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We investigate the scattering threshold and cavity-enhanced gain in nonlinear spheres with second- or
third-order permeability. Pairs of pump-driven idler and signal modes are considered, satisfying morphology-
dependent resonance conditions. The thresholds and gain coefficients of amplified and stimulated Raman
scattering, parametric downconversion, and analogous parametric processes in microspheres are derived and
evaluated under typical conditions. Applications may include the measurement of chemical impurity concen-
trations or the creation of low-threshold optical parametric amplifiers using microspheres.
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I. INTRODUCTION

Raman scattering and parametric generation of electro-
magnetic waves by a transparent dielectric sphere have long
been subjects of both fundamental and applied interest in
nonlinear optics[1–8]. On the fundamental side, they pro-
vide examples of parametric amplification or harmonic gen-
eration that are determined by the spatial extent, boundary
conditions, and symmetry of the medium. On the applied
side, spectral analysis of stimulated Raman scattering and
other types of inelastic radiative scattering(or parametric
generation) by microspheres is a powerful means of gaining
information about their size, chemical composition, and im-
purities concentration and may be used for aerosol particle
identification. Yet quantitative evaluation of the spectra of
such inelastic scattering is challenging, because the radiation
field within the microparticle depends in a complicated way
on its size, refractive index, and wavelength, at wavelengths
near the morphology-dependent resonances(MDR’s), also
known as Mie scattering resonances[1,2]. Parametrically
amplified scattering from microspheres is associated with
two types of resonances: MDR’s of the incident wavelengths,
known as input resonances, and resonances of the inelasti-
cally scattered light, known as output resonances[3]. MDR’s
have been observed in the Raman spectra of spherical aero-
sol particles and droplets[4,5].

The experimentally observed drastic reduction of the
threshold pump intensity for spontaneous Raman scattering
from micrometer-size droplets has been attributed to cavity
quantum electrodynamic effects under the input-output reso-
nance condition[5,6]. Cavity-enhanced fluorescence and
stimulated Raman scattering under input resonance condi-
tions were first explained by introducing the spatial overlap
of interacting mode functions in the equations of stimulated
scattering in Ref.[7]. It is well established that spherical
liquid droplets undergoing laser irradiation exhibit threshold
behavior for stimulated and spontaneous Raman scattering
that requires spatial overlap between the interacting partial

modes[8]. By contrast, the analog of phase-matching condi-
tions [4,9] in spheres requires further consideration.

In this article we develop the theory of microcavity-
enhanced Raman or parametric generation gain and calculate
the thresholds of spontaneous and stimulated(coherent) Ra-
man or parametric amplification for nonlinear dielectric
spheres with large MDR orders. To this end, previously sug-
gested approaches[10,11] are further developed to render the
explicit dependence of the gain and threshold on experimen-
tal parameters. The present calculation involves the eigenfre-
quencies and electromagnetic modes of a sphere and their
spatial overlap. The general formulas obtained here for the
threshold and gain are valid in a resonator of any shape.
However, for each shape it is necessary to know the appro-
priate solution of the problem of diffraction by the dielectric
resonator and to obtain its eigenfunctions from the boundary
conditions. Analytical solutions for spherical eigenmodes
[2,12], which have been extensively investigated in the past
decade[13], are used here to obtain closed-form expressions
for the gain spectrum and the threshold conditions.

We are concerned with dielectric spherical media with
quadratic,xs2d, or cubic, xs3d, nonlinear susceptibilities. A
simplified model of two interacting modes satisfying both
the input and output resonant conditions may be used to
evaluate the threshold intensity and gain for parametric am-
plification or for Raman conversion of a pump into a Stokes
field. In general, an infinite number of modes will be coupled
in such a spherical resonator. However, we may ignore all
but the two nondegenerate modes with the highestQ factors
and largest intermode coupling coefficients, obtainable from
either experimental or numerical data[14–17].

The most crucial variable describing the interaction of
light with a dielectric microsphere is the size parameterr
=ka, wherea is the radius of the sphere andk is the wave
number in the dielectric medium. The interest lies principally
with input resonance conditions such that the laser pump(or
idler) and the Stokes(or signal) modes both correspond to
high-Q modes of the cavity[5,16]. When the size parameter
satisfies the equation ofr.n, n being a large integer, the
scattering exhibits a complicated angular pattern due to in-
terference among many partial waves and has sharp peaks,
corresponding tonth-order MDR’s [17]. Such resonances
can be extremely narrow, withQ factors as high as 108 for
perfectly round, homogeneous, and transparent silica spheres
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[18] and spherical aerosol droplets[19]. The highest-Q
MDR’s, whose electromagnetic energies are concentrated in
a narrow surface layer[20], governs the nonlinear properties.
Special attention in our calculations is paid to the depen-
dence of the threshold intensity and enhanced Raman gain
upon the MDR orders. Enhancement of the Raman scattering
is explained here by the Raman power integrated over the
MDR volume, as determined by the characteristics of the
mode-overlap integral.

This paper is organized as follows: in Sec. II we derive
the basic expressions for threshold intensities and cavity-
enhanced gain for Raman amplification and for parametric
downconversion under input and output resonance condi-
tions, as well as the functional dependence of Raman gain on
the active molecules concentration. In Sec. III we describe
the implementation of these expressions in typical cases and
the pertinent numerical calculations. In Sec. IV we discuss
the results of the calculations and predict the decrease of the
threshold pump intensity when the parametric interaction of
surface modes takes place. We then survey some possible
applications of these results and summarize our conclusions
in Sec. V. The Appendix provides explicit formulas for the
spherical mode eigenfunctions and MDR frequencies used in
the text.

II. BASIC EXPRESSIONS FOR THRESHOLD AND GAIN

A. Hamiltonians

The interactions between modes in a nonlinear cavity are
described by the field-interaction Hamiltonian density in the
form of [21,22]

Hint = −
2

3o
i jk

xi jk
s2dEW iEW jEW k s1d

or

Hint = − o
i jkl

xi jkl
s3d EW iEW jEW kEW l , s2d

where i, j , k or i, j , k, l indicate three or four interacting
partial waves. Because of the energy conservation condition,

the fieldsEW i, EW j, EW k, andEW l in Eqs.(1) and(2) are centered at
cavity eigenfrequencies satisfyingvi +v j =vk or vi +v j =vk

+vl, respectively. The coefficientsxi jk
s2d andxi jkl

s3d are the cor-
responding effective nonlinear susceptibilities. The electro-
magnetic fields inside the cavity can be quantized as

EW srW,td = − o
j

iS"v j

2« j
D1/2

faj
†std − ajstdgEW jsrWd, s3d

whereaj
† and aj are the creation and annihilation operators

for the j th mode and« j is the dielectric permeability. The TE
and TM field eigenfunctions in Eq.(3) are the solutions of
the Helmholz equations

¹W 3 ¹W 3 EW jsrWd + kj
2EW jsrWd = 0 s4d

and

¹2EW jsrWd + kj
2EW jsrWd = 0, s5d

respectively, obeying the cavity boundary conditions and sat-
isfying the normalization condition within the cavity volume
V:

E
V

EW isrWdEW jsrWddV= di j . s6d

We shall quantize the Raman-amplified modes or those para-
metrically generated or amplified at frequenciesvi, v j upon

replacing EW isrW ,td, EW jsrW ,td by their corresponding quantum
mechanical operators. By contrast, we shall treat the field
mode excited by a laser pump classically and assume that it
remains undepleted by the nonlinear interaction. This quan-
tum approach is widely employed for parametric nonlinear
processes in cavity electrodynamics[22].

After some standard manipulations, the Hamiltonians(1)
and(2) for nonlinear interactions in the cavity may be cast in
the energy-conserved form that consists of two parts
[6,11,23,24]: (a) the part responsible for Raman scattering or
coupling between the pump and the Stokes waves,

HRaman= "o
i,j

hSij
sndaiaj

† + H.c.j, s7d

and(b) the parametric amplification(PA) part responsible for
parametric down-conversion(PDC) of the pump wave atvk
into a sum of signal and idler waves or the inverse process
(three-wave mixing) in xs2d media sn=2d, satisfyingvk=vi

+v j, and for four-wave mixing inxs3d mediasn=3d, satisfy-
ing 2vk=vi +v j:

HPA = "o
i,j

hsAk
n−1Sij

sndaiaj + H.c.dj. s8d

Here H.c. denotes Hermitian conjugation:a↔a†. The PA
Hamiltonian(8) is proportional to the classical amplitude of
the incident pump,Ak (taken to be real) in xs2d media sn
=2d andAk

2 (number of photons atvp) in xs3d mediasn=3d.
In both Raman and PA Hamiltonians,Sij

snd are thenth-order
integral coefficientssn=2d or sn=3d of nonlinear coupling of
the form [9,21,22]

Sij
s2d =

bksviv jd1/2

6m2 xi jk
s2dE

V

EW isrWdEW jsrWdEW ksrWddV s9d

for xs2d processes or

Sij
s3d =

bk
2sviv jd1/2

2m2 xi jkk
s3d E

V

EW isrWdEW jsrWdEW ksrWdEW ksrWddV s10d

for xs3d processes. Herem is the refractive index andbk is the
partial-wave amplitude of thevk mode within the cavity
(Mie-scattering solution) for either TE or TM modes[Eqs.
(A5) and (A6)]. The Raman Hamiltonian terms(7) have the
form ai

†aj and aiaj
†, corresponding to the transfer of energy

by single-photon exchange between the pump and Stokes
fields, respectively. In Hamiltonian(8) the aiaj and ai

†aj
†

terms correspond to two-photon emission or absorption into
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the signal and idler modes at the expense of the pump
modes, known as parametric down-conversion inxs2d media.
The properties of integral coefficientsSij

s2d and Sij
s3d are de-

fined by selection rules derived from the theory of angular
momentum(Sec. III) [25]. In what follows, we shall treat the
Hamiltonians(7) and (8) separately.

B. Raman threshold and gain

In the case of the Raman Hamiltonian(7), upon substitut-
ing the photonic stateuCl=oni,nj

Cni,nj
uni ,njl, with ni ,nj pho-

ton numbers in thei, j cavity modes, into the Schrödinger
equation in the interaction picture and applying the Wigner-
Weisskopf method[26], we obtain the integro-differential
equation for the parametric interaction of modesp ands with
eigenfrequenciesvp, vs, corresponding to the MDR distance
vps= uvp−vsu [11]:

Ċsstd = − npsns + 1dVgsE
0

`

dvsSps
sndd2rsvdLsv − vs,GdGst,vd.

s11d

Here np, ns are the respective photon numbers,gs is the
vs-mode linewidth,r=m3v2/ sp2c3d denotes the free-space
density of states, andLsv−vs,Gd is a Lorentzian centered at
vs, G being the homogeneous linewidth of the Raman pro-
cess. The last factor in the integral of Eq.(11) is

Gst,vd =E
0

t

Csst8dexphfisv − vpsd − gsgst − t8djdt. s12d

Analogous equations are obtainable forĊp, upon replacing
the indicess↔p. We shall assume in what follows that the
pump field is intense and undepleted, as opposed to the
Stokes field. The factornp in Eq. (11) leads to the expected
linear dependence of the transition rate on the laser intensity,
while the factorns+1 leads to stimulated scattering through
the contribution ofns and to spontaneous scattering through
the contribution of unity. This dependence is reminiscent of
the stimulated and spontaneous contributions to the single-
photon emission rate of an atom, as described by the Einstein
A andB coefficients[27].

Equations(11) and (12) yield multiexponential damping
at times long enough for the oscillation in Eq.(12) to sub-
side. The resulting solution forCsstd will be written under the
following conditions: (1) G@gs,p, which is appropriate for
high-Q modes of the resonator;(2) we single out two inter-
acting modes within the homogeneousG width, one being
the pump mode and the other the resonant signal(Stokes)
mode—namely, both the input and the output resonance con-
ditions hold[4,16]. The input resonance condition is satisfied
for a broadband input pump, which spans several high-Q
MDR’s, whereas the output resonance condition is always
satisfied, since the bandwidth of Raman scattering spans at
least several high-Q MDR’s. The high-Q modes modulate
the free-space mode densityrsvd by sharp Lorentzian peaks.
Near vs, the relevant Lorentzian has widthgs. We then ob-
tain, from Eqs.(11) and (12) [11],

Csstd = sp1,s − p2,sd−1fp1,s exps− p1,std + p2,s exps− p2,stdg,

s13d

wherep1,s andp2,s are the roots of the secular equation

pssps + gs − ijd + bs = 0, s14d

with j=vp−vps−vs and

bs = sSps
sndd2npsns + 1dgsVrsvsG

−1. s15d

The Raman transition rate will be evaluated for the two-
photon resonant casej=0. In the underdamped limitbs
@ sgs/2d2, we obtainp1,2=gs/2± ibs

1/2. In this limit there is
an oscillatory modulation of the Raman decay rate at the
frequencybs

1/2. We shall be concerned with the overdamped
limit sgs/2d2@bs, yielding up1,su<bs/gs. The condition for
Raman amplification inside a cavity is that the corresponding
Raman rateupsu be greater than the transverse relaxation rate
of the model, given here by the homogeneous Raman line-
width G. The threshold of Raman amplification is then deter-
mined by

G = upsu = bs/gs. s16d

This threshold condition implies, using Eq.(15), that the
threshold numbers of photons in thep ands modes are

npusns + 1duth =
3G2

rsVvssSps
sndd2 . s17d

The corresponding occupation photon numbernp in the p
mode inside the resonator in the spontaneous regime of am-
plification, whenns!1, has the form

unp
spouth =

3vpG2

rsVvssSps
sndd2 . s18d

In order to obtain the Raman gain we use the rate equation
for the occupation number of photons in thep ands modes
[9]:

dns

dt
= Dnpsns + 1d. s19d

Here D is the rate constant, determined as follows in the
spontaneous regimens!1: one photon from thep mode is
lost for each Stokes photon that is created. Hence, the cavity
enhanced decay ratebs/gs in Eqs.(15) and(16) corresponds
to the spontaneous rate

Dspo=
rsVvssSps

sndd2

G
. s20d

The Stokes intensity in the spontaneous regime is propor-
tional to the effective amplification lengthlef f in the spherical
resonator, traversed at the velocityc/m during the photon
lifetime in the mode, yielding[28]

unsuspo=
m

c
Dsponplef f. s21d

The Raman gain per unit length in the spontaneous amplifi-
cation regime is correspondingly
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Gspo=
Dspomnp

c
. s22d

The total gain scales withlef f, which can be expressed via the
Q factor of thep mode:

lef f = 2cQp/mvp, s23d

where

1

Qp
= S 1

Qscat
+

1

Qabs
D

p
, s24d

sQscatdp andsQabsdp being theQ factors of scattering loss and
absorption loss in thep mode. We can now derive the thresh-
old incident intensityPth

sp of the pump for spontaneous Ra-
man amplification using the basic relation for anyQ factor
[29]—namely, that aQ factor is the ratio of the field energy
inside the mode to the incident power, multiplied by the leak-
age rate. This yields, at threshold,

Qp =
up"vp

2np
spouth

Pth
sposextQp

, s25d

where unp
spouth is given by Eq.(18) andsef f is the extinction

cross section of thep mode. The threshold incident intensity
of the pump for spontaneous Raman amplification is then
obtained from Eqs.(18)–(21), yielding

Pth
spo=

3p"vp
2G2

sextQp
2rsVvssSps

sndd2 , s26d

sext being the extinction cross section of the pump mode.
The threshold intensity of the incident laser pump is thus
inversely proportional to the coupling of partial modes
squared,sSps

sndd2, and to theQ factor of the pump mode
squared.

It is advantageous to relate the gain coefficient for spon-
taneous Raman amplification to the extinction(scattering)
cross sectionsext. Using formulas(22)–(26), we obtain, for
the gain normalized to the threshold intensity pump,

Gnorm
spo =

Gspo

uPputh
spo =

2mQpsrsVvsdsSps
sndd2sext

3c"vp
2G

. s27d

The useful new results(26) and (27) allow us to relate the
threshold and gain relevant experimental parameters.

In order to obtain the threshold intensity of stimulated
Raman amplification in the limitns@1, we employ the
Manley-Rowe(energy-conservation) condition, relating the
numbers of Stokes and pump photons[9,22]:

unsust = SvpQs

vsQp
Dnp. s28d

The threshold intensity of stimulated amplification, derived
analogously to Eq.(21) for np, ns@1, is then

Pth
st =

31/2p"vp
2G

sextQp
2svprsVd1/2sSps

sndd2SQp

Qs
D1/2

. s29d

The thresholdp-mode gain pers-mode photon can be intro-
duced by means of Eqs.(17) and (18) and yields the rate
constant

Dst =
QsrsVvpsSps

sndd2

QpG
. s30d

The stimulated Raman gain normalized to the threshold in-
tensity (29) is found to be

Gnorm
st =

Gst

Pth
st =

mQsrsVsSps
sndd2sext

cG"vp
. s31d

The threshold intensityPth
spo,st of p-mode excitation as well as

the Raman scattering cross sectionsR is obtained from ex-
perimental data[9,22]. Thus, using Eq.(25) or (29), we have
an effective tool for measuring the concentration of Raman
active moleculesN in the form

N =
Gnorm

spo,stPth
spo,st

sR
. s32d

In Secs. III and IV we explicitly evaluate the factorsGnorm
spo,st in

nonlinear spheres.

C. Parametric amplification threshold in three-
and four-wave mixing

In this subsection, we consider the threshold and gain for
parametric amplification or parametric down-conversion,
which are described in the interaction picture by Hamiltonian
(8). The signal and idler modes at frequenciesvs and vi,
respectively, are coupled via a coefficient proportional to the
second-sn=2d or third- sn=3d order nonlinearity and to the
pump-mode amplitude or intensityAp

n−1, for n=2 or n=3,
respectively. The signal and idler modes will be quantitized
and thep mode will be treated classically. Substituting the
photon stateuCl=ons,ni

Cns,ni
uns,nil, with ns, ni photon num-

bers in thes, i cavity modes, into the Schrödinger equation
and applying the Wigner-Weisskopf method[30], we obtain
the integro-differential equation for parametric interaction of
the s and i modes:

Ċsstd = − sns + 1dsni + 1dVsAp
n−1d2E

0

`

dvsSis
sndd2risvd

3giLsv − vi,gidGst,vd, s33d

with parameters defined analogously to those in Eq.(11) and
the factorGst ,vd described by Eq.(12). Following the same
procedure as that leading to Eq.(13), we obtain the follow-
ing equation forCsstd in the Weisskopf-Wigner approxima-
tion [26,30]:

Ċsstd = − hCs, s34d

where
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h = sns + 1dsni + 1driVvisAp
n−1Sis

sndd2gi
−1. s35d

We note that this approximation is valid in the limits
sSis

sndd2gi
−1!1, sAp

n−1d2@1, sSis
sndd2gi

−1sAp
n−1d2=const. The

threshold of parametric amplification is then determined
from Eq. (35) by

h = gs. s36d

This threshold condition implies that the threshold occupa-
tion numbers fors and i modes are

usns + 1dsni + 1duth =
gsgi

riVvisAp
n−1Sis

sndd2 . s37d

In the case of spontaneous down-conversion we have from
Eq. (37) the threshold condition

riVvisAp
n−1Sik

sndd2 = gsgi . s38d

Analogously to Eq.(19), we can obtain the rate constantD in
the spontaneous limitns,i !1 in the form

Dspo=
riVvisSis

sndd2

gi
sAp

n−1d2. s39d

For the stored threshold energy in the modess and i in the
degenerate case of stimulated amplificationsvs=vid, in the
limit of ni @1 andns@1, we obtain

Ws = S gsgi

riVvi
D1/2 "vs

Ap
sn−1dSis

snd . s40d

Using formulas(25), (28), and(37), we have, for the thresh-
old intensity of laser pump,

Pth =
2p"vpvs

sextQpQs
S gpgi

riVvi
D1/2 1

Ap
n−1sSis

sndd
. s41d

Taking into account that the number of pump photons con-
verted to two photons in the signal and idler modes satisfies
2np=ni +ns in xs3d media ornp=ni +ns in xs2d media, and the
basic relation for theQ factor (Sec. II B), we can obtain the
following formula for the gain of stimulated amplification
normalized to the pump intensity:

Gnorm=
Gst

Pp
=

2msriVvidAp
2sSis

s2dd2sext

c"vpgigp
s42d

for sn=2d and

Gnorm=
Gst

Pp
=

2msriVvidAp
4sSis

s3dd2sext

c"vpgigp
s43d

for sn=3d.

III. INTEGRAL COEFFICIENTS AND INTERACTING
MODES

In this section we pursue the calculation of the coupling
between interacting electromagnetic modes and the selection
rules governing this coupling. Integral coefficients of cou-
pling between modes in a microsphere in Hamiltonians(7)
and (8) may be written as[21]

Sij
s2d =

bksviv jd1/2

6m2 Cijk
s2d s44d

and

Sij
s3d =

bkbqsviv jd1/2

2m2 Cijkq
s3d s45d

for second- and third-order nonlinearities, respectively,
wherebk are given by Eq.(A5) or (A6) andCijk

s2d andCijkq
s3d are

the volume integrals,

Cijk
s2d = xi jk

s2dE
V

EW isrWdEW jsrWdEW ksrWddV, s46d

with xi jk
s2d=xs2dsvi +v j =vkd or permutations thereof[21],

Cijkq
s3d = xi jkq

s3d E
V

EW isrWdEW jsrWdEW ksrWdEW qsrWddV, s47d

and withxi jkq
s3d =xs3dsvi ,−vi ,vk,−vkd or permutations thereof.

Under input-output resonance conditions, onlyvi =vs and
vk=vp differ from each other, whilev j = ±vs, vq= ±vp.
These integrals are separable into radial and angular parts.
The scalar form is

E
V

EaiEbjEckdV=E
0

r0

RaiskirdRbjskjrdRckskkrdr2dr

3E
0

p

QaisudQbjsudQcksudsinsuddu

3E
0

2p

expismai + mbj + mckddw s48d

for Cijk
s2d and

E
V

EaiEbjEckEdqdV

=E
0

r0

RaiskirdRbjskjrdRckskkrdRdqskqrdr2dr

3E
0

p

QaisudQbjsudQcksudQdqsudsinsuddu

3E
0

2p

expismai + mbj + mck + mdqddw s49d

for Cijkq
s3d . Here the indicesi , j ,k,q correspond to the principal

mode numbers whereasa,b,c,d label the polar indexr and
azimuthal indicesu andw of either the TE or TM mode. The
well-known angular parts of the eigenfunctions of TE and
TM modesQai, Qbj, Qck, and Qdq and the corresponding
resonant size parameters are given in the Appendix. In order
to calculate the integral coefficients in Eqs.(9) and(10), we
have developed numerical(FORTRAN) algorithms that evalu-
ate the radial part of the integral coefficients by Simpson
methods of integration, the angular part involving Clebsch-
Gordan integrals, and the associated Legendre polynomials
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by the Gauss-Hermite and Tschebishev methods. The
Riccati-Bessel, spherical Bessel, and Neumann functions
were calculated by well-known recurrence methods. With
such algorithms we were able to perform the calculation up
to size parameter 170 and mode numbern=170. The most
appreciable couplings involve two modes of the form TEn

m

−TMn
m, TEn

m−TEn
m, and TMn

m−TMn
m, traveling inside the mi-

crosphere near the surface.
The integral coefficients for such pairs of modes differ

from zero only in the case of phase factor exps±oimaiwd
Þ0. This yields the following selection rule for a sphere with
second-order nonlinearity in the form

umai ± mbj ± mcku = 0. s50d

For the two-modexs2d-nonlinear interaction this impliesmp
=2ms. For a sphere with third-order nonlinearity,

umai ± mbj ± mck ± mdlu = 0, s51d

which implies for two-mode interactionmp=ms. The addi-

tion rules of orbital momenta,Wai±,Wbj±,Wck are more compli-
cated [25]. These rules, allowing us to select interacting
modes, are alternative to the phase-matching or selection
rules for the same processes in bulk or in planar cavities[9].

IV. RESULTS

We may now quantitatively consider the dependence of
the threshold intensity of the spontaneous and stimulated am-
plification on the size parameter and numbers of interacting
modes. In Figs. 1 and 2 the spontaneous Raman threshold
intensity [Eq. (26)] and gain[Eq. (27)] are presented for
pairs of modes obeying the selection rules of Sec. III. To be
specific, here we concentrate on the threshold intensity of
spontaneous Raman scattering and the threshold of stimu-
lated Brillouin scattering(SBS) for modes whose amplitudes
and resonance half-widths are given in[31]. The threshold
pump intensity for spontaneous Raman scattering[Eq. (26)]
is found to be 0.6 MW/cm2, well below the threshold of
stimulated Brillouin scattering in a glass sphere, which is of
order 9.5 MW/cm2. The threshold intensity calculated by us

for mode-locked Ti:Al2O3 laser pump operating at 840 nm
for particle sizes between 1.5 and 5mm ranges from
0.3 to 2.6 MW/cm2. This finding is in agreement with the
experiments of high-Q-factor dielectric resonators such as
spherical aerosol droplets, where the output signal from the
particle was 103 times larger than the signal from the bulk
[32], as explained by the gain presented below. The different
thresholds and interacting modes involved allow us to sepa-
rate these nonlinear processes from each other.

Nonlinear stimulated and spontaneous thermal scattering
has yet another threshold intensity[33]. Its measurement
may allow us to infer the temperature of the droplets or mi-
crospheres. The microsphere-enhanced gain in nonlinear
spheres[Eq. (27)] with the size parameter 33ørø36 can be
three orders of magnitude higher than the gain of silica bulk
[9]. In Figs. 3 and 4, the threshold intensities and gain for
stimulated Raman scattering are presented in dependence on
the MDR number. The threshold intensity for stimulated Ra-
man amplification in Er:Yb-doped phosphate glass micro-
spheres with diameter 57mm irradiated by laser pump at
1.06mm is found to be very small, of order 10 W/cm2 or
even less. The gain of stimulated amplification[Eq. (31)] can
be dramatically enhanced relative to its counterpart in bulk
by 3.53104 times.

For stimulated parametric amplification or parametric
down-conversion we have calculated the spontaneous thresh-

FIG. 1. The threshold intensity for spontaneous Raman scatter-
ing from fused silica microsphere irradiated by laser pump of wave-
length 840 nm. 1, TE42

0 −TE45
1 . 2, TE42

0 −TE44
1 ; 3, TE42

0 −TE43
1 ;

4, TE42
0 −TE42

1 .

FIG. 2. The cavity enhanced gain normalized to its value in bulk
for the same process as Fig. 1. 1, TE42

0 −TE45
1 ; 2, TE42

0 −TE44
1 ;

3, TE42
0 −TE43

1 ; 4, TE42
0 −TE42

1 .

FIG. 3. The threshold of stimulated Raman amplification for
Er:Yb-doped phosphate glass microsphere(diameter of 57mm) for
different MDR orders n: 1, TE2n

0 −TE2n
1 modes; 2, TE2n

0

−TE2n+1
1 modes. The laser pump has the wavelength 1.06mm.
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old intensity [Eqs. (39)–(41)] and effective stimulated gain
[Eqs.(42) and (43)] normalized to gain in bulk of the same
substance in dependence on the MDR ordern (Figs. 5 and 6).
The interacting degenerate modes TE2n

1 and TE2n
2 are coupled

by a laser pump at a wavelength of 840 nm in a nonlinear
SiO2 sphere with diameter 57mm andxs2d=0.96310−9 esu
[9,21]. Remarkably, there are MDR mode numbers where the
threshold intensity of parametric downconversion decreases
with increasing MDR number, but the normalized gain tends
to grow. In the region of MDR’s with 40ønø80 for TE2n

1 ,
the threshold intensity is approximately 1 MW/cm2 and the
normalized gain is 20. Compared to the threshold intensity of
Raman amplification in Fig. 3, the threshold intensity of
parametric downconversion is considerably higher for the
same MDR order. Correspondingly, the normalized gain of
parametric downconversion is significantly lower than the
normalized gain of stimulated Raman amplification.

V. DISCUSSION

The unified theory of spontaneous and stimulated Raman
and parametric amplification has been developed with an ex-
plicit analysis of microspherical nonlinear cavities. We have
theoretically considered the decrease of the threshold inten-

sity and increase of the gain under conditions of input and
output resonances, satisfied by nonlinearly coupled modes
near morphology dependent resonances(MDR’s). Our ap-
proach is based on the expansion of the internal field of the
coupled modes in the basis of eigenfunctions of the station-
ary diffraction problem, yielding their internal partial-wave
amplitudes. The coupling of these partial waves has been
accounted for by the integral coefficients, associated with
second- or third-order nonlinearity. It has been shown that in
the amplification of Stokes modes or in three- and four-wave
mixing, the threshold of excitation and gain can reveal the
concentration of the active molecules.

Various applications of the foregoing results are foreseen:
(1) Measurements of the stimulated threshold may be

used to estimate the concentration of Raman-active mol-
ecules or nanoparticles(inclusions) embedded in micro-
spherical resonators or aerosol droplets.

(2) Alternatively, they could be used for experimental es-
timation of Q factors, temperature, andxs2d andxs3d nonlin-
ear permeability.

(3) The enormous enhancement of gain, by three or four
orders of magnitude, suggests applications in the context of
nonlinear optical microscopy, based on Raman amplification.

(4) The ultralow thresholds of stimulated Raman amplifi-
cation in the two-mode regime, typically less than
10 W/cm2, may lead to the development of optical micro-
amplifiers based on solid spheres and on aerosol droplets in a
wide range of wavelengths. Glass spheres with Raman-active
inclusions may act as high-gain and low-threshold Raman
amplifiers with THz Stokes shift, pumped by sunlight or la-
ser radiation.

(5) We find that the thresholds of parametric downconver-
sion in silica microspheres are amenable to experimental ob-
servation, because this threshold is significantly lower than
the threshold of optical discharge in the substance. Further-
more, we may assume that the normalized gain can be in-
creased using the excitation of partial waves of higher order.

(6) Raman amplification may be used for atmospheric
aerosol identification by providing information on the sur-
face concentration of any chemical substances, from the
threshold intensity of the nonlinear scattering processes.

(7) The surface mode pairs with strong nonlinear coupling
have very low thresholds and large gain. As was shown in

FIG. 5. The threshold intensity of stimulated parametric ampli-
fication for microsphere from fused silicasSiO2d irradiated by laser
light with wavelengths840 nmd, with the interacting degenerate
modes. 1, TE2n

2 −TE2n
2 ; 2, TE2n

1 −TE2n
1 .

FIG. 4. The stimulated cavity-enhanced gain normalized to its
bulk value for the same process and modes as in Fig. 3. FIG. 6. The cavity-enhanced gain normalized to its bulk value

for the same process and modes.
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[34] there is a line broadening of the modes with size param-
eters 33ørø36 if the microsphere is doped with latex
nanoparticles. The concentration of any absorbing or scatter-
ing nanoparticles could be estimated by formula(34). The
threshold for Raman amplification will increase due to losses
incurred by absorbing nanoparticles. However, if the nano-
particles are nonabsorbing, the effect of line broadening may
keep theQ factors intact and cause the splitting of resonant
modes. In this case the integral coefficients of the interaction
between “split” Stokes and pump(or signal and idler) modes
may actually increase. This intriguing possibility calls for
further investigation, whose practical aim may be the cre-
ation of broadband microsphere amplifiers.
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APPENDIX: PARTIAL-WAVE AMPLITUDES
AND EIGENMODES OF SPHERICAL-MORPHOLOGY-

DEPENDENT RESONANCES

For the radial and angular parts of TM-mode eigenfunc-
tions we have[12]

Ruiskird = −
1

skird
cnskird,

Rwiskird = −
1

skird
cnskird,

Quisud =
im

sinsud
Pn

smd8fcossudg,

Qwisud = Pn
smd8scosudsinsud, sA1d

and for their TE-mode counterparts

Rriskird =
− nsn + 1d

skird2 cnskird,

Ruiskird =
1

skird
cn8skird,

Rwiskird =
1

skird
cnskird,

Qrisud = Pn
smdfcossudg,

Quisud = Pn
smd8fcossudgsinsud,

Qwisud =
im

sinsud
Pn

smdscosud. sA2d

Here cnskird and cn8skird are the first-kind Riccati-Bessel
functions and their derivatives, respectively;Pn

smdfcossudg

and Pn
smd8fcossudg are the Legendre polynomials and their

derivatives, respectively. The resonant size parameter at an
MDR r=kir0 may be calculated from the transcendental ei-
genvalue equations

mjnskir0dcn8smkir0d − cnsmkir0djn8skir0d = 0, sA3d

jnskir0dcn8smkir0d − mcnsmkir0djn8skir0d = 0, sA4d

for TE and TM modes, respectively. The partial-wave ampli-
tudes of the Mie-scattering problem can be presented in the
form [12]

bn
TM =

i

jnsrdcn8smrd − mcnsmrdjn8srd
sA5d

and

bn
TE =

i

mjnsrdcn8smrd − mcnsmrdjn8srd
, sA6d

where jnskird and jn8skird are the third-kind Riccati-Bessel
functions and their derivatives, respectively. The normalizing
factor for a TE mode is given in the form[12]

iETEi2 = 2p
nsn + 1d
s2n + 1d2

sn + md!
sn − md!

Spr0
3

4r
Dhsn + 1dfJn−1/28 srdg2

+ nfJn+3/28 srdg2j, sA7d

and its counterpart for a TM mode has the form

iETMi2 = 2p
nsn + 1d
s2n + 1d2

sn + md!
sn − md!

Spr0
3

4r
Dhsn + 1dfJn+1/28 srdg2j,

sA8d

where Jn+1/28 srd is the derivative of the appropriate Bessel
function andr0 is the radius of the sphere.

The Q factor of each mode can be calculated in the form
[29]

Qj
TM =

p

4
HF j2Sm2 −

1

m2D −
j

m2 + jGNj+1/2
2 srd

+ r2sm2 − 1dNj−1/2
2 srdJ −

p

4
f2jrsm2 − 1dNj+1/2srd

3Nj−1/2srd + s j − r2dJj+1/2
2 srdg −

p

4
Fr2Jj−1/2

2 srd

+ 2jrJj+1/2srdJn−1/2srd +
4

p
rG sA9d

and

Qj
TE =

p

4
fr2sm2 − 1dNj+1/2

2 srds j − r2dJj+1/2
2 srdg

−
p

4
Fr2Jj−1/2

2 srd + 2jrJj+1/2srdJn−1/2srd +
4

p
rG ,

sA10d

whereNjsrd is the Neumann function.
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