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We demonstrate that a triangular optical lattice of two atomic species, bosonic or fermionic, can be em-
ployed to generate a variety of spin-1/2 Hamiltonians. These include effective three-spin interactions resulting
from the possibility of atoms tunneling along two different paths. Such interactions can be employed to
simulate particular one- or two-dimensional physical systems with ground states that possess a rich structure
and undergo a variety of quantum phase transitions. In addition, tunneling can be activated by employing
Raman transitions, thus creating an effective Hamiltonian that does not preserve the number of atoms of each
species. In the presence of external electromagnetic fields, resulting in complex tunneling couplings, we obtain
effective Hamiltonians that break chiral symmetry. The ground states of these Hamiltonians can be used for the
physical implementation of geometrical or topological objects.
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I. INTRODUCTION future technology. The main physical requirement is large

With the development of optical lattice technology-3], ~ collisional couplingsU, which can be obtained experimen-
considerable attention has been focused on the experimen{@lly by Feshbach resonancikb—-17. First theoretica[19]
simulation of a variety of many-particle systems, such asand experimental[20] advances are already promising.
spin chaing4—7]. This provides the possibility to probe and Hence, the time interval needed for those higher-order terms
realize complex quantum models with unique properties ino have a significant effect can be well within the coherence
the laboratory. Such examples, which are of interest in varitimes of the system.
ous areas of physics, are the systems that include many-body several applications spring out from our studies. The sys-
interactions. The latter have been hard to study in the pagematic description of the low-energy Hamiltonian provides
due to the difficulty in controlling them externally and iS0- {he means for the advanced control of the three-spin interac-

lating them from the environmerjB]. To overcome these jons simulated in the lattice. Hence, different physical mod-
problems, techniques have been developed in quantum OPUESs can be realized, with ground states that present a rich

[9-11) which minimize imperfections and impurities in the structure such as multiple degeneracies and a variety of

implementation of the desired structures, thus paving th L _ L
way for the consideration of such “higher-order” phenomena%uantum phase transitioi$2-14. Some of these multispin

of multiparticle interactions. Their applications could be Ofmteractions have been theoretically studie_d in the past_ in the
much interest to cold atom technology as well as to concontext (.)f the hard rod boso[ﬁyzq, using self-duality
densed matter physics and quantum information. symmgtr|es[25,2q Phase transitions between the corre-
In this paper we obtain the interaction terms of bosonic oSPONding ground states have been analy2342§. Subse-
fermionic lattices of two species of atoms, denoted heré by duently, these phases may also be viewed as possible phases
and | (see[4,5,7). These can be two different hyperfine of the initial system—that is, in the Mott insulator, where the
ground states of the same atom coupled via an excited staf€havior of its ground state can be controlled at \2B).
by a Raman transition. The system is brought initially into  The paper is organized as follows. In Sec. II, we present
the Mott insulator phase where the number of atoms at eacthe physical system and the conditions required to obtain
site of the lattice is well defined. By restricting to the case ofthree-body interactions. The effective three-spin Hamilto-
only one atom per site it is possible to characterize the sysnians for the case of bosonic or fermionic species of atoms in
tem by pseudospin-basis states provided by internal grouna system of three sites on a lattice are given in Sec. lll. In
states of the atom. Interactions between atoms in differerSec. IV we study the effect Raman transitions can have on
sites are facilitated by virtual transitions. These are dictatedhe tunneling process and generalized effective Hamiltonians
by the tunneling coupling from one site to its neighbours are presented that do not preserve the number of atoms of
and by collisional couplingd) that take place when two or each species. These are of particular interest for the construc-
more atoms are within the same site. tion of certain geometrical evolutions. In Sec. V complex
In the following we consider the case of weak tunnelingtunnelings are considered and the generation of chiral ground
couplings,J<U, assuring that we are always in the Mott states is presented. In Sec. VI our results are extended toward
insulator regime. Our aim is to construct a perturbative studyhe construction of one-dimensional models and several ap-
of the effective interactions with respect to the small paramyplications are discussed. In Sec. VIl we present an outlook
eterJ/U. Up to the third order this expansion will provide and the conclusions. Finally, in the Appendixes, two alterna-
Hamiltonians that include three-spin interactions. These multive methods are presented for the perturbation theory that
tiparticle interactions can be, in principle, realized with near-results in the three-spin interactions.
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2 ons or bosons satisfying commutation or anticommutation
relations, respectively, given by

T —
[ajmaj 'g’]i - 5“ 4 500" )

[aj(r! aj’u"]i = [a}-g'! a;"a-’]i =0, (22)
where thex sign denotes the anticommutator or the commu-
tator. The operaton;, is the corresponding number operator

FIG. 1. (Color Onling The basic building block for the triangu- @nd :--: denotes normal ordering of the product of the cre-
lar lattice configuration. Three-spin interaction terms appear beation and annihilation operators. The Hamiltonkdf? is the
tween sites 1, 2, and 3. For example, tunneling between 1 and 3 cdawest order in the expansion with respect to the tunneling
happen through two different paths, directly and through site 2. Thénteraction.
latter results in an exchange interaction between 1 and 3 that is Due to the large collisional couplings activated when two

influenced by the state of site 2. or more atoms are present within the same site, the weak
tunneling transitions do not change the average number of
Il. PHYSICAL MODEL atoms per site. This is achieved by adiabatic elimination of

) higher-population states along the evolution leading eventu-
~ Letus cqn3|der a cIoud.of uItra_coId neutral atoms SUPerally to an effective Hamiltoniarisee the AppendixgsThe
imposed with several optical latticegl—7,30. For suffi- |atter allows virtual transitions between these levels, provid-
ciently strong intensities of the laser field this system can_be,aﬂg eventually nontrivial evolutions. As we shall see in the
placed in the Mott insulator phase where the expectation\npendix it is possible to describe the low-energy evolution
value of only one particle per lattice site is energeticallyof the posonic or fermionic system up to the third order in

a_lllowed [3]. We are inter.ested in the particular setup of lat-the tunneling interaction by the effective Hamiltonian
tices that form an equilateral triangular configuration, as

shown in Fig. 1. This allows for the simultaneous superposi- Hog=— > Vay Vs + S VayVysVsg (2.3
tion of the positional wave functions of the atoms belonging eff S E, » EJEs; '
to the three sites. As we shall see in the following this results ] ) )
in the generation of three-spin interactions. The indicesa, B refer to states with one atom per site while
The main contributions to the dynamics of the atoms in¥: J refer to states with two or more atomic populations per
the lattice sites are given by the collisions of the atomsSite, andE, are the eigenvalues of the collisional patt),
within the same site and the tunneling transitions of the atWhile we neglected fast rotating terms effective for long-time
oms between neighboring sites. In particular, the coupling ofntervals. . . _ .
the collisional interaction for atoms in the same site is taken It i instructive to estimate the energy scales involved in
to be very large in magnitude, while it is supposed to vanistpuch a physical system. We would like to have a significant
when it is in different sites. Due to the low temperature oféffect of the three-spin interaction within the decoherence
the system, this term is completely characterized by thdimes of the experimental system, which we can take here to
swave scattering length. Furthermore, the overlap of thd€ of the order of several 10 ms. It is possible to vary the
Wannier wave functions between adjacent sites determindsnneling interactions from zero to some maximum value
the tunneling amplitudd of the atoms from one site to its Which we can take here to be of the ordedéth ~ 1 kHz [2].
neighbors. Here, the relative rate between the tunneling ant® order to have a significant effect from the ted# U?
collisional interaction terms is supposed to be very small—Produced within the decoherence time one should choose
i.e., J<U—so that the state of the system is mainly domi-U/%~10 kHz. This can be achieved experimentally by mov-
nated by the collisional interaction. ing close to a Feshbach resonaft®-18, whereU can take
The Hamiltonian describing the three lattice sites withsSignificantly large values as long as trap losses, attributed to

three atoms of specias={, | } subject to the above inter- three-body collisions or production of molecules, remain
actions is given by negligible. With respect to these parameters we have

(J/U)?~1072, which is within the Mott insulator regime,
H=HO+v, (2.1 while the next order in perturbation theory is an order of
magnitude smaller than the one considered here and hence
negligible. Note, however, that new interaction terms arise
1 only in fifth order in perturbation due to the triangular geom-
HO =22 U,pin iy, etry of the optical lattice. This places the requirements of our
2]00' proposal for detecting the effect of three-spin interactions
within the range of possible experimental values of near-
future technology.

Within the regime of single-atom occupancy per site it is
possible to switch to the pseudospin basis of states of the site
wherea;,, denotes the annihilation operator of atoms of spe§ given by |1)=|n;;=1,n;=0) and ||)=|n;;=0,n; =1).
cieso at sitej. The annihilation operator can describe fermi- Hence, the effective Hamiltonian can be given in terms of

with

V=-2 (Ja, a1, + H.c),
jo
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Pauli matrices acting on states expressed in the pseudospin J].T2+ JJT+22 JINL 1 9

basis. The symmetries of the initial Hamiltonikhrestrict to Bj=- U U (U_ + F) (1<,

a large degree the form of the low-energy expansion. For i moAE 1

example, conservation of the atom number of each species

corresponds, in the spin basis, to conservation of the otal D = _JTJTJT<
- 2Y3

9 1 1 ) TZ( 1 1 )
2 T o2 T
207, 207 UpUp/ o AUy 2Uy

spin. Hence, any rotation on they-spin plane leaves the i 1
Hamiltonian invariant. This fact limits the possible spin op-
erators that can contribute to the effective low-energy inter- +(T <),
actions. Possible terms of the effective Hamiltonian are
given by {g]} for the one-body interactiolo}o?,,,0j07,y 3 1 1 BRI
+aYol,,}  for the  two-body interaction,  or AI(z):—JJ—leTﬂJLz( S0 o0z Y uu )‘ 2lJJ]
{0707,10710, (0701 + 0) o), y) 0,5} for the three-body interac- 1l o P 1l
tions whereo, =0 (see Fig. 1 As we can easily verify, the +(T <),
three-spin operators break parity symmetry, which is explic-
itly given by the transformatiori - |. This indicates that Jall/ 3 1
their coupling coefficient should also be asymmetric with )\(3):_&(_ _ _> -1 ),
respect to this transformation, as the original atomic system Up \2Up Uy
possesses this symmetry. Indeed, in the next section we shall
see how these terms are generated in the optical lattice setup. 3303 1 1

Another important insight for the ground states of the pre- AW =— _J_Jiﬁ_z(_ + _) -1<1]), 32
sented Hamiltonians comes from the geometry of the lattice. J Uiy 22Uy Uy

In the case considered here, the triangular pattern allows for )
the generation of exotic ground states due to frustration—where the symbolf < |) denotes the repeating of the same
that is, ground states that are not minimizing the energy ofefm as on its left, but with th¢ and | indices interchanged.
the individual Hamiltonians of each link of the triangle. This The A term contributes to an overall phase factor in the time
effectively allows for the presence of multiple degeneracy inevolution of the system and can be ignored. Bherm can
the ground state of the system as we shall see in particul@asily be eliminated and an arbitrary magnetic field term of
examples. the formZ;B- ¢ can be added by applying a Raman transition
with the appropriate laser fields. The behavior of the effec-
tive couplings as functions of the tunneling and collisional
Ill. EFFECTIVE THREE-SPIN INTERACTIONS couplings is given in Fig. 2.
A. Bosonic model One can isolate different parts of Hamiltonigh1), each
) ) _ one including a three-spin interaction term, by varying the
Consider the low-energy evolution of the triangular sys-y,nneling and/or the collisional couplings appropriately so

tem given in Fig. 1 of three atoms in three sites of the latticg 4t particular terms in Eq3.1) vanish, while others are
without the application of any external field. Different rate_sfreely varied. An example of this can be seen in Fig. 3 where

in the tun_n_eling parameter_ can then be a_chieved by_ tuninghq couplings\® and\® are depicted. There, for the special
the intensities of th_e laser field corre_spondlng to the ‘_j'ﬁerenEhoice of the collisional termd);;=U;=2.12J, , the NEY
directions of the triangle. By applying the perturbative ex-cqpjing is kept to zero for a wide range of tunneling cou-
pansion(2.3) up to third order we obtain that the system Canplings, while the three-spin coupling® can take any arbi-

effectively be described by trary value. One can also suppress the exchange interactions

3 by keeping one of the two tunneling couplings zero without
Her = >, [Al+Bjof + )\J(l)afa*jﬂl + )\1(2>(0Jj‘0)j<+1 + Yo,y affecting the freedom in obtaining arbitrary positive or nega-

i1 tive values forA® as seen in Fig. 3.

Hence, the one-dimensional Hamiltonian of the form
N ofot 10t + NP (00t o} ofnalo)],
3. H(B,,B,) = - 2 (on)j( + BZ(T]-Z+ O'jza'jz+10'jz+2)
i

whereoj“ is the a Pauli matrix with the usual commutation

i v =i "0 S, g -spin i i
properhes[aj o]=2e Oy’ The three-spin mteractmns' can be simulated in the optical lattice where all of its cou-

presented in the last line can be viewed as the two-spin in- . L : ' i
teractions of the second line controlled by the third spi plings can be arbitrarily and independently varied. The three

. . o spin interaction term of this Hamiltonian possesses fourfold
ing spin up or dowhthrough an additionad operator. The degeneracy in its ground state, spanned by the states
couplings,A, B, and\") are given as expansions #i/U,,, ’

TTINTLINLTINLLTY. The criticality behavior of this

by model has been extensively studied in the pgkt,2§g,
3 1 1 1 1 where it is shown to present first and second order phase
A= —J}J;Jg( oU2 + o2 + U..U ) _ij(U_ F) transitions. In particular, foB,=0 its self-dual character can
1 T EnE 1 M be demonstratef?5,2§. To explicitly show that let us define
+(T <), the dual operators
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FIG. 2. (Color onling The effective couplings
@AY, (b) A?, (c) \®, and(d) A¥ as functions
of the tunneling couplingg'/U andJ!/U, where
we have set the tunneling couplings to Bg
=J7=J3 and the collisional couplings to bé;;
=U; =U| =U. All the parameters are normalized
with respect taJ.

* verified numerically. Furthermore, the two-spin interaction
7 = 07001005 01 =[] ol g0t g1, ojof,, has a degeneracy with &, symmetry while
k=0 070},107,, has a threefold degeneracy leading t@zasym-
which also satisfy the usual Pauli spin algebra. We can reexetry. By varying the corresponding couplings of the effec-

press the Hamiltoniai(B,,0) with respect to the dual op- tive Hamiltonian it is possible to induce transitions to and
erators, obtaining finally from the Z,- and Z;-ordered phases in a similar fashion as

has been theoretically demonstrate .
H(BX10) = BXH(B;IIO) y qm]

This equation of self-duality indicates that if there is one B. Fermionic model
critical point, then it should be dB,/=1 as has also been

Alternatively, one can consider the case of fermionic at-
oms and derive the effective interactions they induce up to
third order. Compared to the couplings in the bosonic case
we now havel; =U being the only one that is present. The
Pauli exclusion principle can be signaled by havidg;,
U,,—2 which eventually forbids two fermionic atoms of
the same species from occupying the same site. Keeping
terms up to third order irjj’/U and employing the anticom-
mutation relationg2.2) we obtain the effective Hamiltonian

0.1

005

3
Hen= 2 [17(1 - ofof.) + w0 - oo + wf? (oo
=1

+ofol) + 1 (ofofnoliy * ofofiol.l)],

-0.1
J ) where the effective couplings are a function of the initial
: . T =y variables of the Hamiltonia2.1) and
J@/U : 08 ~ o8 J&m
1 1
FIG. 3. (Color onling The effective couplinga® and\® are wt =~ E(JJTZ +32), pu? = UJjTJ,-l,

plotted againstt’/U and J'/U for U;;=U;;=2.12) andU; =U.
The coupling\Y) appears almost constant and zero as the unequal
collisional terms can create a plateau area for a small range of 1
. . . (3) . e
tunne!lng couplings, while.'® can be varied freely to positive or M(a) -— _2(\]1\];]%_\]%\]%\]%),
negative values. 2U
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FIG. 4. (Color onling The effective couplings
@ wb, (b) 2, (c) @, and(d) u® as func-
tions of the tunneling couplingd'/U and J'/U,
where we have set the tunneling couplings to be
J7=35=33.

@_ 3 Lal At sitions. These transition; con;ist of four paire_d laser beams
M= 2_U2(‘]j ‘]j+1‘Jj+2_ Jj ‘]j+1‘]j+2)' L., L, andLy, L5, each pair having a blue detunidgandA’,
different for the two different transitions. The phases and
The dependence of the coupling terms on the parameters amplitudes of the laser beams can be properly tuned so that
the initial Hamiltonian is simpler than in the bosonic case.the first Raman transition allows the tunneling of the state
IS\I:evr?ri'[nh?:I%s.s‘i.they can express a similar behavior as can been | +) = (cos)|a) + (sin B)e”%|b),

If the tunneling constants do not depend on the pseuwith tunneling ratel, between two neighboring sites, while
dospin orientation, then any three-spin interaction vanisheshe second one activates the tunneling of the state
Nevertheless, when the tunneling amplitudes depend on the o i
spin and by having just one of the orientation with nonzero |-) = (sin §)|a) - (cosH)e™'’|b),

tunneling, then just the diagonal two- and three-spin interacby an additional phase difference nfbetween the lasets,,

tions remain. L}, with an effective tunneling rat . In the above equations
¢ denotes the phase difference between lthéaser field,
IV. RAMAN-ACTIVATED TUNNELINGS while tand=|Q,/Q,|, where(); are their corresponding Rabi

frequencies. Hence, the effective tunneling term is given by
A number of variations of the previous Hamiltonians are
possible by employing techniques available from quantum Vc:_z (J.cehy + I e, + Hee),
optics[4,7]. An interesting example involves the application !
of Raman transitions during the tunneling process. Thesghere the tunneling couplingd, and J_ are given by the
transitions involve the direct coupling of the two atomic potential barrier of the initial optical lattice superposed by
states] and|. Consequently they are not atom-number pre—the potential reduction due to the Raman transitions. In ad-

serving for each of the species. dition, the creation and annihilation operators are given as an
SU (2) rotation of the initial ones—i.e.,
A. General case o (ai )
Let us first consider the case where the atoms are strongly c =9(6.0) b/’

trapped by an optical lattice as in the previous sections. If the . )
lasers producing the Raman transition are forming standin¥/ith the unitary SW@2) matrix
waves, it is possible to activate tunneling transitions of atoms cosf €?sing
that simultaneously experience a change in their internal a(¢, 6’):( . i )
. . . . sin® —€?cosd

state. As we shall see in the following the resulting Hamil-
tonian is given by an S{2) rotation applied to each Pauli Hence, the resulting tunneling Hamiltonian can be obtained
matrix of the Hamiltonian(3.2). from the initial one via an SY2) rotationV,=gVg', where

In particular, we shall consider the case of activating thethe corresponding tunneling couplings are formally
tunneling with the application of two individual Raman tran- identified—i.e.,J*=J" and J"=J!. Note that the collisional
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Hamiltonian is not affected by the Raman transitions, and' andJ' tunnelings we can obtain the rotated version of the

hence it is not transformed undgirotations.

anisotropicXY model, where the rotation is performed with

It is easy to derive the effective Hamiltonian for this respect to the-spin axis by an anglé. This approach pro-
transformation using the perturbative expansion. Indeedyides a variety of control parametes.g., the anglep and

from expressiongA3) and(A4) of the Appendix we straight-

the ratio of the couplings of the two added Hamiltonijans

forwardly obtain the second- and third-order terms of theand, in addition, one can have these variables independent

Hamiltonianﬁeﬁ that appear after application of the Raman for eac.h of the .three dire;tions of the two-dimensional opti-
transition. They are given by an S@) rotation that acts on cal lattice. Particular settings of these structures have been
the Pauli matrices of the initial effective Hamiltonian. Actu- Proven to generate topological phenomdis which sup-

ally this statement holds in all orders of the perturbationPOrt €xotic anyonic excitations, useful for the construction of

theory and reads, in its generality,

HD (b, 0) = g( ¢, OHSG (4, 6),

topological memorieg31]. In addition, the possibility of
varying arbitrarily the control parameters of the above
Hamiltonians and, consequently, of their ground states gives
us a natural setup to study such phenomena as geometrical

wheren is the order of the perturbation. Note that this usefulyhases in lattice systems. Examples will be presented else-

result holds not only for theb rotations, but also for thé

rotations, which, in general, do not commute with the colli-

sional HamiltonianH©,

B. Rotated anisotropic XY model

where[32].

V. COMPLEX TUNNELING AND TOPOLOGICAL
EFFECTS

We now show that the above-presented Raman transitions Consider the case where we employ complex tunneling

can be employed to obtain, for example, the anisotréfic

couplings[33] in the transitions described above. This can be

model. The direction of anisotropy is determined by theperformed by employing additional characteristics of the at-
phase difference of the laser fields employed for the Ramaoms like a charges, an electric momenfi, or a magnetic

transition. In particular consider, as in the previous, threanomentu,, and external electromagnetic fields. As the ex-
sites of the optical lattice in a equilateral triangular configu-ternal fields can break time reversal symmetry, new terms of

ration. For simplicity we assumé,=J_=J and U;;=U

the form {o}'a?,,07,,—0)0f,107,,t appear in the effective

=U; =U. Then the effective Hamiltonian to the third order Hamiltonian. In particular, the minimal coupling of the atom

becomes the rotation

Heii(¢, 712) = 9($)Hea (),

where g(¢)=g(¢, #=0) is a z-axis rotation and:|eﬁ is the
0=/ 2 rotated effective Hamiltonian around thexis given
by

4.7

3

F'eff =2 (Al+Bo} + 1Y ofal, + VP00l 0%,
i=1

with
372 B F 1138
A=--—-3—, B=-2—-"—,
2U U Uu 2U
2 3 3
o I g 18
2U TU¥ 6 U?

These effective couplings agree with the ones presented
Egs. (3.2. Moreover, by controlling the amplitude of the
initial standing waves that trap the atoms in their equilibrium

positions it is possible to reactivate the tunnelidgandJ'.

This has the effect that the overall Hamiltonian is the sum o

the two Hamiltonians, the rotated orié.1) and the initial
one(3.1).
One can now check that the Hamiltonigtl) is invariant

with the external field can be given in general by substituting
its momentum by

B— P+ eAR) + fim X E() + (fie- VIAX),

whereE is the electric field and\ is the vector potential. All

of these terms satisfy the Gauss gauge if we demand that
V-A=0 andE(F) «f/r3, hence, they can generate a possible
phase factor for the tunneling couplings.

The first term results in the well-known Aharonov-Bohm
effect [34], while the second one is the origin of the
Aharonov-Casher effedB5]. The first one requires that the
atoms involved be charged, which is not possible to achieve
in the optical lattice setup. On the other hand it is plausible to
consider the electric or magnetic moments of the atoms.
Nevertheless, the Aharonov-Casher effect requires that the
magnetic moment of the atom move in the field of a straight
homogeneously charged line, the latter being technologically
I4|*j]ifficult to implement, although recent experiments have
been performed that generalize the Aharonov-Casher effect,
partly overcoming the technological obstad@8]. The third
case involves the cyclic move of an electric moment through

A gradient of a magnetic field finally contributing the phase

¢:f<ﬂe-€)é-d§
S

underg(¢) rotations. On the other hand, when we add theyg the initial state, wheré is the surface enclosed by the

Hamiltoniansﬁeﬁ and the one from Eq.3.1) we obtain the
generalized version of the anisotrop{& model where addi-

cyclic path of the electric moment. For example,if is
perpendicular to the surfac® taken to lie on the-y plane,

tional third-order terms are present. Hence, by turning on théhen a nonzero phasgis produced if there is a nonvanishing
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gradient of the magnetic field along taelirection. Alterna- 2 4 6
tively, if u. is along the surface plane, then a nonzero phase
is produced if thez component of the magnetic field has a

nonvanishing gradient along the directiongf Hence, it is e
possible to generate a phase factor contribution to the tun
. . - ¢ .
neling couplingsl=¢€'¢|J| with 1 3 5 .
X
¢:J i (ﬁeﬁ),&.d;(_ FIG. 5. (Color onling The one-dimensional chain constructed
%; out of equilateral triangles. Each triangle experiences the three-spin

- - . . . interactions presented in the previous.
HereXx; andx;,; denote the positions of the lattice sites con-

nected by the tunneling coupling breaks ti | f1h
In order to isolate the new terms that appear in the case df Préaks time reversal symmetry of the system, a conse-

complex tunneling couplings we should restrict ourselves tgluence of the externally applied field, by effectively splitting
purely imaginary ones—i.er’:ii|J§’|. Then the effective the degeneracy of the ground state into two orthogonal

Hamiltonian(2.3) becomes sectors—namely, +” apd = relat.ed by time reyersaT.
@3 These sectors are uniquely described by the eigenstates of
Heit = >, [Al + Bo? + #V0%0%, + 72 (o%0%, 1 + oYY,y Her at the sites of one triangle. The lowest-energy sector
i

with eigenenergyE, =-2,/37#4 is given by
+ 7'(3)(0{(0'iy+1 - Uiyo-ﬁ]_) + 7'(4)Elmn0-=o-ir210-?+2]r (51)

where €, with {I,m,n}={x,y,z} denotes the total antisym-
metric tensor in three dimensions and summation over the

1
W1 = E(lm +o[T[ 1)+ &?[11),

indices|,m,n is implied. The couplings appearing in Eq. . 1 5
(5.1) are given in the bosonic case by (Wl =- E(MT) +o[[T)+o?T]]). (5.3
2 g2 gr24 g2 12 12 . _ .
A= I + sl + o+ , = 2‘]_ - 2‘]_’ The excited sectofWy;,,) represents counterpropagation
Uy Uy 20y Uy Uy with eigenvalueE_=2/37¥ and it is obtained from Egs.

5 ) ) (5.3) by complex conjugatiorf37—-39. We would like to

D= Jiz . Jz P+ 2= J3 point out that, to the best of our knowledge, this is the first

- Uy Uy 2U,, ! B Uy, ! physical proposal where this interaction term can be isolated,

especially from the Zeeman terms that are predominant in

a3 1 equivalent solid-state implementations. Alternative models
= i—<— + —> +(T <), employing cold atom technology for the generation of topo-
U A2Up Uy logically nontrivial ground states are given [i,40].
123l
7_(4):i‘] J (i_,_i) -1
U 2Uﬁ UTL VI. ONE- AND TWO-DIMENSIONAL MODELS
and in the fermionic case by It is also possible to employ the three-spin interactions
Ji24 312 that we studied extensively in the previous sections for the
A=-AV=""_ B=/=0, construction of extended one- and two-dimensional systems.
2u The two-dimensional generalization is rather straightforward
as the triangular system we considered is already defined on
2= Jig o2 J12y -2y the plane. Hence, all the interactions considered so far can be
- : o0 generalized for the case of a two-dimensional lattice where

the summation runs through all the lattice sites with each site
By taking Uy —, U;;=-U; =-U, J'=-J, andJ'=J, one  having six neighbors.
can set, in the bosonic case, with the aid of Feshbach reso- The construction of the one-dimensional model is more
nances and compensating Zeeman terms, all the couplings fvolving. In particular, we now consider a whole chain of
be zero apart fronv'?. Hence, the effective Hamiltonian triangles in a zigzag one-dimensional pattern as shown in
reduces to Fig. 5. In principle this configuration can extend our model
Ho= 29 6 -6, X 5.2 from the triangle to a chain. Nevertheless, a careful consid-
eff = & 01 0j 2 Ok . eration of the two-spin interactions shows that terms of the
form ofof,, appear in the effective Hamiltonian, due to the
with =(c*,0¥,0% and 7¥=|J]3/U2 Remarkably, with this triangular setting(see Fig. 5. Such Hamiltonian terms in-
physical proposal, the interaction teii%.2) can be isolated, volving nearest- and next-to-nearest-neighbor interactions
especially from the Zeeman terms that are predominant iare of interest in their own righf12,13 but will not be
equivalent solid-state implementations. This interaction ternaddressed here. It is also possible to introduce a longitudinal
is also known in the literature as tlehirality operator[37]. optical lattice with half of the initial wavelength and an ap-
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propriate amplitude such that it cancels exactly those interditionally to describe the criticality of a chain, seem to fail to
actions, generating, finally, chains with only neighboringidentify long quantum correlations, suitably expressed by
couplings. particular entanglement measufég).

In a similar fashion it is possible to avoid generation of In conclusion, we have presented a physical model that
terms of the formo]'o),,+07d},, by deactivating the longi- can efficiently simulate a variety of three-spin interactions.
tudinal tunneling coupling in one of the modes—e.g., the The employed optical lattice techniques give the possibility
mode—which deactivates the corresponding exchange intete externally manipulate and control the couplings of the
action. interactions. The effect of these terms will eventually be sig-

As we are particularly interested in three-spin interactionsnificant with the improvement of experimental techniques.
we would like to isolate the chain ternX;(c)o?, 07, Importantly, the three-spin interactions can be isolated from
+0Y0?,,07,,) from the \ term of Hamiltonian(3.1). This  two-spin ones or from possible Zeeman terms that are always
term includes, in addition, all possible triangular permuta-present in the corresponding spin systems. This makes the
tions. To achieve that we could deactivate the nonlongitudifurther study of their properties an important task for future
nal tunneling for one of the two modes—e.g., the one thatvork.
traps thel atoms. The interactiow’o?,,07,, is homoge-
neous: hence, it does not pose such a problem when it is ACKNOWLEDGMENTS
extended to the one-dimensional ladder. With the above pro- S .
cedures we can finally obtain a chain Hamiltonian as in Eq. Ve thank Derek Lee for inspiring conversations and Al-

(3.1) where the summation runs up to the total numikiesf mut Beige, Alastair Kay, and Martin Plenio for a critical
sifes. reading of the manuscript. This work was supported by the

Royal Society and by Spanish Grant No. MECD AP2001-
1676. E.R. thanks the QI group at DAMTP for their hospi-
VII. CONCLUSIONS tality, where part of this work was done.

In this paper we presented a variety of different spin in-
teractions that can be generated by a system of ultracold APPENDIX A: PERTURBATION THEORY

atoms superposed by optical lattices and initiated in the Mott Consider the case of two species of atoms trapped in op-

insulator phase. In particular, we have been interested in thg.5 hotentials forming a triangular configuration subject to

simglation andi study of varic_)us three-spir_1 interacti.ons CONthe Hamiltonian given by Eq2.1). For simplicity define the
veniently obtained in a lattice with equilateral trlangularg

X . " giagonal free Hamiltonian to be given bY” =E;s:, where
structure. They appear by a perturbation expansion to thir 'ag ront gv W” 1%, W

. ) " . is either zero or proportional to,,, Ugp, or Uy, As we
order with respect to_the tun_nellr_19 transitions of the atom ave already mentioned we consider the case where tunnel-
when the dominant interaction is the collisions of atoms.

ithin th ite. A th del ted h ing couplings are much smaller than the collisional odes
within the same site. Among the models presented NEre We \; e the evolution of the system is dominated by the
specifically considered thefo?, 07,, interaction, a third-

o - termH©. In fact, when we start from a configuration of one
order generalization of the rotated inhomogeneoXg g

) . - . atom per lattice site, denoted by the subspiicef configu-
model, as well as interactions that explicitly break Ch'ral_rations, and activate small tunneling couplings, the change of

symmetry. These models can e.xh|b|t degeneracy in the'E\tom number per site would be energetically unfavorable and
ground states and undergo a variety of quantum phase traf- hence adiabatically eliminated

sitions that can also be viewed as phases of the initial Mot To see this analytically we employ the interaction picture

insulator. . . . with respect to the HamiltoniaH®, obtaining
It is possible to employ quantum simulation techniques
[41], in a similar fashion as for two-spin Hamiltonians, to Hlij(t) =V;; exdi(E - E)th]. (A1)

generate effective three-spin interactions that are not possible

to obtain straightforwardly from the optical lattice system. The evolution operator in the interaction picture is given by
Hence, a variety of additional Hamiltonians can be obtainedhe time-ordered formula

by considering manipulations of the above three-spin inter- it it

actions with the application of appropriate instantaneous (t,0)=T exp[— —f H,(t’)dt’] =] - —f H,(t")dt’

one- or two-spin transformations. The possibility to exter- hl)o hJo

nally control most of the parameters of the effective Hamil- 1t v

tonians at will reenters our model as a unique laboratory to - —zf dt'J dt’H, (t)H,(t")

study the relationship among exotic systems such as chiral h=Jo 0

spin systems, fractional quantum Hall systems, or systems Pt v o

that exhibit highT; superconductivity[29,37. In addition, +—3f dt'J dt"f dt”H,(t")H,(t")H, (")
suitable applications have been presented within the realm of n*Jo 0 0

guantum computatiofi30] where three-qubit gates can be + O3t (A2)
straightforwardly generated from three-spin interactions. '

Furthermore, the unique properties related to the criticalityHigher orders are negligible as long as timese considered
behavior of the chain with three-spin interactions have beeifor which Jt remains sufficiently small, whil&Jt is large
analyzed in[14] where the two-point correlations, used tra- enough to avoid the accumulation of population outside the
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subspacéVl. The latter condition is necessary to exempt fast-states corresponding te and ¢ include sites with two or
rotating phase factors appearing when performing the abowviree atoms of the same or of different species. Hence,
time integrals. These phase factors are of the fetth-1 E,.Es<U,,. . Next you need to consider the different evolu-

and tions of the forma— y— §— B that populations undertake.
The tunneling couplingg” are determined by each of these
lim(e“t-1) = Iim<— 2 sir? ot +isin wt) transitions, and an appropriate coefficient is obtained in the
o t—o0 2 case of the bosonic generation or annihilation of two atoms
= (- W27 +i270) Sw), of the same species in one site.
which is zero forw«E;—-E;# 0. These conditions are in APPENDIX B: ADIABATIC ELIMINATION

agreement with the previous demands thiabe very small
while Ut be relatively large. Hence, we can directly calculate
each term of the expansi@A2) without having to take into
account fast-rotating terms.

The effective HamiltoniarHg that corresponds to this
evolution can be obtained by a term proportional to tinme
the expansion of the evolution operator—i.e.,

As an alternative procedure it is possible to eliminate the
fast oscillating term without performing the perturbative ex-
pansion. This elimination is related to the adiabatic elimina-
tion of the states with two or more atoms per lattice site that
are separated from the states with one atom per lattice site
(configurations inM) by a large energy gap proportional to
U, . In fact, if we set a decomposition of the three site in

i 5 terms of basis states of the folligj;i,,j,;is,j3) Where 1, 2,
U(t,00=1- 7 Hert + O(t9). 3 denote the site arig andj, denote the number of atoms of
speciesT and |, respectively, in sit&k, we can write the
Consider now the second term on the right-hand side of Ecqgeneral state of the three sites as
(A2). This term gives no evolution within the subspadeof
states as the tunneling Hamiltonian teivh moves these (1) = 2 Gl PHP PN S
states necessarily out of tihé configurations. The third term
gives(see[[5]]) By employing the Schrddmger equation we can obtain time-
v differential equations of the coefficiem:ﬁ of the form
2 —u’f (A3)
a |ﬁc'k— > H:E‘,]kk,c'k (B1)
wherea and B indicate states iV, y indicates states out of ik :
M, and E are the eigenstates &f®, where we have used whe eH.kjk —<c'k|H|c"<) It is easy to verify that the ele-

E,=Ez=0. This gives the usual second-order effective’”
Hamiltonian presented in detail [%,7]. Consider now three Ments 0“" W'th mdexes(lkj ¥ corresponding to states that do

sites and the effect of the third term in Hé2). Finally, we  Not belong taM include fast rotating phases and, hence, they

(Heff aB_

obtain the effective Hamiltonian with matrix elements: are zero—i.e., for those statefs=0. This provides a set of
VYA linear equations of the form; | rH:ffk,c"‘—O which can be
(Heap= 2~ 22, (A4) in orinci i
eff/ap = = EEs solved, in principle, epr|C|tIy In our case, EgB1l) has

overall 56 equations resulting from the Schrédinger equation

With formulas(A3) and(A4) one can perform the pertur- with 48 reduced to a linear system of coupled algebraic equa-

bation up to third order and find the desired three-spin intertions. This set can be solved by a computer and then ex-
actions (2.3). In practice the evaluation of the terms that panded in terms of small couplings< U, obtaining an alter-
contribute to the three-spin Hamiltonian is quite simple. Thenative verification of the previous perturbative expansion.
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