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Propagation and breathing of matter—wave-packet trains
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We find a set of different orthonormalized states of a nonstationary harmonic oscillator and use them to
expand the solution of the Gross-Pitaevskii equation with harmonic potential. The expansion series describes
wave-packet trains of a Bose-Einstein condensate, which may be induced initially by the modulational insta-
bility. The center of any wave-packet train oscillates like a classical harmonic oscillator of frequeiitye
width and height of the wave packet and the distance between two wave packets change simultaneously like an
array of breathers with frequencyw2We demonstrate analytically and numerically that for a set of suitable
parameters the wave-packet trains can be more exactly fitted to the matter-wave soliton trains observed by
Streckeret al. and reported in Naturd_ondon 417, 150(2002.
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I. INTRODUCTION quasi-one-dimensiongtjuasi-10D GPE[6,18],

Recently, a kind of important nonlinear phenomenon, the oY 12 Py
soliton behavior in a Bose-Einstein condens@&C), has ' E:_Enﬁ*'
been experimentally observed and theoretically studied

[1-11. In Strecker’'s experiment, the bright soliton trains where we have assumed the transverse wave function is in
were formed by magnetically tuning the atom-atom interacthe ground state of a harmonic oscillator such that the
tion in a stable BEC from repulsive to attractive, then werequasi-1D interaction intensity; 4 related to thes-wave scat-

set to propagate and breathe in the potential for many oscitering lengtha,, atomic massn, and number of condensed
latory cycles without spreadingd]. In the theoretical works, atomsN is [19] g;4=Nmw,go/ (27%) = 2NAw,as for the nor-
Carr and Brand4] and Salasnictet al. [5] investigated the malized wave functiony. The norm|¢{? is the probability
formation and evolution of the matter-wave bright solitons indensity andN|{? the density of atomic number. Setting

a BEC governed by a time-dependent Gross-Pitaevskii equa—\/ﬁ/(mwr), = \/ﬁ/(mwx), and writing E,;, and E;; as the

tion (GPB and pointed out that the solitons are induced bykinetic energy and mean-field interaction energy of the BEC,
the modulational instability in a BEC. By attributing the for- he relatiOﬂShipEim/Ekin~N|as|/(|r2|x)”3 expresses the im-
mation of soliton trains to the quantum phase fluctuations, Abortance of the atom-atom interaction compared to the ki-
Khawajaet al. gave a similar result from a GPE with the pegic energy[18]. For a small particle number or short
harmonic confinemer{6]. _ _ swave scattering lengthil,2], the interaction term is rela-
Here we are interested in the propagation and breathing qfyely weak. For example, in the experimental parameters of
the Strecker’s soliton trains. We know well that the solitonsgyreckeret al’s bright solitons[1,6], the parameters,, o,
with oscillating mass center have never been found yet in and|aJ are in order of 10, 1 %, and 10%° m, respec-
standard nonlinear Schrodinger equation without the hargyely. Although the number of the initially condensed atoms
monic potential. However, the wave packet in a coherenjfg approximately & 10°, “most of the atoms from the col-
state of a harmonic oscillator can oscillate their center§apsing condensate are lost, while only a small fraction re-
[12,13. Therefore, after the soliton trains are initially pro- yain as solitonsT1]. So the previous work took the number
duced, the harmonic potential may play a leading role foryf condensed atoms a¢=10* to fit the bright solitong6].
dominating their motions and this leading role can be ShOW'Using these parameters and the mass of thetom to cal-
by using some interesting coherent states of the harmonigjate |, and I,, we get the ratio ofE,y t0 Eyy as

oscillator fco expand the _solutign of the GPE. . . N‘as|/(|r2|x)1/3<101_ Compared to the interaction intensity
In previous work, we investigated another kind of nonlin- 914=2Nfiw,a, with parameters~ 105, [a] ~ 10" m of the
ear phenomenon, the chaotic behavior of the BEC in theqmmon casé18], the interaction intensity in Strecker’s ex-

time-dependent double-well potentiglst—17. In this paper — yariment is very weak such that the harmonic potential may
we consider a BEC consisting bfidentical Bose atoms and lay an important role. In such a case, using a set of or-

being transferred into a cigar-shaped harmonic trap. Let thg,qnormajized harmonic-oscillator states to expand the solu-
transverse frequencies. be much greater than the axial fre- o of GPE can give good converged results for the nonlin-
quenciesw,; the dynamics of the system is governed by thegar system. Particularly, if the harmonic-oscillator states

describe some wave-packet trains of the linear system

[12,2Q, the corresponding series solution can describe the

*Corresponding author. soliton trains of the nonlinear system. We shall report a set of
Electronic address: adcve@public.cs.hn.cn different orthonormalized coherent states of a nonstationary
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harmonic oscillator and use them to expand the solution operiodic driven in Eq(5) we can easily derive its exact so-
GPE with the harmonic potential and weak atom-atom interdution as follows. The first of Eq(5) is a complex Riccati
action. By using them we demonstrate that, analytically anaquation, which can be transformed into a complex equation
numerically, the wave-packet trains governed by the seriesf a classical harmonic oscillator,
solution can be more exactly fitted to Strecker’'s matter-wave .

soliton trains. P 6)
through the function transformatiarr ¢/(2i¢). The general
solution of Eq.(6) is well known:

In order to construct the Strecker’s soliton solution, we ~ ©=ACOSt+a) +iB cost+ ) = p(xt) exdio(x.b)],
first seek the coherent statésave-packet solutionsof a (7)
nonstationary harmonic oscillator. We adopt the natural unit
with m=%#=w,=1 to yield the time-dependent Schrddinger

Il. ORTHONORMALIZED STATES
OF A HARMONIC OSCILLATOR

whereA, B, a, andg are arbitrary constants adjusted by the
initial conditions of the classical harmonic oscillator, the real

equation functionsp(x,t) and 6(x,t) read as
ayy LAY o -
i——=- x : 2 = JA? cog(t + a) + B? cog(t + f3),
Py AR 2 p (t+a) (t+p)
wheret andx are in units ofw;* andl,, respectively. It is 9= arcia B codt+ ) ®
well known that this equation has not only the stationary - Acodt+a)

solutions, but also the nonstationary solutions, say the

coherent-state solution. Let the solution of E2) be in the Given Eq.(7), the transformation betwegnandc can be

form written as
. 2_¢2 ; . (
%0) = a (O H,(&ePOx-ct=Fnr2] o= .i _ }0_ P )
2ip 2 2p
E=e(x-f(, ©) Substituting Eq(7) into Eg. (6) yields the equations of the
with a,(t), b(t), c(t) being the complex functions of time and amplitude and phase as
e(t), f(t) the real functions, an#l,(£) the Hermitian polyno- S o . o
mial of variable&. The direct calculations from E@3) give 6==26plp, p=pt-p (10
90 : _ with the first integrations
i—-—=ia ( L .
at " JE Co=p?0=ABsin(a-p),
+ (bX —ff- CXZ)Hn> e[b(t)x—c(t)XZ_fZ(t)/z], .= (P2 + Cé/pz + p2)/2. (12)
Combining Eqgs(9) and (8) with Eq. (5) and applying the
(92%0) (6232H JH relation(11), we easily obtain the functions
Y exp(—i6 leo T b
b:bo—p( ), e=-20= \/1_9 f:%cosﬁ,
+(b? - 2c - 4bex+ 4czx2)Hn) lbOx-cO=1072], P P Vo
. . . A, 1(1 by
Applying the two equations to E@2) leads to the equation a,=—=exp)—i||l=+n|f§-—sin20 (12
#H dH, a ... b K ? i
égzn —if +iex- 2ce><) 2{ ;—iff *5 ¢ in terms of the real functiong(t) and é(t). Here b, is an
arbitrary constant and,, the normalization constant. Insert-
. L1 ing Egs.(9) and(12) into Eq. (3) leads to the exact solution
—(ib - 2 _in_ T2 _
(ib - 2bc)x + <2C Ic 2>X }H“_ 0. (4) z,/; (x t), then the normalization COﬂdItIOﬂf|l//(o)|2dX

A2V I HA(é) exp(—£2)deg= Af,v 512"nl=1 gives the nor-
malization constanf,=[vco/ (Y 772”n')]1’2 where the wave

function ¢*’ has been normalized in unjt2. Applying Egs.
_ (99~12) and the normalization constant to K£8§), we get the
ic=2c2-1/2, ib=2bc, ie=2ce-¢€’, orthonormalized exact solution,

#O =R exdi®@(x,t) —inot)], n=0,1,2,..,

Notice that the Hermitian polynomial must obey the Hermit- _
ian equation #?H,/9&2-2£9H,/ 9é+2nH,=0. Comparing
this with Eq.(4), we arrive at

if =be-€*f, iaja,=iff —b¥2+c+né. (5

— 1/2
These equations are similar to K4) of Ref.[12], where the R;O) - VCo H, (&) exp| - 152
first equation contains a periodic driven term. Without the \Gznng p(t) n 27 |
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Jox by _ b? ( ) 1){ (1 )}1 f
=00 E,=(2n+1c-——(2c2- = || f2+( = +n| |5 + 2bc-
& o0 \’Co = cosA(t), a=(2n+1)c > c 5 5 n 7 ce
1 \c; b
. =({=+n|]—=+—c,, =0,1,2,... 16
(O)ZP(t)X boX (2 n) Co COCZ n (16)

sind(t) + S|r’{20(t)] - —H(t)

2p(t)  p ©° Herec, is another integration constant,
(13) ,
_ A
Obviously, the solution{13) is not a energy eigenstate, but C2= (A2+B2)c,’ 1

denotes a different kind of coherent stéi€]. In the math-

ematical point of view, it is a complete solution with the and bjc,/co=bjA%c,/[c5(A2+B?)] is proportional to the
independent constants, B, a, 8, by, andc,. By adjusting square of the amplitude of Eq14) or the energy of the
these constants, we can use the complete solution to describ@ssical oscillator. For the given constarig and ¢, i
some different quantum states. It is easy to prove the solution0,1,2, Eq.(16) exhibits that the average energy only de-
(13) obeying the orthonormalization condition. According to pends on the quantum number It is quite interesting that
the property of the Hermitian polynomial, the probability the average energil6) is proportional to both the quantum
densny(R(o))Z describes the wave-packet trains consisting ofevel and the classical energies of the harmonic oscillators
n+1 packets, since it is proportional to the funct[ety,(¢£)]2.  dominated by Eqgs(6) and(14). A higher quantum level is

By using Eqs(13) and(8), from £€=0 we have the orbit of @ssociated with a wave-packet train with more packets,
the center of wave-packet trains, namely the number of packetsns-1 for the wave function

z,/;(o) We shall use the wave-packet solutions of E) as a

set of basic vectors to expand the solution of the nonlinear
GPE and employ the latter to fit Strecker’s matter-wave soli-
ton trains in the following section.

which is proportional to the real part of the complex solution

= @p(t) coA(t) = B)A codt+ a), (14)
Co Co

¢ and describes the motion of a classical harmonic oscillator . FITTING TO STRECKER'S MATTER-WAVE
of unit mass with amplitudéby/ ¢y, frequencyw,, and initial SOLITON TRAINS
phasec. _ _ .
Now we calculate the average energy under the §1&e Given the orthonormalized solution”'(x,t), we apply
Employing the Dirac’s symbols, ket, and bra, from g  them to expand the solution of the GPE as
and th(e)quantum-mechanical definition of average energy in o
0 .
statey ', we perform the calculation P(x,t) = E C(1) z/;(o)(x t)=¢® 0)(xt)2 Cn(t)R(o)( £,t)ene,
J : 1 0H,
E. = (O Oy =iy 2 4+ (ex— f 18
0=l D =i e DT (19
L0 with C,(t) being the expansion coefficient. Substituting such
= (ff = bx+ x|y (19 4 into Eq. (1) yields the equation of the expansion coeffi-
cients as

Noticing the orthonormalization conditio(upgo)wfg)):&nn,
and the formulas

- 2 iCa Yy (%0 = grgpx OPxD. (19
£=ex— (D), &Y =2y +(n+ D2y, "0
Noticing Eq.(18) and the orthonormalization condition of

2820 = Jn(n-1) DO, +(2n+ 1)y + \hﬁ D(n+2)y9,, Eq. (13), we simplify Eq.(19) to

1 4H, iCy(t) = gldJ |2y, Odlx = gldE 1 (H)C; (HC;(HC(D)

0) — Hoa 0 _ 57,0
- \"2n -1
H 55 '// Hn ‘r/’n l//n 1 (20)
we continue to compute the average energy, for n=0,1,2,.., wherelj, are defined by21]
fan ) I : -
E,= '(a_n i ”) + iy 2nglelupe) + (g bx - o7 gf?) 0 = f o O (21
n
_lan ¢4 e ¢ 2. 1 N N g We have known that the probability dens(lilff’))2 describes
=t a, ne e2 2 n ! e’ the wave-packet trains consisting of 1 packets of the lin-

ear harmonic oscillator. The corresponding wave-packet
Applying Egs.(5) to the above equation and noticing Egs. trains of the nonlinear syste(t) is described by the norm of
(9), (11), and(12) result in ¢ in Eq. (18), that is,
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2 a simultaneously with period2 These properties will directly
15 affect the propagation and breathing of the soliton trains
) dominated by Eq(22), since the functiorf(&,t) appears in
Yo Eq. (22) as a factor. It is easy to prove the similar property
0.5 for a different parameter set.
0 7 Although Eg.(20) is hard to solve in general, we can
—24-22-20-18-16-14-12-10 simplify it at the particular casep=const. This impliesA
x =B and =a-/2 in Eq. (8) such that we havg=A and
1 6=t+a. Thus we can tak€,(t)=D,e"? and substitute it and
o8 b Eqg. (13) into Eq. (20), obtaining the algebraical equations
0.6 . i "
“wl ~ND, = g1g, lDi D;Dx f R <°>R§°>R&°>Rn<°>dx} (23)
. ijk -
0.2 for n=0,1,2,.., which determines the values of the constant
0 e -4 <2 0 2 4 ¢ coefficientsD,,. Solving Eq.(23) for the D, and applying Eq.
x (13) and C,(t)=D,€"? to Eq. (22), we get the density of
atomic number,
2 c © 2
L5 Wx,DP= | X DRV (&) (24)
L5 1 n=0
0.5 Here by the cqnstgm we mean that E_q(24) represents a
real soliton train without any deformation.
0

10 12 12 16 18 20 20 22 We are interested in _the case of_ time-dependg(bt, _
% where the Strecker’s soliton trains with small deformation
can be more exactly fit by E¢22). To solve Eq(20) in this
FIG. 1. The functionf(g,t):e"‘-lep(t) vs x for the time (a) case, we must know its initial conditions. In Strecker’s ex-
(091=0, (b) (wt=7/2, and(c) (w)t=m. The space-time coordi- periments, the end caps were switched off just at the initial

nates are normalized in unitsand w, ", respectively. time t,=0 and the condensate was initially created on the
" 5 side of the harmonic potential. Tleewave scattering length
lpx, 2= 2 Cn(t)Rgo)(é,t)e“”e(t) _ 22) a5 changes sign at;=ty=0, t,=35 ms, ..., respectively. In

the first caseas| =0, the two-body interaction term vanishes

|n|t|ally The second caseas|t tending to zero, leads the
initial soliton number to about 10. The small means that
he interaction term in Eq1) is much less than the harmonic

In spite of the formula22) with Egs.(13) and(8) being
complicated, some of its important features can be analyze
Aiter inserting Eq(13) into Eq (22) we find that there exists term initially. This relation can be kept, sineg vanishes at
a common factof (¢,t)=e"*"/p(t) in each term of EQ(ZZ) t,=35 ms and after this time is still a small value, -8,
The function p(t) included in &=cox/p(t)—boVcg cosat)  with a, being the Bohr radius. Particularly, most of the con-
specifies the total width of the wave-packet trg@) and the  densed atoms are lost for-t,, while only a small fraction

width of each wave packet. The average width of the wavg@emains as solitongl]. For the considered initial condition
packets is(t)/+c,. The same function in the denominator of e integrate Eq(20) producmg

f(£,t) governs the height of every wave packet. These and
Eq. (8) infer that the widths and heights vary simultaneously
with frequency 2, of the p(t). Note that Eq(14) gives the
frequency of the center motion of the soliton train as
When the changes of the widths and heights are small, théhis givesC,(0)=1 andC,(0)=0 for n#n’. Inserting these
behavior of the wave-packet trains seem to be an array dﬂtO Eq. (22) gives the initial wave packets in the form of
solitons. And larger changes of the widths and heights calfw |2 with the wave-packet number' +1. This initial num-

show the periodical breathing behavior of the wave-packeber can be fixed by Strecker’s experimental data. Application

trains[12,2Q, like the multiple breathers. The normalization of Eq. (25) to Eq.(22) leads to the soliton train at any time
condition implies that the broader wave-packet train is assor= Q.

ciated with the smaller mean helght, and the narrower wave- Because of the Comp|exity of the solution behavior, nu-
packet train corresponds to the larger mean height. By usingerically illustrating the soliton train is necessary. Generally,
the parameter sét=C,=0.4624,B=1, a=0, f=-m/2,by=  the wave-packet trains dominated by E2g) will propagate
-17.437, we plot the functiofi(£,t)=e"¢"/p(t) vs x for the  and breathe simultaneously. We shall demonstrate that these
time (w)t=0, /2, andm, respectively, as Figs(d)-1(c). In  complicated behaviors can be strictly fit to Strecker’s matter-
Fig. 1 we show that a single wave packet varies its width anavave soliton trains. In the experiment reported by Strecker
height periodically with periodr and oscillates its center and co-workerg1], the ‘Li atomic BEC is employed to cre-

Ca(t) = Sy ~ 1014 EI.,ka C (HC(HC(Hdt.  (25)
0 ijk
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ate the soliton trains, by using a Feshbach resonance to ma- ~

nipulate the sign and magnitude of tisavave scattering N

lengthas. It is especially interesting to investigate the forma- NN ~*
tion of the soliton trains. Settingt as the interval between “\\;\,;ww

the time the end caps of Strecker’s experiment are switched ”“
off to the time whenag changes sign, Strecket al. found

that the initial number of the solitons increases linearly with
At. At At=0, namely the case that the end caps are switched
off at ag=0, four solitons were observed initiallyi]. The
initial soliton numbern’+1 means that a larger quantum
numbermn’ is associated with more solitons. This initial num-
ber may be greater than 10 in Strecker’s experiment for the
’Li atoms. Here the atomic number to form solitons is about
N=10* and the oscillating frequency and amplitude of the
center of soliton trains were experimentally observed, about
20 Hz (namely periodT=310 mg and 370um, respec-
tively. This frequency was identified as the axial ong, in

the previous analytical worfé]. Note that the axial potential

is approximately harmonic with angular frequeney~ 4

X 27 Hz in Strecker’s analysigl]. We adopt the experimen-
tal parameter,w,=20 Hz, rather than the analytically ap-
proximate one. From Fig. 4 of Reffl] we estimate that the
maximum and minimum widths of the soliton trains are
about 310 and 14@m. Noticing the center oscillation
amplitudeAby/c, in_Eq. (14) and the average width of the
wave packet(t)/\c,, these experimental data give rough
limitations to the parameters in Eq$22) and (13) as

N=10%, @,=20 Hz, =800 Hz, 55\“'40“:21-22/’“"1’ FIG. 2. (Color online The Strecker’s matter-wave solition trains
Aby/cy==17.43T,==370um,  p(0)/\cu=6.8,~140 um,  on the xoy plane from Egs(22) and (13) for (a) t=0, (b) wyt
p(m12)[\cy=14.71,~310 um. Under these limitations, we =7/2, and(c) wt=. The transverse wave function has been taken
choose the parameter set=10, a;=—3a;, A=c,=0.4624, as the ground state of harmonic oscillator. The space-time coordi-
B=1, =0, 8=-m/2, by=-17.437, and the transverse wave nates and the atomic number densi#}# are normalized in unitk,
function as the ground state of harmonic oscillator to makev, ', andl 2, respectively.

the 3D plots of the soliton train from Eq&2) and(25) for

the time (w)t=0, w/2 and m, respectively, as Figs.

2(@)-2(c). Here the small terms being proportional@(t) 3 \yhich denotes the vertical view of Fig. 2. This graph is
for n>20 have been neglected in the series of &3). In  yery much like Fig. 4 of Strecker’s articld], so the former
Figs. 28) and 2c) we show that the center-of-mass coordi- coyld be a good fit to the latter. In Strecker’s experiment on
nates of the soliton train ang(t=0)=-17.431,=-370um  the matter-wave solitons, the trains with missing solitons
and x(t=T/2)=17.437,=370 um, respectively alwt=0  \yere frequently observed, and this is resided in the loss of

and 7. These plots display that the soliton train localized atcondensed atomid] and the dissipative three-body interac-
two ends of the trap possesses the maximum height and thgyn [5].

minimum width and distance between two packets. When it
moves to center of the trap, as in Figby, its width and the
distance between two packets become maximum, and its
height reaches a minimum. The deformation period of the
soliton train and the oscillation period of its center arkw,

and 27/ w,, respectively. In the next deformation peried

< w,t =<2, the soliton train will propagate from right to left

of the trap and go back to the initial place. These data and o 900000000 © ie=1l . 57
properties are in good agreement with that of Strecker’s ex-
periment.

The changes of the soliton width and distance between
two solitons were explained as repulsive interaction among
the solitons in the previous woid,6]. In the motion of the
soliton train, its height has only a small change such that FIG. 3. (Color onling The vertical view of Fig. 2 with different
observing the breathing effect is difficult. The solitons atlines correspond to Figs.(@-2(c), respectively. Comparison be-
ends of any soliton train are higher and thicker compared toween this with Fig. 4 of Strecker’s article exhibits good agreement
the other ones. The thickness of each soliton is shown in Fighetween them.

E=) 5 dhd) Loguc
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IV. DISCUSSION AND CONCLUSIONS B=0 in Eqg. (8) yields the third casep(t)=A codw,t+a)

We have investigated the general case of soliton solutioWith the infinite  zero points wgt=(1+1/27~a for
(18) with Eq. (13), whereby#0 and p(t) is a periodical |:00,1121--- At any one of the zero points, E¢L3) implies
function without zero point. When the amplitude aft) is % = for x=0, resulting in the intermittent implosions of
small, the wave-packet train described by E2) has only ~ the BEC[22,14.
small deformation and seems to be a soliton train. By select- Because of the existence of arbitrary const#ntB, a, f,
ing a suitable parameter set, the solution fits the StreckerBo. Co and periodic functiong(t), 6(t) in Eq. (13), by using
soliton train better. A larger amplitude oft) will lead Eq.  the series solutio18) and adjusting these constants we can
(22) to describe the breathing behavior of the atomic numbefgontrol the motions of the BEC wave packets. The theoreti-
density. It is very interesting to see the special cadgd, cal control could indicate the directions of the experimental
=0; (ii) p=constjiii ) p(t) has infinite zero points. Obviously, OPerations that is important for a real application, say, mak-
Eq. (14) gives x,=0 for by=0 such that the center of the INg an atomic soliton Iasgr based on the bright soliton trains
wave-packet train described by Eq®2) and (13) cannot [1]. In add!tlon, as a basic vectqr of Hilbert space the com-
propagate for this case. We have demonstrated that the funBlete solution(13) could play an important role for treating
tion p(t) governs the widths and heights of the wave-packeth€ corresponding quantum systems.
trains, and the distance between two solitons. When the pa-
rameter seA=B, ,8=a—' w2 is seI_ected, Eq8) leadsp to a ACKNOWLEDGMENTS
constant and to the linear functionw,t+a. Consequently,
the wave-packet trains have not any deformation in propaga- This work was supported by the National Natural Science
tion for the second case, which is described by E).  Foundation of China under Grant No. 10275023, and by the
In this case, the ground state of Ef3) with n=0 is just the foundations of MPI-PKS. The authors thank Dr. J. Brand for
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