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We investigate the possibility of using dielectric microdisk resonators for the optical detection of single
atoms trapped and cooled in magnetic microtraps near the surface of a substrate. The bound and evanescent
fields of optical whispering-gallery modes are calculated and the coupling to straight waveguides is investi-
gated using finite-difference time domain solutions of Maxwell’s equations. Results are compared with semi-
analytical solutions based on coupled mode theory. We discuss atom detection efficiencies and the feasibility of
nondestructive measurements in such a system depending on key parameters such as disk size, disk-waveguide
coupling, and scattering losses.
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I. INTRODUCTION

Microresonators are a promising system for research in a
wide range of fields. Their spectral properties can be ex-
ploited in various applications ranging from telecommunica-
tion [1] to biological/chemical sensors[2] as well as in fun-
damental research. Of specific interest is the potential
contribution of such devices to the emerging field of quan-
tum technology(QT), which may again serve as an enabling
technology for both fundamental science and applicative re-
search.

In the realm of QT, single atoms and ions coupled to
microresonators are one of the most promising systems.
There, a high degree of control over light-atom interaction
can be achieved, which may lead to additional insight and
capabilities in contexts such as cavity QED[3], single pho-
ton sources[4], memory, purifiers for quantum communica-
tion [5], manipulation of internal and external degrees of
freedom for matter waves in systems like interferometric
sensors[6], clocks, and perhaps also the elusive quantum
computer[5,7]. In this paper we will analyze a specific mi-
croresonator in the form of a microdisk, and furthermore we
will focus on its ability to detect single atoms.

Recently reported progress in the manufacturing of high-
Q dielectric microdisk structures[8] motivates the develop-
ment of compact and integrable devices. Of specific interest
is the wafer-based manufacturing of resonators where a good
control of the physical characteristics can be achieved during
fabrication, enabling, for example, extremely small mode
volumes as well as accurate alignment with other elements
such as microtraps. Furthermore, a wafer-based device may
allow more complex functions such as tunability to be inte-
grated.

Experiments have also shown that it is possible to trap,
guide, and manipulate cold, neutral atoms in miniaturized
magnetic traps above a substrate using either microscopic
patterns of permanent magnetization in a film or microfabri-
cated wire structures carrying current or charge[9,10]. Such
surfaces have received the name atom chip.

Recently it was proposed to integrate micro-optics into an
atom chip for atom-light interaction. In particular, the use of

Fabry-Pérot[11] or photonic band gap[12] cavities has been
discussed. As a complementary and comparative analysis we
investigate in this work the external fields of optical
whispering-gallery modes which are supported by a toroidal
microcavity and which may be used for the above purpose.
Such a microdisk can be considered as a two-dimensional
version of the much studied microsphere[13–15].

This work is organized as follows. In Sec. II we describe
the system under consideration. Section III deals with the
different numerical and analytical methods which we apply
to examine the disk resonator structures. We analyze feasible
realizations, taking into account imperfections of various ori-
gins. We then introduce atoms to the system in the frame-
work of the Jaynes-Cummings model(Sec. IV). Subse-
quently, the calculated fields are used to estimate the
efficiency of our scheme for single-atom detection(Sec. V).
In Sec. VI we discuss experimental considerations such as
tunablity. Finally, we conclude in Sec. VII.

II. SYSTEM DESIGN

The basic system under discussion is that of an atom chip
consisting of a magnetic or dipole microtrap for cold atoms,
and a photonic part which is used for optical atom detection.
As shown in Fig. 1, in this work we focus on a photonic
system consisting of a circular plate(disk) and a linear wave-
guide.

The waveguide couples light into and out of the disk. In a
realistic setup, both waveguide ends will be attached to op-
tical fibers. In order to optimize power transfer between the
waveguide and a single-mode fiber, the mode overlap at the
interface has to be maximized. This requires waveguide di-
mensions of 939 to 12312 mm in the refractive index
range of 1.454–2.17 for wavelengths around 780 nm(the
wavelength of Rb atoms usually used in this kind of atom
chip experiment). In this case, best coupling efficiencies of
the order of 96–98% can be achieved. For best mode match-
ing with the microdisk modes, the waveguide width has to be
reduced to about 0.3 to 1.2mm using adiabatic tapers, as
shown in Fig. 1.
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The disk itself supports a large range of resonant modes.
Here, we are mainly interested in the low-loss modes travel-
ing along the disk edge in the form of whispering-gallery
modes(WGMs). While most of the mode energy is confined
within the disk, a small part of the mode exists outside the
disk as an evanescent field, and it is here that an atom can
interact with the light. This atom-light coupling changes the
optical properties of the disk mode, which subsequently
changes the intensity and/or phase of the light at the output
of the linear waveguide. These changes can then be mea-
sured to infer the presence of the atom.

In the horizontal direction the linear waveguide and the
disk are bordered by air or vacuum with refractive index
ncl=1. In our calculations we assumed structures made of
fused silica withnc=1.454 at a wavelength of 780 nm. In the
vertical direction the structure may be more complicated
with several layers in order to give good mode confinement.

A number of numerical and analytical tools have been
utilized to investigate the optical properties of such systems,
for example, coupled mode theory(CMT) [16,17], scattering
matrix theory[18], finite-element[19], and finite-difference
time domain(FDTD) methods[20]. In this work we will use
FDTD simulations which provide rigorous numerical results
but which are rather time consuming and therefore not
adapted to scanning large parameter ranges. We will thus
resort to a semianalytical CMT as a fast tool for a detailed
design parameter analysis. These two methods complement
one another and give a powerful tool for the investigation of
microresonators. In particular, we are interested in the sys-
tem characteristics dependent on disk diameter, waveguide
width, gap width between the linear waveguide and the disk
resonator, and surface quality of the disk.

III. OPTICAL PROPERTIES OF WAVEGUIDE-COUPLED
WHISPERING-GALLERY MODES

A. Finite-difference time domain calculations

The first method we use to investigate the resonance be-
havior of the microdisk is by FDTD simulations. Here, Max-
well’s equations are discretized in space and time, and the
time evolution of the electromagnetic fields is numerically
calculated on this grid. To obtain high accuracy it is neces-
sary to make the cells much smaller than the optical wave-
length, which leads to long calculation times, in particular
for a three-dimensional(3D) model.

In two dimensions it is possible to perform direct FDTD
simulations for relatively large disks of diameter.50 mm.
In 3D, simulations are feasible only for small disk diameters.
However, comparisons of 2D and 3D simulations for small
disk diameters have shown reasonable agreement. In the rest
of this paper, we will thus restrict ourselves to simplified 2D
calculations, where the disk and waveguide modes are calcu-
lated for a geometry infinitely extended in the verticalsyd
direction. The 3D modes are assumed to be simple slices of
thicknessdy of these infinite modes. For the calculations pre-
sented in this work we always assumedy=5 mm. We will
also limit the calculations to electric fields polarized along
the y direction, i.e., to TE modes only.

In this case, Maxwell’s equations for the electric and mag-
netic fieldsEy, Hx, andHz reduce to
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wherem0 and « are the magnetic and electric permeability,
respectively. The FDTD simulations solve Eqs.(1)–(3) on a
spatial grid for a given initial field distribution. We used the
so-called unsplit perfectly matched layer boundary condi-
tions [21] and a uniform discretization with a step size range
of 0.02 to 0.08mm in thex andz directions and with a time
step range of 4.45310−17 to 1.78310−16 s.

For our calculations the initial condition was such that the
disk was empty and that light was pumped into the lowest
transverse mode of the linear waveguide from one end. The
incoming light was either a continuous wave or a 30 fs
Gaussian pulse. In the former case, we are interested in the
steady state field distribution which, for example, allows us
to observe the resonant disk mode and the evanescent field.
Pulsed input allows the calculation of the output power at the
other end of the linear waveguide as a function of frequency,
i.e., the transmission spectrum, by applying a discrete Fou-

FIG. 1. The structure under consideration. The evanescent wave
from the slab waveguide(1) is coupled into the disk(2) and back
through a small gap between them. The adiabatic waveguide tapers
(3) serve for coupling light from optical fibers(not shown) into and
out of the waveguide. Cold atoms(4) can be positioned on the disk
side.
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rier transform on the output field, calculating the Poynting
power density, and integrating over the waveguide cross sec-
tion.

B. Coupled mode theory

We complement the numerical FDTD results with a semi-
analytical CMT. For this, it is assumed that the linear wave-
guide supports only a single transverse mode, while the disk
supports two degenerate, counterpropagating WGMs. The
pumped waveguide mode only couples to the forward propa-
gating disk mode, but scattering due to sidewall roughness
may couple light into the second mode. Both WGMs are
coupled to the waveguide mode via their evanescent fields at
point 1 in Fig. 1. For the calculations we closely follow the
work by Rowland and Love[17].

First, the WGMs are obtained as solutions of Eqs.(1)–(3)
in cylindrical coordinates. This gives mode functions of the
form

EWGMsr,fd =5
Jlskncrd
JlskncRd

e±ilf for r , R,

Hl
s1dsknclrd

Hl
s1dsknclRd

e±ilf for r . R,6 s4d

whereJl are Bessel functions,Hl
s1d are Hankel functions of

the first kind, andR is the disk radius. The eigenvalue equa-
tion for these modes is given by

nc
Jl+1skncRd
JlskncRd

= ncl

Hl+1
s1d sknclRd

Hl
s1dsknclRd

. s5d

As all WGMs are lossy, the eigenvalues are complex,

k = kr − iki , s6d

and the intrinsic quality factor of the WGMs, i.e., the quality
factor due to bending losses, is given by[17]

QWGM=
kr

2ki
. s7d

Similarly, the mode functionsElin of the linear waveguide are
calculated for the same wave numberk.

The second step of the CMT is to write the total light field
as a superposition of disk and waveguide modes:

Esx,zd = a1szdElinsx,zd + a2szdEWGMsx,zd. s8d

The coupled mode equations read

da1

dz
= − iblina1 + iCszda2, s9d

da2

dz
= − ibWGMszda2 + iCszda1, s10d

whereblin and bWGM are thez components of the propaga-
tion constants of the waveguide and the WGM, respectively,
and Cszd is the position-dependent coupling coefficient ob-
tained by calculating the mode overlap of waveguide and
disk. For details of these calculations see Ref.[17].

Finally, integrating Eqs.(9) and (10) over z in the region
of significant coupling around point 1 in Fig. 1 yields the
unitary coupler transmission matrixT which relates the
waveguide and disk output fields to the inputs,

Sa1

a2
D

out
= TSa1

a2
D

in
s11d

where

T = St11 t12

t21 t22
D . s12d

The cavity decay rate[half width at half maximum
(HWHM)] kT of the WGMs due to the coupling to the wave-
guide is

kT = ut12u2/s2Trd s13d

whereTr =2pl / sckd is the round trip time. The corresponding
quality factor is

Qcoup= ck/s2kTd = 2pl/ut12u2. s14d

C. System losses

Apart from the intrinsic WGM losses(7) and the coupling
losses into the waveguide(14) at least two other loss mecha-
nisms have to be taken into account, intrinsic material losses
and surface scattering losses.

The main material loss mechanisms are bulk Rayleigh
scattering and ultraviolet and infrared absorption. The corre-
sponding quality factorQmat can be expressed in the form
[22,23]

Qmat=
2ncp

al
, s15d

wherea is the loss coefficient andl=2p /k is the vacuum
wavelength. Material losses for fused silica in the wave-
length range near 780 nm are of the order of 5 dB/km,
which gives rise toQmat,1010.

Greater uncertainty is associated with losses due to sur-
face scattering and absorption due to surface roughness or
the presence of an absorbing impurity on the surface of the
disk. For a given size of surface inhomogeneities(roughness)
and correlation length, the surface scattering quality factor
Qsurf has to take into account not only the direct scattering of
light out of the disk(“leakage”) but also scattering into other
modes with high rates of leakage. Various expressions have
been used to describe quality limits due to surface scattering
[22–24]. In this work, we apply the expression based on the
model of Rayleigh scattering by molecule-sized surface clus-
ters [22],

Qsurf =
Dl2

2Lcp
2s2 , s16d

whereD is the disk diameter,s is the root mean square of
the surface roughness, andLc is the surface correlation
length. As was reported in[25], the numerical values fors
and Lc can be less than 1 and 5 nm, respectively. In our
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calculations we useds=1 nm, Lc=5 nm ands=2 nm, Lc
=10 nm.

The overall cavity quality factor taking all the loss mecha-
nisms discussed above into account is then given by

Q−1 = Qcoup
−1 + QWGM

−1 + Qmat
−1 + Qsurf

−1 . s17d

This is related to the cavity linewidth(HWHM) k by

Q = ck/s2kd s18d

and to the cavity finesseF by

F = Q
R
ck

< Q/l s19d

whereR<ck/ l denotes the free spectral range(l is the mode
index of the WGM). For later use we also introducekloss
=k−kT which is the cavity loss rate due to losses into all
channels apart from the linear waveguide.

D. Results

After describing the building blocks of our calculation, let
us now discuss some numerical results for the optical prop-
erties of our system. This will serve two purposes: first, we
will compare our different calculation methods with each
other and with available experimental data in order to show
the accuracy of our results; second, we need to apply our
calculation to the experimental parameters that are of interest
in our case, in order to establish a base for the atom-light
interaction that will be discussed in the following sections.

We have compared the spatial profile of the WGMs ob-
tained from FDTD simulation with continuous pump with
the one resulting from a CMT calculation, and found good
agreement. Using pulsed input light for the FDTD calcula-
tions, we have also looked at the resonance spectrum of the
disk for different parameters, and extracted values for the
free spectral range(FSR) and the quality factorQ. As pre-
sented below, here too the agreement was good.

In Fig. 2, we plot the FSR for disk diametersD in the
range of 5–50mm, refractive index values 1.454–3.2, and

wavelengths near 0.78 and 1.55mm. The latter is chosen to
compare with previously published results[20]. FDTD simu-
lations and analytically calculated WGMs are in excellent
agreement with each other and with the experimental data.
As expected, the FSR is approximately inversely propor-
tional to the disk diameter.

Figure 3 shows the total cavity quality factorQ, Eq. (17),
dependent on the outer diameterD of the disk and the size of
the air gap between disk and linear waveguide.Q was cal-
culated using FDTD and CMT models, which again show
excellent agreement. We note that very high quality factors
up to about 108 can be achieved with the current system for
disk diameters of several tens of micrometers. The upper
limit for Q shown in Fig. 3 is the value obtained for a very
large air gap, where coupling losseskT are negligible and the
cavity quality is limited by the intrinsic and material quality
factorsQWGM, Qmat, andQsurf.

Figure 3 also shows data for two different wavelengths
and varying refractive index. Note thatQ generally increases
with increasing refractive index due to the better confine-
ment and therefore weaker coupling to the waveguide. Simi-
larly, Q decreases with increasing wavelength due to stronger
waveguide coupling. Nevertheless, for each case there are
unique material losses and fabrication uncertainties which
may change this general behavior.

To calculate theQ factor for different disk sizes, the index
l of the WGMs must be changed accordingly to keep the
resonant wavelength near the relevant atomic transition, e.g.,
close to 780 nm for Rb atoms. The necessary wavelength for
optimal mode resonance can be achieved by choosing a pre-
cise disk size. We will discuss tuning of the microresonator
later in Sec. VI. Note also that, while the intrinsic quality
factor QWGM is always lower for higher radial modes, the
overall Q can in fact be higher due to weaker coupling
(smaller losses) to the linear waveguide, which is the domi-
nating loss mechanism for most parameter regimes we are
interested in. Table I shows the optical properties of a few
selected disk-waveguide geometries.

FIG. 2. Free spectral range versus disk diameter. The lines
present results of analytical calculations at wavelengths 780 nm
(solid line) and 1550 nm(dashed line) in fused silica and at
1550 nm fornc=3.2 (dotted line). Corresponding FDTD results are
indicated by(p), and experimental data[20] by (s).

FIG. 3. Quality factorQ versus disk diameter for various gap
sizes and materials. Solid curves(from bottom to top): CMT results
for gap sizes 0.1, 0.2, 0.5mm, and for the uncoupled disk forl
=780 nm, nc=1.454, s=1 nm, Lc=5 nm; (P) represent FDTD
simulations. Dashed curve:nc=2.17, gap size 0.2mm. CMT results
for l=1550 nm, s=2 nm, Lc=10 nm: uncoupled disk withnc

=1.444 (dash-dotted curve), nc=3.2 and gap size 0.1mm (dotted
curve). Corresponding experimental data are given by(L) [8] and
(s) [20], respectively.
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IV. THE JAYNES-CUMMINGS MODEL

In this section we introduce a model for the coupling of a
two-level atom to the light field outside of the microdisk. We
consider two coherent modes with complex amplitudesa+
and a− traveling in opposing directions, and assume atom-
light coupling to these modes via the respective single-
photon Rabi frequenciesg+ andg−. The coupling of the two
modes due to imperfections in the disk is accounted for by
the introduction of the complex coefficiente, and the model
includes the possibility of pumping from either direction
with ratesh+ and h−, whereh±= t21Ain,± /ÎTr. Here Ain,± is
the amplitude of the pump field in each direction within the
waveguide such thatuAin,±u2 is the photon flux in units of
photons per second, andt21 andTr have been defined in Sec.
III B.

Ignoring the external motion of the atom, the Hamiltonian
of this system can be written ass"=1d

H = − Das11 − Dcsa+
†a− + a−

†a−d − isg+a+
†s01 − g+

* s10a+d

− ih+sa+ − a+
†d − isg−a−

†s01 − g−
* s10a−d − ih−sa− − a−

†d

− isea+
†a− − e * a−

†a+d, s20d

where Da and Dc are the atomic and resonator detunings,
respectively,s10 and s01 the atomic raising and lowering
operators, anda±

† anda± the mode creation and annihilation
operators. Here the energy of the lower atomic state has been
set to zero. The equation of motion for the density operator
of the system can be written as

d

dt
r = − ifH,rg + Lr s21d

where L is the usual linear operator describing cavity and
atomic decay with ratesk andG, respectively.

Assuming a factorized density operatorr, we find the
equations of motion for the elements of the atomic density
operator,

d

dt
r10 = s− G + iDadr10 + sg+

* a+ + g−
* a−dsr00 − r11d, s22d

d

dt
r11 = − 2Gr11 + sg+

* a+ + g−
* a−dr01 + sg+a+

* + g−a−
* dr10,

s23d

and the coherent state amplitudesa± obey the equations of
motion

d

dt
a+ = siDc − kda+ − g+r10 + h+ − ea−, s24d

d

dt
a− = siDc − kda− − g−r10 + h− + e * a+. s25d

In this work we are interested only in the stationary solu-
tion of these equations of motion. To this end, we first solve
the linear set of equations(24) and (25) with respect toa±.
The resulting expressions fora± are linear inr10 and can be
inserted into Eq.(22). From this and usingr11+r00=1, we
obtain r10 as a function ofr11. That and the corresponding
results fora± can be inserted into Eq.(23) to give a real-
valued nonlinear equation inr11 which can be solved by
standard numerical techniques. The output field of the linear
waveguide is the superposition of the waveguide input field
transmitted through the waveguide-disk coupler and the light
coupled out of the disk,

Aout,± = t11Ain,± +
t12

ÎTr

a±. s26d

Equation(26) follows from Eq. (11) using ua±u2/Tr for the
photon flux in the WGMs.

The Rabi frequencyg± is given by

g± = EWGMsxad3 3Gc3

v2dyE rnsrd2uEWGMsrdu2dr4
1/2

s27d

wherensrd=nc sncld for r ,R sr .Rd, dy is the disk height,v
is the atomic transition frequency, andxa=sra,fad is the
atomic position in the evanescent field of the disk modes.
Figure 4 shows the Rabi frequency depending on the dis-
tance of the atom from the disk surface for several disk di-
ameters and mode numbers. These results were obtained by
numerical solutions of the WGM equations(4) and (5). The
maximum values forg± at the disk surface for several se-
lected modes are also given in Table I.

TABLE I. Optical properties of selected WGMs.Q1 sQ2d is the quality factorQ for a gap size of 0.3mm
s0.6 mmd, l andq are the longitudinal and radial mode indices, respectively, andg0 is the single-photon Rabi
frequency for an atom at the disk boundary. Surface parameters ares=2 nm,Lc=10 nm. Results are obtained
using CMT.

D smmd l q l (nm) Q1 Q2 g0 (MHz)

30 167 1 778.73 1.553105 8.443106 102.6

30 166 1 783.27 1.473105 8.053106 103.2

30 159 2 780.04 1.833105 8.853106 102.8

15 81 1 780.41 7.663104 3.823106 205.7

45 253 1 780.15 2.663105 1.403107 68.5
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We note that for efficient atom-mode coupling the atom
should be placed within 50–100 nm from the disk. Such
close proximity should be feasible without the atom being
absorbed by the surface, as the van der Waals forces may be
counterbalanced by blue detuning of the resonator light[15].
In addition, such position resolution is allowed by the 10 nm
and better ground state sizes achievable in magnetic traps on
the atom chip[9]. Future work will include exact simulations
of the near surface potential.

V. SINGLE-ATOM DETECTION

In the following we will investigate the properties of a
microdisk, modeled as a high-finesse ring resonator as de-
scribed in the previous section, as a single-atom detector for
quantum information processing on an atom chip. The
scheme we discuss here is based on homodyne detection[26]
of the phase change of the light at the output of the linear
waveguide in the forward direction. There are several advan-
tages of this scheme over a corresponding absorption detec-
tion. (i) It allows one to drive the atom far off resonance, in
which case the precise tuning of the disk resonator with re-
spect to the atomic transition frequency is of minor impor-
tance. Cavity tuning will be discussed in more detail in Sec.
VI. (ii ) If the additional loss mechanisms discussed in Sec.
III C are small compared to the disk-waveguide coupling
strength, all of the pump light will leave the system through
the forward waveguide output. Therefore for most parameter
regimes a strong signal can be expected, which allows the
use of standard photodetectors rather than sophisticated
single-photon counters.(iii ) The strong output signal also
provides stability of the detection scheme against weak back-
ground scattering processes.

Our detection scheme works as follows. The output field
of the straight waveguide is mixed with a strong local oscil-
lator field at a 50:50 beam splitter and the light intensities in
the two beam splitter outputs are measured and integrated
over the observation timet to give the total number of de-
tected photonsN1 andN2. The signal we are interested in is
given by the differenceuN1−N2u. The phase of the local os-
cillator is adjusted such that this difference is zero when no

atom is interacting with the disk field. The presence of an
atom is then inferred from a change in this intensity differ-
ence. Assuming that the detection is shot-noise limited, the
signal-to-noise ratioS of the atom detection is given by

S=
uN1 − N2u
ÎN1 + N2

< 2ÎtuAout,0uusinsf − f0du s28d

wherefsf0d is the phase of the waveguide output fieldAout,+

with (without) an atom,Aout,0 is the field amplitude without
an atom, and we have assumed that only the phase and not
the amplitude of the output is changed due to the atom.

The second quantity of interest is the number of photons
M spontaneously scattered by the atom during the interaction
time, given by

M = 2Gtr11. s29d

This should be as small as possible in order to minimize the
back action of the detection process onto the atom. Ideally,
M !1 corresponds to the limit of nondestructive measure-
ments. Finally, we note thatS and M scale differently with
interaction timet. For any given parameters, we can thus
chooset in such a way to yield a certain, fixed signal-to-
noise ratio. As an example, we will in the following consider
the numberM10 of spontaneously scattered photons whent
is rescaled to giveS=10,

M10 = 100M/S2. s30d

For simplicity we will assume that the cavity is driven on
resonance with the disk modes,Dc=0, thereby minimizing
the effect of other, off-resonant modes. The atom is assumed
to be far off resonance with respect to the cavity mode,Da
@G, such that the effect of the atom is mainly to provide a
phase shift of the cavity mode. Under these conditions and in
the limit of small atomic saturation we can derive analytical
approximations forS, M, andM10 [11],

S= 4ÎtuAinu
kTg2

Dak2 , s31d

M = 4tuAinu2
kTg2G

Da
2k2 , s32d

M10 = 25
k2G

kTg2 . s33d

Note thatM10 is independent of the pump power and of the
atomic detuning. In the remainder of this section we will
present numerical results from CMT to discuss these quanti-
ties.

In Fig. 5 we showS, M, andM10 as a function of the input
power to the linear waveguide. For a weak pump the signal-
to-noise ratio increases with power since more photons are
coupled into the cavity and interact with the atom. However,
because of saturation the atom can only interact with a maxi-
mum number of photons in a given interaction time. Hence,
S reaches a maximum value, and for stronger pump powersS
is decreasing again. The number of spontaneously scattered
photonsM increases with pump power and finally saturates

FIG. 4. Rabi frequency versus atom-disk distance. Solid curve,
D=30 mm, mode indicessl ,qd=s167,1d; dotted curve,D=30 mm,
sl ,qd=s159,2d; dashed curve,D=15 mm, sl ,qd=s81,1d; dash-
dotted curve,D=45 mm, sl ,qd=s253,1d.
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at the valueGt. M10 shows an approximately linear increase
with pump power, indicating that the least perturbing atom
detection for a given value ofS is achieved for low atomic
saturation. There is, however, a trade-off as the required in-
teraction time increases in this limit. For low saturation,
r11!1, the numerical results are accurately described by the
approximations(31)–(33).

Figure 6 showsS and M10 as a function of the gap be-
tween the microdisk and the waveguide in the limit of weak
atomic saturation(r11,0.03 for the shown parameter range).
For small enough gap sizes, increasing the gap reduces the
coupling between disk and waveguide modes and therefore
the cavity finesse increases. This leads to improved signal-
to-noise ratios and less spontaneous photon scattering by the
atom. For very large gaps, on the other hand, the cavity
finesse is limited by the additional losses(see Sec. III C). In
this case, increasing the gap even further reduces the number
of photons coupled back from the cavity into the waveguide
and thus reduces the detected signal. If the cavity-waveguide
coupling exactly equals the additional losses, no light is
transmitted through the waveguide at all, which leads to the
points ofS=0 and the corresponding divergence ofM10 ob-
served in the figure. We find numerically thatS is maximum
and M10 is minimum if losses from the disk into the wave-
guide are about 4–5 times higher than the additional losses.

For the parameters of Fig. 6 we find that the minimum
value ofM10 is 0.85 for a disk diameter ofD=30 mm (solid
line) and 0.49 forD=15 mm (dashed line). The reason for
this difference is mainly that for the smaller disk more en-
ergy of the resonant mode is in the evanescent field. This
leads to improved coupling of the atom to the mode, that is,
to a larger Rabi frequencyg as already seen in Fig. 4. For
both disk diameters, however, the minimum value ofM10 is
below unity, which indicates that single atoms can be de-
tected while on average scattering less than one photon spon-
taneously. Moreover, we observe that this minimum value of
M10 is limited by the additional losses due to surface rough-
ness. If the surface parameters are decreased by a factor of 2
to s=1 nm andLc=5 nm, M10 can be as small as 0.13,
shown by the dotted curve in Fig. 6(b). In this case, our atom
detection scheme approaches the limit of a nondestructive
measurement.

Note also that the parameters where optimum single-atom
detection is observed correspond to the strong coupling re-
gime of cavity QED[3], defined byg2/ skGd@1. In particu-
lar, at the minimum points ofM10 in Fig. 6 we find
g2/ skGd=48 sD=30 mmd, 73 sD=15 mm, s=2 nm, Lc

=10 nmd, and 290sD=15 mm, s=1 nm, Lc=5 nmd.
Finally, in Fig. 7 we show the effect of mode coupling

between the two counterpropagating WGMs on the single-
atom detection. Fore smaller than the total cavity linewidth
k, the main effect of mode coupling is to increase the loss

FIG. 5. (a) Signal-to-noise ratio versus pump intensity for disk
diameter 30mm (solid line) and 15mm (dashed). (b) Correspond-
ing photon scatteringM (top curves) andM10 (bottom). Gap size is
0.3 mm, waveguide width is 0.6mm, s=2 nm, Lc=10 nm, Da

=100G, t=10 ms, e=0, and the atom is assumed to be 50 nm away
from the disk surface.

FIG. 6. (a) Signal-to-noise ratioSand(b) scattered photonsM10

versus gap size for weak pumpingsuAinu2=108 photons/sd. Solid
curve, D=30 mm; dashed curve,D=15 mm, for s=2 nm, Lc

=10 nm. Dotted curve,D=15 mm, s=1 nm,Lc=5 nm. Waveguide
width is 0.6mm, distance atom-disk is 50 nm,t=10 ms, ande=0.
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rate of the forward propagating mode. This decreases the
mode quality factor and therefore increasesM10. For e.k,
the strong coupling lifts the degeneracy between the counter-
propagating modes. The resulting new frequency eigen-
modes of the disk are shifted in frequency by ±e with respect
to the uncoupled modes. Tuning one of these coupled modes
into resonance with the pump may thus seem advantageous.
However, as can be seen from the corresponding curves in
Fig. 7, this is not the case for some parameter regions. Sev-
eral effects play a role here:(i) our detection scheme mea-
sures only the forward propagating output of the linear wave-
guide and thus is sensitive to the phase difference between
the two coupled modes, which in turn changes with the fre-
quency shift;(ii ) coupling to the backward propagating mode
can be regarded as an additional loss, which shifts the posi-
tion of the divergences ofM10 already observed in Fig. 6;
(iii ) strong coupling between the counterpropagating modes
fixes their relative phase, which creates a standing-wave pat-
tern at the disk surface. Thus, the atom detection becomes
dependent on the position of the atom. In particular, if the
atom is trapped at a node of the standing wave, no interac-
tion with the light occurs and atom detection is impossible.
The interplay between these effects explains the features of
Fig. 7. Note finally that for high-quality disk resonators only
weak mode coupling is expected, for example, in Ref.[8] a
mode coupling parametere /kloss of 1.5 has been reported.

VI. EXPERIMENTAL CONSIDERATIONS
AND TUNABILITY

In this section we consider the feasibility of a microdisk
resonator in a realistic experiment on an atom chip. In par-
ticular we discuss the effects of finite fabrication tolerances
and of temperature fluctuations, and various possibilities to
tune the resonance frequencies of the disk.

Let us first consider fabrication imperfections due to edge
roughness, which changes the disk diameter, or due to impu-
rities, which change the index of refraction. To first order,
these uncertainties affect the mode resonance through the
simple relation[14]

Dn/n = − Dn/n − DD/D, s34d

where Dn, Dn, and DD are the changes of the resonance
frequency, the refractive index, and the disk diameter, re-
spectively. Assuming typical fabrication tolerances for the
disk diameter of a few nanometers and for the refractive
index of the order of 10−5 therefore leads to frequency shifts
of the order of tens of gigahertz.

Similarly, temperature fluctuations typically give rise to
changes of the refractive index of the order of 10−6 per 1 °C.
This again will shift resonance frequencies of the microdisk
by amounts in the gigahertz regime. Therefore, methods to
dynamically tune the disk resonator have to be implemented
on the chip in order to provide frequency stability.

Tunable photonics is also needed if we want to trap, ma-
nipulate, and measure different kinds of atoms or atoms in
various internal states. Accurate control of the light-matter
interaction is especially critical if one is to enable the exploi-
tation of quantum technology, for example, in the case of
quantum communication in order to convert a flying quan-
tum bit (qubit) in the form of a photon into a storage qubit
(atom), in the case of quantum computing where single qubit
rotations, e.g., between two hyperfine states, are needed, or
in the case of sensors to measure interference patterns.

As already noted, high-Q devices such as microspheres,
Fabry-Pérot cavities, or microdisks are an extremely effec-
tive tool for the delicate manipulation and measurement of
subtle quantum states, where a single photon can interact
many times with the same atom so that significant interaction
can be achieved. However, such strong coupling requires that
the device is kept on resonance with the exact frequency
close to the chosen atom transition[11,14].

In general, the FSR of a microdisk is orders of magnitude
larger than the linewidth, and therefore coincidences between
the fundamental transverse WGMs and specific atomic tran-
sitions are extremely unlikely. To keep a WGM resonance
near the wavelength of interest we thus need to change the
diameter or the refractive index of the disk. In order to
achieve any given frequency, the tuning range has to be of
the order of the FSR. Furthermore, the procedure should be
stable, reversible, and fast enough to compensate for tempo-
ral instabilities such as those arising from temperature fluc-
tuations of the chip. Under these conditions a resonant mode
close to the required atomic frequency can always be found,
even if the disk was initially fabricated with some mismatch
in diameter or in refractive index.

In order to scan a full FSR we require thatDn /n<1/l,
where l is the longitudinal mode index. Together with Eq.
(34) this yields the required relative change of disk diameter
and refractive index. Results for this relative change are
shown in Fig. 8 versus the disk diameter for fused silica(n
=1.454 atl=780 nm) and for n=2.17 atl=780 nm. Note,
however, that since a few higher-order radial modes can also
be used for some applications, there may in fact exist several
usable resonances within each FSR.

At least three possibilities may be considered to realize a
tunable microdisk resonator: uv, electro-optical, and piezo
tuning.

FIG. 7. M10 versus mode coupling parametere /kloss for D
=15 mm, gap size 0.5mm, s=2 nm, Lc=10 nm,Da=100G, uAinu2
=108 photons/s. Solid curve,Dc=0; dashed curve,Dc=e; dotted
curve,Dc=−e.
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uv tuning was reported in[27]. There, it has been shown
that it is possible to change the refractive index of Ge-doped
silica by up toDn=0.006 using uv radiation. The drawback
is that this procedure is not reversible.

In the case of electro-optical tuning, the effect is achieved
by a uniform electric field that changes the refractive index
and thus allows one to tune the resonance wavelength. The
idea is to cover both the bottom and the top of the disk with
a metal layer, and apply a voltage to create the necessary
electric field. For example, electro-optic crystalline materials
usually have a relative change of refractive index of
0.01%–1% for a field of 106 V/m (5 V for our 5 mm disk
thickness). Though demanding a more complex fabrication
process, such crystals may indeed be used. Furthermore, the
process of poling, in which normal materials are made to
have a strong electro-optical character, may also be consid-
ered. Figure 8 shows that disk diameters as small as 15mm
will enable a full FSR scan assumingDn/n=1%. Other
methods for such changes of the refractive index also exist.
For example, it was reported in[28] that tuning an InP mi-
crodisk can be achieved utilizing free carrier injection, which
results inDn,0.002 up toDn,0.01.

By using a piezo effect one can change the diameter of the
disk. In this case, one has to fabricate the disk from a trans-

parent piezo material. The voltage necessary for tuning will
be obtained as above by two electrodes evaporated below
and above the device. Transparent piezo materials(such as
BaTiO3) have a piezo electric coefficient of order 10−10 m/V
which leads to DD /D=0.003 for electric fields of 30
3106 V/m (150 V for our 5mm disk thickness). Figure 8
shows that in this case disk diameters as small as 30mm will
enable a full FSR scan. For both disk size tuning and refrac-
tive index tuning, higher voltages and more exotic materials
should allow for even smaller disk sizes. Finally, future work
will need to take into account the affects of the high electric
field required for the tuning mechanism on the atom, as well
as atom-surface potentials.

VII. SUMMARY AND CONCLUSIONS

We have investigated the feasibility of initiating strong
interaction between photons and single atoms on an atom
chip by utilizing microdisks as high-Q resonators.

Our calculations show that whispering-gallery modes with
high quality factors of up to 108 can be supported by disks
with diameters of several tens of micrometers. Single-atom
detection with high signal-to-noise ratios and practically no
spontaneous photon scattering can be achieved in such a sys-
tem, and hence nondestructive measurements may be pos-
sible.

We have also discussed different methods which would
allow one to tune the resonance frequencies of a microdisk
over a full free spectral range.

These results suggest that the regime of strong coupling
between atoms and photons can be achieved in optical reso-
nators as small as 5mm in diameter. This could open the
way for compact arrays for quantum information processing.
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