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We calculate the effect of the interaction between an optically active material and a Bose-Einstein conden-
sate on the collective oscillations of the condensate. We provide explicit expressions for the frequency shift of
the center-of-mass oscillation in terms of the potential generated by the substrate and of the density profile of
the gas. The form of the potential is discussed in detail and various regimes(van der Waals–London, Casimir-
Polder, and thermal regimes) are identified as a function of the distance of atoms from the surface. Numerical
results for the frequency shifts are given for the case of a sapphire dielectric substrate interacting with a
harmonically trapped condensate of87Rb atoms. We find that at distances of 4–8mm, where thermal effects
become visible, the relative frequency shifts produced by the substrate are of the order 10−4 and hence
accessible experimentally. The effects of nonlinearities due to the finite amplitude of the oscillation are explic-
itly discussed. Predictions are also given for the radial breathing mode.
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I. INTRODUCTION

The study of the force felt by an atom near a surface has
recently become a popular subject of research(see, for ex-
ample, [1,2] and references therein) both in view of nano-
technological applications[3] and because of the possibility
of investigating fundamental forces at the submicron scale
[4]. These studies extend previous investigations of the gen-
eralized van der Waals forces between macroscopic bodies
[5] to more microscopic systems. Experiments with Bose-
Einstein condensates near a surface[6–8] are very promising
in this respect because of the high accuracy of the measure-
ments achievable with ultracold gases.

Historically the interatomic forces were first introduced in
1873 by van der Waals in order to explain the deviations of
the thermodynamic behavior of real gases from the ideal
laws. Only in 1930 did London[9] provide a first quantita-
tive description of the force. He applied second-order pertur-
bation theory to the quantum Hamiltonian to evaluate the
electrostatic interaction between two dipoles, induced by the
fluctuation of the electromagnetic field. He succeeded in de-
riving the most famous power law 1/d6, usually known as
the van der Waals–London interaction, whered is the inter-
atomic distance. Almost 20 years later, in 1948, Casimir and
Polder [10], taking into account relativistic retardation ef-
fects within fourth-order perturbation theory, found that, at
large distances, the potential decays like 1/d7 rather than like
1/d6.

The existence of these attractive forces between neutral
atoms gives rise to analogous forces between a single atom
and a dielectric or a metallic wall, as well as to forces be-
tween macroscopic bodies separated by small distances[11].
Between the end of the 1950s and the beginning of the 1960s

Lifshitz developed the general theory of the van der Waals
forces[12,13] for inhomogeneous media, taking into account
the quantum fluctuations of the electromagnetic field and
their perturbation produced by the media. The theory de-
scribes the interaction between continuous media in terms of
their dielectric functions and of the temperature. The van der
Waals–London and Casimir-Polder forces are recovered as
limiting cases of the more general theory, which also ac-
counts for the effects induced by the thermal fluctuations of
the electromagnetic field. Thermal effects provide the
asymptotic behavior of the interaction at distances much
larger than the thermal wavelength of photons.

The purpose of the present work is to show that the study
of the collective oscillations of a Bose-Einstein condensate
of ultracold atoms can provide a useful probe of such forces.
Bose-Einstein condensates are very dilute samples and con-
sequently the force produced by the surface can be safely
calculated starting from the interaction felt by the individual
atoms in the condensate[11]. In this paper we will be mainly
concerned with the center-of-mass oscillation of a conden-
sate confined by a harmonic trap. The center-of-mass motion
has the main advantage of being independent of two-body
interactions and its frequency consequently provides an ideal
probe of the additional force generated by the wall. The ef-
fect of the force on the frequency of the center-of-mass os-
cillation depends on the distance of the condensate from the
surface and on the temperature of the surface as well as on
the optical properties of the surface and of the atoms in the
condensate. The effect also depends on the thickness of the
condensate which in actual configurations can be of the same
order as the distance from the wall. In some limiting cases,
corresponding to short and large distances, it is possible to
obtain analytic or semianalytic predictions that will be dis-
cussed systematically in our paper. They can serve as a natu-
ral guide for first quantitative estimates and as useful tests of
more complete numerical approaches.*Electronic address: antezza@science.unitn.it
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The paper is organized as follows.
In Sec. II we derive some general results for the shift of

the collective frequencies of a harmonically trapped Bose-
Einstein condensate subject to an additional weak external
force.

In Sec. III we employ Lifshitz theory to calculate the
force acting on a dilute atomic gas placed near a surface.

In Sec. IV we discuss the transition from the van der
Waals–London potential, holding at very short distances
from the surface and decaying like 1/d3, to the Casimir-
Polder potential which accounts for relativistic retardation
effects and holds at larger distances where it decays like
1/d4.

In Sec. V we discuss the transition from the 1/d4 law
characterizing the Casimir-Polder potential to the behavior of
the potential at much larger distances from the surface(larger
than the thermal wavelength of photons) where it decays like
1/d3 as a consequence of the thermal fluctuations of the elec-
tromagnetic field.

In Sec. VI we discuss the role of the optical properties of
the interacting media with specific emphasis to the case of
the dielectric sapphiresAl2O3d substrate and of the rubidium
atoms which form the condensate.

In Sec. VII we provide results for the shifts of the collec-
tive frequencies as a function of the distance of the conden-
sate from the surface, calculated at different temperatures.

Finally, in the Appendix we provide results for the fre-
quency shift of the radial compression mode in very elon-
gated harmonic traps.

II. CENTER-OF-MASS OSCILLATION OF A TRAPPED
GAS IN THE PRESENCE OF A WEAK

PERTURBATION

After the first experimental realization of Bose-Einstein
condensation in dilute vapors of alkali atoms the experimen-
tal and theoretical research in the field of ultacold quantum
gases has grown in an impressive way(for general reviews
see, for example,[14–17]). Bose-Einstein-condensed gases
are dilute, ultracold samples characterized by unique proper-
ties of coherence and superfluidity. They give rise, among
others, to interference phenomena[18,19] as well as to a
variety of collective oscillations[20–22]. The relatively high
density of Bose-Einstein-condensed samples(compared to
the one of noncondensed trapped gases), as well as the pos-
sibility of imaging the atomic cloud after expansion, where
the measured sizes become macroscopically large, permit
one to achieve very accurate determinations of the frequen-
cies of the collective oscillations, thereby providing interest-
ing opportunities for precision measurements.

In this section we will calculate the effect of a weak per-
turbation on the center-of-mass oscillation of a harmonically
trapped gas. The frequency of this oscillation, in the absence
of the perturbation, coincides with the frequency of the trap.
This result, also known as the Kohn theorem[23], is inde-
pendent of the amplitude of the oscillation, interatomic
forces, and temperature as well as of the quantum nature of
the sample. Deviations of the measured frequency from the
oscillator value can then be used as a useful probe of addi-

tional interactions, like the one generated by the surface. In
Fig. 1 we show a schematic representation of the geometry
considered in the present work. A dilute gas trapped by the
harmonic potential

Vhosr d =
m

2
vx

2x2 +
m

2
vy

2y2 +
m

2
vz

2z2 s1d

is placed close to an ideal wall generating a potentialVsurfszd
so that the full potential felt by each atom is given by

Vsr d = Vhosr d + Vsurfszd. s2d

In the following we will calculate the changes in the fre-
quency of the center-of-mass oscillation along thezth direc-
tion caused by the presence of the surface. In the Appendix
we provide results also for the radial breathing mode in the
case of very elongated axisymmetric trapssvy!vx=vzd.

The equations for the center-of-mass(c.m.) coordinate
Zc.m.=s1/Ndkoi=1

N zil and the total momentumPz=koi=1
N pzi

l
along thezth direction (N is the number of atoms of the
trapped gas) can be written in the general form

dZc.m.

dt
=

Pz

Nm
s3d

and

1

N

dPz

dt
= −

1

NKo
i=1

N

]zi
Vsr idL

= − mvz
2Zc.m.−E nsr ,td]zVsurfszddr , s4d

where we have used expression(1) for Vho and we have
expressed the average of the external force]zVsurf in terms of
the densityn of the gas here assumed to be normalized to
unity sedrn=1d. Notice that the equation for the total mo-
mentum is not affected by the two-body potential. In the
absence of the perturbationsVsurf=0d one recovers the equa-
tions of the harmonic oscillator and the center-of-mass oscil-
lation corresponds to a rigid oscillation of the density. The
effect of the perturbationVsurf can then be calculated, in
first-order perturbation theory, using the scaling ansatz
nsr ,td=n0(x,y,z−Zc.m.std) in Eq. (4), wheren0 is the equi-

FIG. 1. Schematic figure of the substrate-trapped gas system.
Gravity is oriented alongz.
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librium density of the gas. The equation for the center-of-
mass coordinate finally takes the simple form

d2Zc.m.

dt2
= − vz

2Zc.m.−
1

m
E n0sr d]zVsurfsz+ Zc.m.ddr , s5d

where, in the integral, we have made the substitutionsz
−Zc.m.d→z. Equations(3) and(5) have now a closed form. In
the limit of small oscillations we can expand the perturbation
term up to terms linear inZc.m.std and the equation for the
center of mass takes again a harmonic form with the renor-
malized oscillator frequency

vc.m.
2 = vz

2 +
1

m
E n0sr d]z

2Vsurfszddr . s6d

It is worth stressing that the result(6) is exact up to first-
order corrections inVsurf and holds independently of the
quantum or classical nature of the gas which instead deter-
mines the actual form of the density profilen0. Equation(6)
can be further simplified by introducing the so-called one-
dimensional(1D) column density

n0
zszd =E n0sx,y,zddxdy s7d

and using the fact thatVsurf depends only on thezth coordi-
nate. One then finds the result

vc.m.
2 = vz

2 +
1

m
E

−Rz

+Rz

n0
zszd

d2Vsurfszd
dz2 dz . s8d

Equation(8) shows that the ingredients needed to calculate
the effect of the perturbation on the shift of the center-of-

mass frequency are the explicit form of the potentialVsurf,
which will be discussed in the following sections, and the 1D
column density(7). For a Bose-Einstein condensate in its
ground state the density profile is easily evaluated in the
so-called Thomas-Fermi approximation. This approximation
holds for large condensates where, for gases interacting with
positive scattering length, the kinetic energy of the trapped
condensate can be neglected and one finds the analytic result
[14] n0sx,y,zd=g−1 fm−Vhosr dg when n0ù0 and 0 else-
where. Herem=s"vho/2ds15Na/ahod2/5 is the chemical po-
tential, N is the number of atoms,vho=svxvyvzd1/3 is the
geometrical average of the three trap frequencies,aho

=Î" / smvhod is the oscillator length, andg=4p"2a/m is the
interaction coupling constant fixed by thes-wave scattering
lengtha. Integration ofn0 with respect tox andy yields

n0
zszd =

15

16

1

Rz
S1 −

z2

Rz
2D2

, s9d

where Rz is the Thomas-Fermi radius in thezth direction,
fixed by the relationm=mvz

2Rz
2/2. Typical values forRz in

standard experimental conditions can be of the order of a few
microns[25].

Equations(8) and(9) are the key result of this section and
will be used in the second part of the paper to calculate the
effect of the force produced by the surface on the frequency
shift of the center-of-mass oscillation. The integral(8) should
be in general carried out numerically. There are, however,
important cases where the integration can be found analyti-
cally. This is the case, for example, if one can approximate
the potential with the algebraic decayVsndszd=−an/ sd+zdn

whered is the distance between the wall and the center of the
harmonic trap[24]. In this case we find the result

vc.m.
2 = vz

2 −
20 a4

m d6

1

s1 − x2d3 s10d

and

vc.m.
2 = vz

2 −
15 a3

4 m d5

10 x3 − 6 x − 3s1 − x2d2 lnfs1 − xd/s1 + xdg
s1 − x2d2 x5 s11d

for the most relevantn=4 and n=3 cases, respectively,
wherex;Rz/d. Results(10) and(11) explicitly point out the
role played by the finite size of the condensate. In particular,
only in the limit Rz!d sx!1d will the above equations ap-
proach the power law behaviors 1/d6 and 1/d5 for the fre-
quency shift expected for a pointlike condensate.

The above results have been derived in the linear regime.
If the amplitude of the oscillation is comparable to the dis-
tance from the surface, nonlinear effects become important
and modify the value of the frequency shift. Nonlinear ef-
fects result in a frequency shift as well as in the occurrence
of higher harmonics. They can be calculated starting from

the general Eqs.(3) and (5) for the center-of-mass coordi-
nate. Notice that, due to the harmonic nature ofVho, both
effects are absent ifVsurf=0. Due to the perturbative nature
of the problem, we can use the periodic lawZc.m.
=a cossvc.m.td to evaluate the integral of Eq.(5), wherea is
the amplitude of the oscillation. One can then introduce the
periodic function

Qstd ;
1

m
E n0

zszd]zVsurf„z+ a cossvc.m.td…dz, s12d

which can be conveniently expanded in a Fourier series. For
the calculation of the frequency shift only the term propor-
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tional to cossvc.m.td is important and one can write

vc.m.
2 − vz

2 =
vc.m.

pa
E

0

2p/vc.m.

Qstdcossvc.m.tddt. s13d

Expansion of Eq.(13) up to terms quadratic ina and use of
the 1D column density finally yield the result

vc.m.
2 − vz

2 =
1

m
E

−Rz

Rz

n0
zszd

d2Vsurfszd
dz2 dz

+
a2

8 m
E

−Rz

Rz

n0
zszd

d4Vsurfszd
dz4 dz s14d

for the frequency shift which generalizes Eq.(8) by includ-
ing the nonlinear correction ina2.

III. FORCE BETWEEN THE SURFACE
AND A SINGLE ATOM

The interaction produced by a surface on a single atom
includes, in its general form, nontrivial relativistic effects as
well as quantum and thermal fluctuations of the field. The
force can be calculated starting from the general theory de-
veloped by Lifshitz for the free energy associated with inho-
mogeneous media. For two infinite plates separated by a dis-
tanced and in thermal equilibrium with the thermal radiation
at temperatureT, the forceFsurf per unit surface can be writ-
ten as[13]

Fsurfsdd =
kB T

16 p d3E
0

`

x2F s«10 + 1ds«20 + 1d
s«10 − 1ds«20 − 1d

ex − 1G−1

dx+
kBT

pc3o
n=1

`

jn
3E

1

`

p2HF ss1 + pdss2 + pd
ss1 − pdss2 − pd

expS2 p jn d

c
D − 1G−1

+ F ss1 + p «1dss2 + p «2d
ss1 − p «1dss2 − p «2d

expS2 p jn d

c
D − 1G−1J dp, s15d

where, with respect to the usual presentation of the force, we
have separated a first term behaving likekBT/d3 from the
other terms withnù1. In Eq. (15) we have defined

s1 = Î«1 − 1 + p2, s2 = Î«2 − 1 + p2, s16d

where«1=«1si jnd and«2=«2si jnd are the relevant dielectric
functions of the two plates, evaluated for imaginary values
v= i jn of the frequency, withjn=2pkBTn/". The function
«si jd is a monotonic and real function ofj, obtained by
analytic continuation of the nonmonotonic and complex
function «svd evaluated for real values of the frequencyv.
Furthermore, in Eq.(15) we have introduced the static values
of the dielectric functions«10=«1s0d and «20=«2s0d. Some
general properties of these functions will be illustrated in
Sec. VI.

The force produced by a surface on a single atom can be
easily derived by assuming that one of the two walls(wall 2)
is made of a very dilute material(for example a gas) so that
one can expand Eq.(15) for small values of«2−1=4pna
wheren is the density of the gas anda is the corresponding
atomic polarizability. The potentialVsurf felt by a single atom
is then simply given byVsurf=−Fsurf/n and can be written in
the form [13]

Vsurfsdd = −
kB T a0

4 d3

s«0 − 1d
s«0 + 1d

−
K T

c3 o
n=1

`

a jn
3

3E
1

`

expS−
2 p jn d

c
D fspd dp, s17d

where we have introduced the functionfspd defined by

fspd = F ss1 − pd
ss1 + pd

+ s1 – 2 p2d
ss1 − p «d
ss1 + p «dG , s18d

in which it is easy to distinguish the reflection Fresnel coef-
ficientsrssijd andrpsijd (see Ref.[1]). In Eqs.(17) and(18)
we have omitted the index 1 in the dielectric function char-
acterizing the optical properties of the surface while«0 and
a0 are the static values of the dielectric function and of the
atomic polarizability, respectively. Equation(17) permits us
to describe both the interaction generated by a dielectric and
by an ideal metal[in the latter case the function«svd be-
haves like 1/v at smallv and s«0−1d / s«0+1d→1].

Equations(15) and(17) have been derived assuming that
the whole system is in thermodynamic equilibrium and in
particular that its components have the same temperatureT.
In the experiments with Bose-Einstein condensates the
atomic gas is cooled down to extremely low temperature,
while the substrate remains at room temperature. The result
(17) is still expected to be valid in this case,T being the
temperature of the substrate. In fact atoms, independently of
being at zero or at room temperature, do not contribute to the
thermal radiation, their lowest excitation energies being
much higher thankBT.

It is useful to identify the relevant length scales of the
problem(see Fig. 2). A first important length is the thermal
wavelength of the photon:

lT =
"c

kBT
, s19d

where kB is the Boltzmann constant. At room temperature
sT=300 Kd one haslT=7.6 mm. For distancesd larger than
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lT the force is dominated by the thermal fluctuations of the
electromagnetic field. In this limit the leading contribution is
given by the first term in Eq.(17), due to the occurrence of
the exponential factor in the other terms, and the potential
takes the characteristic form

Vsurf
T sdd = −

kB T a0

4 d3

s«0 − 1d
s«0 + 1d

. s20d

Notice that in this regime only the static value of the dielec-
tric and polarizability functions contribute to the force. It is
also worth noticing that in this limit the force is independent
of the Planck constant as well as of the velocity of light.

For distancesd smaller(or of the same order) thanlT the
quantum fluctuations of the electromagnetic field become
important and the terms of the sum(17) should be taken into
account. Ifd!lT andT is sufficiently small, one can replace
the sum with an integral(see Sec. IV). In this regime one can
introduce a second length scale, hereafter calledlopt. This
length is related to the relevant wavelengths characterizing
the optical properties of the interacting media. One can iden-
tify two distinct regimes. For distancesd!lopt the potential
exhibits the familiar 1/d3 van der Waals–London depen-
dence. In the intervallopt!d!lT one instead enters the
Casimir-Polder regime where the potential decays like 1/d4.
The possibility of identifying the Casimir-Polder regime de-
pends crucially on the value of the temperature. The tem-
perature should be in fact sufficiently low in order to guar-
antee the conditionlT@lopt (see discussion at the end of
Sec. V). Differently from the thermal wavelength, given by
the simple expressionlT, the explicit evaluation oflopt is not
immediate because the optical properties of the media are not
characterized by a single frequency(see Sec. VI). In the case
of rubidium atoms interacting with a dielectric sapphire sub-
strate we findlopt,0.1 mm.

IV. FORCE AT SHORT DISTANCES:
FROM THE van der WAALS–LONDON
TO THE CASIMIR-POLDER REGIME

As anticipated in the preceding section at distances
smaller than the thermal wavelength also the terms in the
sum (17) contribute to the force and, ifd!lT and the tem-
perature is sufficiently low, the sum is conveniently replaced
by an integral:on→ s" /2pkBTdedj. One then finds the use-
ful expression

Vsurf
SR = −

"

2 p c3E
0

`

djE
1

`

dp j3 a expS−
2 p d j

c
D fspd,

s21d

for the potential, also called short-range(SR) approximation.
It is worth noticing that result(21) does not depend on the
value ofT [26] and coincides with the zero-temperature limit
of the general form(17) of the potential. Equation(21) ad-
mits two important limits. For larged one finds the most
famous expression

Vsurf
CP = −

3 " c a0

8 p d4

s«0 − 1d
s«0 + 1d

fs«0d, s22d

also know as the Casimir-Polder law, where we have intro-
duced the function[28]

fs«d =
s« + 1d
s« − 1dH1

3
+ « +

4 − s« + 1dÎ«

2s« − 1d

−
sinh−1Îs« − 1d f1 + « + 2 «s« − 1d2g

2 s« − 1d3/2

+
«2 fsinh−1Î« − sinh−1s1/Î«dg

Îs« + 1d
J . s23d

which is equal to 1 in the case of an ideal metals«0=`d. For
sapphires«0=9.4d one findsfs«0d=0.8.

In the opposite limit of smalld one instead finds the dif-
ferent law

Vsurf
VL = −

"

4 p d3E
0

`

asijd
«sijd − 1

«sijd + 1
dj, s24d

also known as the van der Waals–London(VL ) interaction.
The coefficient characterizing this force is fixed by the opti-
cal properties of the media. The matching between the two
laws (22) and (24) provides a useful estimate of the optical
lengthlopt according to

FIG. 3. The atom-surface potential is shown using the exact
formula of Eq.(17) (solid line), the short-range approximation(21)
(dash-dotted line), and the static approximation(26) (dashed line).
The asymptotic van der Waals–Londons,1/d3d, Casimir-Polder
s,1/d4d, and high-T s,1/d4d potentials are also shown(dotted
lines). The curves were obtained for a sapphire substrate at 300 K
and for87Rb atoms in the condensate.

FIG. 2. Relevant length scaleslopt and lT characterizing the
generalized van der Waals potentialVsurf. The power law behavior
of Vsurfsdd is shown in the appropriate ranges of validity as a func-
tion of the distance from the surface.
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lopt =
3 c a0

2

s«0 − 1d
«0 + 1

fs«0d FE
0

`

asijd
«sijd − 1

«sijd + 1
djG−1

.

s25d

In Fig. 3 we show the potential(21) (dash-dotted line) calu-
lated using the dielectric functions of rubidium atom and of
sapphire. The asymptotic lawsVsurf

VL =−68.1/d3 nK smm3d for
the van der Waals [see Eq. (24)] and Vsurf

CP

=−8.34/d4 nK smm4d for the Casimir-Polder[see Eq.(22)]
potentials, as well as the asymptotic thermal lawVsurf

T

=−2.86/d3 nK smm3d evaluated atT=300 K [see Eq.(20)],
are also shown(d is here expressed in microns). It is worth
noticing that the potential(21) approaches the asymptotic
Casimir-Polder force only at distances significantly larger
thanlopt.

V. FORCE AT LARGE DISTANCES
AND THE STATIC APPROXIMATION:
QUANTUM VS THERMAL EFFECTS

At large distances from the wall the potential(17) can be
safely evaluated in the so called static approximation(SA)

which consists of replacing the dielectric functions« anda
with their static values«0 and a0, respectively. In the static
approximation the potential generated by the surface can be
written in the useful form

Vsurf
SA sdd = −

K T a0

4 d3

s«0 − 1d
s«0 + 1d

Gsyd, s26d

where we have introduced the relevant scaling variable

y =
d

lT
s27d

and the function

Gsyd = F1 + 32p3s«0 + 1d
s«0 − 1dE1

`

y3 gs4 p p ydf0spddpG .

s28d

In Eq. (28), f0spd is the static limit of Eq.(18), obtained by
replacing« with «0, while the functiong is defined by

gsad ; o
n=1

`

n3 e−a n =
e−a f1 + 4 e−a + e−2ag

s1 − e−ad4 . s29d

The asymptotic behaviors of the functionGsyd are well es-
tablished: fory→0 one findsGsyd→3fs«0d / s2 p yd. Vice
versa, fory→` one findsGsyd→1. For a fixed value ofT
the two limits apply, respectively, to distances larger and
smaller than the thermal wavelength(19). It then follows that
the static approximation(26) provides the transition from the
Casimir-Polder law(22) holding for lopt!d!lT, to the
thermal law(20) holding for d@lT. In Fig. 4 we show the
scaling functionGsyd together with the two asymptotic limits
y→0 andy→` in the case of sapphire where we have used
the value «0=9.4. The function Gsyd depends rather
smoothly on the actual value of the static dielectric function,
provided the value«0 is significantly larger than 1.

In Fig. 3 we compare the prediction for the potential
given by the static approximation with the exact result evalu-
ated starting from Eq.(17). The comparison shows that for
distances larger than,2 mm the static approximation is
rather accurate. This explains why the predictions of this
approximation for the frequency shifts are also accurate(see
Figs. 5 and 6).

FIG. 4. The functionGsyd (solid line) is shown as a function of
the scaling variabley=d/lT together with its asymptotic behaviors
(dotted lines). The function was calculated for the sapphire sub-
strate(see text).

FIG. 5. Fractional frequency shift(32) of the center-of-mass
oscillation(solid line) as a function of the distance from the surface,
compared with the prediction of the static approximation(dashed
line). The curves were obtained for a sapphire substrate at 300 K
and for 87Rb atoms in the condensate. The unperturbed frequency
was vz/2p=220 Hz while the radius of the condensate wasRz

=2.5 mm. FIG. 6. Same as in Fig. 5, atT=0 K.
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At shorter distances the static approximation fails and one
should instead use the short-range description developed in
Sec. IV. If lT@lopt, the long-range description based on the
static approximation matches the short-range description of
Sec. IV in the Casimir-Polder regime(22). In this case the
matching procedure completes the determination of the po-
tential at all distances. If instead the conditionlT@lopt is
not well satisfied, one should calculate explicitly the poten-
tial using the general expression(17) and the potential will
not exhibit the intermediate Casimir-Polder behavior(22).
For example, in the case of Fig. 3, where the potential is
calculated atT=300 K, the matching between the two curves
is not very good and consequently the system never exhibits
the Casimir-Polder behavior[27].

VI. OPTICAL PROPERTIES OF THE ATOM
AND OF THE SUBSTRATE

The functions«sijd andasijd, which are crucial ingredi-
ents for the calculation of the potential generated by the sur-
face, obey the Kramers-Kronig relations

«si jnd = 1 +
2

p
E

0

` v «9svd
v2 + jn

2 dv, s30d

where«9 is the imaginary part of the dielectric function«
=«8+ i«9 evaluated on the real axis. For the polarizability one
has the analogous relationship

asi jnd =
2

p
E

0

` v a9svd
v2 + jn

2 dv, s31d

wherea9 is the imaginary part of the atomic polarizability
a=a8+ ia9.

The imaginary part of the dielectric function can be re-
lated to the measurable real and imaginary parts of the re-
fraction indexnsvd=n8svd+ in9svd according the equation
«9svd=2n8svdn9svd. The values of«9svd (data taken from
[30]) and «sijd for sapphire are reported in Figs. 7 and 8.
From the optical point of view, crystalline sapphire is a
uniaxial crystal and one should distinguish between the ordi-
nary and extraordinary refraction indices. Since the optical
properties for sapphire are not completely known, in our cal-
culations we have used only the data for ordinary waves. We
expect that this approximation will not significantly affect
the analysis in both crystalline and melted sapphires. In Fig.
9 we report the corresponding values forasijd for 87Rb [29].
The static value of the polarizability isa0=47.3
310−24 cm3. Figure 7 shows that the optical properties of
sapphire are rather complex so that the actual value oflopt
governing the transition from the van der Waals–London to
the Casimir-Polder regimes cannot be simply inferred from
the form of «9, but requires the explicit calculation of the
integral (25). The typical “two-plateau” behavior exhibited
by «sijd in solid dielectrics is the consequence of the con-
centration of the strength«9svd in two distinct regions of
frequencies(see Figs. 7 and 8). This behavior is absent in the
atomic polarizability(see Fig. 9). Using Eq.(25) it is pos-
sible to calculate the value oflopt. In the case of the sapphire
substrate interacting with rubidium atoms we findlopt
=0.1 mm.

VII. RESULTS FOR THE SHIFT OF THE
CENTER-OF-MASS OSCILLATION

We are now ready to calculate the shifts of the center-of-
mass frequencies of the condensate caused by the force gen-
erated by the surface. We will consider a condensate of finite
Thomas-Fermi radiusRz located a distanced from the sur-

FIG. 7. Imaginary part of the sapphire dielectric function«9svd
on the real axis of frequences.

FIG. 8. Sapphire dielectric function«si jd evaluated on the
imaginary axis.

FIG. 9. Polarizability functionasi jd (in cm3) for 87Rb atoms
evaluated on the imaginary axis.
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face (see Fig. 1). We will evaluate the fractional frequency
shift

g =
vz − vc.m.

vz
, s32d

with vc.m. given by Eq.(8), as a function of the distanced at
different temperatures. As discussed in the preceding sec-
tions, the behavior of the potentialVsurf at short distances is
temperature independent and coincides with the zero-
temperature value. Conversely, at distances of the order of
the thermal wavelength or larger, the potential exhibits an
important temperature dependence. This behavior is reflected
in the shift of the center-of-mass frequency of the condensate
for which we provide our predictions in Fig. 10 at different
temperatures. The curves of this figure have been calculated
using the general expression(17) for the potential. In the
calculation we have used the valuesv /2p=220 Hz for the
harmonic trapping frequency along thezth direction andRz
=2.5 mm for thezth radius of the condensate. These are typi-
cal values employed in current experiments with Bose-
Einstein condensates. We have used a sapphire substrate and
the condensate is made of87Rb atoms. Our predictions show
that at distancesd,4–8 mm, where the thermal effects start
becoming important at room temperature, the frequency
shifts are of the order of 10−4. These results are promising in
view of the possibility of systematic measurements of the
interplay between quantum and thermal effects in the gener-
alized van der Waals forces.

It is also interesting to compare the predictions for the
shifts of the collective frequencies with the results obtained
using the static approximation, holding at large distances
(see Sec. V). The comparison(see Figs. 5 and 6) shows that
the static approximation(26) provides an accurate decription
of the shifts for distances larger than 4mm, even at zero
temperature. At shorter distances the deviations become
more important. One should actually notice that at short dis-
tances the width of the condensate plays an important role
amplifying the effects of the short-range component of the
potential.

Let us finally discuss the effects of nonlinearities on the
frequency shift. If the amplitude of the oscillation is not
small, additional corrections due to the external force should
be taken into account(see Sec. II). The corresponding cor-
rections can be estimated using the result(14). For example,
by choosinga=0.5 mm and making the same choices for the
other parameters(Rz=2.5 andvz/2p=220 Hz), we find that
the prediction for the frequency shift(32) is increased, in
absolute value, by,20% atd=6 mm. This result shows that
for larger choices of the amplitude of the oscillation and for
smaller values ofd the effects of nonlinearity can become
very important. In general they should be calculated starting
directly from Eqs.(12) and (13).

VIII. CONCLUSIONS

In this work we have applied Lifshitz theory of general-
ized van der Waals interactions to investigate the effect of a
substrate on the collective oscillations of a trapped quantum
gas. We have first developed the general theory for the fre-
quency shifts of the center-of-mass oscillation caused by a
perturbative force of general form. We have hence character-
ized the potential generated by the surface identifying vari-
ous relevant regimes. A first approximation, holding at short
distancesd from the surface, permits one to describe the
transition from the van der Waals–London 1/d3 law to the
Casimir-Polder 1/d4 regime characterized by quantum and
relativistic effects. A second approximation, holding at larger
distances, permits one to describe the transition from the
Casimir-Polder law to the large distancekBT/d3 behavior,
dominated by the thermal fluctuations of the electromagnetic
field. We have also identified the relevant length scales of the
problem and explored the matching conditions for the vari-
ous approximations. Due to the finite size of the condensate,
the calculation of the frequency shifts requires a numerical
integration, although analytical expressions can be obtained
in some limiting cases. The calculation requires explicit
knowledge of the optical properties of the interacting media
and in particular the dielctric function of the susbstrate and
the atomic polarizability of the atoms in the condensate. We
have also exploited the effects of nonlinearity and shown
that, due to the finite width of the condensate, they can pro-
vide large corrections to the frequency shifts and should be
consequently taken into account in the comparison with fu-
ture experiments. We have finally derived(see the Appendix)
results for the frequency shifts of the radial breathing mode.

Our predictions are rather promising and suggest that
Bose-Einstein condensates can become efficient sensors of
very weak forces. In particular the oscillation of the conden-
sate permits one to explore the interplay between quantum
and thermal fluctuations of the electromagnetic field in the
relevant region of 4–8mm. For such distances the relative
shifts are predicted to be of the order of 10−4 and are hence
measurable experimentally.
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APPENDIX: FREQUENCY SHIFT OF THE RADIAL
BREATHING MODE

The radial breathing oscillation in elongated traps is a
fundamental mode exhibited by Bose-Einstein condensates.
For an interacting Bose-Einstein condensate, harmonically
trapped in two dimensions, this mode exactly occurs at twice
the trapping radial frequency(we assume here symmetric
trapping:vx=vz;v'), irrespective of the amplitude of the
oscillation, number of atoms, and value of the scattering
length[31]. In a 3D configuration this mode can be realized
in the limit of a very elongated axisymmetric trapsvy

!v'd corresponding, in the geometry of Fig. 1, to a conden-
sate very elongated along the direction orthogonal to the fig-
ure. The radial breathing oscillation has been measured with
high accuracy in[32].

The radial breathing mode can be described by deriving
the time-dependent equations for the average square radius
kx2+z2l within Gross-Pitaevskii theory[17] in 2D. After
some straightforward algebra one finds the equation

d2

dt2
kx2 + z2l = −

2

m
kr · ]rVl +

2

m2kpx
2 + pz

2l +
4

m
kV2-bodyl,

sA1d

whereV2-body is the average values of the mean-field inter-
action energy andV is the external potential. By introducing
the energy per particle,E/N=kVl+kpx

2+pz
2l /2m+kV2-bodyl,

which is conserved in time, and separating inV the axisym-
metric harmonic potentialVho from the surface potential
Vsurf, Eq. (A1) can be rewritten as

d2

dt2
kx2 + z2l =

4

m
E − 4v'

2 kx2 + z2l −
4

m
kVsurfl −

2

m
kz]zVsurfl.

sA2d

In the absence of the surface perturbationsVsurf=0d, Eq.
(A2) gives oscillating solutions withv=2v'.

The effect of the perturbation is simply calculated notic-
ing that the unperturbed solution corresponds to a scaling
transformation where the density varies asnsx,y,td
=a2n0sx/a ,y/ad and n0 is the equilibrium density distribu-
tion. The time-dependent scaling parametera fixes the value
of the square radius according tokx2+z2l=a2kx2+z2l0. Using
the scaling transformation to evaluate the integralskVsurfl
=edrnsx,y,tdVsurfszd and kz]zVsurfl=edrnsx,y,tdz]zVsurfszd
one can rewrite Eq.(A2) as a simple equation for the param-
etera. In the following we will be interested in the limit of
small-amplitude oscillations. By expanding the integrals up
to first order insa−1d, one finally obtains the result

vB
2 = 4v'

2 +
1

mkx2 + z2lFE−Rz

Rz

n0
zz]zz]zVsurfdz

+ 2E
−Rz

Rz

n0
zz]zVsurfdzG sA3d

for the frequency shift of the radial breathingsBd mode,
wheren0

z is the 1D column density(7). Similarly to the case
of the shift of the center-of-mass frequency[see Eq.(32)],
also the result(A3) is exact up to first-order corrections in
the perturbation. In fact the radial scaling ansatz is an exact
solution of the Gross-Pitaevskii equation in 2D. It is also a
good approximation in 3D if the harmonic trap is sufficiently
elongated. The result(A3) for the radial breathing mode may
provide a further tool to investigate the effects of the gener-
alized van der Waals force on a Bose-Einstein condensate.
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