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We find a set of different orthonormalized states of a nonstationary harmonic oscillator and use them to
expand the solution of the Gross-Pitaevskii equation with harmonic potential. The expansion series describes
wave-packet trains of a Bose-Einstein condensate, which may be induced initially by the modulational insta-
bility. The center of any wave-packet train oscillates like a classical harmonic oscillator of frequencyv. The
width and height of the wave packet and the distance between two wave packets change simultaneously like an
array of breathers with frequency 2v. We demonstrate analytically and numerically that for a set of suitable
parameters the wave-packet trains can be more exactly fitted to the matter-wave soliton trains observed by
Streckeret al. and reported in Nature(London) 417, 150 (2002).
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I. INTRODUCTION

Recently, a kind of important nonlinear phenomenon, the
soliton behavior in a Bose-Einstein condensate(BEC), has
been experimentally observed and theoretically studied
[1–11]. In Strecker’s experiment, the bright soliton trains
were formed by magnetically tuning the atom-atom interac-
tion in a stable BEC from repulsive to attractive, then were
set to propagate and breathe in the potential for many oscil-
latory cycles without spreading[1]. In the theoretical works,
Carr and Brand[4] and Salasnichet al. [5] investigated the
formation and evolution of the matter-wave bright solitons in
a BEC governed by a time-dependent Gross-Pitaevskii equa-
tion (GPE) and pointed out that the solitons are induced by
the modulational instability in a BEC. By attributing the for-
mation of soliton trains to the quantum phase fluctuations, Al
Khawaja et al. gave a similar result from a GPE with the
harmonic confinement[6].

Here we are interested in the propagation and breathing of
the Strecker’s soliton trains. We know well that the solitons
with oscillating mass center have never been found yet in a
standard nonlinear Schrödinger equation without the har-
monic potential. However, the wave packet in a coherent
state of a harmonic oscillator can oscillate their centers
[12,13]. Therefore, after the soliton trains are initially pro-
duced, the harmonic potential may play a leading role for
dominating their motions and this leading role can be shown
by using some interesting coherent states of the harmonic
oscillator to expand the solution of the GPE.

In previous work, we investigated another kind of nonlin-
ear phenomenon, the chaotic behavior of the BEC in the
time-dependent double-well potentials[14–17]. In this paper
we consider a BEC consisting ofN identical Bose atoms and
being transferred into a cigar-shaped harmonic trap. Let the
transverse frequenciesvr be much greater than the axial fre-
quenciesvx; the dynamics of the system is governed by the

quasi-one-dimensional(quasi-1D) GPE [6,18],
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where we have assumed the transverse wave function is in
the ground state of a harmonic oscillator such that the
quasi-1D interaction intensityg1d related to thes-wave scat-
tering lengthas, atomic massm, and number of condensed
atomsN is [19] g1d=Nmvrg0/ s2p"d=2N"vras for the nor-
malized wave functionc. The normucu2 is the probability
density andNucu2 the density of atomic number. Settingl r
=Î" / smvrd, lx=Î" / smvxd, and writingEkin and Eint as the
kinetic energy and mean-field interaction energy of the BEC,
the relationshipEint /Ekin,Nuasu / sl r

2lxd1/3 expresses the im-
portance of the atom-atom interaction compared to the ki-
netic energy[18]. For a small particle number or short
s-wave scattering length[1,2], the interaction term is rela-
tively weak. For example, in the experimental parameters of
Streckeret al.’s bright solitons[1,6], the parametersvx, vr
and uasu are in order of 10 s−1, 102 s−1, and 10−10 m, respec-
tively. Although the number of the initially condensed atoms
is approximately 33105, “most of the atoms from the col-
lapsing condensate are lost, while only a small fraction re-
main as solitons”[1]. So the previous work took the number
of condensed atoms asN=104 to fit the bright solitons[6].
Using these parameters and the mass of the7Li atom to cal-
culate lx and l r, we get the ratio ofEint to Ekin as
Nuasu / sl r

2lxd1/3,10−1. Compared to the interaction intensity
g1d=2N"vras with parametersN,105, uasu,10−9 m of the
common case[18], the interaction intensity in Strecker’s ex-
periment is very weak such that the harmonic potential may
play an important role. In such a case, using a set of or-
thonormalized harmonic-oscillator states to expand the solu-
tion of GPE can give good converged results for the nonlin-
ear system. Particularly, if the harmonic-oscillator states
describe some wave-packet trains of the linear system
[12,20], the corresponding series solution can describe the
soliton trains of the nonlinear system. We shall report a set of
different orthonormalized coherent states of a nonstationary
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harmonic oscillator and use them to expand the solution of
GPE with the harmonic potential and weak atom-atom inter-
action. By using them we demonstrate that, analytically and
numerically, the wave-packet trains governed by the series
solution can be more exactly fitted to Strecker’s matter-wave
soliton trains.

II. ORTHONORMALIZED STATES
OF A HARMONIC OSCILLATOR

In order to construct the Strecker’s soliton solution, we
first seek the coherent states(wave-packet solutions) of a
nonstationary harmonic oscillator. We adopt the natural unit
with m="=vx=1 to yield the time-dependent Schrödinger
equation
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where t and x are in units ofvx
−1 and lx, respectively. It is

well known that this equation has not only the stationary
solutions, but also the nonstationary solutions, say the
coherent-state solution. Let the solution of Eq.(2) be in the
form

cn
s0d = anstdHnsjdefbstdx−cstdx2−f2std/2g,

j = estdx − fstd, s3d

with anstd, bstd, cstd being the complex functions of time and
estd, fstd the real functions, andHnsjd the Hermitian polyno-
mial of variablej. The direct calculations from Eq.(3) give
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Applying the two equations to Eq.(2) leads to the equation
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Notice that the Hermitian polynomial must obey the Hermit-
ian equation ]2Hn/]j2−2j]Hn/]j+2nHn=0. Comparing
this with Eq.(4), we arrive at

iċ = 2c2 − 1/2, iḃ = 2bc, iė = 2ce− e3,

i ḟ = be− e2f, iȧn/an = i f ḟ − b2/2 + c + ne2. s5d

These equations are similar to Eq.(4) of Ref. [12], where the
first equation contains a periodic driven term. Without the

periodic driven in Eq.(5) we can easily derive its exact so-
lution as follows. The first of Eq.(5) is a complex Riccati
equation, which can be transformed into a complex equation
of a classical harmonic oscillator,

ẅ = − w, s6d

through the function transformationc=ẇ / s2iwd. The general
solution of Eq.(6) is well known:

w = A cosst + ad + iB cosst + bd = rsx,td expfiusx,tdg,

s7d

whereA, B, a, andb are arbitrary constants adjusted by the
initial conditions of the classical harmonic oscillator, the real
functionsrsx,td andusx,td read as

r = ÎA2 cos2st + ad + B2 cos2st + bd,

u = arctan
B cosst + bd
A cosst + ad

. s8d

Given Eq.(7), the transformation betweenw andc can be
written as

c =
ẇ

2iw
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1

2
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Substituting Eq.(7) into Eq. (6) yields the equations of the
amplitude and phase as

ü = − 2u̇ṙ/r, r̈ = ru̇2 − r s10d

with the first integrations

c0 = r2u̇ = ABsinsa − bd,

c1 = sṙ2 + c0
2/r2 + r2d/2. s11d

Combining Eqs.(9) and (8) with Eq. (5) and applying the
relation (11), we easily obtain the functions
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exps− iud

r
, e=

Îc0

r
= Îu̇, f =

b0

Îc0

cosu,

an =
An

Îr
expH− iFS1

2
+ nDu −

b0
2
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in terms of the real functionsrstd and ustd. Here b0 is an
arbitrary constant andAn the normalization constant. Insert-
ing Eqs.(9) and(12) into Eq. (3) leads to the exact solution
cn

s0dsx,td, then the normalization conditioneucn
s0du2dx

=An
2Îc0

−1eHn
2sjd exps−j2ddj=An

2Îpc0
−12nn!=1 gives the nor-

malization constantAn=fÎc0/ sÎp2nn!dg1/2, where the wave
functioncn

s0d has been normalized in unitlx
−1/2. Applying Eqs.

(9)–(12) and the normalization constant to Eq.(3), we get the
orthonormalized exact solution,

cn
s0d = Rn

s0d expfiQs0dsx,td − inustdg, n = 0,1,2,…,

Rn
s0d = F Îc0

Îp2nn!rstd
G1/2

Hnsjd expF−
1

2
j2G ,
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Obviously, the solution(13) is not a energy eigenstate, but
denotes a different kind of coherent state[12]. In the math-
ematical point of view, it is a complete solution with the
independent constantsA, B, a, b, b0, and c0. By adjusting
these constants, we can use the complete solution to describe
some different quantum states. It is easy to prove the solution
(13) obeying the orthonormalization condition. According to
the property of the Hermitian polynomial, the probability
densitysRn

s0dd2 describes the wave-packet trains consisting of
n+1 packets, since it is proportional to the functionfHnsjdg2.
By using Eqs.(13) and (8), from j=0 we have the orbit of
the center of wave-packet trains,

xc =
b0

c0
rstd cosustd =

b0

c0
A cosst + ad, s14d

which is proportional to the real part of the complex solution
w and describes the motion of a classical harmonic oscillator
of unit mass with amplitudeAb0/c0, frequencyvx, and initial
phasea.

Now we calculate the average energy under the state(13).
Employing the Dirac’s symbols, ket, and bra, from Eq.(3)
and the quantum-mechanical definition of average energy in
statecn

s0d, we perform the calculation
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Noticing the orthonormalization conditionkcn
s0duc

n8
s0dl=dnn8

and the formulas

j = estdx − fstd, jcn
s0d = În/2cn−1

s0d + Îsn + 1d/2cn+1
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we continue to compute the average energy,
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Applying Eqs.(5) to the above equation and noticing Eqs.
(9), (11), and(12) result in

En = s2n + 1dc −
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Herec2 is another integration constant,

c2 =
A2c1

sA2 + B2dc0
, s17d

and b0
2c2/c0=b0

2A2c1/ fc0
2sA2+B2dg is proportional to the

square of the amplitude of Eq.(14) or the energy of the
classical oscillator. For the given constantsb0 and ci, i
=0,1,2, Eq.(16) exhibits that the average energy only de-
pends on the quantum numbern. It is quite interesting that
the average energy(16) is proportional to both the quantum
level and the classical energies of the harmonic oscillators
dominated by Eqs.(6) and (14). A higher quantum level is
associated with a wave-packet train with more packets,
namely the number of packets isn+1 for the wave function
cn

s0d. We shall use the wave-packet solutions of Eq.(13) as a
set of basic vectors to expand the solution of the nonlinear
GPE and employ the latter to fit Strecker’s matter-wave soli-
ton trains in the following section.

III. FITTING TO STRECKER’S MATTER-WAVE
SOLITON TRAINS

Given the orthonormalized solutioncn
s0dsx,td, we apply

them to expand the solution of the GPE as

csx,td = o
n=0

`

Cnstdcn
s0dsx,td = ei *

s0dsx,tdo
n=0

`

CnstdRn
s0dsj,tde−inustd,

s18d

with Cnstd being the expansion coefficient. Substituting such
c into Eq. (1) yields the equation of the expansion coeffi-
cients as

o
n=0

`

iĊnstdcn
s0dsx,td = g1ducsx,tdu2csx,td. s19d

Noticing Eq. (18) and the orthonormalization condition of
Eq. (13), we simplify Eq.(19) to

iĊnstd = g1dE
−`

`
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n stdCi

*stdCjstdCkstd
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for n=0,1,2,…, whereI ijk
n are defined by[21]

I ijk
n std =E

−`

`

ci
* s0dc j

s0dck
s0dcn

* s0ddx. s21d

We have known that the probability densitysRn
s0dd2 describes

the wave-packet trains consisting ofn+1 packets of the lin-
ear harmonic oscillator. The corresponding wave-packet
trains of the nonlinear system(1) is described by the norm of
c in Eq. (18), that is,
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ucsx,tdu2 = Uo
n=0

`

CnstdRn
s0dsj,tde−inustdU2

. s22d

In spite of the formula(22) with Eqs.(13) and (8) being
complicated, some of its important features can be analyzed.
After inserting Eq.(13) into Eq.(22) we find that there exists
a common factorfsj ,td=e−j2

/rstd in each term of Eq.(22).
The functionrstd included in j=Îc0x/rstd−b0

Îc0
−1 cosustd

specifies the total width of the wave-packet train(22) and the
width of each wave packet. The average width of the wave
packets isrstd /Îc0. The same function in the denominator of
fsj ,td governs the height of every wave packet. These and
Eq. (8) infer that the widths and heights vary simultaneously
with frequency 2vx of the rstd. Note that Eq.(14) gives the
frequency of the center motion of the soliton train asvx.
When the changes of the widths and heights are small, the
behavior of the wave-packet trains seem to be an array of
solitons. And larger changes of the widths and heights can
show the periodical breathing behavior of the wave-packet
trains[12,20], like the multiple breathers. The normalization
condition implies that the broader wave-packet train is asso-
ciated with the smaller mean height, and the narrower wave-
packet train corresponds to the larger mean height. By using
the parameter setA=c0=0.4624,B=1, a=0, b=−p /2, b0=
−17.437, we plot the functionfsj ,td=e−j2

/rstd vs x for the
time svxdt=0, p /2, andp, respectively, as Figs. 1(a)–1(c). In
Fig. 1 we show that a single wave packet varies its width and
height periodically with periodp and oscillates its center

simultaneously with period 2p. These properties will directly
affect the propagation and breathing of the soliton trains
dominated by Eq.(22), since the functionfsj ,td appears in
Eq. (22) as a factor. It is easy to prove the similar property
for a different parameter set.

Although Eq. (20) is hard to solve in general, we can
simplify it at the particular case:r=const. This impliesA
=B and b=a−p /2 in Eq. (8) such that we haver=A and
u= t+a. Thus we can takeCnstd=Dne

inu and substitute it and
Eq. (13) into Eq. (20), obtaining the algebraical equations

− nDn = g1do
i jk
FDi

*DjDkE
−`

`

Ri
* s0dRj

s0dRk
s0dRn

* s0ddxG s23d

for n=0,1,2,…, which determines the values of the constant
coefficientsDn. Solving Eq.(23) for theDn and applying Eq.
(13) and Cnstd=Dne

inu to Eq. (22), we get the density of
atomic number,

ucsx,tdu2 = Uo
n=0

`

DnRn
s0dsj,tdU2

. s24d

Here by the constantr we mean that Eq.(24) represents a
real soliton train without any deformation.

We are interested in the case of time-dependentrstd,
where the Strecker’s soliton trains with small deformation
can be more exactly fit by Eq.(22). To solve Eq.(20) in this
case, we must know its initial conditions. In Strecker’s ex-
periments, the end caps were switched off just at the initial
time t0=0 and the condensate was initially created on the
side of the harmonic potential. Thes-wave scattering length
as changes sign att1= t0=0, t2=35 ms,…, respectively. In
the first caseuasut0=0, the two-body interaction term vanishes
initially. The second case,uasut0 tending to zero, leads the
initial soliton number to about 10. The smallas means that
the interaction term in Eq.(1) is much less than the harmonic
term initially. This relation can be kept, sinceas vanishes at
t2=35 ms and after this timeas is still a small value, −3a0,
with a0 being the Bohr radius. Particularly, most of the con-
densed atoms are lost fort. t2, while only a small fraction
remains as solitons[1]. For the considered initial condition
we integrate Eq.(20) producing

Cnstd = dnn8 − ig1dE
0

t

o
i jk

I i jk
n stdCi

*stdCjstdCkstddt. s25d

This givesCn8s0d=1 andCns0d=0 for nÞn8. Inserting these
into Eq. (22) gives the initial wave packets in the form of
uc

n8
s0du2 with the wave-packet numbern8+1. This initial num-

ber can be fixed by Strecker’s experimental data. Application
of Eq. (25) to Eq. (22) leads to the soliton train at any time
tù0.

Because of the complexity of the solution behavior, nu-
merically illustrating the soliton train is necessary. Generally,
the wave-packet trains dominated by Eq.(22) will propagate
and breathe simultaneously. We shall demonstrate that these
complicated behaviors can be strictly fit to Strecker’s matter-
wave soliton trains. In the experiment reported by Strecker
and co-workers[1], the 7Li atomic BEC is employed to cre-

FIG. 1. The functionfsj ,td=e−j2
/rstd vs x for the time (a)

svxdt=0, (b) svxdt=p /2, and(c) svxdt=p. The space-time coordi-
nates are normalized in unitslx andvx

−1, respectively.
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ate the soliton trains, by using a Feshbach resonance to ma-
nipulate the sign and magnitude of thes-wave scattering
lengthas. It is especially interesting to investigate the forma-
tion of the soliton trains. SettingDt as the interval between
the time the end caps of Strecker’s experiment are switched
off to the time whenas changes sign, Streckeret al. found
that the initial number of the solitons increases linearly with
Dt. At Dt=0, namely the case that the end caps are switched
off at as<0, four solitons were observed initially[1]. The
initial soliton numbern8+1 means that a larger quantum
numbern8 is associated with more solitons. This initial num-
ber may be greater than 10 in Strecker’s experiment for the
7Li atoms. Here the atomic number to form solitons is about
N=104 and the oscillating frequency and amplitude of the
center of soliton trains were experimentally observed, about
20 Hz (namely periodT<310 ms) and 370mm, respec-
tively. This frequency was identified as the axial one,vx, in
the previous analytical work[6]. Note that the axial potential
is approximately harmonic with angular frequencyvx,4
32p Hz in Strecker’s analysis[1]. We adopt the experimen-
tal parameter,vx=20 Hz, rather than the analytically ap-
proximate one. From Fig. 4 of Ref.[1] we estimate that the
maximum and minimum widths of the soliton trains are
about 310 and 140mm. Noticing the center oscillation
amplitudeAb0/c0 in Eq. (14) and the average width of the
wave packetsrstd /Îc0, these experimental data give rough
limitations to the parameters in Eqs.(22) and (13) as
N=104, vx=20 Hz, vr =800 Hz, lx=Î40l r =21.22mm,
Ab0/c0=−17.437lx=−370mm, rs0d /Îc0=6.8lx<140 mm,
rsp /2d /Îc0=14.71lx<310 mm. Under these limitations, we
choose the parameter setn8=10, as=−3a0, A=c0=0.4624,
B=1, a=0, b=−p /2, b0=−17.437, and the transverse wave
function as the ground state of harmonic oscillator to make
the 3D plots of the soliton train from Eqs.(22) and (25) for
the time svxdt=0, p /2 and p, respectively, as Figs.
2(a)–2(c). Here the small terms being proportional toCnstd
for n.20 have been neglected in the series of Eq.(22). In
Figs. 2(a) and 2(c) we show that the center-of-mass coordi-
nates of the soliton train arexcst=0d=−17.437lx=−370mm
and xcst=T/2d=17.437lx=370mm, respectively atsvxdt=0
andp. These plots display that the soliton train localized at
two ends of the trap possesses the maximum height and the
minimum width and distance between two packets. When it
moves to center of the trap, as in Fig. 2(b), its width and the
distance between two packets become maximum, and its
height reaches a minimum. The deformation period of the
soliton train and the oscillation period of its center arep /vx
and 2p /vx, respectively. In the next deformation periodp
øvxtø2p, the soliton train will propagate from right to left
of the trap and go back to the initial place. These data and
properties are in good agreement with that of Strecker’s ex-
periment.

The changes of the soliton width and distance between
two solitons were explained as repulsive interaction among
the solitons in the previous work[1,6]. In the motion of the
soliton train, its height has only a small change such that
observing the breathing effect is difficult. The solitons at
ends of any soliton train are higher and thicker compared to
the other ones. The thickness of each soliton is shown in Fig.

3, which denotes the vertical view of Fig. 2. This graph is
very much like Fig. 4 of Strecker’s article[1], so the former
could be a good fit to the latter. In Strecker’s experiment on
the matter-wave solitons, the trains with missing solitons
were frequently observed, and this is resided in the loss of
condensed atoms[1] and the dissipative three-body interac-
tion [5].

FIG. 2. (Color online) The Strecker’s matter-wave solition trains
on the xoy plane from Eqs.(22) and (13) for (a) t=0, (b) vxt
=p /2, and(c) vxt=p. The transverse wave function has been taken
as the ground state of harmonic oscillator. The space-time coordi-
nates and the atomic number densityucu2 are normalized in unitslx,
vx

−1, and lx
−3, respectively.

FIG. 3. (Color online) The vertical view of Fig. 2 with different
lines correspond to Figs. 2(a)–2(c), respectively. Comparison be-
tween this with Fig. 4 of Strecker’s article exhibits good agreement
between them.
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IV. DISCUSSION AND CONCLUSIONS

We have investigated the general case of soliton solution
(18) with Eq. (13), where b0Þ0 and rstd is a periodical
function without zero point. When the amplitude ofrstd is
small, the wave-packet train described by Eq.(22) has only
small deformation and seems to be a soliton train. By select-
ing a suitable parameter set, the solution fits the Strecker’s
soliton train better. A larger amplitude ofrstd will lead Eq.
(22) to describe the breathing behavior of the atomic number
density. It is very interesting to see the special cases:(i) b0
=0; (ii ) r=const;(iii ) rstd has infinite zero points. Obviously,
Eq. (14) gives xc=0 for b0=0 such that the center of the
wave-packet train described by Eqs.(22) and (13) cannot
propagate for this case. We have demonstrated that the func-
tion rstd governs the widths and heights of the wave-packet
trains, and the distance between two solitons. When the pa-
rameter setA=B, b=a−p /2 is selected, Eq.(8) leadsr to a
constant andu to the linear functionvxt+a. Consequently,
the wave-packet trains have not any deformation in propaga-
tion for the second case, which is described by Eq.(24).
In this case, the ground state of Eq.(13) with n=0 is just the
common coherent state of a harmonic oscillator[13]. Setting

B=0 in Eq. (8) yields the third case,rstd=A cossvxt+ad
with the infinite zero points vxt=sl +1/2dp−a for
l =0,1,2,…. At any one of the zero points, Eq.(13) implies
cn

s0d=` for x<0, resulting in the intermittent implosions of
the BEC[22,14].

Because of the existence of arbitrary constantsA, B, a, b,
b0, c0 and periodic functionsrstd, ustd in Eq. (13), by using
the series solution(18) and adjusting these constants we can
control the motions of the BEC wave packets. The theoreti-
cal control could indicate the directions of the experimental
operations that is important for a real application, say, mak-
ing an atomic soliton laser based on the bright soliton trains
[1]. In addition, as a basic vector of Hilbert space the com-
plete solution(13) could play an important role for treating
the corresponding quantum systems.
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