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We demonstrate that a triangular optical lattice of two atomic species, bosonic or fermionic, can be em-
ployed to generate a variety of spin-1/2 Hamiltonians. These include effective three-spin interactions resulting
from the possibility of atoms tunneling along two different paths. Such interactions can be employed to
simulate particular one- or two-dimensional physical systems with ground states that possess a rich structure
and undergo a variety of quantum phase transitions. In addition, tunneling can be activated by employing
Raman transitions, thus creating an effective Hamiltonian that does not preserve the number of atoms of each
species. In the presence of external electromagnetic fields, resulting in complex tunneling couplings, we obtain
effective Hamiltonians that break chiral symmetry. The ground states of these Hamiltonians can be used for the
physical implementation of geometrical or topological objects.
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I. INTRODUCTION

With the development of optical lattice technology[1–3],
considerable attention has been focused on the experimental
simulation of a variety of many-particle systems, such as
spin chains[4–7]. This provides the possibility to probe and
realize complex quantum models with unique properties in
the laboratory. Such examples, which are of interest in vari-
ous areas of physics, are the systems that include many-body
interactions. The latter have been hard to study in the past
due to the difficulty in controlling them externally and iso-
lating them from the environment[8]. To overcome these
problems, techniques have been developed in quantum optics
[9–11] which minimize imperfections and impurities in the
implementation of the desired structures, thus paving the
way for the consideration of such “higher-order” phenomena
of multiparticle interactions. Their applications could be of
much interest to cold atom technology as well as to con-
densed matter physics and quantum information.

In this paper we obtain the interaction terms of bosonic or
fermionic lattices of two species of atoms, denoted here by↑
and ↓ (see [4,5,7]). These can be two different hyperfine
ground states of the same atom coupled via an excited state
by a Raman transition. The system is brought initially into
the Mott insulator phase where the number of atoms at each
site of the lattice is well defined. By restricting to the case of
only one atom per site it is possible to characterize the sys-
tem by pseudospin-basis states provided by internal ground
states of the atom. Interactions between atoms in different
sites are facilitated by virtual transitions. These are dictated
by the tunneling couplingJ from one site to its neighbours
and by collisional couplingsU that take place when two or
more atoms are within the same site.

In the following we consider the case of weak tunneling
couplings,J!U, assuring that we are always in the Mott
insulator regime. Our aim is to construct a perturbative study
of the effective interactions with respect to the small param-
eter J/U. Up to the third order this expansion will provide
Hamiltonians that include three-spin interactions. These mul-
tiparticle interactions can be, in principle, realized with near-

future technology. The main physical requirement is large
collisional couplingsU, which can be obtained experimen-
tally by Feshbach resonances[15–17]. First theoretical[19]
and experimental[20] advances are already promising.
Hence, the time interval needed for those higher-order terms
to have a significant effect can be well within the coherence
times of the system.

Several applications spring out from our studies. The sys-
tematic description of the low-energy Hamiltonian provides
the means for the advanced control of the three-spin interac-
tions simulated in the lattice. Hence, different physical mod-
els can be realized, with ground states that present a rich
structure such as multiple degeneracies and a variety of
quantum phase transitions[12–14]. Some of these multispin
interactions have been theoretically studied in the past in the
context of the hard rod boson[21–24], using self-duality
symmetries[25,26]. Phase transitions between the corre-
sponding ground states have been analyzed[27,28]. Subse-
quently, these phases may also be viewed as possible phases
of the initial system—that is, in the Mott insulator, where the
behavior of its ground state can be controlled at will[29].

The paper is organized as follows. In Sec. II, we present
the physical system and the conditions required to obtain
three-body interactions. The effective three-spin Hamilto-
nians for the case of bosonic or fermionic species of atoms in
a system of three sites on a lattice are given in Sec. III. In
Sec. IV we study the effect Raman transitions can have on
the tunneling process and generalized effective Hamiltonians
are presented that do not preserve the number of atoms of
each species. These are of particular interest for the construc-
tion of certain geometrical evolutions. In Sec. V complex
tunnelings are considered and the generation of chiral ground
states is presented. In Sec. VI our results are extended toward
the construction of one-dimensional models and several ap-
plications are discussed. In Sec. VII we present an outlook
and the conclusions. Finally, in the Appendixes, two alterna-
tive methods are presented for the perturbation theory that
results in the three-spin interactions.
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II. PHYSICAL MODEL

Let us consider a cloud of ultracold neutral atoms super-
imposed with several optical lattices[4–7,30]. For suffi-
ciently strong intensities of the laser field this system can be
placed in the Mott insulator phase where the expectation
value of only one particle per lattice site is energetically
allowed [3]. We are interested in the particular setup of lat-
tices that form an equilateral triangular configuration, as
shown in Fig. 1. This allows for the simultaneous superposi-
tion of the positional wave functions of the atoms belonging
to the three sites. As we shall see in the following this results
in the generation of three-spin interactions.

The main contributions to the dynamics of the atoms in
the lattice sites are given by the collisions of the atoms
within the same site and the tunneling transitions of the at-
oms between neighboring sites. In particular, the coupling of
the collisional interaction for atoms in the same site is taken
to be very large in magnitude, while it is supposed to vanish
when it is in different sites. Due to the low temperature of
the system, this term is completely characterized by the
s-wave scattering length. Furthermore, the overlap of the
Wannier wave functions between adjacent sites determines
the tunneling amplitudeJ of the atoms from one site to its
neighbors. Here, the relative rate between the tunneling and
collisional interaction terms is supposed to be very small—
i.e., J!U—so that the state of the system is mainly domi-
nated by the collisional interaction.

The Hamiltonian describing the three lattice sites with
three atoms of speciess=h↑ , ↓ j subject to the above inter-
actions is given by

H = Hs0d + V, s2.1d

with

Hs0d =
1

2 o
jss8

Uss8:njsnjs8:,

V = − o
js

sJj
sajs

† aj+1s + H.c.d,

whereajs denotes the annihilation operator of atoms of spe-
ciess at sitej . The annihilation operator can describe fermi-

ons or bosons satisfying commutation or anticommutation
relations, respectively, given by

fajs,aj8s8
† g± = d j j 8dss8,

fajs,aj8s8g± = fajs
† ,aj8s8

† g± = 0, s2.2d

where the6 sign denotes the anticommutator or the commu-
tator. The operatornjs is the corresponding number operator
and :̄ : denotes normal ordering of the product of the cre-
ation and annihilation operators. The HamiltonianHs0d is the
lowest order in the expansion with respect to the tunneling
interaction.

Due to the large collisional couplings activated when two
or more atoms are present within the same site, the weak
tunneling transitions do not change the average number of
atoms per site. This is achieved by adiabatic elimination of
higher-population states along the evolution leading eventu-
ally to an effective Hamiltonian(see the Appendixes). The
latter allows virtual transitions between these levels, provid-
ing eventually nontrivial evolutions. As we shall see in the
Appendix it is possible to describe the low-energy evolution
of the bosonic or fermionic system up to the third order in
the tunneling interaction by the effective Hamiltonian

Heff = − o
g

VagVgb

Eg

+ o
gd

VagVgdVdb

EgEd

. s2.3d

The indicesa, b refer to states with one atom per site while
g, d refer to states with two or more atomic populations per
site, andEg are the eigenvalues of the collisional partHs0d,
while we neglected fast rotating terms effective for long-time
intervals.

It is instructive to estimate the energy scales involved in
such a physical system. We would like to have a significant
effect of the three-spin interaction within the decoherence
times of the experimental system, which we can take here to
be of the order of several 10 ms. It is possible to vary the
tunneling interactions from zero to some maximum value
which we can take here to be of the order ofJ/",1 kHz [2].
In order to have a significant effect from the termJ3/U2

produced within the decoherence time one should choose
U /",10 kHz. This can be achieved experimentally by mov-
ing close to a Feshbach resonance[15–18], whereU can take
significantly large values as long as trap losses, attributed to
three-body collisions or production of molecules, remain
negligible. With respect to these parameters we have
sJ/Ud2,10−2, which is within the Mott insulator regime,
while the next order in perturbation theory is an order of
magnitude smaller than the one considered here and hence
negligible. Note, however, that new interaction terms arise
only in fifth order in perturbation due to the triangular geom-
etry of the optical lattice. This places the requirements of our
proposal for detecting the effect of three-spin interactions
within the range of possible experimental values of near-
future technology.

Within the regime of single-atom occupancy per site it is
possible to switch to the pseudospin basis of states of the site
j given by u↑ l;unj↑=1,nj↓=0l and u↓ l;unj↑=0,nj↓=1l.
Hence, the effective Hamiltonian can be given in terms of

FIG. 1. (Color Online) The basic building block for the triangu-
lar lattice configuration. Three-spin interaction terms appear be-
tween sites 1, 2, and 3. For example, tunneling between 1 and 3 can
happen through two different paths, directly and through site 2. The
latter results in an exchange interaction between 1 and 3 that is
influenced by the state of site 2.
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Pauli matrices acting on states expressed in the pseudospin
basis. The symmetries of the initial HamiltonianH restrict to
a large degree the form of the low-energy expansion. For
example, conservation of the atom number of each species
corresponds, in the spin basis, to conservation of the totalz
spin. Hence, any rotation on thexy-spin plane leaves the
Hamiltonian invariant. This fact limits the possible spin op-
erators that can contribute to the effective low-energy inter-
actions. Possible terms of the effective Hamiltonian are
given by hs j

zj for the one-body interaction,hs j
zs j+1

z ,s j
xs j+1

x

+s j
ys j+1

y j for the two-body interaction, or
hs j

zs j+1
z s j+2

z ,ss j
xs j+1

x +s j
ys j+1

y ds j+2
z j for the three-body interac-

tions wheres4=s1 (see Fig. 1). As we can easily verify, the
three-spin operators break parity symmetry, which is explic-
itly given by the transformation↑↔↓. This indicates that
their coupling coefficient should also be asymmetric with
respect to this transformation, as the original atomic system
possesses this symmetry. Indeed, in the next section we shall
see how these terms are generated in the optical lattice setup.

Another important insight for the ground states of the pre-
sented Hamiltonians comes from the geometry of the lattice.
In the case considered here, the triangular pattern allows for
the generation of exotic ground states due to frustration—
that is, ground states that are not minimizing the energy of
the individual Hamiltonians of each link of the triangle. This
effectively allows for the presence of multiple degeneracy in
the ground state of the system as we shall see in particular
examples.

III. EFFECTIVE THREE-SPIN INTERACTIONS

A. Bosonic model

Consider the low-energy evolution of the triangular sys-
tem given in Fig. 1 of three atoms in three sites of the lattice
without the application of any external field. Different rates
in the tunneling parameter can then be achieved by tuning
the intensities of the laser field corresponding to the different
directions of the triangle. By applying the perturbative ex-
pansion(2.3) up to third order we obtain that the system can
effectively be described by

Heff = o
j=1

3

fAjI + Bjs j
z + l j

s1ds j
zs j+1

z + l j
s2dss j

xs j+1
x + s j

ys j+1
y d

+ ls3ds j
zs j+1

z s j+2
z + l j

s4dss j
xs j+1

z s j+2
x + s j

ys j+1
z s j+2

y dg,

s3.1d

wheres j
a is thea Pauli matrix with the usual commutation

propertiesfs j
n ,sk

mg=2ienmvd jks j
v. The three-spin interactions

presented in the last line can be viewed as the two-spin in-
teractions of the second line controlled by the third spin(be-
ing spin up or down) through an additionalsz operator. The
couplings,A, B, andlsid are given as expansions inJs /Uss8
by

Aj = − J1
↑J2

↑J3
↑S 3

2U↑↑
2 +

1

2U↑↓
2 +

1

U↑↓U↑↑
D − Jj

↑2S 1

U↑↑
+

1

2U↑↓
D

+ s↑ ↔ ↓d,

Bj = −
Jj
↑2 + Jj+2

↑ 2

U↑↑
−

J1
↑J2

↑J3
↑

U↑↑
S 1

U↑↓
+

9

2U↑↑
D − s↑ ↔ ↓d,

l j
s1d = − J1

↑J2
↑J3

↑S 9

2U↑↑
2 −

1

2U↑↓
2 −

1

U↑↓U↑↑
D − Jj

↑2S 1

U↑↑
−

1

2U↑↓
D

+ s↑ ↔ ↓d,

l j
s2d = − Jj

↓Jj+1
↑ Jj+2

↑ S 3

2U↑↓
2 +

1

2U↑↑
2 +

1

U↑↓U↑↑
D −

Jj
↑Jj

↓

2U↑↓

+ s↑ ↔ ↓d,

ls3d = −
J1
↑J2

↑J3
↑

U↑↑
S 3

2U↑↑
−

1

U↑↓
D − s↑ ↔ ↓d,

l j
s4d = −

Jj
↑Jj+1

↑ Jj+2
↓

U↑↑
S 1

2U↑↑
+

1

U↑↓
D − s↑ ↔ ↓d, s3.2d

where the symbols↑↔ ↓ d denotes the repeating of the same
term as on its left, but with the↑ and↓ indices interchanged.
TheA term contributes to an overall phase factor in the time
evolution of the system and can be ignored. TheB term can
easily be eliminated and an arbitrary magnetic field term of

the formo jBW ·sW can be added by applying a Raman transition
with the appropriate laser fields. The behavior of the effec-
tive couplings as functions of the tunneling and collisional
couplings is given in Fig. 2.

One can isolate different parts of Hamiltonian(3.1), each
one including a three-spin interaction term, by varying the
tunneling and/or the collisional couplings appropriately so
that particular terms in Eq.(3.1) vanish, while others are
freely varied. An example of this can be seen in Fig. 3 where
the couplingsls1d andls3d are depicted. There, for the special
choice of the collisional terms,U↑↑=U↓↓=2.12U↑↓, the ls1d

coupling is kept to zero for a wide range of tunneling cou-
plings, while the three-spin couplingls3d can take any arbi-
trary value. One can also suppress the exchange interactions
by keeping one of the two tunneling couplings zero without
affecting the freedom in obtaining arbitrary positive or nega-
tive values forls3d as seen in Fig. 3.

Hence, the one-dimensional Hamiltonian of the form

HsBx,Bzd = − o
j

sBxs j
x + Bzs j

z + s j
zs j+1

z s j+2
z d

can be simulated in the optical lattice where all of its cou-
plings can be arbitrarily and independently varied. The three-
spin interaction term of this Hamiltonian possesses fourfold
degeneracy in its ground state, spanned by the states
{u↑↑↑l,u↑↓↓l,u↓↑↓l,u↓↓↑l}. The criticality behavior of this
model has been extensively studied in the past[21,28],
where it is shown to present first and second order phase
transitions. In particular, forBz=0 its self-dual character can
be demonstrated[25,26]. To explicitly show that let us define
the dual operators
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s̄ j
x ; s j

zs j+1
z s j+2

z , s̄ j
z ; p

k=0

`

si−3k
x si−3k−1

x ,

which also satisfy the usual Pauli spin algebra. We can reex-
press the HamiltonianHsBx,0d with respect to the dual op-
erators, obtaining finally

HsBx,0d = BxHsBx
−1,0d.

This equation of self-duality indicates that if there is one
critical point, then it should be atuBxu=1 as has also been

verified numerically. Furthermore, the two-spin interaction
s j

zs j+1
z has a degeneracy with aZ2 symmetry while

s j
zs j+1

z s j+2
z has a threefold degeneracy leading to aZ3 sym-

metry. By varying the corresponding couplings of the effec-
tive Hamiltonian it is possible to induce transitions to and
from the Z2- and Z3-ordered phases in a similar fashion as
has been theoretically demonstrated in[13].

B. Fermionic model

Alternatively, one can consider the case of fermionic at-
oms and derive the effective interactions they induce up to
third order. Compared to the couplings in the bosonic case
we now haveU↑↓=U being the only one that is present. The
Pauli exclusion principle can be signaled by havingU↑↑,
U↓↓→` which eventually forbids two fermionic atoms of
the same species from occupying the same site. Keeping
terms up to third order inJj

s /U and employing the anticom-
mutation relations(2.2) we obtain the effective Hamiltonian

Heff = o
j=1

3

fm j
s1dsI − s j

zs j+1
z d + ms3dss j

z − s1
zs2

zs3
zd + m j

s2dss j
xs j+1

x

+ s j
ys j+1

y d + m j
s4dss j

xs j+1
z s j+2

x + s j
ys j+1

z s j+2
y dg,

where the effective couplings are a function of the initial
variables of the Hamiltonian(2.1) and

m j
s1d = −

1

2U
sJj

↑2 + Jj
↓2d, m j

s2d =
1

U
Jj
↑Jj

↓,

ms3d = −
1

2U2sJ1
↑J2

↑J3
↑ − J1

↓J2
↓J3

↓d,

FIG. 2. (Color online) The effective couplings
(a) ls1d, (b) ls2d, (c) ls3d, and(d) ls4d as functions
of the tunneling couplingsJ↑ /U andJ↓ /U, where
we have set the tunneling couplings to beJ1

s

=J2
s=J3

s and the collisional couplings to beU↑↑
=U↑↓=U↓↓=U. All the parameters are normalized
with respect toU.

FIG. 3. (Color online) The effective couplingsls1d andls3d are
plotted againstJ↑ /U and J↓ /U for U↑↑=U↓↓=2.12U and U↑↓=U.
The couplingls1d appears almost constant and zero as the unequal
collisional terms can create a plateau area for a small range of
tunneling couplings, whilels3d can be varied freely to positive or
negative values.

J. K. PACHOS AND E. RICO PHYSICAL REVIEW A70, 053620(2004)

053620-4



m j
s4d =

3

2U2sJj
↑Jj+1

↑ Jj+2
↓ − Jj

↓Jj+1
↓ Jj+2

↑ d.

The dependence of the coupling terms on the parameters of
the initial Hamiltonian is simpler than in the bosonic case.
Nevertheless, they can express a similar behavior as can been
seen in Fig. 4.

If the tunneling constants do not depend on the pseu-
dospin orientation, then any three-spin interaction vanishes.
Nevertheless, when the tunneling amplitudes depend on the
spin and by having just one of the orientation with nonzero
tunneling, then just the diagonal two- and three-spin interac-
tions remain.

IV. RAMAN-ACTIVATED TUNNELINGS

A number of variations of the previous Hamiltonians are
possible by employing techniques available from quantum
optics[4,7]. An interesting example involves the application
of Raman transitions during the tunneling process. These
transitions involve the direct coupling of the two atomic
states↑ and↓. Consequently they are not atom-number pre-
serving for each of the species.

A. General case

Let us first consider the case where the atoms are strongly
trapped by an optical lattice as in the previous sections. If the
lasers producing the Raman transition are forming standing
waves, it is possible to activate tunneling transitions of atoms
that simultaneously experience a change in their internal
state. As we shall see in the following the resulting Hamil-
tonian is given by an SU(2) rotation applied to each Pauli
matrix of the Hamiltonian(3.1).

In particular, we shall consider the case of activating the
tunneling with the application of two individual Raman tran-

sitions. These transitions consist of four paired laser beams
L1, L2 andL18, L28, each pair having a blue detuningD andD8,
different for the two different transitions. The phases and
amplitudes of the laser beams can be properly tuned so that
the first Raman transition allows the tunneling of the state

u + l ; scosudual + ssinude−ifubl,

with tunneling rateJ+ between two neighboring sites, while
the second one activates the tunneling of the state

u− l ; ssinudual − scosude−ifubl,

by an additional phase difference ofp between the lasersL18,
L28, with an effective tunneling rateJ−. In the above equations
f denotes the phase difference between theLi laser field,
while tanu= uV2/V1u, whereVi are their corresponding Rabi
frequencies. Hence, the effective tunneling term is given by

Vc = − o
i

sJ+ci
+†ci+1

+ + J−ci
−†ci+1

− + H.c.d,

where the tunneling couplingsJ+ and J− are given by the
potential barrier of the initial optical lattice superposed by
the potential reduction due to the Raman transitions. In ad-
dition, the creation and annihilation operators are given as an
SU (2) rotation of the initial ones—i.e.,

Sci
+

ci
−D = gsf,udSai

bi
D ,

with the unitary SU(2) matrix

gsf,ud = Scosu eif sinu

sinu − eif cosu
D .

Hence, the resulting tunneling Hamiltonian can be obtained
from the initial one via an SU(2) rotationVc=gVg†, where
the corresponding tunneling couplings are formally
identified—i.e.,J+=J↑ and J−=J↓. Note that the collisional

FIG. 4. (Color online) The effective couplings
(a) ms1d, (b) ms2d, (c) ms3d, and (d) ms4d as func-
tions of the tunneling couplingsJ↑ /U andJ↓ /U,
where we have set the tunneling couplings to be
J1

s=J2
s=J3

s.
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Hamiltonian is not affected by the Raman transitions, and
hence it is not transformed underg rotations.

It is easy to derive the effective Hamiltonian for this
transformation using the perturbative expansion. Indeed,
from expressions(A3) and(A4) of the Appendix we straight-
forwardly obtain the second- and third-order terms of the

HamiltonianH̃eff that appear after application of the Raman
transition. They are given by an SU(2) rotation that acts on
the Pauli matrices of the initial effective Hamiltonian. Actu-
ally this statement holds in all orders of the perturbation
theory and reads, in its generality,

H̃eff
sndsf,ud = gsf,udHeff

sndg†sf,ud,

wheren is the order of the perturbation. Note that this useful
result holds not only for thef rotations, but also for theu
rotations, which, in general, do not commute with the colli-
sional HamiltonianHs0d.

B. Rotated anisotropicXY model

We now show that the above-presented Raman transitions
can be employed to obtain, for example, the anisotropicXY
model. The direction of anisotropy is determined by the
phase difference of the laser fields employed for the Raman
transition. In particular consider, as in the previous, three
sites of the optical lattice in a equilateral triangular configu-
ration. For simplicity we assumeJ+=J−=J and U↑↑=U↓↓
=U↑↓=U. Then the effective Hamiltonian to the third order
becomes the rotation

H̃effsf,p/2d = gsfdH̃effg
†sfd, s4.1d

where gsfd=gsf ,u=0d is a z-axis rotation andH̃eff is the
u=p /2 rotated effective Hamiltonian around they axis given
by

H̃eff = o
i=1

3

sAI + Bsi
x + ns1dsi

xsi+1
x + ns3dsi

xsi+1
x si+2

x d,

with

A = −
3

2

J2

U
− 3

J3

U2, B = − 2
J2

U
−

11

2

J3

U2 ,

ns1d = −
1

2

J2

U
− 3

J3

U2, ns3d = −
1

6

J3

U2 .

These effective couplings agree with the ones presented in
Eqs. (3.2). Moreover, by controlling the amplitude of the
initial standing waves that trap the atoms in their equilibrium
positions it is possible to reactivate the tunnelingsJ↑ andJ↓.
This has the effect that the overall Hamiltonian is the sum of
the two Hamiltonians, the rotated one(4.1) and the initial
one (3.1).

One can now check that the Hamiltonian(3.1) is invariant
undergsfd rotations. On the other hand, when we add the

HamiltoniansH̃eff and the one from Eq.(3.1) we obtain the
generalized version of the anisotropicXY model where addi-
tional third-order terms are present. Hence, by turning on the

J↑ andJ↓ tunnelings we can obtain the rotated version of the
anisotropicXY model, where the rotation is performed with
respect to thez-spin axis by an anglef. This approach pro-
vides a variety of control parameters(e.g., the anglef and
the ratio of the couplings of the two added Hamiltonians)
and, in addition, one can have these variables independent
for each of the three directions of the two-dimensional opti-
cal lattice. Particular settings of these structures have been
proven to generate topological phenomena[7], which sup-
port exotic anyonic excitations, useful for the construction of
topological memories[31]. In addition, the possibility of
varying arbitrarily the control parameters of the above
Hamiltonians and, consequently, of their ground states gives
us a natural setup to study such phenomena as geometrical
phases in lattice systems. Examples will be presented else-
where[32].

V. COMPLEX TUNNELING AND TOPOLOGICAL
EFFECTS

Consider the case where we employ complex tunneling
couplings[33] in the transitions described above. This can be
performed by employing additional characteristics of the at-
oms like a chargee, an electric momentmW e or a magnetic
momentmW m, and external electromagnetic fields. As the ex-
ternal fields can break time reversal symmetry, new terms of
the form hs j

xs j+1
y s j+2

z −s j
ys j+1

x s j+2
z j appear in the effective

Hamiltonian. In particular, the minimal coupling of the atom
with the external field can be given in general by substituting
its momentum by

pW → pW + eAW sxWd + mW m 3 EW sxWd + smW e ·¹W dAW sxWd,

whereEW is the electric field andAW is the vector potential. All
of these terms satisfy the Gauss gauge if we demand that

¹W ·AW =0 andEW srWd~ rW / r3; hence, they can generate a possible
phase factor for the tunneling couplings.

The first term results in the well-known Aharonov-Bohm
effect [34], while the second one is the origin of the
Aharonov-Casher effect[35]. The first one requires that the
atoms involved be charged, which is not possible to achieve
in the optical lattice setup. On the other hand it is plausible to
consider the electric or magnetic moments of the atoms.
Nevertheless, the Aharonov-Casher effect requires that the
magnetic moment of the atom move in the field of a straight
homogeneously charged line, the latter being technologically
difficult to implement, although recent experiments have
been performed that generalize the Aharonov-Casher effect,
partly overcoming the technological obstacles[36]. The third
case involves the cyclic move of an electric moment through
a gradient of a magnetic field finally contributing the phase

f =E
S

smW e ·¹W dBW ·dsW

to the initial state, whereS is the surface enclosed by the
cyclic path of the electric moment. For example, ifmW e is
perpendicular to the surfaceS, taken to lie on thex-y plane,
then a nonzero phasef is produced if there is a nonvanishing
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gradient of the magnetic field along thez direction. Alterna-
tively, if mW e is along the surface plane, then a nonzero phase
is produced if thez component of the magnetic field has a
nonvanishing gradient along the direction ofmW e. Hence, it is
possible to generate a phase factor contribution to the tun-
neling couplingsJ=eif uJu with

f =E
xWi

xWi+1

smW e ·¹W dAW ·dxW .

HerexW i andxW i+1 denote the positions of the lattice sites con-
nected by the tunneling couplingJ.

In order to isolate the new terms that appear in the case of
complex tunneling couplings we should restrict ourselves to
purely imaginary ones—i.e.,Jj

s= ± i uJj
su. Then the effective

Hamiltonian(2.3) becomes

Heff = o
i

fAI + Bsi
z + ts1dsi

zsi+1
z + ts2dssi

xsi+1
x + si

ysi+1
y d

+ ts3dssi
xsi+1

y − si
ysi+1

x d + ts4delmnsi
lsi+1

m si+2
n g, s5.1d

whereelmn with hl ,m,nj=hx,y,zj denotes the total antisym-
metric tensor in three dimensions and summation over the
indices l ,m,n is implied. The couplings appearing in Eq.
(5.1) are given in the bosonic case by

A =
J↑2

U↑↑
+

J↓2

U↓↓
+

J↑2 + J↓2

2U↑↓
, B = 2

J↑2

U↑↑
− 2

J↓2

U↓↓
,

ts1d =
J↑2

U↑↑
+

J↓2

U↓↓
−

J↑2 + J↓2

2U↑↓
, ts2d =

J↑J↓

U↑↓
,

ts3d = i
J↑2J↓

U↑↑
S 1

2U↑↑
+

1

U↑↓
D + s↑ ↔ ↓d,

ts4d = i
J↑2J↓

U↑↑
S 1

2U↑↑
+

1

U↑↓
D − s↑ ↔ ↓d

and in the fermionic case by

A = − ts1d =
J↑2 + J↓2

2U
, B = ts3d = 0,

ts2d = −
J↑J↓

U
, ts4d = i

J↑2J↓ − J↓2J↑

2U2 .

By taking U↑↓→`, U↑↑=−U↓↓=−U, J↑=−J, andJ↓=J, one
can set, in the bosonic case, with the aid of Feshbach reso-
nances and compensating Zeeman terms, all the couplings to
be zero apart fromts4d. Hence, the effective Hamiltonian
reduces to

Heff = ts4do
ki jkl

sW i · sW j 3 sW k, s5.2d

with sW =ssx,sy,szd andts4d= uJu3/U2. Remarkably, with this
physical proposal, the interaction term(5.2) can be isolated,
especially from the Zeeman terms that are predominant in
equivalent solid-state implementations. This interaction term
is also known in the literature as thechirality operator[37].

It breaks time reversal symmetry of the system, a conse-
quence of the externally applied field, by effectively splitting
the degeneracy of the ground state into two orthogonal
sectors—namely, “1” and “2,” related by time reversalT.
These sectors are uniquely described by the eigenstates of
Heff at the sites of one triangle. The lowest-energy sector
with eigenenergyE+=−2Î3ts4d is given by

uC1/2
+ l =

1
Î3

su↑↑↓l + vu↑↓↑l + v2u↓↑↑ld,

uC−1/2
+ l = −

1
Î3

su↓↓↑l + vu↓↑↓l + v2u↑↓↓ld. s5.3d

The excited sectoruC±1/2
− l represents counterpropagation

with eigenvalueE−=2Î3ts4d and it is obtained from Eqs.
(5.3) by complex conjugation[37–39]. We would like to
point out that, to the best of our knowledge, this is the first
physical proposal where this interaction term can be isolated,
especially from the Zeeman terms that are predominant in
equivalent solid-state implementations. Alternative models
employing cold atom technology for the generation of topo-
logically nontrivial ground states are given in[7,40].

VI. ONE- AND TWO-DIMENSIONAL MODELS

It is also possible to employ the three-spin interactions
that we studied extensively in the previous sections for the
construction of extended one- and two-dimensional systems.
The two-dimensional generalization is rather straightforward
as the triangular system we considered is already defined on
the plane. Hence, all the interactions considered so far can be
generalized for the case of a two-dimensional lattice where
the summation runs through all the lattice sites with each site
having six neighbors.

The construction of the one-dimensional model is more
involving. In particular, we now consider a whole chain of
triangles in a zigzag one-dimensional pattern as shown in
Fig. 5. In principle this configuration can extend our model
from the triangle to a chain. Nevertheless, a careful consid-
eration of the two-spin interactions shows that terms of the
form si

zsi+2
z appear in the effective Hamiltonian, due to the

triangular setting(see Fig. 5). Such Hamiltonian terms in-
volving nearest- and next-to-nearest-neighbor interactions
are of interest in their own right[12,13] but will not be
addressed here. It is also possible to introduce a longitudinal
optical lattice with half of the initial wavelength and an ap-

FIG. 5. (Color online) The one-dimensional chain constructed
out of equilateral triangles. Each triangle experiences the three-spin
interactions presented in the previous.
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propriate amplitude such that it cancels exactly those inter-
actions, generating, finally, chains with only neighboring
couplings.

In a similar fashion it is possible to avoid generation of
terms of the formsi

xsi+2
x +si

ysi+2
y by deactivating the longi-

tudinal tunneling coupling in one of the modes—e.g., the↑
mode—which deactivates the corresponding exchange inter-
action.

As we are particularly interested in three-spin interactions
we would like to isolate the chain termoissi

xsi+1
z si+2

x

+si
ysi+1

z si+2
y d from the ls4d term of Hamiltonian(3.1). This

term includes, in addition, all possible triangular permuta-
tions. To achieve that we could deactivate the nonlongitudi-
nal tunneling for one of the two modes—e.g., the one that
traps the↑ atoms. The interactionsi

zsi+1
z si+2

z is homoge-
neous: hence, it does not pose such a problem when it is
extended to the one-dimensional ladder. With the above pro-
cedures we can finally obtain a chain Hamiltonian as in Eq.
(3.1) where the summation runs up to the total numberN of
sites.

VII. CONCLUSIONS

In this paper we presented a variety of different spin in-
teractions that can be generated by a system of ultracold
atoms superposed by optical lattices and initiated in the Mott
insulator phase. In particular, we have been interested in the
simulation and study of various three-spin interactions con-
veniently obtained in a lattice with equilateral triangular
structure. They appear by a perturbation expansion to third
order with respect to the tunneling transitions of the atoms
when the dominant interaction is the collisions of atoms
within the same site. Among the models presented here we
specifically considered thesi

zsi+1
z si+2

z interaction, a third-
order generalization of the rotated inhomogeneousXY
model, as well as interactions that explicitly break chiral
symmetry. These models can exhibit degeneracy in their
ground states and undergo a variety of quantum phase tran-
sitions that can also be viewed as phases of the initial Mott
insulator.

It is possible to employ quantum simulation techniques
[41], in a similar fashion as for two-spin Hamiltonians, to
generate effective three-spin interactions that are not possible
to obtain straightforwardly from the optical lattice system.
Hence, a variety of additional Hamiltonians can be obtained
by considering manipulations of the above three-spin inter-
actions with the application of appropriate instantaneous
one- or two-spin transformations. The possibility to exter-
nally control most of the parameters of the effective Hamil-
tonians at will reenters our model as a unique laboratory to
study the relationship among exotic systems such as chiral
spin systems, fractional quantum Hall systems, or systems
that exhibit high-Tc superconductivity[29,37]. In addition,
suitable applications have been presented within the realm of
quantum computation[30] where three-qubit gates can be
straightforwardly generated from three-spin interactions.
Furthermore, the unique properties related to the criticality
behavior of the chain with three-spin interactions have been
analyzed in[14] where the two-point correlations, used tra-

ditionally to describe the criticality of a chain, seem to fail to
identify long quantum correlations, suitably expressed by
particular entanglement measures[42].

In conclusion, we have presented a physical model that
can efficiently simulate a variety of three-spin interactions.
The employed optical lattice techniques give the possibility
to externally manipulate and control the couplings of the
interactions. The effect of these terms will eventually be sig-
nificant with the improvement of experimental techniques.
Importantly, the three-spin interactions can be isolated from
two-spin ones or from possible Zeeman terms that are always
present in the corresponding spin systems. This makes the
further study of their properties an important task for future
work.
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APPENDIX A: PERTURBATION THEORY

Consider the case of two species of atoms trapped in op-
tical potentials forming a triangular configuration subject to
the Hamiltonian given by Eq.(2.1). For simplicity define the
diagonal free Hamiltonian to be given byHij

s0d=Eidi j , where
Ei is either zero or proportional toUaa, Ubb, or Uab. As we
have already mentioned we consider the case where tunnel-
ing couplings are much smaller than the collisional onesJ
!U. Then the evolution of the system is dominated by the
termHs0d. In fact, when we start from a configuration of one
atom per lattice site, denoted by the subspaceM of configu-
rations, and activate small tunneling couplings, the change of
atom number per site would be energetically unfavorable and
is hence adiabatically eliminated.

To see this analytically we employ the interaction picture
with respect to the HamiltonianHs0d, obtaining

HIij
std = Vij expfisEi − Ejdt/"g. sA1d

The evolution operator in the interaction picture is given by
the time-ordered formula

UIst,0d ; T expF−
i

"
E

0

t

HIst8ddt8G = I −
i

"
E

0

t

HIst8ddt8

−
1

"2E
0

t

dt8E
0

t8
dt9HIst8dHIst9d

+
i

"3E
0

t

dt8E
0

t8
dt9E

0

t9
dt-HIst8dHIst9dHIst-d

+ O„sJtd4
…. sA2d

Higher orders are negligible as long as timest are considered
for which Jt remains sufficiently small, whileUt is large
enough to avoid the accumulation of population outside the
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subspaceM. The latter condition is necessary to exempt fast-
rotating phase factors appearing when performing the above
time integrals. These phase factors are of the formeivt−1
and

lim
t→`

seivt − 1d = lim
t→`

S− 2 sin2 vt

2
+ i sinvtD

= s− v2tp + i2pvddsvd,

which is zero for v~Ei −Ej Þ0. These conditions are in
agreement with the previous demands thatJt be very small
while Ut be relatively large. Hence, we can directly calculate
each term of the expansion(A2) without having to take into
account fast-rotating terms.

The effective HamiltonianHeff that corresponds to this
evolution can be obtained by a term proportional to timet in
the expansion of the evolution operator—i.e.,

UIst,0d = I −
i

"
Hefft + Ost2d.

Consider now the second term on the right-hand side of Eq.
(A2). This term gives no evolution within the subspaceM of
states as the tunneling Hamiltonian termV moves these
states necessarily out of theM configurations. The third term
gives (see[[5]])

sHeff
s2ddab = − o

g

VagVgb

Eg

, sA3d

wherea andb indicate states inM, g indicates states out of
M, and E are the eigenstates ofHs0d, where we have used
Ea=Eb=0. This gives the usual second-order effective
Hamiltonian presented in detail in[5,7]. Consider now three
sites and the effect of the third term in Eq.(A2). Finally, we
obtain the effective Hamiltonian with matrix elements:

sHeff
s3ddab = o

gd

VagVgdVdb

EgEd

. sA4d

With formulas(A3) and(A4) one can perform the pertur-
bation up to third order and find the desired three-spin inter-
actions (2.3). In practice the evaluation of the terms that
contribute to the three-spin Hamiltonian is quite simple. The

states corresponding tog and d include sites with two or
three atoms of the same or of different species. Hence,
Eg ,Ed~Uss8. Next you need to consider the different evolu-
tions of the forma→g→d→b that populations undertake.
The tunneling couplingsJs are determined by each of these
transitions, and an appropriate coefficient is obtained in the
case of the bosonic generation or annihilation of two atoms
of the same species in one site.

APPENDIX B: ADIABATIC ELIMINATION

As an alternative procedure it is possible to eliminate the
fast oscillating term without performing the perturbative ex-
pansion. This elimination is related to the adiabatic elimina-
tion of the states with two or more atoms per lattice site that
are separated from the states with one atom per lattice site
(configurations inM) by a large energy gap proportional to
Uss8. In fact, if we set a decomposition of the three site in
terms of basis states of the formui1j1; i2, j2; i3, j3l where 1, 2,
3 denote the site andik and jk denote the number of atoms of
species↑ and ↓, respectively, in sitek, we can write the
general state of the three sites as

uCstdl = o
ik,jk

cj1j2j3

i1i2i3 stdui1j1; i2, j2; i3, j3l.

By employing the Schrödinger equation we can obtain time-
differential equations of the coefficientscjk

ik of the form

i"ċjk

ik = o
ik8,jk8

Hik8 jk8

ikjk c
jk8
ik8 , sB1d

where Hik8 jk8

ikjk =kcjk
ikuHucjk8

ik8l. It is easy to verify that the ele-

ments ofH with indexessikjkd corresponding to states that do
not belong toM include fast rotating phases and, hence, they
are zero—i.e., for those statesċjk

ik =0. This provides a set of

linear equations of the formoik8,jk8
Hik8 jk8

ikjk c
jk8
ik8 =0, which can be

solved, in principle, explicitly. In our case, Eq.(B1) has
overall 56 equations resulting from the Schrödinger equation
with 48 reduced to a linear system of coupled algebraic equa-
tions. This set can be solved by a computer and then ex-
panded in terms of small couplingsJ!U, obtaining an alter-
native verification of the previous perturbative expansion.
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