eqgs.(2.18)].
The second important feature that one can observe in Fig.
4(a) is the reduction of quantum fluctuations of the Stokes
b) parameterS; below the standard quantum limit at low fre-
quencies() in the case of regular pumping=1. Thus, we
can speak of the phenomenonpafiarization squeezingith
respect td5; in VCSEL's with regular pumping. This result is
to be expected. In fact, as follows from Ed8.2), for the
x-polarized stationary solution the Stokes param8tearoin-
cides with the total number of photons in the laser field. It is
well known from the literaturg?] that a regularly pumped
two-level laser can exhibit sub-Poissonian photon statistics;
i.e., the fluctuations of its photon number could be reduced
below the standard quantum limit. One could therefore say
that the polarization squeezing with the respectSfan a
regularly pumped VCSEL is the consequence of the sub-
¢)  Poissonian statistics of photons.

However, it is worth noting that the relation between the
sub-Poissonian statistics of photons and the regular pumping
statistics in VCSEL's is not so direct as in the case of a
two-level laser considered if2]. Indeed, due to the degen-
eracy of the upper laser level on two sublevids) and
|a=), the regular pumping of the total populati@n of the

Q (G,‘f,"z) upper level remains random for each individual sublevel due
to the partition noise. It turns out that in the case of an
FIG. 4. Photocurrent fluctuation spectra for the Stokes paramz(_pol‘f.j‘rimEd stationary sqlution this partition noise does not
etersS,,S,, andSy: (a) without dichroism,x,=0, (b) with dichro- contribute to the fluctuations of the total photon number and
ism, k,=10 GHz, and(c) with x,=50 GHz. The values of other of the Stokes paramete; The reason for this is that, as
parameters are:x=100 GHz, y=1 GHz, y,=1000 GHz, 7 follows from Egs.(2.17), the f!uctuanons of _the Stokes pa-
=50 GHz,w,=40 GHz,a=3, andp=1. rametersl are coupled pnly with the fluctuations of the total
populationD and not with fluctuations of the populations of
individual sublevels.
(a-g)ﬂ(45° 1909/, =1 +2_’;(5§)Q_ (4.4) The role of dichrois_m is illustrated in Figs(l%) angl 40)_. _
Q As seen from these figures, the appearance of dichroism in
the system has two major consequences. First, the quantum
In Fig. 4 we have shown the photocurrent fluctuation spectraoise reduction below the standard quantum limit in the
given by Egs.(4.2+4.4) for physical parameters close to spectral density5S),, of the first Stokes parameter is dete-
that used in experimenf12] —namely, k=100 GHz, ¥  riorated by the factom/(k+«k,). This deterioration has a
=1 GHz, v, =1000 GHz,¥5s=50 GHz,w,=40 GHz,a=-3,  clear physical explanation. Nonzero dichroism introduces
r=6, andp=1. The parametek,, describing the dichroism random losses of the laser radiation inside the resonator at
of the laser crystal, was set equal to zero in Fi@) 40 x,  the ratex, The total decay rate of the laser field inside the
=10 GHz in Fig. 4b), and tox,=50 GHz in Fig. 4c). resonator is how given by+ «,, while the outcoupling rate
Let us first discuss the case without dichroifig. 4a)].  determined by the transmission of the cavity mirror is equal
As seen from Fig. @), the spectral densitysS), of the  tg «.
Stokes paramete3; has a peak at a characteristic frequency The second consequence of dichroism in the system is
4, while two other spectrésS),, and(5S)), for the Stokes  suppression of the relaxation oscillations at the frequeigy
parameterss, andS; exhibit peaks at anothéhighen char-  related to the Stokes paramet&sandS;. We can see from
acteristic frequency),. These peaks are well known from Fig. 4(b) that for small values o, (x,=10 GHz while x

(6i3)o/ <iy> (dB)

05

(6i2)q/ <is> (dB)

——
fr——
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=100 GH2 the peak of relaxation oscillations @, becomes
more pronounced. This is explained by the fact that for thes
values of k, we approach closer to the instability region.
However, with increasinge, as in Fig. 4c) the relaxation
oscillations at(), rapidly disappear.

The three spectral densiti¢8S)),,,(65),, and (6, in
Fig. 4 can be also interpreted in terms of the uncertaintyg
ellipsoid that we have mentioned in Sec. Il A. Since the%
spectral densities depend on the frequefiyone has to &
speak about the frequency-dependent uncertainty ellipsoi@
with tree major axis determined by the corresponding specg
tral densities. These spectral densities are normalized to tt
shot-noise level so that a sphere of unit radius in the Stokes
Poincaré space corresponds to the standard quantum lin
realized for a coherent polarization state. As follows from
Fig. 4(a), for example, for a polarization-squeezed state in
the area of low frequencies, Whe(rﬁ)g is below the stan-
dard quantum limit, the uncertainty ellipsoid has the shape O,
a pancake. Instead, in the vicinity of the frequency of relax-§
ation oscillations(), this uncertainty ellipsoid takes a cigar-

, 0=0

4

like shape with(8S)), larger than two other components. E
Ty

B. Cross-correlation spectrum of photocurrents e

~

Q

Using the experimental setup shown in Fig. 3 one can als’g
measure the cross-correlation function of fluctuations be®
tween the photocurrents iy(t) and i,(t)—i.e.,
(811(0) 8i,(t))—or the corresponding cross-correlation spec-
trum of fluctuations:

b)

FIG. 5. Cross-correlation spectrumy X)) for ¢==/4 and 6
=0: (a) without dichroism, k,=0 and (b) with dichroism, «,
=10 GHz andk,=50 GHz. The inset ifa) illustrates the role of the
statistical parameteqy at low spectral frequencies. All other param-
eters are as in Fig. 4.

+00
(511512)9=f dt &4(8i1(0)di(1)). (4.5

Usually it is more customary to work with the normalized
cross-correlation spectrum of the photocurrent fluctuations:

(8i18i5)q
V(82 (819)

Using the Cauchy-Schwartz inequality one can demonstrate
that this spectrum is normalized a€,,(Q)|<1. Hence,
C1x(Q2)=-1 corresponds to the maximum anticorrelations
between the two photocurrents, whilg,()) =1 to the maxi-
mum correlations. Experimentally this spectrum can be mea-
sured as These relations allow us to express the cross-correlation
spectrumC,,(Q2) in terms of the spectral densitig$X?),

(8X18X2)q = cosp sing[(8X3) g — (8X5)q],

Ci Q) = (4.9

(XD q = coZe(8XE) o + Sirfe(8X5)q,

(6X3), = Sirfp(8X3) o + coZe(8X2) . (4.9

(820 = (810 = (89
2V(81Da(d19)q
The normalized cross-correlation spectr@({2) can be

C12(Q) = (4.7)

expressed through the spectral densities and cross-spectra

densities of the amplitude quadrature componeiXs and
oX, as

8k(6X16X5)q
V1 + 8k(SXD) V1 + 8k(5XD)

Using the relations between the field amplitudgsinda, of

Ci()) =

(4.9

and (8X%),, calculated earlier.

In Fig. 5 we have plotted the cross-correlation spectrum
C1(Q) for ¢=m/4 and #=0. In this case the general result
fo‘ C12(Q) given by Eqs(4.8) and(4.9) is simplified to

A (%) = (8X0) ]

) (@00 + (X))

(4.10

Figure a) shows this cross-correlation spectrum for the
case without dichroism and the same values of physical pa-
rameters as in Fig. 4. As follows from Fig(&, the cross

the transmitted and reflected waves after the PBS and theorrelations are absent at high frequenci@slarger than

incoming amplitudes, anda,, given by Eq.(3.10, we ob-
tain

30 GHz. At lower frequencies of the order of 15 GHz the
curve of C;,(Q)) shows anticorrelations which turn to corre-
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lations at still lower frequencies of the order of 5 GHz. Inthe ~ 03f
area of low frequencieQ smaller then 1 GHz one has again
anticorrelations.

This oscillating behavior of the cross-correlation spectrum ¢4}
C1(Q) is in full agreement with behavior of the fluctuation
spectra of the Stokes paramet&sand S, in Fig. 4(a). In- Q_, 0 7
deed, the cross-correlation functi@q,(Q)) is proportionalto '
the difference of the spectral densities of the quadrature com
ponents(éx)z()g—(éxi)ﬂ [or the corresponding Stokes param- g2t
eters (05))o~(6S)q]. Therefore, for(8X9)o> (X))o we

0.2[ Xa=50GHz

0.1

have correlations between the two photocurrents, while in 03} =0 GHz
the opposite case anticorrelations. . 5 5 10 15 35 35 30
Figure gb) illustrates the same cross-correlation spectrum Q (GHz)

in presence of dichroism for different values of parameter

As mentioned above, the essential role of dichroism is in the FIG. 6. Cross-correlation spectrumy4X)) without dichroism,
suppression of the relaxation oscillations. Whep ap-  x,=0 and with dichroism,=10 GHz andx,=50 GHz for the
proaches the critical value,=10 GHz of the instability bor- same values of physical parameters as in Fig. 4.

der, the relaxation oscillations grow up and reinforce anticor-

relations. A further increase af, results in a suppression of angles are zero. Comparing Eq4.11) and (4.12 we con-

the relaxation oscillations and respectively in a transformacjude that these two classical fluctuations can be associated

tion of anticorrelations into correlations fot, larger than with their quantum counterparts a§<ﬁ—>—55(y/ \@Q and

50 GHz. s L
dx— —oY,/2Q. Taking into account Eq3.24) we can also
write 8¢p— —6S,/4Q? and Sy — —6S;/4Q2.
C. Cross correlations between the Stokes parameters Thus, the quantum fluctuations of the Stokes parangter

S, and S; characterize the fluctuations of the polarization angle and
those of theS; the fluctuations of the ellipticity angle. In the
e Sec. IV A we have evaluated the fluctuation spectra of the
this paper, the linearized field operat(t) from Eq.(3.1)  Stokes parametelS, and S;. However, as follows from Eq.

For thex-polarized stationary solution that we consider in

can be approximately written as (3.25 these two parameters are also cross correlated. Hence,
. we shall introduce the cross correlation spectiOgg(()) be-
E(t) = €[2Q + X, (1) +i5Y,(1)] tween these two parameters in the same way as we did for

characterization of the cross correlations of two photocur-
x| &+ —2[5%(0) +i 8%, (1)]& (417  rents:
& 20" AALAE :

Cos(Q) = (4.13

(65,65)q
This representation of the linearized field operator is very / '
useful as it clarifies the physical meaning of the quantum \(5@9\(5@)9
fluctuations of the four quadrature components that appear ifihis cross-correlation spectrum is normalized |@s5(Q)|
Eq. (4.11). The f|uctuati0n55)‘(x(t) and 5\})((»[) describe, re- <1 and can be experimentally determined from the measure-
spectively, the quantum fluctuations of the amplitude and th&nents of the following three photocurrent fluctuation spectra:

Phase of the electromagnetic fief[tﬂt). The guantum fllfctua- (812)0(45°,0°)/(i,) =1 + 2(5322)9, (4.14
tions of two other quadrature componeid$ (t) and 6Y,(t)
characterize the quantum fluctuations of ghaarization of

- ) . 2k
the field E(t). To see this more clearly let us compare Eq. (812)0(45°,90°)/(i,) = 1 +§(5§)Q, (4.1
(4.1) with the classical expression often used in the litera-
ture on VCSEL's(see, for example, Ref6]):

- (82)0(45°,45°)/(i,) = 1 + 5[ (6D)g + (6
E(t) ~ &E|[6, - (3¢ +i5x)6,]. (4.12 Q

In this expression we have neglected the amplitude and + 20555)al (4.19
phase fluctuations of the field and have introduced the flucwe have numerically evaluated the cross-correlation spec-
tuationsd¢ and Sy, d¢p<1, Sy<1, of two anglesp andy,  trum C,5(Q) for the same values of physical parameters as in
which characterize the optical polarization state on thehe previous subsection. In Fig. 6 we illustrate these spectra
Poincaré sphere. The first angte(0=< ¢<) is called the in the absence of dichroisix,=0) and for two different
polarization angle and it determines the direction of the povalues ofx, equal to 10 and 50 GHz.

larization ellipse. The second angle(-w/4< y<mn/4) is As follows from this figure, in the absence of dichroism
the ellipticity angle. For arx-polarized field both of these the cross-correlation spectrum shows negative correlations at
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low frequencied) less than 10 GHz. These anticorrelationssqueezing in this type of laser due to the partition noise
appear due to the coupling between the Stokes paranfgters between two upper sublevels in the laser medium. The sec-
and S; via the population differencd. For higher frequen- ond important feature of VCSEL's that guarantees polariza-
cies this coupling becomes less efficient and fbhigher  tion squeezing is their dynamical behavior, which couples
than 30 GHz the fluctuations & and S; become indepen- the statistical properties of the Stokes param8temly with
dent(Cy3—0). those of thetotal population of two upper sublevels.

For nonzero dichroism the anticorrelations betwegn We have analyzed the role of linear dichroism and have
andS; at low frequencies first disappear and then turn intoconcluded that it mainly influences the relaxation oscillations
positive correlations for larger values ef—-for example, at  in VCSEL's. These oscillations are typical for solid-state and
k,=50 GHz. Thus, dichroism changes the nature of correlasemiconductor lasers. The particularity of VCSEL's is that in
tions betweers, andS;. this case there are two types of relaxation oscillations with
clearly distinct characteristic frequenci€k, and ,. The
first oscillations(with frequency(),) are related to the total
population of two upper sublevels and they contribute to the

In conclusion we have presented a generalized and fulljluctuation spectrum of the Stokes paramederThe second
analytical theory of quantum fluctuations in VCSEL's, pro- type of relaxation oscillationwith frequency(},) is con-
posed for the first time in Ref12]. The original results of Nected to the population difference and its peak appears in
our investigation are the analytical expressions for the spedhe fluctuation spectra of the Stokes parame$rands;. It
tral densities of the quadrature field components and of th&Irns out that the dichroism dumps_ the relaxation osc:|llat|o_ns
corresponding quantum Stokes parameters. These analyticfl the second type and does not influence those of the first
results facilitate the comparison between the theory and exyPe. To understand this result let us recall that the relaxation
perimental measurements. Moreover, we have included intgScillations appear in the lasers of the second type when the
the theory a nonzero linear dichroism of the semiconductoFésonator losses are more rapid compared with those of the
medium that was neglected in R§12]. !aser medium. As follows from Ec(§..1.7) anc_i(2.1& dichro-

Our theory is very closely related to possible experimentalSm increases the losses for thpolarized light component
observation of the quantum fluctuations in VCSEL's that carcoupled with the population differencd and does not
be performed in a correlation-type measurement shown i§hange those of the-polarized component related to the
Fig. 3. We have calculated analytically and illustrated graphi{opulation sunD.
cally the typical quc'tuatl'on and cross-correlation spectra that ACKNOWLEDGMENTS
could be observed in this type of measurement. Our theoret-
ical results allow for direct comparison with experiments. This work was performed within the Franco-Russian co-
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