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We discuss the use of electromagnetically modified absorption to achieve selective excitation in atoms: that
is, the laser excitation of one transition while avoiding simultaneously exciting another transition whose
frequency is the same as or close to that of the first. The selectivity which can be achieved in the presence of
coherent population trapping(CPT) is limited by the decoherence rate of the dark state. We present exact
analytical expressions for this effect, and also physical models and approximate expressions which give useful
insights into the phenomena. When the laser frequencies are near-resonant with the single-photon atomic
transitions, CPT is essential for achieving discrimination. When the laser frequencies are far detuned, the
“bright” two-photon Raman resonance is important for achieving selective excitation, while the “dark” reso-
nance(CPT) need not be. The application to laser cooling of a trapped atom is also discussed.
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Coherent population trapping[CPT, also called dark reso-
nance or electromagnetically induced transparency(EIT)]
and phenomena related to it have been widely studied(see
for example[1,2] and references therein). These two-photon
resonance phenomena can give rise to sharp spectral fea-
tures, which can be used for various purposes, including for
example magnetometry and laser cooling[3–8]. Recently, it
was shown that CPT could be used to allow the angular
momentum state of an atom to be detected with high quan-
tum efficiency even in the absence of a Zeeman effect(i.e., at
zero applied magnetic field and/or zero magnetic dipole mo-
ment of the atom) [9]. This paper develops the theory rel-
evant to the latter, and sheds light on related experimental
techniques such as laser cooling.

In an ion trap experiment the use of narrow two photon
resonances and dark states can be used to enhance the side-
band cooling rate to the trap ground state[7]. Another appli-
cation of the techniques described in this paper lies in the
field of quantum information processing. Closely separated
Zeeman levels may be used to store a qubit of quantum
information in an atomic system[10]. To read out the qubit
state selective excitation from individual Zeeman levels is
required. This can be enhanced by use of a narrow two-
photon resonance, or by suppression of excitation on an un-
wanted transition using CPT[9].

The essential concept here is the use of a two-photon
resonance to achieve selective excitation. We are concerned
with two states, generally closely-spaced, which have al-
lowed transitions separated in frequency by a small interval
(or coincident in frequency). We denote these states byuSl
and uIl, for “suppressed” and “interacting” respectively. Let
PS,PI be an experimentally observed signal, such as col-
lected fluorescence, obtained when the atom is prepared in
uSl or uIl, respectively. We wish to irradiate the atom in such
a way as to achieve a detectable signalPI and maximise the
ratio r ; PI /PS.

The statesuSl and uIl could for example be magnetic sub-
states of the same atomic energy level, or they could repre-

sent the same internal state, but different motional states of
an atom, such as two vibrational states in a harmonic poten-
tial well. In the former case, a high value forr permits the
atomic spin state to be detected[9]; in the latter, a high value
for r implies that efficient laser cooling is possible
[6,7,11,12].

Suppose the signal is collected fluorescence. Excitation
out of a stateuSl can sometimes be avoided by using light of
appropriate polarization. For example, with circularly polar-
ized light driving a transition2S1/2−2P1/2, one of the2S1/2
magnetic sublevels does not couple to the radiation. This
would allowPS.0 (limited only by experimental precision).
However, in such a case the population ofuIl is rapidly
moved by optical pumping touSl, and hencePI is also small.
Our interest here is in achieving high values ofr without
significant transfer of population betweenuIl and uSl.

The basic idea of using CPT, and more generally a laser-
induced modification of the optical response of the atom, is
illustrated in Fig. 1. We consider two situations. In the case
illustrated in Fig. 1(a), both uSl and uIl are connected by
strong (e.g., electric-dipole allowed) transitions to upper
states, such that the two transition frequencies are close to-
gether or even identical, butuSl is part of a three-level mani-
fold D which can exhibit dark resonance, whileuIl is not. An
example of this is in a manifoldS1/2,P3/2,D3/2, with lasers of
opposite circular polarization; the statesuIl , uSl are then sub-
levels ofS1/2 and level 2 is a stretched state ofD3/2. In the
case illustrated in Fig. 1(b), both uSl and uIl are each part of
separate three-level manifolds(called D and B for “dark”
and “bright,” respectively); both manifolds are driven simul-
taneously by a single pair of laser beams. An example of this
is in a manifoldS1/2,P3/2,D3/2 again, but now with lasers of
the same circular polarization.

Suppose the detected signal were the fluorescence from
the atom. In either case(a) or (b), if the laser frequencies are
chosen in such a way that theD manifold is at a dark reso-
nance, but theB manifold is not, then in the limit of no
decoherence of the dark state, the ratior →`. This is evident
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when the manifoldsD and B are not connected, since then
excitation from uSl will stop once the atom spontaneously
enters the dark state, while excitation fromuIl can continue
indefinitely. It is also true when the upper state of manifold
D can decay touIl (which is more usual in practice), as long
as we ensure an atom prepared inuSl remains dark as the
laser beams are introduced. This can be done by introducing
the “pump” laser, Rabi frequencyV2 in Fig. 1, first, and then
switching on the “probe” laser of Rabi frequencyV1 adia-
batically, i.e., on a time scale slow compared to the light shift
caused by the pump laser.

In practice the available value ofr is therefore limited by
the loss of coherence of the dark state. For brevity we refer
to this loss of coherence as a laser linewidth effect, although
it can also be caused by other mechanisms. The laser line-
width is modeled as phase fluctuations in the pump and
probe lasers producing homogeneous broadening of both.
This is equivalent to elastic collisions producing phase fluc-
tuations between the internal atomic states[13]. The effect
on the dark state coherence is modeled simply as a decay rate
g of the off-diagonal density matrix elementr21 in the opti-
cal Bloch equations for theD manifold. Note that many stud-
ies of phenomena related to CPT do not need to take this
decoherence rate into account, except as a refinement, but
here it is central. This model does not consider laser ampli-
tude noise, time-of-flight broadening or inhomogeneous
broadening. For specific applications it should not be diffi-
cult to extend the model to include these effects.

We wish to understand the selectivityr which can be
achieved, as a function of all the relevant parameters. In
order to do this, in Sec. I–V we model the atom as if the two
manifoldsB andD were not connected. If the excited state of
D can in fact decay toB then such a model remains a good
approximation as long as the population of the excited state
of D is small. It will be seen that this is the case whenr
@1. On the other hand, if the excited state ofB can decay to
D then the model does not apply.(In any case this situation

would result in optical pumping fromuIl to uSl and hence
only a small signalPI.) In the final Sec. VI concerning laser
cooling, we allow a(small) nonzero branching ratio for ei-
ther manifold to decay to the other.

The work was motivated by the idea that the phenomenon
of dark resonance ought to make available especially high
values ofr. Our results show, however, that this is only par-
tially true.

We assume the experimental signalsPS andPI are propor-
tional to the steady-state population of the excited state in the
relevant manifold. This ignores a possible contribution from
the initial transient behavior, for example during adiabatic
switching on of the laser beams. The ignored contribution is
negligible when the time scale on which the measured signal
is obtained is long compared with the transient.

Our approach is to write down the steady state solution to
the optical Bloch equations(OBEs) for a three-level atom
excited by two laser fields of finite linewidth, and then ex-
amine the behavior of this solution. The full solution is a
rather complicated function of many parameters. In previous
work it has been obtained and then studied in a simplified
form under various restrictions, such as low pump power or
zero detuning. One of the aims of this paper is to provide
analytical expressions which retain as great a range of valid-
ity as possible, while being sufficiently simple to give clear
general insights into the physical behavior. This is done by
finding factorizations of parts of the formulas, and by mak-
ing good choices of the parameters with which to express
them. We also present physical pictures to give further in-
sight into the behavior.

We consider two regimes in detail: first the resonant case
D1=D2=0, and then the far-detuned caseD1@G whereD1
=vL1−v31,D2=vL2−v32 are the detunings of the lasers from
their respective single-photon transitions, andG is the width
of the upper state.

The case of Fig. 1(a) is interesting because it permits a
high degree of state discrimination even when the single-
photon transitions fromuSl and uIl have the same frequency.
In this situation frequency discrimination of the bare single-
photon transitions is ruled out completely, hence the CPT is
crucial to achieving any discrimination. It was shown in Ref.
[9] that this can be used to measure an atomic spin state at
zero magnetic field or zero magnetic dipole moment. The
choiceD1=D2 is used to make the dark resonance of theD
system as dark as possible, while setting both detunings
equal to zero causes theB system to give the maximum
single-photon scattering rate. The value ofr is derived in
Sec. III; it is found to be proportional to the intensity of the
pump laser in theD system, divided byg.

In the case of Fig. 1(b), both manifoldsD andB exhibit
the phenomena of dark and bright 2-photon resonances. In
order to obtain a good discrimination at finite laser linewidth,
we require a frequency separation between the bright reso-
nances of the two manifolds. This will occur either if there
are suitable energy level separations in the atomic structure,
or if the coupling strengths on the pump transitions are suf-
ficiently different to cause a substantial difference in ac Stark
shifts (light shifts) in the two manifolds. We discuss the case
of Fig. 1(b) in detail because it is more complicated and the
results are surprising. We find that although tuning theD

FIG. 1. Atomic level schemes considered in the text.(a) uIl is
part of a two-level manifold;uSl is part of a three-level manifold.
(b) uIl and uSl are each part of separate three-level manifolds. In
either case, the atom is illuminated by a single pair of laser beams
which drive both manifolds; the single photon transition 1-3 in the
D manifold is either degenerate with or close to the single-photon
transition out ofuIl in theB manifold.V1,V2 are Rabi frequencies,
G1,G2 spontaneous decay rates, andg is the rate of decay of coher-
ence between levels 2 and 1. Both types of energy level structure
are common in groups of atomic levels withJÞ0. Case(b) also
occurs in the combination of internal and vibrational states of a
trapped atom.
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manifold to dark resonance does not do any harm(for the
purpose of maximizingr), it does not permit any increase in
the value ofr compared to that available at largeD1,D2,
where the dark resonance disappears. Furthermore, the fact
that the dark resonance causes one side of the Fano profile to
fall substantially below a Lorentzian profile of the same
height and width, which suggests that it would enhance dis-
crimination, is misleading. It turns out that at given laser
linewidth, the best choice of the other laser parameters is
such that the width of the Fano profile is dominated by the
laser linewidth, and in this situation it takes a Lorentzian
form.

These conclusions apply when the decoherence of the
dark state is caused by phase diffusion, leading to Lorenztian
line shapes. When other noise sources dominate, such as la-
ser drift or jitter with a non-Lorentzian profile, then the pres-
ence of a dark resonance can, in contrast, be useful.

In the context of laser cooling, the implication is that for
given laser intensities and linewidths, the intrinsic lower
limit on the steady-state temperature is always obtained at
large detuning, where the bright resonance is important but
the dark resonance(CPT) is not. However, sometimes a fast
cooling rate is important, for example when further heating
mechanisms are present, and then the dark resonance may be
useful since it provides an increased cooling rate for a given
temperature.

The paper is organized as follows. Section I briefly pre-
sents the case of frequency discrimination using single-
photon excitation, in order to have a performance measure
with which to compare our results. Section II presents the
OBEs and their steady-state solution. Section III discusses
the resonant caseD1=D2=0, and Sec. IV discusses the far-
detuned caseD1@G. We simplify the equations and present
two physical models which give useful insights into the
bright resonance and its dependence on the laser parameters.
Section V then discusses the discrimination which is avail-
able by using the bright resonance in the situation of Fig.
1(b). In Sec. VI the same ideas are applied to the case of
laser cooling of a trapped atom or ion, by presenting numeri-
cal solutions of the master equation describing the evolution
of both internal and motional states, in the Lamb-Dicke limit.

I. NARROW SINGLE-PHOTON TRANSITIONS

Before examining the 2-photon phenomena, we consider a
simpler situation in order to obtain a “benchmark” with
which to compare the performance. If there exist single-
photon transitions out of the statesuSl and uIl having differ-
ent frequencies, then one could excite the atom with a single
laser and simply use the different single-photon excitation
rates which result when one transition is resonant and the
other is not. To make a useful comparison, we need to con-
sider a case where the discrimination available in such a
method is limited by the laser linewidthgL rather than the
natural(or other) linewidth of the transitions; we ignore also
the possiblity of optical pumping. Then the excitation rate for
either transition, as a function of laser frequency, is a Lorent-
zian function of FWHMgL. We tune the laser to resonance
with the B manifold, and the systemD is driven off-

resonantly, with detuningZ given by the separation of the
two transitions involved. For simplicity, we take the atom-
laser coupling(electric dipole matrix elements) to be the
same for the two transitions; then the ratio of excitation rates
is

r =
sExcitation rate atd = 0d
sExcitation rate atd = Zd

s1d

=
Z2 + sG8/2d2 + V2/2

sG8/2d2 + V2/2
s2d

<S2Z

gL
D2

+ 1, s3d

whered is the detuning from resonance,G8=G+gL ,G!gL is
the lifetime of the upper level,V is the Rabi frequency of the
laser and it is assumed that the laser is not saturating the
transition.

II. OPTICAL BLOCH EQUATIONS FOR 3-LEVEL ATOM

We adopt an interaction picture. Then in the rotating wave
approximation(RWA), the OBEs for a 3-levelL system with
two lasers are(cf. [14,15])

ṙ33 = − Gr33 − isr13 − r31dV1/2 − isr23 − r32dV2/2, s4d

ṙ11 = G1r33 + isr13 − r31dV1/2, s5d

ṙ22 = G2r33 + isr23 − r32dV2/2, s6d

ṙ13 = s− G13 − iD1dr13 − isr33 − r11dV1/2 + ir12V2/2, s7d

ṙ23 = s− G23 − iD2dr23 − isr33 − r22dV2/2 + ir21V1/2, s8d

ṙ12 = isD2 − D1dr12 + ir13V2/2 − ir32V1/2 − gr12, s9d

whereV1 andV2 are the Rabi frequencies of the “probe” and
“pump” lasers exciting transitions 1-3 and 2-3, respectively,
G is the decay rate of the upper state 3,G1 and G2 are the
decay rates of 3 to 1 and 2, respectively(in a closed system,
G=G1+G2); the decay rates of the coherences are
G13,G23,g;G12. In the case where the coherence decay is
purely associated with the finite lifetime of level 3, and with
laser linewidthsg1,g2, the coherence decay rates are given
by

G13 = sG + g1d/2, s10d

G23 = sG + g2d/2, s11d

g = sg1 + g2d/2. s12d

The last equation, Eq.(12), applies when the two laser beams
have independent dephasing, which is typically the case if
they originate in different lasers. If they both originate in the
same laser, with a frequency difference imposed by another
device such as an acousto-optic modulator, then Eq.(12)
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does not apply and insteadg is equal to the rate of dephasing
of the imposed frequency difference. In the rest of the paper,
we will make the simplifying assumptionG23=G13, so that
both are equal toaG /2. This is valid when the lasers line-
widths are equal, and approximately valid when they are
unequal but small compared toG.

Any one of Eqs.(4)–(6) can be replaced using the nor-
malization condition

r11 + r22 + r33 = 1 s13d

in order to get a linearly independent set of equations. The
general solution of Eqs.(4)–(13) in steady state is given in
the Appendix .

We define a parametera;2G13/G. The definition implies
that a.1 when g!G. Then the steady state value of the
upper state population is

r33 = 2V1
2V2

2f2aGsd2 + g2d + sV1
2 + V2

2dgg
c0 + c1g + c2g2 , s14d

where d=D1−D2 is the detuning from the dark resonance
condition, and the coefficientsci in the denominator are
given in the Appendix .

Example profiles of the 2-photon resonance, as described
by Eq. (14), are shown in Fig. 2. This illustrates the change
in shape of the resonance asg increases.

Although it is useful to have the full expression(14), it is
too unwieldy to yield simple insights into the behavior. We
therefore examine it in two limiting cases.

III. RESONANT LASERS

In the situation shown in Fig. 1(a), and such that the lower
and upper energy levels in theB manifold are degenerate
with states 1 and 3(respectively) in the D manifold, then in
order to optimize the discrimination factorr we chooseD1
=D2=0. There is then a dark resonance in theD manifold,
while the B manifold is at a maximum in the fluorescence
rate. The absorption in theD manifold is not completely

cancelled owing to a nonzero decoherence rateg.
For both lasers on resonance with their respective transi-

tions, a factorsV1
2+V2

2+4G13gd cancels in the full expression
(14) for the excited state population in theD manifold. The
expression reduces to

r33
D =

2gV1
2V2

2

V2Y + 2gs3V1
2V2

2 + 2G13Yd
, s15d

whereV2;V1
2+V2

2 andY;G2V1
2+G1V2

2.
Assuming the atom-laser coupling constants are such that

the Rabi frequency in theB manifold is equal toCV1, where
C is a constant(e.g., a Clebsch-Gordan coefficient), and that
the excited state inB has the same total decay rateG as the
excited state inD, then the excited state population for the
(two level) B manifold is

rB =
1

2 + G2/C2V1
2 . s16d

The ratio of steady-state populations is therefore

r =
rB

r33
D =

V2Y + 2gs3V1
2V2

2 + 2G13Yd
2gV2

2s2V1
2 + G2/C2d

. s17d

This result is valid without restriction—no assumptions have
yet been made about the laser intensities or atomic param-
eters(except those implicit in a master equation treatment in
RWA).

In the limit of low probe laser intensity compared to the
pump laser intensity, i.e.,

FIG. 3. Example of state discrimation for atomic structure of the
form shown in Fig. 1(a). The curves show the steady-state value of
the excited state population for an atom prepared inuSl (full curve)
anduIl (dashed curve), respectively, as a function of detuningd. The
B manifold shows the standard “2-level atom” Lorentzian profile,
while theD manifold shows a dark resonance atD1=0 in between
two peaks at ±V2/2 (these show the positions of the dressed states
created by the pump laser). By choosingd=0 the ratio of excitation
rates is maximized. The parameter values for the three level system
are (in units where G=1) V1=0.2, V2=4, G1=G2=0.5, and g
=0.1. For the two level systemV1=0.2Î2 andV2=0.

FIG. 2. Example fluorescence profiles for a set of values of laser
linewidth. The parameter values are(in units whereG=1) V1

=0.1, V2=1, D2=3, G1=G2=0.5, and g=0, 0.05, 0.1 for full,
dashed, dotted curves, respectively. Note that at finiteg the absorp-
tion minimum is displaced with respect tod=0, as remarked by
Kofman [16].
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V1
2 ! V2

2,
G1

G2
V2

2, s18d

the ratio is

r <
V2

2G1

2gs2V1
2 + G2/C2d

s19d

<5
V2

2G1C
2

2gG2 , V1
2 ! G2,

V2
2G1

4gV1
2 , V1

2 @ G2.6 s20d

Hence a large enough pump laser intensity permits very good
discrimination to be achieved.

Figure 3 shows the steady state populations in the excited
state for theuIl and uSl systems with the pump laser at zero
detuningD2=0, as a function of the probe laser detuningD1.
The example parameter values are chosen to illustrate a case
where uIl and uSl are adjacent Zeeman sublevels in the
atomic ground state at zero magnetic field, and the excited
states decay primarily to the ground state. This has recently
been implemented experimentally in order to read out the
state of a quantum bit stored in the Zeeman levels of the
ground state of a trapped ion[9].

In the case of a ladder system, i.e., when level 2 lies
above level 3 in theD manifold, the results are as follows.
The OBEs, Eqs.(4) and(6) are modified so that the sponta-
neous emission at rateG2 is now from 2 to 3, not the other
way around. The steady state solution at zero detuning is

r33 =
2gV1

2V2
2 + V1

2G2sV1
2 + 4G23gd

V2Ỹ − G2V1
2f3V2

2 + 2G1sG23 − G13dg + 2gf3V1
2V2

2 + 2G13Ỹ + 4G2sG23 − G13dV1
2g

, s21d

where Ỹ=2G2V1
2+G1V2

2+2G1G2G23. In the case where the
coherence decay rates are purely due to spontaneous emis-
sion and laser linewidths, then for the ladder system, Eqs.
(11) and (12) should be replaced by

G23 = sG + G2 + g2d/2, s22d

g = sG2 + g1 + g2d/2. s23d

(In a closed system,G=G1.) In the limit V2
2@V1

2 expressions
(15) and (21) are the same.

IV. WEAK PROBE, LARGE DETUNING

We next examine the behavior for a weak probe intensity
and large detunings:

V1
2 !

G1

G2
V2

2,G1aG, s24d

D1
2 @ a2G2,d2. s25d

Under the weak probe condition(24) alone(i.e., without any
restriction on detunings), we obtain

c0 . 16V2
2G1FD1

2sd − D8d2 + d2saG/2d2 + d2D2
2V1

2

V2
2

G2

G1

+
V2

2V1
2

16
SG2

G1
+ 2DG , s26d

c1 . 16V2
2G1FaGV2

2

4
+

V1
2

2aGG1
sG1D1

2 + G2D2
2

+ sG1 + G2dD1D2dG , s27d

c2 . 16V2
2G1sD1

2 + a2G2/4d, s28d

where

D8 ;
V2

2

4D1
. s29d

When D1=D2, thenD8 is the light shift of the states 2(up-
wards whenD2.0) and 3(downwards whenD2.0) caused
by the pump laser.

If condition (25) applies, there is a further simplification
of the expressions forci, and substituting them into Eq.(14)
gives
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r33 =

Veff
2 SaSd2 + g2

2D82 DR+ gD/2G1

sd − D8d2 + S dG

2D1
D2Sa2 +

G2

G1

Veff
2

R2 D +
Veff

2

4
SG2

G1
+ 2D + Sa +

Veff
2

R2

G

aG1
DRg + g2

, s30d

where

R;
V2

2

4D1
2G s31d

is (when D1.D2) the scattering rate on the strongly driven
transition 2-3 per unit population in 2, and

Veff ;
V2V1

2D1
s32d

is the effective Rabi frequency for Rabi oscillations on the
Raman resonance between levels 1 and 2. The reason for
introducing R and Veff is that they yield physical insights
which will become apparent below.

Many previous treatments of this problem in the limit(24)
have assumed the further conditionV2@V1D1/G, which
may usefully be writtenR@Veff. It will be important for
some of the results to be discussed that we have not made
this assumption. A nice feature is that we can find readily
understandable physical pictures for this more general case.

The fact that we have not assumedR@Veff implies that
our results remain valid at largeD1. For example, away from
the 2-photon resonance, i.e.,udu@ uD8u, the terms proportional
to d2 in Eq. (30) dominate, and the result is

r33→ V1
2G/G1

4D1
2 . s33d

This agrees with the prediction of the rate equations for the
three-level system. It can be understood as the excited state
population due to single-photon excitation from level 1 by
the weaker laser, with the stronger laser playing the role of
“repumper.”

At small D1,D2 Eq. (30) remains fairly accurate for small
laser linewidth, since the terms which were neglected under
assumption(25) are primarily inc1 andc2, not c0.

A. Zero laser linewidth

Let us consider the situation at zero laser linewidth, in
order to obtain some physical insights. In this case,g=0 and
a=1. Equation(30) simplifies to

r33 =
V1

2d2G/G1

4D1
2sd − D8d2 + d2G2 + 4d2D1

2V1
2

V2
2

G2

G1
+

V2
2V1

2

4 sG2

G1
+ 2d

. s34d

(We present the equation in terms ofV2,V1 andD1 in order
to facilitate comparison with previous work[14,17].) This
has a zero atd=0 (the dark resonance) and a peak atd
.D8 (the bright resonance). The precise location of the peak
is discussed in[14].

The denominator of Eq.(34) can be simplified to good
approximation by replacing the occurrences ofd2 by D82

while retaining thesd−D8d term. This is a good approxima-
tion because it is accurate whend=D8, and away from this
detuning, the first term in the denominator dominates when
D1 is large. This substitution gives the canonical “Fano” type
of profile [18]:

r33 .
Veff

2 sd/D8d2R/4G1

sd − D8d2 + R2/4 + Veff
2 G/2G1

. s35d

The width of the peak is now easy to extract. The values of
d at whichr33 is half its maximum value are given by

sd − D8d .
f

2
S f

D8
± 1D , s36d

where

f = SR2 + Veff
2 2G

G1
D1/2

s37d

is the FWHM of the peak and to simplify the right-hand side
(RHS) we used the conditionf !D8 [which follows from
Eqs.(24) and (25)].

We next present some physical insights into the behavior.

1. Two models

The main features ofr33 are the zero at dark resonance
and the peak at the bright resonance.

As many authors have discussed[1,2], the zero is due to a
cancellation between the two excitation routes when the
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atomic state issV2u1l−V1u2ldsV1
2+V2

2d−1/2 in an interaction
picture. Whend=0 this is a stationary state, so once in it the
atom does not evolve out of it.

To understand the bright resonance, we present two physi-
cal models. The first is the well-known “dressed atom” ap-
proach; the second is an alternative model based on Rabi
oscillations and the quantum Zeno effect. For general re-
views and references on the quantum Zeno effect, see for
example Refs.[19–22].

The application of the “dressed atom” treatment to CPT
and related phenomena has been widely discussed; see[1,2]
for an introduction and further references. In this model, the
probe laser excites population from level 1 to a dressed state
created by the intense pump laser[see Fig. 4(a)]. Near the
centre of the bright resonance, i.e., whend.D8, Eq. (35)
takes the form

r33 .
Veff

2 R/4G1

sd − D8d2 + R2/4 + Veff
2 G/2G1

. s38d

Comparing this with the well-known expression for the up-
per state population of a two-level atom in steady state, we
see that the result has a natural interpretation in the dressed
atom model. The dressed state has decay rateR and the
strength of the coupling to it isVeff. The two terms which
make up the FWHM(37) of the resonance are then to be
interpreted as “natural linewidth” and “power broadening” of
the dressed state.

Our alternative model is based on Rabi oscillations and
the Zeno effect, as follows(cf. [23]).

When the difference frequencyd is tuned to the light shift
D8, the pump and probe lasers drive resonant Rabi oscilla-
tions between level 1 and the light-shifted level 2. Observe
that whenV2@V1 and neither of the single-photon transi-
tions are saturated, the populationr33 is produced primarily
by excitation from level 2. The excited state population thus
comes about from the combination of the Rabi oscillation
which moves population between 1 and 2, and single-photon
excitation from 2 to 3[see Fig. 4(b)]. However, the single-
photon excitation results in a spontaneously emitted photon

when 3 decays, and therefore constitutes a measurement of
the atom’s state in the 1, 2 basis. This measurement sup-
presses the Rabi oscillations by the quantum Zeno effect.
The steady state solution finds a balance between these ef-
fects.

This physical picture suggests the following analysis. We
take the limitV2@V1 such that population in 3 is produced
purely by excitation from 2 by the pump laser, and treat this
by the rate equation

ṙ33 = R2r22 − Gr33, s39d

where the single-photon excitation rateR2 is given by the
Fermi golden rule:R2=sp /2dV2

2gsD2d where g is a line
shape function. Hence in steady state,

r33 =
R2r22

G
. s40d

The spontaneous decay ofr33 leads to a Lorentzian line
shape of widthG, so in the limitD2@G ,V2,

R2 .
V2

2

4D2
2G. s41d

We calculate the steady-state populationr22 by considering
the Rabi oscillations between levels 1 and 2, and takingr22
to be the mean population averaged over time. WhenR2 is
sufficiently small, and the Raman process is resonant, this
Rabi oscillation leads to equal average populationsr11 and
r22, i.e., both equal to 1/2. WhenR2 is non-negligible, on the
other hand, the Rabi oscillation is interrupted by photon scat-
tering events. These act like measurements, and suppress the
oscillations by the Zeno effect when they are sufficiently
frequent.

An uninterrupted Rabi oscillation process would cause the
populationr22 to vary with time as

r22std =
Veff

2

d82 + Veff
2 sin21

2
sVeff

2 + d82d1/2t, s42d

whered8=d−D8 is the detuning from the Raman resonance
(bright resonance), Veff is given in Eq. (32). The photon
scattering acts both as a measurement-type process, collaps-
ing the state to either 1 or 2, and also causes optical pumping
to 1. We will treat a simplified case in which we assume the
population always goes to 1 after photon scattering, and then
the population in 2 recommences evolving as Eq.(42). This
would be the behavior to be expected whenG1@G2. In this
case the mean population of 2 is estimated as

r̄22 . E
0

`

Pstdr22stddt, s43d

wherePstd=R2e
−R2t is the probability that there is an interval

t between scattering events. Performing the integral in Eq.
(43) we obtain

r̄22 .
1

2

Veff
2

d82 + R2
2 + Veff

2 s44d

and substituting this in Eq.(40) gives

FIG. 4. Physical models of the bright resonance.(a) The pump
laser dresses the atom; the probe laser excites the atom fromu1l to
the dressed states. These give a broad resonance displaced by −D8
and a narrow resonance displaced byD2+D8 from the position of
the undressed excited stateu3l. (b) The two lasers together drive
Rabi oscillations between(undressed) levels 1 and 2 by a Raman
transition, and the pump laser off-resonantly excites transitions
from u2l to u3l. The Rabi oscillation is resonant when the laser
frequencies match the energy difference between 1 and the Stark-
shifted level 2.
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r33 .
Veff

2 R2/2G

d82 + R2
2 + Veff

2 . s45d

Note the similarity between Eqs.(45) and (38). The Zeno
effect calculation reproduces the OBE result whenG1.G,
except for factors of 2 associated withR2 and Veff

2 . This
confirms that it gives a good physical insight into the behav-
ior. Of course a full quantum Monte Carlo type of calculation
[24,25] would reproduce the OBE result exactly. The present
result simply demonstrates the validity of the “Rabi-
oscillation/Zeno effect” physical picture.

2. Two regimes

The above insights allow us to identify two distinct re-
gimes of behavior. WhenR@Veff, the Zeno effect strongly
suppresses the Rabi oscillations. In this “Zeno regime,”

r33
max=

Veff
2

RG1
=

V1
2

G1G
, WFWHM = R, s46d

whereWFWHM is the full width at half maximum. The inter-
pretation in the dressed state picture is that of weak excita-

tion, such that the FWHM is equal to the dressed state’s
“natural linewidth” R.

WhenR2!Veff
2 we obtain

r33
max=

R

2G
, WFWHM = s2G/G1d1/2Veff. s47d

Here the Rabi oscillation leads tor11=r33.1/2, which leads
directly to the value ofr33

max, in particular the fact that it
depends purely onR. The width of the resonance results
from the detuning-dependence of the Rabi oscillation, and
thus is governed purely byVeff. In the dressed state picture
this is the case where “power broadening” dominates.

B. Finite laser linewidth

We return to Eq.(30) in order to consider the effect of
finite laser linewidth. A useful approximation is the same
“trick” as was used for Eq.(35) where we replace thed2 in
the denominator byD82. This considerably simplifies the de-
nominator without much loss of accuracy:

r33 .
Veff

2 FaSd2 + g2

2D82 DR+ gG/2G1

sd − D8d2 + saR/2 + gd2 + Veff
2 sG/2G1ds1 + 2g/aRd

. s48d

Note that this result is similar to Eq.(35) with the substitu-
tion R→aR+2g.R+2g. In other words, the main effect of
finite laser linewidth is to increase the “linewidth” term in
Eq. (35) by 2g. In the Zeno picture this is an illustration of
the fact that measurement-induced collapses have the same
effect on a system as phase fluctuations. Their effects add to
produce the overall linewidth.

1. Effect of laser linewidth on dark resonance

The conditions(24), (25) imply Veff
2 !D82. At d=0, this

can be used to simplify the denominator of Eq.(48). If we
further assume

g ! V2
2/G s49d

(which is not a severe constraint on the range of validity of
the results) then we obtain

r33
dark.

Veff
2 g/2G1

D82 + V1
2g/aG1 + g2 s50d

=
2V1

2g/G1

V2
2 + sVeff

2 /R2ds4G2/aG1dg + s4G/Rdg2 . s51d

This result can be interpreted as follows. The dark state is

u− l = sV2u1l − V1u2ldsV1
2 + V2

2d−1/2. s52d

The combination ofu1l and u2l that is orthogonal to this is

u + l = sV1u1l + V2u2ldsV1
2 + V2

2d−1/2. s53d

Decoherence associated with finite laser linewidth evolves
the state towards a random mixture ofu−l with the state
u,l given by

u , l = sV2u1l + V1u2ldsV1
2 + V2

2d−1/2. s54d

A good insight is obtained by analysing the system in the
orthonormal basishu3l , u−l , u+lj (see Fig. 5). A complete
master equation can be obtained in this basis[1]; that of
course gives exactly the same predictions as those given by
the OBEs in their standard form. However, it is noteworthy
that the dependence ofr33 on g at the dark resonance point
can be obtained to second order ing by a rate equation
approach, as follows.

The atom-laser interaction Hamiltonian isHI =V1u3lk1u
+V2u3lk2u, and the only nonzero matrix element ofHI in the
chosen basis isk3uHIu+l=sV1

2+V2
2d1/2. When V2

2@V1
2, the

spontaneous decay ofu3l to u−lsu+ld is at rate approximately
G1sG2d respectively, owing to the relative proportions ofu1l
and u2l in each ofu−l and u+l. We model phase decoherence

by a spontaneous decay at the rateG̃ in both directions be-
tween u−l and u+l. The rate is given by the decay rateg /2
betweenu−l and u,l, multiplied by the probability that an
atom in u,l would be found inu+l if measured in theu± l
basis:
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G̃ =
g

2
uk,u + lu2 =

2gV1
2V2

2

sV1
2 + V2

2d2 . 2gV1
2/V2

2. s55d

Invoking the limit (25) to simplify the atom-light coupling
term, the resulting set of rate equations is

ṙ33 = sr++ − r33dR− Gr33, s56d

ṙ−− = r33G1 + sr++ − r−−dG̃, s57d

1 = r33 + r−− + r++. s58d

The solution is

r33 =
RG̃

RG1 + 2sR+ GdG̃
s59d

.
2V1

2g/G1

V2
2 + sVeff

2 /R2ds4G2/G1dg
, s60d

where we have usedG̃!G1 which follows from Eq.(24).
Equation (60) correctly reproduces all the features of Eq.
(51) up to second order ing. The essence of the dynamics

whenG1@R@G̃ is that population moves from 3 to the dark
state at the rateG1, and from the dark state to 3(via u+l) at

the rateG̃.
Next we consider the overall shape of the 2-photon reso-

nance. The range of values ofd which interests us is from 0
to approximatelyD8, the position of the bright resonance.
Examining Eq.(48) we find that when the laser linewidth is
sufficient to produce the condition

g @ aR s61d

then theg term in the numerator dominates the other terms.
In this case there is no longer a local minimum neard=0; the
dark resonance is completely “washed out.” Therefore the
condition(61) is sufficient to change the overall lineshape to
one close to a Lorentzian function. Note that Eq.(61) always
occurs at sufficiently largeD1, independent of the values of
the other parameters.

In the case(61) and when alsog@Veff , Veff
2 /R, the com-

plete expression(30) becomes simply a Lorentzian function
of linewidth g, for uduø uD8u [and for largeudu, see Eq.(33)].

2. Effect of laser linewidth on bright resonance

At the position of the bright resonancesd=D8d, the con-
dition (49) is sufficient to make theg2 term in the numerator
of Eq. (48) negligible. In this case Eq.(48) gives

r33
bright =

sVeff
2 /2G1dsaR/2 + gd

saR/2 + gd2 + 1
2Veff

2 sG/G1ds1 + 2g/aRd
. s62d

In the “Zeno regime”Veff
2 !R2 this leads to the simple result

r33
bright→ Veff

2 /2G1

aR/2 + g
. s63d

V. USING THE BRIGHT RESONANCE FOR SELECTIVE
EXCITATION

We will now explore the use of the bright resonance as a
sharp spectral feature, able to resolve two closely spaced
transitions. We have in mind the situation where the atomic
structure consists, to good approximation, of twoL systems
“side by side” as in Fig. 1(b). (Similar results can be ex-
pected for two ladder-systems.) Each of the levels 1, 2, 3 is
split into two closely spaced components(such as Zeeman
sublevels, or two rungs of a ladder of vibrational energy
levels). We still have just two lasers, and we would like to
drive oneL-system without driving the other.

The system we want to drive isB and the system we
would like not to drive isD. The measure of good discrimi-
nation to be adopted is the ratior between the steady state
value forr33 in the systems or manifoldsB andD.

We will discuss the case where the two manifolds have
the same coupling constants, so the same Rabi frequencies
V2,V1, but different energy level spacings, such that when
the Raman detuning isd in systemB, it is d-Z in systemD.
The discrimination ratio is then

r =
r33sdd

r33sd − Zd
, s64d

wherer33sdd is given by Eq.(30). The effect of a difference
in coupling constants between the two manifolds is outlined
in the Appendix .

First consider the behavior at large detuning,D1
@V1,V2,g ,G, which we will refer to for brevity as “D1
→`.” Equation(30) gives

r33sD1 → `d =
Veff

2 s2aGsd2 + g2d/V2
2 + gd/2G1

sd − D8d2 + gV1
2/aG1 + g2 . s65d

At large D1, the light shift is small compared toZ, so to
produce the discrimination factorr the dark resonance is
irrelevant. We tune systemB to bright resonance, and it is
found that r is maximized at low probe power,V1

2!gG
!V2

2. In this case, using Eqs.(64) and (65),

rsD1 → `d =
Z2 + g2

s2aGZ2/V2
2 + gdg

. s66d

Next let us consider the case where we arrange thatD8=Z.
This means that when theB system is tuned to bright reso-
nance, theD system is simultaneously tuned to dark reso-
nance, and we expect a large value forr. Examining the ratio
r =r33

bright/r33
dark given by Eqs.(62) and(50), it is found thatr

is maximized in the “Zeno regime”Veff
2 !R2. It is always

possible to enter this regime without affecting the light shift
by reducingV1 at fixed values ofV2 andD1. From Eqs.(50)
and (63) we then obtain

rsD8 = Zd =
Z2 + g2

saR/2 + gdg
. s67d

To maximizer, one should reduceR as much as possible,
subject to the constraintD8=Z. This means that, for givenZ,
the value ofR is limited by the available laser power:R
=4Z2G /V2

2, so
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rsD8 = Zd =
Z2 + g2

s2aGZ2/V2
2 + gdg

. s68d

This is the same result as Eq.(66). Therefore ifV1 is reduced
sufficiently to enter the Zeno regime, then for laser line-
widths satisfyingg!V2

2/G, the value ofr is the same at
D1=V2

2/4Z (where theD system is tuned to dark resonance)
as whenD1→`.

Discussion

The ratio r =r33sdd /r33sd−Zd is plotted in Fig. 6 as a
function of pump laser parametersV2,D2, for the example
case ofZ=0.2G ,g=0.001G, and smallV1. The ridge ob-
served in the surface corresponds to the conditionD8=Z,
with a slight offset owing to the displacement of the absorp-
tion minimum remarked in the caption to Fig. 2(see below).
Each line ofr at constantV2 has a local maximum at the
ridge, and then tends to this same maximumr at largeD2.
This is the basic behaviour predicted by Eqs.(66) and (68).

A wider numerical exploration indicated that the value given
by Eqs. (66) and (68) is always close to the maximumr
when r is small enough to allow good discriminationsr
@1d.

Equations(66) and (68) are among the central results of
this paper. We had expected that arranging the special case
where the light shiftD8 matches the offsetZ would provide
an especially good discrimination, as quantified by the ratio
r. However, although we find that this case does provide the
maximumr at givenZ,g andV2, we find that the same value
of r is also available whenD8ÞZ by using a large detuning.
Therefore the CPT can be useful to increase the rate of signal
acquisition, but it does not provide an improved discrimina-
tion of the two resonances in the atom. Hence the title of this
paper is a misnomer for the case considered here: the most
important feature is the presence of the bright resonance, not
the dark resonance. This could be called quantum state dis-
crimination by “EIO”, that is, electromagnetically-induced
opacity.

At small V2 andg ,r increases asV2
2 and does not depend

on Z, while at largeV2 it saturates tor →Z2/g2+1. The latter
result is exactly the same as Eq.(3) for single-photon exci-
tation limited by laser linewidth, if for givenZ we compare
the summed laser linewidths in the 2-photon case with the
single laser linewidth in the single-photon case. This is ow-
ing to the Fano line shape becoming Lorentzian when the
laser linewidth dominates its FWHM. The surprising feature
is that choosing laser parameters in order to get a non-
Lorentzian Fano profile, with its apparently useful sub-
Lorentzian behavior neard=0, in fact can only make matters
worse at given laser linewidth and intensity.

Close inspection of the numerical results reveals a further
detail. This is that for a strong pump beam, the optimal de-
tuning is larger than that which leads toD8=Z, and a slightly
increasedr is available. This is owing to the fact that for
finite g the minimum absorption is displaced fromd=0, as
shown in Fig. 2. We find that this offset is given by
2gD1/ saG+4gd, in agreement with[16]. An increase inD1

reduces the light shift and hence allows theD manifold to be
closer to the minimum when theB manifold is at the peak.

To summarize, in the case of twoL-systems of the same
coupling constant but different energy level separations, we
find that the highest value ofr is obtained both atD8=Z, and
at largeD2. Going to largeD2 has the disadvantage that the
rates get small, so the system is more sensitive to drifts and
other line-broadening mechanisms. Therefore the optimum
conditions are, for givenZ,g:

V2 as large as possible, s69d

D2 =
V2

2

4Z
S1 +

gV2
2

2GZ2D − Z, s70d

V1 ! maxSZG

V2
,
Dg

V2
D , s71d

where in Eq.(70) we have included an adjustment for the
displaced minimum, and the condition(71) is to avoid
power-broadening of the bright resonance. Equation(68)

FIG. 5. Physical model of the effect of decoherence on a dark
resonance. The atom is analyzed in the basisu3l , u+l , u−l, where
u−l is the dark state. A simple rate equation picture, with rates as
shown, suffices to give the main features of the behavior.

FIG. 6. Discrimination ratior for the case of twoL systems
with the same coupling constants, and 2-photon resonance condi-
tions of frequency separationZ. The surface showsr as a function
of D2 andV2 for the caseZ=0.2,g=0.001, and smallV1, in units
where G=1. All scales are logarithmic, marked in powers of 10.
Note that the range of validity of the approximate equation(30) is
such that it gives the same results(i.e., no discernible difference in
this surface plot) as the exact equation(14), even whereD1 is small.
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shows also that smaller laser linewidth is always advanta-
geous to increaser, whereasr saturates as a function ofZ,
ceasing to increase significantly withZ onceZ is large com-
pared toV2sg /2Gd1/2.

These conclusions are valid when the laser linewidth is
caused by, or is equivalent to, phase diffusion. If other
sources of noise, such as jitter and drift, dominate(with a
non-Lorentzian frequency distribution) then the evaluation of
r has to be reconsidered. In some circumstances it is appro-
priate to take average values ofr33

dark and r33
bright, using Eqs.

(62) and(50) averaged over the relevant laser frequency dis-
tribution. In certain cases the dark resonance can allow a
much greater discrimination than would be obtained using
narrow single-photon transitions driven by lasers with the
same frequency distribution.

VI. LASER COOLING OF A TRAPPED ATOM

Laser cooling of a trapped 3-level atom using narrow two-
photon resonances has been discussed by various authors
(see Refs.[6,11] and references therein for a general discus-
sion). We will examine the specific case of using the bright
resonance(and accompanying dark resonance) for continu-
ous cooling; this was considered by[6,7,11,12,26,27].

Using the formulation as given by[6], we obtain the
steady state solution for the motional density matrixrm of a
trapped atom or ion in the Lamb-Dicke limit. Expanding the
master equation to lowest order in the Lamb-Dicke param-
etersh1,h2 (associated with the laser excitation on transi-
tions 1↔3,2↔3 respectively), the solution is found to be a
thermal staterm=os1−qdqnunlknu whereq=A+/A− is the ra-
tio of heating- to cooling-rate coefficients. The rate coeffi-
cientsA± are given by

A± = sG1a1h1
2 + G2a2h2

2dr33 + RehTrf2VsL0 ± ind−1Vrgj,

s72d

wherea1,a2 are coefficients describing the angular distribu-
tion of spontaneously emitted photons(e.g.,a=1/3 for iso-
tropic emission), r33 is the internal upper state population in
steady state with motional effects ignored, i.e., as given by
Eq. (14), V is the internal-state part of the laser-atom inter-
action which corresponds to first sideband excitation:

V = h1
V1

2
su3lk1u − u1lk3ud + h2

V2

2
su3lk2u − u2lk3ud,

and L0 is the zeroth order Liouville operator acting on the
internal state, defined such that the master equationṙ
=L0srd gives precisely the OBEs for the semiclassical treat-
ment of a free atom, as given in Eqs.(4)–(9).

This situation may be compared with the selective excita-
tion which is the main subject of this paper. Letvz be the
vibrational frequency of the given atom in the(assumed har-
monic) trap. Efficient cooling, and low steady-state tempera-
ture, is obtained when the cooling rateA− is high and the
heating rateA+ is low. This requires strong excitation of the
first red sideband atv0−vz while avoiding excitation of the
carrier and the first blue sideband, atv0 andv0+vz respec-
tively, wherev0 is the centre of some resonance feature in

the excitation spectrum of a free atom—in our case, the
bright resonance. The energy level structure is akin to that of
Fig. 1(b) rather than 1(a), since the ladder of vibrational en-
ergy levels leads to an infinite set ofL systems. To obtain an
enhancement from CPT, the lasers should be blue detuned,
i.e., D1,D2.0. The frequency differenceZ considered in
Sec. V corresponds to the vibrational energyvz. The selec-
tivity parameterr discussed in Sec. V corresponds to 1/q.
Just as we suspected that we might observe large selectivity
r when Z=D8, we now investigate whether we observe an
especially lowq whenvz=D8.

Figure 7 shows 1/q for the case of laser cooling, for the
same parameters as were chosen in Fig. 6 for the case ofr
and selective excitation. The two sets of results are broadly
similar. The main difference is that the ridge(i.e., high value
of 1/q, giving low temperature) produced by the “CPT con-
dition” vz=D8 is now lower and broader, compared to the
ridge in r in Fig. 6. This is because we now have manyL
systems, and the heating coefficientA+ is produced both by
the carrier and the blue sideband excitation: the dark reso-
nance can suppress one or other of these, but not both. As a
result, the lines of 1/q at constantV2 show no local maxi-
mum as a function ofD2. q (and hence the steady-state tem-
perature) falls monotonically as a function of pump laser
detuning.

Although the CPT condition does not produce the lowest
steady-state temperatureT0, for given values of pump laser
intensity and trap frequency, it can be useful for other rea-
sons. For example it was shown in[7] that it produces a high
ratio A−/T0 of cooling rate to steady-state temperature, and
permits cooling of motion in all directions to the sameT0.
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APPENDIX

Here we present the solution of the OBEs for a 3-level
L-type system.

The solution forr13 can be extracted by a standard matrix
inversion method, see for example[2], where the caseD2
=0 is treated in full. We are interested here inr33 so we
present this quantity.

The solution forg=0 has been presented by various au-
thors, see for example[28] whose notation is close to ours.
The solution for generalg was discussed in[6,29] and is
closely related to the ladder system discussed in[15]. How-
ever the expressions in these works are even more lengthy
and obscure than those given below; we require the simplest
form possible.

In order to simplify the expressions without much loss of
generality, we assumeG13=G23 (this is valid when the lasers’
linewidths are equal, and approximately valid when they are
unequal but small compared toG).

In this case, the steady state value ofr33 is as given in Eq.
(14), with the coefficients in the denominator as follows:

c0 = sV1
2 + V2

2d2Y + 16d2G13
2 Y + 4d2V1

2V2
2f6G13 − sG1 + G2dg

+ 16d2sG2V1
2D2

2 + G1V2
2D1

2d − 8dsD1G1V2
4 − D2G2V1

4d,

sA1d

whereY;G2V1
2+G1V2

2,

c1 = 2sV1
2 + V2

2ds4G13Y + 3V1
2V2

2d + 4
V1

2V2
2

G13
fG1D1

2 + G2D2
2

+ sG1 + G2dD1D2g sA2d

and

c2 = 8f2G13
2 Y + 3G13V1

2V2
2 + 2sD2

2G2V1
2 + D1

2G1V2
2dg.

sA3d

Equation(A1) can also be written:

c0 = 16V2
2G1D1

2Sd −
V2

2

4D1
D2

+ 16V1
2G2D2

2Sd −
V1

2

4D2
D2

+ 16d2G13
2 Y + 4d2V1

2V2
2f6G13 − sG1 + G2dg

+ V1
2V2

2fY + sV1
2 + V2

2dsG1 + G2dg. sA4d

This form is useful in order to clarify where the resonances
are, and to derive Eq.(26).

DegenerateL systems

Here we briefly discuss the case of two degenerateL
systems, but where discrimination is still possible because of
a difference in coupling constants.

We adapt the notation so that now the parametersVi refer
to manifoldD, and we defineCi =Vi

B/Vi , i =1, 2 whereVi
B

are the Rabi frequencies in manifoldB. The maximumr
occurs either when systemB is tuned to bright resonance, or
when systemD is tuned to dark resonance. The latter case is
only relevant wheng is very small, and thenr is a ratio of
two very small excitation rates. We will concentrate on the
case whereg is somewhat larger, and then it is best to tuneB
to bright resonance. We then haver =r33

B /r33
D where r33

B is
given by Eq.(63):

r33
B =

C1
2C2

2Veff
2 /2G1C1

2

aC2
2R/2 + g

. sA5d

The symbolsVeff ,R refer to their values in systemD, and we
assume the decay rateG1 is enhanced in systemB, compared
to D, by C1

2. We have also assumed the Zeno regime in order
to avoid power broadening.

The situation in manifoldD is given by Eq.(48) at d
=DB8 −DD8 =sC2

2−1dD8, hence

r33
D =

Veff
2 saRC2

4/2 + gd/2G1

sC2
2 − 1dD82 + saR/2 + gd2 , sA6d

where we assumed Eq.(49). The largest values ofr are ob-
tained at high detuning, such thatR!g, where we find

rsD1 → `d = fC2sC2 − 1dD8g2/g2 + 1. sA7d
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