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We calculate the effect of the interaction between an optically active material and a Bose-Einstein conden-
sate on the collective oscillations of the condensate. We provide explicit expressions for the frequency shift of
the center-of-mass oscillation in terms of the potential generated by the substrate and of the density profile of
the gas. The form of the potential is discussed in detail and various reguaesler Waals—London, Casimir-
Polder, and thermal regimeare identified as a function of the distance of atoms from the surface. Numerical
results for the frequency shifts are given for the case of a sapphire dielectric substrate interacting with a
harmonically trapped condensate®3Rb atoms. We find that at distances of 448, where thermal effects
become visible, the relative frequency shifts produced by the substrate are of the orflemdiOhence
accessible experimentally. The effects of nonlinearities due to the finite amplitude of the oscillation are explic-
itly discussed. Predictions are also given for the radial breathing mode.
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I. INTRODUCTION Lifshitz developed the general theory of the van der Waals
The study of the force felt by an atom near a surface haforces[lZ,lE] for inhomogeneous media, taking into account

v b | biect of e T e quantum fluctuations of the electromagnetic field and
receln yl ecorr:je afpopu ar Srl: je_clbohrc_aseg( ,for X their perturbation produced by the media. The theory de-
ample, | 2] and references t ergimoth in view o nano- — seripes the interaction between continuous media in terms of
technological applicationg3] and because of the possibility their dielectric functions and of the temperature. The van der

of investigating fundamental forces at the submicron scalgy,4i5 | ondon and Casimir-Polder forces are recovered as
[4]. These studies extend previous investigations of the ger]l'miting cases of the more general theory, which also ac-

eralized van d_er Waals forces between macroscopic bOd'%untS for the effects induced by the thermal fluctuations of
[5.] to more microscopic systems. Experiments W'th .Bose'the electromagnetic field. Thermal effects provide the
!Ems_tem condensates nearasurfEﬁ:eS] are very promising asymptotic behavior of the interaction at distances much
in this respect because of the high accuracy of the MeasUrgy aer than the thermal wavelength of photons

ments achievable with ultracold gases. The purpose of the present work is to show that the study

Historically the interatomic forces were first introduced ina%f the collective oscillations of a Bose-Einstein condensate

1873 by van der Waals In (_erer to explain the deV|at|oqs Obf ultracold atoms can provide a useful probe of such forces.

the thermodynamlc pehawor of real gases from thg ide ose-Einstein condensates are very dilute samples and con-
l‘,"‘WS' O”'Y in 1930 did Londor9] F’“?V'de a first quantita- sequently the force produced by the surface can be safely
tive description of the force. He applied second-order perture., o jated starting from the interaction felt by the individual

bation thepry to the_ quantum Hamilto_nian to evaluate theatoms in the condensajt#l]. In this paper we will be mainly
electrostatic interaction between two dipoles, induced by th%oncemed with the center-of-mass oscillation of a conden-

fluctuation of the electromagnetic field. He succeeded in deg,e confined by a harmonic trap. The center-of-mass motion
riving the most famous power law @9, usually known as

the van der Waals—London interaction, wherés the inter- has the main advantage of being independent of two-body

S : e interactions and its frequency consequently provides an ideal
atomic distance. Almost 20 years later, in 1948, Casimir an?r)]robe of the additional force generated by the wall. The ef-
Polder[10], taking into account relativistic retardation ef-

- - fect of the force on the frequency of the center-of-mass os-
fects within fourth-order perturbation theory, found that, at d y

. . oo . cillation depends on the distance of the condensate from the

Iarg(ae distances, the potential decays likel'lrather than like surface and on the temperature of the surface as well as on

1/O'II'H . f th e f b the optical properties of the surface and of the atoms in the

e existence of these attractive forces between neutralynqensate. The effect also depends on the thickness of the
atoms gives rise to analogous forces between a single ato

' ) . Bbndensate which in actual configurations can be of the same
and a dielectric or a metallic wall, as well as to forces be-

. ; . order as the distance from the wall. In some limiting cases,
tween macroscopic bodies separated by small distgidgs g

S corresponding to short and large distances, it is possible to
Between the end of the 1950s and the beginning of the 196C5htain analytic or semianalytic predictions that will be dis-

cussed systematically in our paper. They can serve as a natu-
ral guide for first quantitative estimates and as useful tests of
*Electronic address: antezza@science.unitn.it more complete numerical approaches.
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The paper is organized as follows. Substrate

In Sec. Il we derive some general results for the shift of
the collective frequencies of a harmonically trapped Bose-
Einstein condensate subject to an additional weak external ~
force. dl

In Sec. Ill we employ Lifshitz theory to calculate the
force acting on a dilute atomic gas placed near a surface.

In Sec. IV we discuss the transition from the van der Trapped gas :
Waals—London potential, holding at very short distances
from the surface and decaying like & to the Casimir- i
Polder potential which accounts for relativistic retardation

\

effefts and holds at larger distances where it decays like
1/a%

In Sec. V we discuss the transition from thed law FIG. 1. Schematic figure of the substrate-trapped gas system.
characterizing the Casimir-Polder potential to the behavior 0frayity is oriented along.
the potential at much larger distances from the surteoger
than the thermal wavelength of photpmghere it decays like
1/d® as a consequence of the thermal fluctuations of the ele

z

tional interactions, like the one generated by the surface. In
(i:ig. 1 we show a schematic representation of the geometry

tromagnetic field. . : ;
. . . considered in the present work. A dilute gas trapped by the
In Sec. VI we discuss the role of the optical properties Oft%armonic potential

the interacting media with specific emphasis to the case o
the dielectric sapphiréAl,03) substrate and of the rubidium
atoms which form the condensate.

In Sec. VII we provide results for the shifts of the collec-
tive frequencies as a function of the distance of the conderis placed close to an ideal wall generating a poteMigl(z)
sate from the surface, calculated at different temperatures. SO that the full potential felt by each atom is given by

m m m
Vio(r) = Ewixz + wa,yz + Ewgzz (1)

Finally, in the Appendix we provide results for the fre- — N
quency shift of the radial compression mode in very elon- V(r) = Vio(r) + Vouri(2). 2
gated harmonic traps. In the following we will calculate the changes in the fre-

quency of the center-of-mass oscillation along #ttedirec-

tion caused by the presence of the surface. In the Appendix
we provide results also for the radial breathing mode in the
case of very elongated axisymmetric trdpg < w,=w,).

The equations for the center-of-magsm. coordinate

After the first experimental realization of Bose-Einstein Zem=(1/N)(Z{L; z) and the total momenturR,=(3{; p,)

condensation in dilute vapors of alkali atoms the experimenalong thezth direction (N is the number of atoms of the
tal and theoretical research in the field of ultacold quantunirapped gascan be written in the general form
gases has grown in an impressive W&y general reviews 4z, b
see, for examplej14—17). Bose-Einstein-condensed gases —=m __z (3)
are dilute, ultracold samples characterized by unique proper- dt Nm
ties of coherence and superfluidity. They give rise, among,,q
others, to interference phenomefiB,19 as well as to a
variety of collective oscillation§20—23. The relatively high 1dP, 1/ X
density of Bose-Einstein-condensed samplesmpared to NE:‘N 2 f?ziV(ri)
the one of noncondensed trapped gasas well as the pos- =1
sibility of imaging the atomic cloud after expansion, where )
the measured sizes become macroscopically large, permit :_mwzzc.m._f n(r,t)d,Vsu(2)dr, (4)
one to achieve very accurate determinations of the frequen-
cies of the collective oscillations, thereby providing interest-where we have used expressi@h for V,, and we have
ing opportunities for precision measurements. expressed the average of the external faxbk,, ¢ in terms of

In this section we will calculate the effect of a weak per-the densityn of the gas here assumed to be normalized to
turbation on the center-of-mass oscillation of a harmonicallyunity (fdrn=1). Notice that the equation for the total mo-
trapped gas. The frequency of this oscillation, in the absencmentum is not affected by the two-body potential. In the
of the perturbation, coincides with the frequency of the trapabsence of the perturbatid¥,,=0) one recovers the equa-
This result, also known as the Kohn theor¢23], is inde-  tions of the harmonic oscillator and the center-of-mass oscil-
pendent of the amplitude of the oscillation, interatomiclation corresponds to a rigid oscillation of the density. The
forces, and temperature as well as of the quantum nature efffect of the perturbation/y, s can then be calculated, in
the sample. Deviations of the measured frequency from théirst-order perturbation theory, using the scaling ansatz
oscillator value can then be used as a useful probe of addix(r ,t)=ny(X,y,z-Z. (1)) in Eq. (4), wheren, is the equi-

II. CENTER-OF-MASS OSCILLATION OF A TRAPPED
GAS IN THE PRESENCE OF A WEAK
PERTURBATION
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librium density of the gas. The equation for the center-of-mass frequency are the explicit form of the potentigl,s,

mass coordinate finally takes the simple form which will be discussed in the following sections, and the 1D
) column density(7). For a Bose-Einstein condensate in its

dLC-m-:_wzz _EJ No(F)dVeur(2+ Zem)dr,  (5) ground state the density profile is easily evaluated in the
dt? zTem. ) O T s ema so-called Thomas-Fermi approximation. This approximation

where, in the integral, we have made the substitution holds for large condensates where, for gases interacting with

~7..)—z Equationg3) and(5) have now a closed form. In positive scattering length, the kinetic energy of the trapped

he limit of " i dth bati condensate can be neglected and one finds the analytic result
the limit of small oscillations we can expand the pertur atlon[l4] No(X,¥,2) =g [u=Vy(r)] when ny=0 and 0 else-

term up to terms linear ilzc_m_(t) and t_he equatipn for the where. Herew = (fion,/2)(15Na/a,)25 is the chemical po-
center of mass takes again a harmonic form with the réNOlntial. N is the number of atom&phoz(wxwywz)l’3 is the
malized oscillator frequency geometrical average of the three trap frequenciag,
5 , 1 =\h/(mwy,) is the oscillator length, ang=4x#%a/m s the
Wom =07 F m f Mo ) EVsyr(2)dr . (6)  interaction coupling constant fixed by tisevave scattering
lengtha. Integration ofny with respect tax andy yields
It is worth stressing that the resul®) is exact up to first- 151 2\2
order corrections invVg,s and holds independently of the né(z):——(]_——z) , 9)
quantum or classical nature of the gas which instead deter- 16R,\ R,
mines the actual form of the density profilg. Equation(6)
can be further simplified by introducing the so-called one
dimensional1D) column density

where R, is the Thomas-Fermi radius in tieth direction,
“fixed by the relationu=mw?R2/2. Typical values forR, in
standard experimental conditions can be of the order of a few
microns[25].
ng(2) =J No(X,y,z)dxdy (7 Equationg8) and(9) are the key result of this section and
will be used in the second part of the paper to calculate the
and using the fact that,,; depends only on theth coordi-  effect of the force produced by the surface on the frequency
nate. One then finds the result shift of the center-of-mass oscillation. The integi®lshould
be in general carried out numerically. There are, however,
2 9 R, . dVeui(2) important cases where the integration can be found analyti-
Wom = @z * EI_R no(2) dZ2 dz. ®) cally. This is the case, for example, if one can approximate
: the potential with the algebraic decaf™(z)=-a,/(d+2)"
Equation(8) shows that the ingredients needed to calculatevhered is the distance between the wall and the center of the
the effect of the perturbation on the shift of the center-of-harmonic trag24]. In this case we find the result

, _ , 20a, 1

Wem = Wz~ m P (1-x)° (10)
and
2 , 1583 10x°-6 x=3(1 —x)* In[(1 - x)/(1 +x)]
Wem =W, ~ 22 .5 (11
4md 1-x9°x

for the most relevann=4 and n=3 cases, respectively, the general Eqs3) and (5) for the center-of-mass coordi-

wherey=R,/d. Results(10) and(11) explicitly point out the  nate. Notice that, due to the harmonic natureVigf, both

role played by the finite size of the condensate. In particulareffects are absent ¥, =0. Due to the perturbative nature

only in the limit R,<d (x<1) will the above equations ap- Of the problem, we can use the periodic la®,

proach the power law behaviorsdf/and 14 for the fre-  —& C0Sweml) to evaluate the integral of EGS), wherea is

quency shift expected for a pointlike condensate. the_amplltude_ of the oscillation. One can then introduce the
The above results have been derived in the linear regimd€riodic function

If the amplitude of the oscillation is comparable to the dis- 1

tance from the surface, nonlinear effects become important Q) = EJ N§(2)dVsur(z+a codwe mt))dz, (12

and modify the value of the frequency shift. Nonlinear ef-

fects result in a frequency shift as well as in the occurrencavhich can be conveniently expanded in a Fourier series. For

of higher harmonics. They can be calculated starting fronthe calculation of the frequency shift only the term propor-
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tional to co$w. ,t) is important and one can write ll. FORCE BETWEEN THE SURFACE
o (200 AND A SINGLE ATOM
o = W= J Qt)cogwe )t (13)
ma Jo The interaction produced by a surface on a single atom
Expansion of Eq(13) up to terms quadratic ia and use of includes, in its general form, nontrivial_relativistic effects as
the 1D column density finally yield the result well as quantum and thermal fluctuations of the field. The

force can be calculated starting from the general theory de-
veloped by Lifshitz for the free energy associated with inho-
mogeneous media. For two infinite plates separated by a dis-
tanced and in thermal equilibrium with the thermal radiation
at temperaturd, the forceFg,,; per unit surface can be writ-

dz (14)

dz ten as[13]

1 (" dVeui(2)
Emwi= = f_RZ ng(z)—(j;; dz
+ a_2 RZ nZ(Z) d4VSUTf(Z)
8mJ_g 0

for the frequency shift which generalizes E8) by includ-
ing the nonlinear correction ia?.

T [l et D[Py el g | 1Dt D 2P ) |
FSUff(d)"ledeo X[(sm—l)(szo—l)ex ! dx+wc3n§1§” C Pllsps-p oA .

+|:(Sl+p81)(sz+p82)ex%2p§n d>_1:|_1} dp, (15)
(s1-Pe)(s,—p &2 ¢

where, with respect to the usual presentation of the force, we - S -
p p f():{(sl D), (1 _pp7) &P (18

have separated a first term behaving likd/d® from the (5,+p) (s,+pe) ]’

other terms witm= 1. In Eq.(15) we have defined

in which it is easy to distinguish the reflection Fresnel coef-
ficientsrg(i¢) andr(i¢) (see Ref[1]). In Egs.(17) and(18)
wheree;=g,(i &,) ande,=g,(i &,) are the relevant dielectric we have omitted the index 1 in the dielectric function char-
functions of the two plates, evaluated for imaginary valuescterizing the optical properties of the surface whileand
w=i &, of the frequency, withé,=2mksTn/%. The function  ap are the static values of the dielectric function and of the
e(i ¢ is a monotonic and real function af obtained by atomic polarizability, respectively. Equati¢h?) permits us
analytic continuation of the nonmonotonic and complexto desc;ribe both the interaction generated by a dielectric and
function &(w) evaluated for real values of the frequensy by an ideal meta[in the latter case the functios(w) be-
Furthermore, in Eq(15) we have introduced the static values haves like 1 at smallw and(go—1)/(go+1) —1].

S = Ve —1+p%  s;=\epy— 1+p?, (16)

of the dielectric functiong;p=¢,(0) and e,p=£,(0). Some Equations(15) and(17) have been derived assuming that
general properties of these functions will be illustrated inth€ Whole system is in thermodynamic equilibrium and in
Sec. VI. particular that its components have the same temperature

@ the experiments with Bose-Einstein condensates the
atomic gas is cooled down to extremely low temperature,
while the substrate remains at room temperature. The result
(17) is still expected to be valid in this cas€, being the
temperature of the substrate. In fact atoms, independently of
being at zero or at room temperature, do not contribute to the
thermal radiation, their lowest excitation energies being
much higher tharkgT.

It is useful to identify the relevant length scales of the

The force produced by a surface on a single atom can b
easily derived by assuming that one of the two walall 2)
is made of a very dilute materiglor example a ggsso that
one can expand Eq15) for small values ofe,—1=4mna
wheren is the density of the gas andis the corresponding
atomic polarizability. The potentiadlg, felt by a single atom
is then simply given by, s=—F,+/n and can be written in
the form[13]

Ve ) ks T ag(eo-1) K Ti . problem(see Fig. 2 A first important length is the thermal
surf(d) = 4F (el S 2C & wavelength of the photon:
“ ( 2pgd A= o (19)
XJ exp(— DT§n> f(p) dp, (17 T kgT’
! where kg is the Boltzmann constant. At room temperature
where we have introduced the functiéfp) defined by (T=300 K) one has\t=7.6 um. For distancesl larger than
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1 1 1 o0 o0

L L L ) 2pd

a3 a* a3 Vfuer:—z f dgf dp §3aexp<— P 5) f(p),
0 1

acd c

— " 2

o for the potential, also called short-ran@R) approximation.
FIG. 2. Relevant length scaleg,,; and Ay characterizing the |t js worth noticing that result21) does not depend on the
generalized van der Waals potentia, . The power law behavior 51ye of T [26] and coincides with the zero-temperature limit
qf Vgur(d) is _shown in the appropriate ranges of validity as a func-of the general form(17) of the potential. Equatio21) ad-
tion of the distance from the surface. mits two important limits. For largel one finds the most

famous expression
A\t the force is dominated by the thermal fluctuations of the

electromagnetic field. In this limit the leading contribution is P__ 3hcagleg—1) 29
given by the first term in Eq(17), due to the occurrence of sut™ 8 d* (g9+1) ¢leo), (22
the exponential factor in the other terms, and the potential
takes the characteristic form also know as the Casimir-Polder law, where we have intro-
duced the functioni28]
T _ kg Tag(ep—1) _(e+1)1 4-(e+1)\e
Veur(d) = 4 3 (0+ 1) : (20 #(e) (e-1) { 3 tet 2(s—1)
sinil(e—1) [1+e+2 e(e — 1)
Notice that in this regime only the static value of the dielec- - 2 (s - 1)%2
tric and polarizability functions contribute to the force. It is _ — —
also worth noticing that in this limit the force is independent . &® [sinh e = sini(1Ve)]
. . : : (23)

of the Planck constant as well as of the velocity of light. V(e+1)

For distancesl smaller(or of the same ordgthani; the
quantum fluctuations of the electromagnetic field becomevhich is equal to 1 in the case of an ideal metgl=2°). For
important and the terms of the suit7) should be taken into  sapphire(eq=9.4) one finds¢(ey)=0.8.
account. Ifd<\ andT is sufficiently small, one can replace  In the opposite limit of smaltl one instead finds the dif-
the sum with an integrakee Sec. V. In this regime one can ferent law
introduce a second length scale, hereafter callgd This . _
length is related to the relevant wavelengths characterizing WL = — fi f a(i§)8(l§) - 1d§ (24)
the optical properties of the interacting media. One can iden- sut™ 4 d®), e(iep+1 >’
tify two distinct regimes. For distances< \ the potential
exhibits the familiar 1d° van der Waals—London depen- also known as the van der Waals—Lond®i ) interaction.
dence. In the intervak,,<d<\; one instead enters the The coefficient characterizing this force is fixed by the opti-
Casimir-Polder regime where the potential decays liké*1/ cal properties of the media. The matching between the two
The possibility of identifying the Casimir-Polder regime de- laws (22) and (24) provides a useful estimate of the optical
pends crucially on the value of the temperature. The temlength\,,; according to
perature should be in fact sufficiently low in order to guar-
antee the conditiony> \,; (see discussion at the end of
Sec. V). Differently from the thermal wavelength, given by
the simple expressioky, the explicit evaluation ok, is not
immediate because the optical properties of the media are not
characterized by a single frequensge Sec. V In the case
of rubidium atoms interacting with a dielectric sapphire sub-
strate we find\yp~ 0.1 um.

IV. FORCE AT SHORT DISTANCES: ) :
FROM THE van der WAALS—-LONDON ~1%.01 0.1 1 710
TO THE CASIMIR-POLDER REGIME d (um)

. . . . . FIG. 3. The atom-surface potential is shown using the exact
As anticipated in the preceding section at distance$omyia of Eq.(17) (solid line), the short-range approximatioal)
smaller than the thermal wavelength also the terms in th@gash-dotted ling and the static approximatic(26) (dashed ling
sum(17) contribute to the force and, @<\t and the tem-  The asymptotic van der Waals—Londér1/d%), Casimir-Polder
perature is sufficiently low, the sum is conveniently replaced ~1/d4, and highT (~1/d% potentials are also showdotted
by an integralX,— (%/2mkgT)/d¢. One then finds the use- lines). The curves were obtained for a sapphire substrate at 300 K
ful expression and for®’Rb atoms in the condensate.
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which consists of replacing the dielectric functiohgnd «

with their static values, and «y, respectively. In the static
approximation the potential generated by the surface can be
written in the useful form

KTag(eg—1)
VEA(d) = - 2 Gly), 26
Surf( ) 4d3 (80+1) (y) ( )
where we have introduced the relevant scaling variable
d
. y= (27
lo10" 10° At
y

and the function

FIG. 4. The functionG(y) (solid line) is shown as a function of

the scaling variablg=d/\t together with its asymptotic behaviors

(dotted line$. The function was calculated for the sapphire sub-

strate(see text

3CC¥0(80_1)

Nopt= >

In Fig. 3 we show the potentigPl) (dash-dotted lingcalu-

lated using the dielectric functions of rubidium atom and of
sapphire. The asymptotic lawg,,=—68.1/d° nK (um?) for

the van der
=-8.34/d* nK (um? for the Casimir-Poldefsee Eq.(22)]
potentials, as well as the asymptotic thermal I&,
=-2.86/d° nK (um?3) evaluated af=300 K [see Eq.(20)],
are also shownd is here expressed in microndt is worth

Waals [see

a(ié)

Eq. (24)]

(i -1
ei)+1

g+l [~
Gly) = {1 + 32773E2—j1; f Y2 9(4 7 p y)fe(p)dp|.
€ 1

(28)

In Eq. (28), fo(p) is the static limit of Eq(18), obtained by
replacinge with g4, while the functiong is defined by

e?[1+4e?+e
(1-e®4

ga=2>ne?"= (29)

n=1
The asymptotic behaviors of the functi@(y) are well es-
tablished: fory—0 one findsG(y) — 3¢(gg)/(2 7 y). Vice
versa, fory— oo one findsG(y) — 1. For a fixed value off
the two limits apply, respectively, to distances larger and
smaller than the thermal wavelendit®). It then follows that
the static approximatio(26) provides the transition from the

noticing that the potentia{21) approaches the asymptotic Casimir-Polder law(22) holding for Ao <d<<\y, to the
Casimir-Polder force only at distances significantly largerthermal law(20) holding for d>\+. In Fig. 4 we show the

than\yp.

V. FORCE AT LARGE DISTANCES
AND THE STATIC APPROXIMATION:
QUANTUM VS THERMAL EFFECTS

At large distances from the wall the potent{al7) can be
safely evaluated in the so called static approximatiBA)

-2

10

)

T=300K

6 7
d (pm)

scaling functionG(y) together with the two asymptotic limits
y— 0 andy— o in the case of sapphire where we have used
the value g3=9.4. The function G(y) depends rather
smoothly on the actual value of the static dielectric function,
provided the valuey is significantly larger than 1.

In Fig. 3 we compare the prediction for the potential
given by the static approximation with the exact result evalu-
ated starting from Eq(17). The comparison shows that for
distances larger than-2 um the static approximation is
rather accurate. This explains why the predictions of this
approximation for the frequency shifts are also accufsee
Figs. 5 and &

-2

10

FIG. 5. Fractional frequency shif32) of the center-of-mass
oscillation(solid line) as a function of the distance from the surface,
compared with the prediction of the static approximatidashed
line). The curves were obtained for a sapphire substrate at 300 K
and for®Rb atoms in the condensate. The unperturbed frequency
was w,/27=220 Hz while the radius of the condensate WRs
=2.5um.

053619-6

FIG. 6. Same as in Fig. 5, a&=0 K.

6 7
d (um)



EFFECT OF THE CASIMIR-POLDER FORCE ON THE PHYSICAL REVIEW A 70, 053619(2004)
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FIG. 7. Imaginary part of the sapphire dielectric functigitw) 10° 10" 10" 10° 10
& (rad/sec)

on the real axis of frequences.

FIG. 9. Polarizability functiona(i & (in cm®) for 8Rb atoms

At shorter distances the static approximation fails and one S ;
aluated on the imaginary axis.

should instead use the short-range description developed Y
Sec. IV. If At> A, the long-range description based on the
static approximation matches the short-range description of _ 2 [ o d(w)
Sec. IV in the Casimir-Polder regim@2). In this case the a(i &)= ;f ng
matching procedure completes the determination of the po- 0 @ Tén
tential at all distances. If instead the conditidf> M\, IS where o is the imaginary part of the atomic polarizability
not well satisfied, one should calculate explicitly the poten-, =, +iy".

tial using the general expressioh?7) and the potential will The imaginary part of the dielectric function can be re-
not exhibit the intermediate Casimir-Polder behawi®®).  |ated to the measurable real and imaginary parts of the re-

For example, in the case of Fig. 3, where the potential i%raction indexn(w)=n’(w)+in" according the equation
calculated aff =300 K, the matching between the two Curvess,,(w):2n,(w)n,,gz)); Th(ewilalue(sw)ofs”(w) (da%a takeg from

is not very good and consequently the system never exhibitl%o]) and &(i¢) for sapphire are reported in Figs. 7 and 8.

the Casimir-Polder behavig27]. . ; : . T
From the optical point of view, crystalline sapphire is a
VI. OPTICAL PROPERTIES OF THE ATOM uniaxial crystal and one should distinguish between the ordi-
AND OF THE SUBSTRATE nary and extraordinary refraction indices. Since the optical
. . . . I . properties for sapphire are not completely known, in our cal-
The funct|on53(|§) anda(ig), Whlc.h are crucial ingredi- culations we have used only the data for ordinary waves. We
ents for the calculation of the_potentl_al generated by the SUlaxpect that this approximation will not significantly affect
face, obey the Kramers-Kronig relations the analysis in both crystalline and melted sapphires. In Fig.
. 2 (% we"(w) 9 we report the corresponding values fdi &) for °’Rb [29].
el &) =1 +;f WP+ 2 do, (30 The static value of the polarizability isag=47.3
0 n X 1072 cm?. Figure 7 shows that the optical properties of
where¢” is the imaginary part of the dielectric function  sapphire are rather complex so that the actual valug,gf
=g’ +ig" evaluated on the real axis. For the polarizability onegoverning the transition from the van der Waals—London to
has the analogous relationship the Casimir-Polder regimes cannot be simply inferred from
the form of ¢”, but requires the explicit calculation of the
integral (25). The typical “two-plateau” behavior exhibited
9 I by e(i¢) in solid dielectrics is the consequence of the con-
s} : centration of the strength”(w) in two distinct regions of
frequenciegsee Figs. 7 and)8This behavior is absent in the
atomic polarizability(see Fig. 9. Using Eq.(25) it is pos-

do, (32

10,

{9 | ] sible to calculate the value af,,. In the case of the sapphire
T 5 . substrate interacting with rubidium atoms we find,
=0.1 um.

5 | VIl. RESULTS FOR THE SHIFT OF THE
[ CENTER-OF-MASS OSCILLATION

16 13

10 We are now ready to calculate the shifts of the center-of-

mass frequencies of the condensate caused by the force gen-
FIG. 8. Sapphire dielectric functios(i ¢ evaluated on the erated by the surface. We will consider a condensate of finite
imaginary axis. Thomas-Fermi radiu®, located a distancd from the sur-

1 014
& (rad/sec)
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Let us finally discuss the effects of nonlinearities on the
frequency shift. If the amplitude of the oscillation is not
small, additional corrections due to the external force should
be taken into accour(see Sec. )l The corresponding cor-
rections can be estimated using the regldf). For example,
by choosinga=0.5 um and making the same choices for the
other parameterdR,=2.5 andw,/27=220 H2, we find that
the prediction for the frequency shif82) is increased, in
absolute value, by-20% atd=6 um. This result shows that
for larger choices of the amplitude of the oscillation and for
- — smaller values ofl the effects of nonlinearity can become
d (um) very important. In general they should be calculated starting
directly from Egs.(12) and(13).

FIG. 10. Relative frequency shif82) of the center-of-mass os-
cillation calculated aff=0 K (dash-dotted ling T=300 K (solid
line), T=400 K (dotted ling, and atT=600 K (dashed ling The VIIl. CONCLUSIONS
curves were obtained for a sapphire substrate ant/Ris atoms in
the condensate. The unperturbed frequency wg®m=220 Hz
while the radius of the condensate WRs=2.5 um.

In this work we have applied Lifshitz theory of general-
ized van der Waals interactions to investigate the effect of a
substrate on the collective oscillations of a trapped quantum
gas. We have first developed the general theory for the fre-

face (see Fig. 1. We will evaluate the fractional frequency g ,ency shifts of the center-of-mass oscillation caused by a

shift perturbative force of general form. We have hence character-
w0, = Wem ized the potential generated by the surface identifying vari-
Y= T (32 ous relevant regimes. A first approximation, holding at short

z

distancesd from the surface, permits one to describe the
with e, given by Eq.(8), as a function of the distanakat  transition from the van der Waals—LondondE/law to the
different temperatures. As discussed in the preceding se€asimir-Polder 1d* regime characterized by quantum and
tions, the behavior of the potentisl,, ¢ at short distances is relativistic effects. A second approximation, holding at larger
temperature independent and coincides with the zerodistances, permits one to describe the transition from the
temperature value. Conversely, at distances of the order d¢asimir-Polder law to the large distankgT/d® behavior,
the thermal wavelength or larger, the potential exhibits ardominated by the thermal fluctuations of the electromagnetic
important temperature dependence. This behavior is reflectdigld. We have also identified the relevant length scales of the
in the shift of the center-of-mass frequency of the condensatgroblem and explored the matching conditions for the vari-
for which we provide our predictions in Fig. 10 at different ous approximations. Due to the finite size of the condensate,
temperatures. The curves of this figure have been calculatétie calculation of the frequency shifts requires a numerical
using the general expressigh?7) for the potential. In the integration, although analytical expressions can be obtained
calculation we have used the value$27=220 Hz for the in some limiting cases. The calculation requires explicit
harmonic trapping frequency along tkth direction andR,  knowledge of the optical properties of the interacting media
=2.5 um for thezth radius of the condensate. These are typi-and in particular the dielctric function of the susbstrate and
cal values employed in current experiments with Bosethe atomic polarizability of the atoms in the condensate. We
Einstein condensates. We have used a sapphire substrate diatye also exploited the effects of nonlinearity and shown
the condensate is made BRb atoms. Our predictions show that, due to the finite width of the condensate, they can pro-
that at distanced ~4—8 um, where the thermal effects start vide large corrections to the frequency shifts and should be
becoming important at room temperature, the frequencgonsequently taken into account in the comparison with fu-
shifts are of the order of 6. These results are promising in ture experiments. We have finally deriveste the Appendix
view of the possibility of systematic measurements of theresults for the frequency shifts of the radial breathing mode.
interplay between quantum and thermal effects in the gener- Our predictions are rather promising and suggest that
alized van der Waals forces. Bose-Einstein condensates can become efficient sensors of
It is also interesting to compare the predictions for thevery weak forces. In particular the oscillation of the conden-
shifts of the collective frequencies with the results obtainedsate permits one to explore the interplay between quantum
using the static approximation, holding at large distancegind thermal fluctuations of the electromagnetic field in the
(see Sec. Y. The comparisortsee Figs. 5 and)Ghows that relevant region of 4—8m. For such distances the relative
the static approximatio(26) provides an accurate decription shifts are predicted to be of the order of"1@nd are hence
of the shifts for distances larger thanun, even at zero measurable experimentally.
temperature. At shorter distances the deviations become
more important. One should actually notice that at short dis-
tances the width of the condensate plays an important role
amplifying the effects of the short-range component of the This work was stimulated by insightful discussions with
potential. Eric Cornell. It is a pleasure to thank him as well as John
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_ In the absence of the surface perturbatidfy,=0), Eq.
APPENDIX: FREQUENCY SHIFT OF THE RADIAL (A2) gives oscillating solutions witlv=2w | .

BREATHING MODE The effect of the perturbation is simply calculated notic-

The radial breathing oscillation in elongated traps is alNd that the unperturbed solution corresponds to a scaling
fundamental mode exhibited by Bose-Einstein condensate§ansformation where the density varies agx,y,t)
For an interacting Bose-Einstein condensate, harmonically @®No(X/a,y/a) andng is the equilibrium density distribu-
trapped in two dimensions, this mode exactly occurs at twicdion. The time-dependent scaling parametdixes the value
the trapping radial frequencgwe assume here symmetric Of the square radius according(td'+2%) = a*(x*+2%),. Using
trapping: w,=w,= ), irrespective of the amplitude of the the scaling transformation to evaluate the integrds,
oscillation, number of atoms, and value of the scattering=fdrn(x,y,t)Ve,(2) and (zd,Ve,p=JSdrn(x,y,t)zd,Ve,(2)
length[31]. In a 3D configuration this mode can be realizedone can rewrite EA2) as a simple equation for the param-
in the limit of a very elongated axisymmetric tra@,  etera. In the following we will be interested in the limit of
<w, ) corresponding, in the geometry of Fig. 1, to a conden-small-amplitude oscillations. By expanding the integrals up
sate very elongated along the direction orthogonal to the figto first order in(a—1), one finally obtains the result
ure. The radial breathing oscillation has been measured with
high accuracy if32]. 2_ 42 1 -

The radial breathing mode can be described by deriving W= 4wl ¥ m(x2 + 22 J_R 62020V surid2
thze tirzne-dependent equations for the average square radius R ‘
(x*+Zz%) within Gross-Pitaevskii theonf17] in 2D. After +2f néZ&zVsurde}

A3
some straightforward algebra one finds the equation R, (A3)

@ __ 2 2 5, 5 4 for the frequency shift of the radial breathin®) mode,
dt2<x +7)= "IV + Pt P2+ 1 (Vabody)s wheren is the 1D column density7). Similarly to the case
(A1) of the shift of the center-of-mass frequenisee Eq.(32)],

also the resul{A3) is exact up to first-order corrections in
whereV,_,.qy is the average values of the mean-field inter-the perturbation. In fact the radial scaling ansatz is an exact
action energy an¥ is the external potential. By introducing solution of the Gross-Pitaevskii equation in 2D. It is also a
the energy per particIeE/N:(V)+(I0>2<+pﬁ)/2m+<V2_body>, good approximation in 3D if the harmonic trap is sufficiently
which is conserved in time, and separatingvithe axisym-  elongated. The resulA3) for the radial breathing mode may
metric harmonic potentiaV,, from the surface potential provide a further tool to investigate the effects of the gener-

Veurt EQ. (A1) can be rewritten as alized van der Waals force on a Bose-Einstein condensate.
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