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Quantum Monte Carlo simulations of confined bosonic atoms in optical lattices
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We study properties of ultracold bosonic atoms in one-, two-, and three-dimensional optical lattices by large
scale quantum Monte Carlo simulations of the Bose-Hubbard model in parabolic confining potentials. Our
results indicate that local properties of the atoms can be accessed by probing the system’s response to local
potential perturbations. Furthermore, we show how the formation of Mott insulating regions is reflected in the
momentum distribution of the atoms, amenable to experimental detection. We disprove previous claims con-
cerning the relevance of fine structure in the momentum distribution function. Furthermore, we discuss limi-
tations of local density approximations for confined systems, and demonstrate the absence of quantum criti-
cality due to the inhomogenous potential. Instead, we show that quantum critical behavior can be observed in
flat confining potentials. Our results indicate that the experimental detection of the Mott transition in moder-
ately sized optical lattices would be significantly eased in flat confinement potentials.
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I. INTRODUCTION tailed analysis concerning the limitations of local potential

) ) ) ) . approximations, andiii ) discuss the nature of spatial corre-
Experiments on ultracold atomic gases in optical latticeSations inside the trap.

[1,2) provide the unique opportunity to directly compare the-  Next in Sec. IV, we introduce an effective model describ-
oretical studies of strongly correlated many-body quantumng the inhomogeneous Bose gas inside the confinement po-
lattice models with near-perfect experimental realizations ofengjal, This allows us to study the finite size effects arising
those modelg3]. Unlike for other strongly correlated sys- from the limited extent of the Bose gas in the trap. Using this
tems, where often the models simulated numerically are proggfective model, we discuss the absence of quantum critical

totype toy modelsior describing the properties of such ma- papayior for bosons trapped in confinement potentials.
terials, the same models are hegalistic modelf confined Then in Sec. V we aim at identifying experimentally ac-

cold atoms, allowing for quantitative comparisons. cessible quantities that signal restructurings in the density
So far, experiments have focused on bosonic atfin®, jstribution of the confined Bose gases. For this purpose, we

which are easier to cool than fermions. A quantitative underm,qnitor the evolution of the momentum distribution function

standing of these bosonic systems will, in the future, allow,non increasing the lattice depth of the optical lattice, similar

correct interpretation of measurements on atomic fermioRy the experimental procedufé]. We find that a method put

gases, which could be used as analog quantum simulators fgg\yard recently[6] for identifying the phase structure of the

strongly correlated fermionic systerfé]. confined Bose gas is not appropriate. However, by monitor-
Here we present results of an extensive set of quantuyg the evolution of both the coherence fraction and the full

Monte Carlo simulations performed on one-dimensionalyiqih at half maximum of the coherent part of the momen-

(1D), two-dimensional(2D), and three-dimensional3D)  ym distribution function we obtain clear signals for restruc-

systems of confined bosonic atoms in optical lattices, extendying of the density distributions. Finally, we summarize our

ing previous work in 10{5] and 3D[6]. Parts of our results  ghservations in Sec. VI, along with implications for experi-

were already presented elsewhgi@; here we provide a ents in confined atom systems.

more detailed discussion and additional results on confined

Bose gases. Details of the many-body quantum lattice model

used for simulating confined bosons, as well as the employed !l MODEL AND NUMERICAL TECHNIQUES

quantum Monte Carlo method, are discussed in the following  co|q confined atomic Bose gases in an optical lattice are

section. _direct experimental realizations of the inhomogeneous Bose-
In the first part of the paper, Sec. lll, we focus on simu-ynpard Hamiltoniarj3]

lations of bosons in 2D confinement potentials, and study

various aspects of confined bosons in a realistic setup. Ip| = —t3 (bl + H.c) + 92 (-1 +VS rn —,LLE "
M " i\ it i
i i

particular, we(i) identify a local probe for the state at a given i 24
location inside the inhomogeneous trap) present a de- ’ o
wherebi’r (b;) denotes the creatiofdestruction operator for
*Permanent address. bosons at lattice site located a distance from the center of
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the trap, andni=bini is the local density operator. The 1 otk et

nearest-neighbor hopping integtalthe on-site Hubbard re- n(k) = NE e (biby), (6)
pulsion U, and the curvature of the parabolic confinement "

potential V>0 are tunable parameters in experiments. where N denotes the total number of particles within the

After evaporative cooling of the atoms, the experimentssystem. This way the momentum distribution is normalized
are, to a good approximation, performed at constant particles unity, and the coherence fraction is given by the height of
number. Similarly, the chemical potentjalallows us to con-  the coherence peakk=0).
trol the filling of the trap in the numerical simulations. For  The momentum distribution function(k) is directly ac-
the discussions below we introduce a local chemical potencessible in experimental studies of confined atomic gases.
tial For negligible interparticle interactions during ballistic ex-

eff = _\/p2 2) _pansion of the atomic cloud, it _essentially.ma.ps onto the
M =M i interference pattern of the resulting absorption imades.

which decreases upon moving away from the trap center. DU€ to the tight binding approximation of the Bose-Hubbard

Quantum Monte Carl¢QMC) simulations of the Hamil- model, the numerical momentum distribution functions are
tonian Eq.(1) were performed using the stochastic seriesP@riodic in the extended zone scheme. The finite extent of
expansion methoB,9], with directed loop updateid0—13. the Wannier functions on each site in an optical lattice leads
This algorithm requires a cutof., on the local site occu- (0 @ form factor in the momentum distributigf], resulting
pation. Performing simulations at mean densitieg<1, a " unequal heights of the higher-order Bragg peaks, as ob-
cutoff N,ax=2 or 3 can be chosen without introducing sig- served in the expe_rlmente_ll mterference pa_tte{_ﬂr]s
nificant errors. The temperature used in the QMC calcula- To further quantify s_pat|al co_rrelatlon_s W'thm the trap, we
tions was chosen low enough for the atoms to be essentiall&‘eas,ure the one-particle density matrix, i.e., the correlation
in the ground state. unction

All lengths are set in units of the lattice constantand 9(i,)) =(binj>, (7)
the simulation box is taken large enough to ensure that out- . N '
side its boundary the local densityvanishes due to depopu- between bosons on lattice siteand].
lation by large negative values pfff. For the values chosen
in our simulations we needed to keep up to 500-site chains in
1D, 50% 50 square lattices in 2D, and up to*€ite cubes in A. Phase coexistence in trapped systems
3D.

To distinguish the local phases in the inhomogeneous Y$50
tem and to probe for quantum criticality we define theal
compressibilityat sitei,

IIl. SIMULATIONS OF REALISTIC 2D TRAPS

Trapped inhomogeneous systems can show coexistence of
th superfluid and Mott insulating regions, as has been
clearly identified in experimentd,2], in mean field investi-
gations [3], in numerical renormalization groufl4] and

AN 8 Gutzwiller ansatz calculationg5], and in numerical simu-
Kol —— = j d(n(IN)=(n(DXN)],  (3)  lations in 1D[5,16] and 3D[6]. By simulating large realistic
I 0 systems in 2D, we can clearly observe this coexistence. For

large hoppingg the total system is superfluidrig. 1(a)].
As the hopping amplitudeis decreased, a Mott insulating
plateau with integer densihere(n,)=1) forms in the center
of the trap, as seen in Fig(l). A superfluid ringlike region
with a nonuniform particle density surrounds the central pla-
teau. The typical width of this superfluid ring is 6—8 times
the lattice unit, for the parameters used in our simulations.
A= () — (n)2. (4) Far away from the center, the density(ig)=0, which can
also be viewed as a Mott plateau.
Note that the variancd; is not equal to the response func-  The emergence of the Mott plateau and the shrinking of
tion the superfluid region have been interpreted as a quantum
phase transitiorf1]. We prefer to view it as a crossover
_ where the volume fraction of the Mott insulating phase
drL(n(n)m(0)) = ((NXm(ON], (5) grows and that of the superfluid phase shrinks. After discuss-
ing the quantitative properties of the two phases and of the
which we denote by the on-site compressibility, and whichboundary region we will, in Sec. IV C, show that no quan-
guantifies the response of the local density at &ite a  tum critical behavior is observed in this system, which sup-
chemical potential change at this site. We will show in Secports our interpretation of this phenomenon as a crossover
Il B that the local compressibilitx'°“@ as defined in Eq3) instead of a phase transition.
is able to characterize the local state near a given site even in
the inhomogenous case, by making a global measurement.
In addition to measuring local quantities, we measure the Figure 1 is useful for a qualitative view, but we need a
momentum distribution function quantitative probe to distinguish the different phases. This

by the response of the system’s particle numiédo a local
chemical potential change at siteHere,3=1/T denotes the
inverse temperature, and;(7)=exp(7H)n; exp(—-H) the
imaginary-time propagated operator.

Another way of probing for local properties is to measure
local density fluctuation§5], i.e., the variance

Kpnsitez ‘9<ni> — P

L=
I ous 0

B. Local compressibility
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FIG. 1. Spatial dependence of the local density for two-dimensional confined atomic boson syatémthe superfluid phaséh) at
stronger lattice depths a central Mott insulating region is formed. The simulations were performed for a parabolic trap with curvature
V/U=0.002, atu/U=0.37, forU/t=6.7 (a) and 25(b).

probe is given by the compressibility. QMC results for thering, and do not vanish in the central Mott plateau region.
local compressibility within the trap of Fig.(i) are shown While density fluctuations are therefore most pronounced in
in Fig. 2. The extent of the superfluid shell is clearly re-the middle of the superfluid ring, they remain finite inside the
flected by this local probe, which also shows that the comMott plateau. Note that this is also the case for a homoge-
pressibility is largest close to the outer regions of the superneous system in the Mott insulating regime, and is due to

fluid shell. virtual hopping processes. Only whetU=0 are these fluc-
For a quantitative analysis we plot in Fig. 3 the radialtuations suppressed by an infinite energy gap.
dependence of both the local density) and the local com- These results demonstrate that the local compressibility

pressibility «°¢@(r) as a function of the distanaefrom the  «'°°@(r) is a better probe for the existence of superfluid or
center of the trap. We observe two well defined Mott regionsMott regions in the system than the on-site response ex-
with local densityn(r)=1 andn(r)=0. In these Mott pla- pressed byA(r). Moreover, the response of thetal system
teaus, the local compressibility vanishes, whereas it is finitéo a local excitation should be easier to study experimentally
in the intervening superfluid ring with nonintegral density than the local response to a local excitatifor example, by
o<n(r)<1. changing the laser intensity at one specific point

More precisely, we observe two well defined peaks in
«'°c@(r), signaling an increase in the particle number fluctua-
tions at the boundaries to the Mott regions. While these two
peaks would be of the same height in hard-core boson mod- In order to gain a better understanding of the extended
els (due to particle-hole symmetrythey are asymmetric in superfluid ring, we study the behavior of the one-particle
the soft-core case. density matrix Eq(7) in the trapped system. In Fig. 4, the

The inset of Fig. 3 shows the radial dependence of th&patial dependence dfi, j) is shown for a fixed sitg, well
local density fluctuations of Eq4), A(r), first used in simu- inside the superfluid ring, and all other sitéa the parabolic
lations of 1D confined Bose systerfs], as well as the on- trap. The rapid decay of the correlations toward both the
site compressibilityx°" S'r) of Eq. (5). As opposed to central Mott plateau region and the outside clearly exhibits
«'°%@(r), both quantities peak in the middle of the superfluid

C. Spatial correlations in the superfluid

0.20
25 02
0.15
0.10(?3(:/
254
S
= 0.1 0.05
0 5 10 15 /i
rla
0.0 FIG. 3. Radial dependence of the densitgnd local compress-
-25 x/a 25 ibility ' of bosons in a two-dimensional parabolic trap with

curvatureV/U=0.002, foru/U=0.37 andU/t=25, with a super-
FIG. 2. Spatial dependence of the local compressibidit§?' of fluid ring surrounding then=1 central Mott plateau. The inset
bosons in a two-dimensional parabolic trap with curvaturié) shows the radial dependence of the local density fluctuatioasd
=0.002, foru/U=0.37 andU/t=25. A superfluid ring surrounding the on-site compressibilitk®"s'€ which remain finite within the
then=1 central Mott plateau is clearly resolved. Mott plateau region.
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_ _ o FIG. 6. Local densityn and local compressibility<'°@ of

?G- 4. Spatial dependence of the correlation functi®h)  posons in a two-dimensional parabolic trap with curvatué)
=(b/b;) between bosons at sit§=(12.3,0 inside the superfluid _q ggp. atu/U=0.37 andJ/t=25, as functions of:™. The results
shell, and all other siteswithin a two-dimensional parabolic trap ¢, ,Jocal from the density fluctuations, E@3) (circles agree with
with curvatureV/U=0.002, atu/U=0.37 andU/t=25. the numerical derivativ@n/&,ue” (triangles.

the ringlike structure of the coherent superfluid. in spite of the presence of a central Mott plateau.

Inside the superfluid ring the correlation function decays A rapid decrease of the correlations, as one moves away
less rapidly. In order to make a quantitative analysis of itstom the middle of the superfluid, can be seen from the right
long distance behavior, we plot in Fig. 5 the dependence afyset of Fig. 5, which shows the radial dependence of the
the correlation functiory(i, ) for sitei,j along the ring on ¢ rrelation functiong(d) at the largest distancé= . The
the distancel between the sites, as measured along the ring.qrelations are thus most pronounced nearl2, which
See the left inset of Fig. 5 for an illustration. We find all datacorresponds to the central region of the superfluid ring, and
for dist_ancesd/a>5 to follow very closely a finite size ex- pacome suppressed as one moves toward either boundary.
ponential decay, Finally, inside the Mott plateau region, the correlations are
- —d) merely short ranged. Even though the coherent part of the

(8) Bose gas is thus confined to a 1D ringlike structure, the
spatial dependence of the correlations inside the ring clearly

with a correlation lengti§/a=21.6+0.4, and a finite constant €Xhibit the underlying 2D structure of the trapping potential.
¢=0.033+0.003. Thus, the superfluid ring does not exhibit Our findings are related to recent results in 1D systems
quasi-long-ranged correlations, as might have been expectéd®,17, which show that the presence of a Mott insulating
from the reduced dimensionality of the quasi-1D superfluigi€gion does not change the long distance behavior of the
ring. Instead, we find the ring to be wide enough for |ongone-partlcle density matrix in trapped boson systems. A simi-

range order, i.e., 2D behavior, to persist inside the superfluitR @nalysis might also apply to 3D confinement potentials,
which would allow for extended 2D superfluid shells sur-

rounding a Mott insulating central region.

g(d)=c+b cosl’(

N
~

inside éul;erlflljlid 'ririg ' ()Tll 5 '
along r/a=12.3
D. Local potential approximation

The confinement potentiaV/ enters the Bose-Hubbard
Hamiltonian, Eq.(1), by coupling to the boson density. It
therefore corresponds to a local chemical potential shift, ex-
pressed by the local chemical potentj#l, defined in Eq.
¢ + b cosh(r-d)/fE) (2). In Fig. 6, we show the behavior of both the local density
£/a=21.6(4) c¢=0.033(3) and compressibility as functions of this effective chemical
v T T potential, u™. The observed data collapse in both quantities,

distance along ring, d/a as well as the smooth behavior of these curves for all points
on the lattice, indicate that for the realistic parameters used
for the simulation, a local potential approximation holds, i.e.,
the local density can be determined from the value of the
local chemical potential. The validity of this approximation
is further confirmed by observing that the local compressibil-
ity coincides perfectly with the numerical derivative of the
curven(us™, ie.,

o
)
T

correlation function, g(d)
&
"o
\! QU
g(mr)
S
3

exponential fit

(=
—

FIG. 5. Dependence of the correlation functi@(rd):<bfbj> on
the distanced between sites and | along the superfluid ring for
sites withinr/a=12.3+1.2 lattice units from the center of a two-
dimensional parabolic trap with curvatun/U=0.002, atu/U
=0.37 andU/t=25. Ford/a>5 the data fit well(y*=1.6) to an
exponential decay, with a finite value 0£0.033+0.003, and cor-
relation lengthé/a=21.6+0.4. The right inset shows the correlation

at the largest distanceg(nr), as a function of the distanaefrom AN) )
the trap center. The left inset illustrates the distasidetween two —f = —, (9
sitesi,j along a ring of radius employed here. I o
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FIG. 7. Densityn and compressibility« of the Bose-Hubbard
model on the 2D square lattice faf/t=25, as a function of.. The

) . . ) FIG. 8. Different lattice topologies and expected superfluid re-
data are taken from simulations or(24 X 24)-site square lattice. polo9 P P

gions(denoted in grayfor a quadratic confining potential for such
topologies:(a) square lattice(b) polar lattice,(c) ladder lattice.
It is important to note than(«°™) is not a universal func-

tion, but depends on both the confinement geometry as wefhy the apparent absence of quantum critical features by
as t_he trap curvatur®. Universal behavior is violated in looking at a “smoother” lattice. Although it cannot be real-
particular near the boundary of the superfluid, whete®")  i;eq in experiments, we consider a polar lattice, such as de-
doesnot behave a®(u) for uniform systems, corresponding picted in Fig. 8b), which is topologically equivalent to the

to V=0. For example, in the uniform 2D case a cusp devel{adder system in Fig. (). The rotational invariance of the
ops whemn approaches 1, as seen in Fig. 7, due to quantugolar lattice(translation invariance of the ladders along the
criticality. This cusp is absent in the confined system, whergeq direction simplifies the detection of critical behavior by

n approaches 1 rather smoothigf. Fig. 6. While a local  reducing finite size effects.

potential approximation in terms of an effective local chemi-  \whijle the polar and ladder lattices are not topologically
cal potential holds, the value of u°") thushas to be taken equivalent to the square lattice, universality of quantum criti-
from simulations in a trapand not from the uniform system cal behavior ensures that we study the same effects. Compar-
on the underlying lattice. Approximative schemes such asng the lattices will be a further check for the validity of a
those of Ref[18], which assume that locally the system can|ocal potential approximation for the confined system.

be mapped onto an unconfined system at the local value of The Hamiltonian of the ladder system of sizgx L is

u have to be applied with care. Being reasonable in the

bulk of both the superfluid and the Mott plateau region, such e N +

approaches become unreliable near the interfaces between H= _tz E (byjbreg +bysby jea + H.C)

superfluid and Mott insulating regions, where differences be- ==t
tween the confined and unconfined cases are most pro- ubl Ly

nounced. There QMC simulations are needed in order to ob- +o2 2 - -2 u() X, (10
tain n(u®™) for a given trap geometry. 2is1i=1 =1 =

Lx

where the confinement potential is now given by a chemical

IV. THERMODYNAMIC LIMITS AND QUANTUM pOtentlal,.t(J) which is constant for each |ngf the ladder.
CRITICALITY The boundary conditions are chosen to be periodic along the

legs of the ladder, and open in the transverse direction.

In the previous section we found that in the boundary with these choices, the local density, ;) is independent
layer between Mott plateaus and superfluid regions, the corys i que to translation invariance along a leg of the ladder,
fined system does not show cusps in the density profile as thg,q we denote by(j) the density of particles on theh leg.
uniform system does as a function pf near the quantum Similarly, the local compressibilit/®(j) is the same for

critical points. This is an indication for the absence of quan-y sites on thejth leg. The results shown below have been
tum criticality in the confined system. It could be argued that i -ined for a geométry with.=64 andL.=10
X y .

this is simply due to finite size effects, but here we show that 1 simplify simulations, we linearize the quadratic poten-
the situation is indeed more subtle. For this purpose, W&o u+Vj? and set

introduce an effective ladder model for bosons inside inho-

mogeneous potentials. w(j) = po+jAu, (11

where Au is the difference in chemical potential between
A. Effective ladder model for the superfluid ring two neighboring legs. In our simulations we fixu/U
A parabolic potential imposed on a regular hypercubic=0.053 and make sure that the first leg is always in(the
lattice makes for an irregular form of the superfluid ring =0 Mott insulating phase and the last leg in =1 insu-
surrounding the Mott insulatdisee Fig. 83)]. We thus first  lating phase. Sweeping the value of the glopglallows us
investigate whether this structural quenching is the reasoto obtain results for all values of the local chemical poten-
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FIG. 9. Local densityn and local compressibility°@ for a
two-dimensional parabolic trap on a square lattice and for a ladder, Fig. 10. Local density for bosons confined in one-dimensional
as functions ofu®". The parameters for the trapping potential are parabolic confinement potentials of different curvatukésas a
VIU=0.002, atu/U=0.37, and the parameters O.f the ladder modelgnction of uof. For comparison, the behavior of the density as a
are chosen to cover the whole superfluid regieee text The  fnction of 4 in the uniform 1D system is also shown. The insets
density profiles within the trap and the ladder coincide almost persye.s on the regions close to=0 andn=1, where differences be-

fectly. Small differences are exhibited by the two different com-yyeen the trapped case and the uniform case are most pronounced.
pressibility curves, which nevertheless share the same overall

shape. - .
P We expect similar features also to be obtained for 3D traps

. . . using the effective multilayer model.
tials, and to drive one of the legs across the transition from

the superfluid to the Mott insulating phase. We note that a
similar construction is obtained for 3D traps, by modeling
the superfluid shell as a set of coupled planes with a chemi- Having shown that the ladder model captures important
cal potential gradient applied perpendicular to the planes. features of the realistic trap even quantitatively, we now dis-
cuss possible quantum criticality in confined systems.
Performing the thermodynamic limit in the uniform case
does not change the model parameters apart from increasing
the number of lattice sites. On the other hand, standard ther-
In Fig. 9 we show the combined results of all simulationsmodynamic limit definitions for the confined ca$e9,2(
with different values ofu,. We plot both the local density IMPply a decrease in the trapping potential’s curvatdrsuch
(n(j)) and local compressibilitk'®3(j) for all legs and all ~that
values of uy as functions of the local chemical potential.
Note that all data from simulations using different values of
Mo collapse onto a single curve. Due to the equivalence of alSuch a procedure locally drives the system toward the uni-
sites on the ladder with the same value of the chemical poform regime, since for lattice sites with a given valugust',
tential, this data collapse is expected in the ladder modethe gradient in the confinement potential eventually becomes
where changinguy by an amount ofAux corresponds to a irrelevant on the scale set by the correlation length in their
shift in the index of each chain in the ladder. neighborhood. Therefore, the state of the uniform system at
Figure 9 also shows the results obtained for the realistithe value ofu® is established thergL9].
trap, as described in the previous section. Both resualts- An example of this approach to the uniform system upon
cide almost perfectlywhich is a strong justification for the decreasing the trapping potentidlis given in Fig. 10. It
validity of the effective model and the applicability of a local shows the density as a function o™ for two different 1D
potential approximation. traps. In the 1D case, we can study larger systems than in
The small differences can be attributed to the differen2D, allowing us to decreasé by a factor of 25, which re-
shape of the trapping potential which is parabolic for thequires increasing the linear system size by a factor of 5.
realistic trap, but linearized in the ladder model. While dif- While for both traps in Fig. 10 the value of the local density
ferences in the densities are small, the compressibility, whiclollows the curven(u) of the uniform 1D system, deviations
is the derivative of the density, is more sensitive, marking there visible in the insets, which focus on the regions close to
lack of universality. the Mott plateaus. In the case of the shallow trap, these de-
In particular, we find that the ladder model does not showviations are clearly reduced, with more pronounced singu-
cusplike features in the boundary regions between the supelarities developing at the critical point.
fluid and the Mott plateaus, similar to the realistic 2D trap. The thermodynamic limiting procedure in E4.2) corre-
We thus conclude that structural quenching in the rotationasponds to the limitAx— 0 in the gradient of the effective
symmetric trap on the square lattice is not the reason for thiadder model. In this limit, we recover the Bose-Hubbard
apparent absence of quantum criticality since similar behavmodel on the 2D square lattice, showing 2D quantum critical
ior is also found on the polar lattice, i.e., in the ladder modelbehavior. A finite gradienfw in the ladder model restricts

C. Quantum criticality

B. Results of the ladder model and comparison
to the realistic trap

N — o with NvVTt =const. (12

053615-6



QUANTUM MONTE CARLO SIMULATIONS OF CONFINED.. PHYSICAL REVIEW A 70, 053615(2004)

0.4 0.4 T T T T T T T
3D trap 82 ;..' LS
IJ./U=‘O.2 04 [ .Q. ]
P 03My VIU=0.008 =3 o E
e . Uit=24 S Y 1
202 S 3 3 R
E 4»‘ 0.2 10 T
“ T
0.1
0.1F |
J
0.0 0 11
1 I |
05 02 o 00 08 1

kalm
FIG. 11. Local density and local compressibilitx'°@ for the
Bose-Hubbard model on ladders with different lengths as a function FIG. 12. Momentum distribution function of bosons in a three-
of uf™. The other parameters of the ladder model are chosen as idimensional parabolic trap with curvatu&/U=0.008, along the
Fig. 9. The inset shows the compressibility for the uniform 1D casdine (0,0,0-(x/a,0,0 in momentum space, for/U=-0.2 and
as a function ofu for a chain with 64 sites, for the same value of U/t=24, values taken from Ref6]. The lower inset exhibits the
U/t as used in the ladder model. presence of satellite peaks in this system, without a Mott plateau, as

. ) ) seen from the radial density distribution shown in the upper inset.
the correlation length perpendicular to the chains, and does

not allow for 2D quantum critical behavior to be observed. identification of the different regions inside the trap, such a
However, in the opposite limit\u— %, we recover a 1D |ocal probe is notyet) available experimentally.

chain on the lowest leg, which will show 1D critical behav- |4 order to identify changes in the density distribution

ior. In the inset of Fig. 11 the compressibility of the Bose-jnsjde the trap upon varying control parameters suct, as

Hubbard model is shown on a chain of 64 sites. Already o, ¢ gifferent strategies have been proposed. In particular, in

such a short chain sharp peaks near the transition are visiblget (6] it was claimed that the presence of a Mott plateau in

which diverge with increasing chain lengil]. the trap center is signaled by fine structures in the momen-

One might expect this 1D quantum criticality to persisting .. qisyibytion function, and that these are absent in traps
the ladder model with a finite gradieddu observed upon .
without Mott plateaus.

changing the chemical potentiah to drive one of the legs . Two of the configurations of Ref6] are shown in Figs.

across the phase transition. This is, however, not the cas : .
While the broad peaks in Fig. 9 are weak remnants of 1 2 and 13. Here, we simulated 3D systems in a trap and used

quantum criticality, they do not diverge as the size of the"® parameters given in Ref6], and plotted the resulting
ladder model is increased. This is seen from Fig. 11, whichnomentum distribution ~along the line fromk
shows the density and local compressibility as functions of (0.0.,0 to (#/a,0,0), along thek, axis of momentum
w8 for ladders of different lengths. space.

Therefore, the effective ladder model as well as the real- While in Fig. 13, where an extended Mott plateau is
istic trapped systendlo not show quantum criticalityThe  present, additional fine structures mik) are visible, such
guantum critical behavior that might have been expected tgtructures seem not to exist at first sight for the data shown in
occur in the boundary layer between the Mott insulator and-ig. 12. However, similar fine structures are also present
the superfluid is destroyed by the finite gradient in the effecthere, even on a similar scale, as clearly seen from the bot-
tive chemical potential, and the coupling of this layer to thetom inset of Fig. 12, which focuses on the tail of the momen-

rest of the system. The absence of quantum criticality in theum distribution function. These fine structures become in-
realistic 2D parabolic trap is not only due to its finite size,

but is in fact imposed by the inhomogeneity of the confine- 0.05 L S R
ment potential, as we showed using the effective ladder de- 3%‘%"3125 L2 ‘
scription. The Mott transition observed in experiments on 0048 Vs0 015 (1)‘2;”""'"’-. 11
ultracold atomg1] should not be viewed as a quantum phase . Ui=80 L . 1
transition, but instead as a crossover with changing volume & %03 oak 1
fractions of the Mott plateaus and superfluid regions. ;Q* 0'2-_ '. 1

In contrast, for flat confinement potentials, corresponding = 002 P S V. |
to V=0, quantum critical behavior can be observed already 0oz 4 6 B0
on moderate system sizes. For example, the data shown in
Fig. 7 for a(24 X 24)-site 2D system, and in the inset of Fig. 0
11 for a 64-site chain, both clearly reflect the quantum criti- 0 0.2 0'4k a /n0'6 08 !
cality of the uniform 2D and 1D cases. *

V. IDENTIEYING MOTT PLATEAU FORMATION FIG. 13. Momentum distribution function of bosons in a three-
IN TRAPS dimensional parabolic trap with curvatux¥U=0.0122, along the

line (0,0,0-(w/a,0,0 in momentum space, fou/U=-0.3125
While measuring the spatial density distribution and theand U/t=80, values taken from Ref6]. The corresponding radial
local compressibility in QMC simulations allows for the density distribution is shown in the inset.
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FIG. 14. Densityn as a function ofu/t for bosons along a FIG. 15. Scaling plot of the stiffness; for the Bose-Hubbard
constantu/U=0.37 scan, for both periodi®BC) and openOBC) model on the square lattice for periodic boundary conditions, while
boundary conditions on &4X 24)-site square lattice, the OBCs tuning along a constani/U=0.37 scan. The inset shows the stiff-
corresponding to an infinitely sharp trapping potential. The Mottnessp, for a (28% 28)-site system as a function &f/t.

transition in the uniform case is indicated by the dashed line. The o ]
inset locates this constapt-scan within the phase diagram of the later the onset of Mott plateau formation in confined systems

uniform system. with the homogeneous case, we first need to determine the
precise phase boundary within the region of interest.

.. . . In the following we consider a path through the phase
visible on the scale used for the main part of Fig. 12, due t%iagram along a "%e of constapﬂUz%.B?, indicgted byFt)he

the pre_sence_of a dominant coheren_ce peak. We found in thgacteq line in the inset of Fig. 14. Moving along this line
S|mulat|on§ discussed below that a simple correspondence fifough the quantum phase transition, the system undergoes
proposed in Ref[6] does not hold: The presence of fine {he generic transitiof22] which is mean field in nature. The
structures is due to the finite extent of the superfluid withingransition does not cross over to the special case of the com-
the trap, and emerges also without a Mott plateau beingnensurate transition, belonging to the 30 universality
present in the trap center. Denoting the radial extent of thelass[22].
superfluid byR, these peaks appear fky near integer mul- In order to identify the Mott transition point along this
tiplies of 2/R, if not masked by the incoherent background, scan we measured the stiffngss which quantifies the re-
or rendered almost invisible on the scale of the coherenceponse of the system to a twist in the boundary conditions
peak. along the real space directions. This quantity can be calcu-
For a more systematic analysis of the experimentally aclated in QMC from the boson winding number fluctuations
cessible momentum distribution function we monitor its evo-[25]. At the quantum critical point finite size scaling theory
lution upon varying experimentally accessible control pa-[22] predicts it to scale in two dimensions &s’, wherez
rameters of the system. We have performed sets of2 is the dynamical critical exponent for the generic transi-
simulations that mimic the experimental procedure of in-tion, andL the linear system size of aiN=L?)-site system.
creasing the lattice depth of the optical lattjdg, by reduc- The inset of Fig. 15 shows; as a function of the inverse
ing the hopping parametey while keeping all other param- hopping,U/t, for a system of linear size=28, indicating its
eters constant. We performed such scans for traps of differefficréase upon entering the superfluid phase. The main part of

. X 5 ;
; : " ; discussion of the results fof'9- 15 is a scaling plot ob_SL vs_U/t, frpm wh|gh the
?Ar;tzrglg;saéltles, and begin our critical pointU/t=16.25+0.1 is obtained with sufficient pre-

cision for the purpose of this study. Note that corrections to
scaling are visible already dt=12, in agreement with a
recent study, indicating that large system sizes are needed for
In order to better interpret data obtained for inhomoge-high-precision determinations of the critical poj@6]. Mean
neous traps, we first consider the homogeneous case. To tHisld theory[23] predicts a value otJ/t=23.5 which is too
end, we set the trap curvatuve=0, using periodic boundary large by more than 40%. Thus in 2D corrections to the mean
conditions(PBCg, and also consider a finite square lattice field results have to be accounted for already in the uniform
with open boundary condition®©BCy), representing an in- case.
finitely sharp trapping potential, i.e., a closed box system. Having established the position of the Mott transition in
We then compare both the closed box and the parabolic tragme uniform case, we show in Fig. 14 the evolution of the
to the uniform case. density n in homogeneous systems with PBCs and OBCs
The phase diagram of the Bose-Hubbard model on thalong the constant scan shown in the inset of Fig. 14.
square lattice in the parameter regime of interest is shown iklere, we show data on systems with>224 lattice sites. In
the inset of Fig. 14. While the overall phase structure is wellboth cases the onset of the Mott insulating regime is located
described by mean field theof22,23, the maximum extent close to the critical point obtained from finite size scaling.
of the first Mott lobe ofU/t=23.3 is thereby overestimated Thus already for this moderate system size, the Mott transi-
by about 32% of the value obtained by a strong couplingion is located rather close to the value in the thermodynamic
expansion(U/t=17.549 [23,24. Thus, in order to compare limit.

A. Homogeneous and closed box 2D systems
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FIG. 16. Momentum distribution function of bosons o2 FIG. 18. Momentum distribution function of bosons on2

X 24)-site square lattice with periodic boundary conditigR8C) X 24)-site square lattice with open boundary conditions, corre-
for the commensurate momenta along the 1i0g0)-(7/a,0) in sponding to an infinitely sharp trapping potential, along the line
momentum space, for different valuesft, while tuningt along (0,0-(7/a,0) in momentum space, for different values 0f't,

the constanu/U=0.37 scan of Fig. 14. The loss of coherence duewhile tuningt along the constant/U=0.37 scan of Fig. 14. Within

to the Mott transition atJ/t=16.7 is reflected by the reduced co- the superfluid regime satellite peaks appear, which diminish upon
herence peak height(0,0). emergence of the Mott phase.

Phase coherence is signaled by a pronounced coherenggi=10.0, deep in the superfluid regime, and the complete
peak in the momentum distribution functiontk=0). This  gpsence of such structures for larger valuet) ¢

can be seen from Fig. 16, which showgk) for the com- Using an Ornstein-Zernike form for the coherent part for
mensurate momenta along tkeg axis of momentum space the momentum distribution function

for different values ofU/t for a (24X 24)-site system with

PBCs. The evolution of(0) while tuning through the tran- (k) = n(0) (13
sition is shown in Fig. 17. It clearly marks the loss of coher- 1+k2&’

ence in the Mott insulator. ,

While for PBCs a discrete set of commensurate moment heres dgnotes the coherence length, we can obfzmem
exists, for OBCs states of arbitrary momenta can be occu- e full width at half maximum(FWHM) of the coherence
pied. In the QMC simulations, we measured the momentunﬁ)eak’
distribution function on a mesh covering ¥@. momenta in 2
the first Brillouin zone along th&, axis. The resulting mo- FWHM = 3 (14)
mentum distribution functions for different valuesdft are
shown in Fig. 18. Similar to the case of PBCs, the loss of In the thermodynamic limit, the coherence length diverges
coherence upon entering the Mott phase is signaled by & the superfluid regime. On a finite system it is bounded
reduction of the coherence fractioi0), as seen from Fig. from above by the linear system sizeand decreases to zero
17. Also note the pronounced fine structuresnitk) for  deep inside the Mott insulating regime. We thus expect an

increase of the FWHM, from its minimum value of 2in

A0~67 Mott-transidion] Py hid the superfluid regime, upon driving the system through the
2 0.5 uniform case ! WU=037 .1 Mott transition. This behavior can indeed be seen in Fig. 17,
T & g which shows the FWHM as a function &f/t for the (24
204 OBC.Zy S X 24)-site closed box. The FWHM is at its lowest value of
§ ok s 102 about 2/24 left of the Mott transition, and increases due to
81 E loss of coherence beyond this point.

S 0.2 =~

3]

Zail o B. Parabolic traps in 2D

< 0.

o

After our analysis of the homogeneous system, we are
20 290 now in position to discuss the evolution of a confined Bose
gas in a 2D optical lattice while increasing the lattice depth,
FIG. 17. Evolution of the coherence fraction, i.e., the height ofi-€-, decreasing the hoppingin the following, we will take
the coherence peaky(0,0), as a function ofu/t while tuningt ~ the system along a path of constant chemical potential
along the constani/U=0.37 scan of Fig. 14, for bosons on a #/U=0.37, in a parabolic trap of curvatudU=0.002. An
(24x 24) site square lattice for both periodi®®BC) and open illustration of the path taken in our simulations is shown in
(OBC) boundary conditions. For OBCs the full width at half maxi- Fig. 19.
mum (FWHM) of the coherence peak is also shown, clearly signal- As discussed in Sec. Ill, we can use a local potential
ing the onset of the Mott phase. The Mott transition point is indi- approximation for a qualitative description of the inhomoge-
cated by the vertical dashed line. neous density profile of the trap, by employing the local

e
=
=T
-

5

U/t
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FIG. 19. Variation ofuf™ in a two-dimensional parabolic trap
with curvatureV/U=0.002 for three different values &f/t while FIG. 21. Momentum distribution function of bosons in a two-
tuningt along a constank/U=0.37 scan, shown within the phase dimensional parabolic trap with curvatuk&/U=0.002 along the
diagram of the Bose-Hubbard model on the square lattice. Alongine (0,0)-(7/a,0) in momentum space, for different values\ft
the dash-dotted line the density has a constant value=df while tuningt along the constani/U=0.37 scan of Fig. 20. Sat-
ellite peaks neatk,,k,)=(0.1m/a,0) appear unrelated to the phase

value of u*". For a given value ofJ/t, we can therefore Structure within the trap.

represent the confined system by a vertical line in the phasﬁeous 2D system, the density in the center of the trap closely

diagram of the Bose-Hubbard model on the square lattic&y o5 the behavior in the uniform case along the same

This representative vertical line is then shifted towardconstant,u scan. The rather smooth approach towards a cen-
smaller values of, during our constank scan. While for ) gensity of 1 is in agreement with the observations in Sec.
large values of the system will be superfluid, from Fig. 19 |/ ¢ of the absence of critical fluctuations inside the trap. In

we expect the appearance of a central Mott plateau fogqgition to this qualitative difference from the homogeneous
smaller hopping amplitudes. case, the local potential approximation underestimates the

In order to determine accurately the position of the Mottqer yajue ofU/t for Mott plateau formation by about 6%,
plateau formation, we monitor the evolution of the density iNgs seen from Fig. 19.

the trap center, which is shown in Fig. 20 as a function of the Having determined the value &f/t for the onset of the

inverse hoppindJ/t. _central Mott plateau from measurements of the density dis-
In accordance with Fig. 19, the trap center has a density;p tion, we turn to a discussion of the momentum distribu-

larger than 1 for small values &/t. Upon increasindJ/t,  tjon function of bosons inside the parabolic trap and its evo-
the central density decreases, closely following the path of tion upon increasing the inverse hoppibigt.

the homogeneous system. It crosses the value 1Uftr In Fig. 21 the momentum distribution functiamk) is

~13.13, as expected from Fig. 19, then undergoes a miniéhO n for different values o)/t along the constant./U
mum, and reaches 1 fdd/t=16.7, where a Mott plateau y ! M d e

f A P he critical . f the h =0.37 scan of Fig. 20. From these data it is obvious that the
starts to form. Apart from the critical region of the homoge- ,asence of the fine structure peak nisar 7= 0.1, reflect-

ing the typical radial exteriR~= 20a of the superfluid region,

}'(2), U/r=10.0 Jmaa Ult=14.3 Jommmg U/1=20.0] is not related to the presence of a central Mott plateau, in
o8l Tt T ] agreement with earlier observations in Sec. V.
=0.6F I T ] Analyzing the data further, we show in Fig. 22 the coher-

04f + + 1 ence fractiom(k=0) and the FWHM of the coherence peak

020 E VI T VI as a function olU/t. In marked contrast to the uniform case

0010 20 10 20 710 2030 (Fig. 17), but in agreement with experimental findinf,
TLO2e— e rla___ rla the coherence fraction does not display distinct features upon
= [Ne2D uniform o o 2D trap | .
51.01_ Mott-transition| w657 emergence of a central Mott plateau, but instead decreases
&t uniform case | ¥ VIU=0.0021 rather smoothly over a broader range than for the uniform
A I = o system. This behavior is expected as it reflects the coexist-
=10 12 14 - 16 18 20 ence of both a Mott plateau region and a surrounding super-

fluid.

FIG. 20. Top: Radial density distribution of bosons within a _ Similar broadenings are observed in the evolution of the
two-dimensional parabolic trap with curvatgU=0.002 for dit- - WHM, which becomes rather flat in the region where Mott
ferent values ofJ/t for 1/U=0.37. Bottom: Evolution of the den- Plateau formation sets in. Since changes in the FWHM are
sity in the trap center while tuningalong a constank/U=0.37  thus small near the threshold, care has to be taken when
scan. For comparison the density of the uniform system along théxtrapolating data taken for large valuesloft down to the
same constant- scan is shown. The arrow indicates the thresholdflat region. For example, a linear extrapolation using the last
for Mott plateau formation within the trap, which deviates by abouttwo data points in Fig. 22 would overestimate the threshold
6% from the position of the Mott transition in the uniform case for Mott plateau formation by more than 60% of its actual
(vertical dashed line value.
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FIG. 22. Evolution of the coherence fraction, i.e., the height
n(0,0), and of the full width at half maximuniFWHM) of the FIG. 23. Top: Radial density distribution of bosons within a
coherence peak as a functiondft while tuningt along the con-  three-dimensional parabolic trap with curvatiéU=0.0125 for
stantu/U=0.37 scan of Fig. 20 for bosons in a two-dimensional different values ofu/t for x/U=0.25. Bottom: Evolution of the
parabolic trap with curvatur®/U=0.002. The threshold for Mott density in the trap center while tuningalong a constanu/U
plateau formation is indicated by the dashed line. =0.25 scan. The arrow indicates the threshold for Mott plateau for-
mation within the trap, which deviates by about 30% from the po-

However. we find that the FWHM starts to increase We”sition of the Mott transition in the uniform case within mean field
! theory (vertical dashed line

below the threshold for Mott plateau formation. Furthermore,
beyond this point a change in curvature of the graph is ob-
served, with an inflection point located at the threshold pointof parameters(ii) The FWHM of the coherence peak under-
In fact, we found the presence of such inflection points in thegoes a change of curvature with an inflection point being
FWHM graphs at the transition point to be a generic featurdocated at the threshold for Mott plateau formation. The pres-
for different trapping curvatures and dimensionalities, as willence of this inflection point thus provides a robust indication
be shown below. This feature thus appears to be a reliablef density restructuring also inside 3D trajsi.) As in 2D,
indication for the onset of Mott plateau formation in confinedwe find the presence of satellite peaks to be unrelated to the
Bose systems. Although the FWHM is accessible experimenlocal density structure, as seen from Fig. 2¢) The posi-
tally [2], limited resolution can make the location of the in- tion of the fine structure peak is indicative of the spatial
flection point difficult, as we found the FWHM graphs to be extent of the bosonic cloud. In fact, the broad peak observed
rather flat in this region. at k,~0.37/a in Fig. 24 corresponds well to the radial ex-
tent R=6a of the superfluid region.

C. Parabolic traps in 3D

We now present results of QMC simulations of the Bose- D. Parabolic traps in 1D
Hubbard model for bosons confined in 3D parabolic traps. Finally, we extend our analysis to the case of a 1D para-
Performing an analysis as in the 2D case, we find that similapolic trap. Fixing the chemical potential to a value @fU
generic features as those obtained in 2D apply to these 3B0.37, similar to the 2D case, we study the system for dif-
systems as well. ferent values of the hopping amplitutldn the upper part of

In particular, we consider a parabolic trap with curvature
V/U=0.0125, and study the system’s states for different val-
ues oft/U along a line of constant/U=0.25. For a value of

3D tlrap

U/t=20, the system is still deep in the superfluid regime, as Uit=80.0 =025 - A
seen in Fig. 23, reflecting the increased strength of the ki- ViU=0.0125] |

netic energy, due to the larger dimensionality. Upon decreas-
ing the hopping, a Mott plateau forms in the trap center. In
Fig. 23 we trace the boson density in the trap center as a
function of U/t, in order to locate the threshold for emer-
gence of the Mott plateau region, indicated by the vertical
arrow. Similar to the 2D case, the central density approaches
the value of 1 with a flat slope. Within mean field theory
[22,23 and the local potential approximation, the threshold
would be underestimated by about 30%, as indicated by the

dashed vertical line in Fig. 23. . ) FIG. 24. Momentum distribution function of bosons in a three-
Analyzing the momentum distribution functions shown in gimensional parabolic trap with curvatukU=0.0125 along the

Fig. 24, we observe similar behavior as in the 2D sys@m. line (0,0,0-(w/a,0,0 in momentum space, for different values of
As seen from Fig. 25, at the threshold for Mott plateau for-u/t while tuningt along the constani/U=0.25 scan of Fig. 23.

mation, the coherence fraction is still about 10% of the overSatellite peaks nedr=(0.37/a,0,0 appear unrelated to the phase
all bosonic density and decreases over a rather broad ranggucture within the trap.

0.6

kalm
X
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FIG. 25. Evolution of the coherence fraction, i.e., the height

n(0,0,0, and of the full width at half maximuniFWHM) of the FIG. 27. Momentum distribution function of bosons in a one-
coherence peak as a function @ft while tuningt along the con-  dimensional parabolic trap with curvatuxU=0.0004 along the
stantu/U=0.25 scan of Fig. 23 for bosons in a three-dimensionalline 0-7/a in momentum space, for different values @ft while
parabolic trap with curvaturg/U=0.0125. The threshold for Mott tuningt along the constant/U=0.37 scan of Fig. 26.

plateau formation is indicated by the dashed line.

The corresponding momentum distribution functions are

Fig. 26 the spatial density distribution is shown for threeshown in Fig. 27. Compared to the higher-dimensional cases,
different values ofU/t. The evolution of the density in the the momentum distribution functions appear broad, indicat-
trap center as a function &f/t is shown in the lower part of ing larger incoherent contributions. This is expected, as in
Fig. 26. 1D long range coherence cannot develop, even at zero tem-

For U/t=4.0 the system is in the fully superfluid regime, perature. Similar to the higher-dimensional cases, we ob-
with no Mott plateaus present. Upon increasiddt, there  serve broad fine structure peaksnitk), restricted, however,
appears a finite regime, where two Mott plateaus emergéo U/t below the threshold for Mott plateau formation. At
well outside the center of the trap. These plateaus eventuallarger values obJ/t, such fine structure is not resolved due to
merge into an extended Mott plateau at a larger valugd/af  the large incoherent contribution.
The position of these points is marked by the arrows in the Analyzing the momentum distribution functions as shown
lower part of Fig. 26. This emergence of an intermediatein Fig. 28, we find that the graph of FWHM as a function of
regime with two well separated Mott plateaus is expectedJ/t exhibits two characteristic features: The increase of the
from the shape of the first Mott lobe in 1[27], and the slope forU/t near 5.0 corresponds well to the threshold for
chosen value of./U=0.37, and follows using a local poten- the formation of the two Mott plateaus. The growth of the
tial approximation, similar to the case of the 2D trap consid-two Mott plateaus regions results in the fast decrease of the
ered above. The reason why such an intermediate regime &herence length in this regime. Beyobdt=5.7, the in-
observed in our 1D simulations, but not for the 2D case, ixrease in the FWHM is reduced, indicating that the two pla-
that in 1D the largest extent of the first Mott lobe has ateaus have merged into a single plateau, which now grows at
critical value ofu/U = 0.10 which is below our chosen value only two ends. Thé&J/t dependence of the coherence fraction
of u/U=0.37, whereas the critical value pf U=0.42in 2D  n(0) also indicates the merging of the two Mott plateaus, by

is above that value. a reduced decrease W/t beyondU/t=5.7.
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ult FIG. 28. Evolution of the coherence fraction, i.e., the height
FIG. 26. Top: spatial density distribution of bosons within a n(0), and of the full width at half maximurtFWHM) of the coher-
one-dimensional parabolic trap with curvati¥8J=0.0004 for dif-  ence peak as a function &f/t while tuningt along the constant
ferent values ofJ/t, for x/U=0.37. Bottom: evolution of the den- «/U=0.37 scan of Fig. 26 for bosons in a one-dimensional para-
sity in the trap center while tuningalong a constani./U=0.37 bolic trap with curvatureV/U=0.0004. The thresholds for Mott
scan. The threshold for Mott plateaus formation within the trap, ancplateaus formation within the trap and for the collapse of the two
merging of the two plateaus is indicated by vertical arrows. plateaus into a single plateau are indicated by dashed lines.
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Recently Kollathet al. [16] studied the 1D case using the from the superfluid to the Mott insulator happens by nucle-
density matrix renormalization group method. Their resultsating a small Mott domain inside the trap, which then grows
are in perfect agreement with our observations. as the depth of the optical lattice is increased. As the Mott

phase grows in volume and the superfluid phase shrinks the
“quantum phase transition” is observed. This is, however,
VI. DISCUSSION AND CONCLUSION better viewed as a crossover with changing volume fractions

Our quantum Monte Carlo simulations provide insight of the two phases than as a phase transition: the large Mott
into the physics of trapped bosonic systems on lattices. ThBlateau is always surrounded by a shell of coherent super-
validity of a local potential approximation, where local quan- fluid. Sweeping back to the superfluid phase by decreasing
tities such as the local density or compressibility dependh€ depth of the optical lattice, the Mott insulator melts and
mainly on the value of the local chemical potential, is con-atoms join the superfluid. The dynamics here is not that of
firmed by an excellent data collapse of local quantities orfwo large domains merging, but that of a single atom joining
single curves. This single curve is, however, not the same d6€ coherent superfluid and therenis critical slowing down
for the homogeneous bulk system, clearly disproving previinvolved in this process. It might be possible to experimen-
ous claims[28]. The differences are particularly pronounced tally observe critical slowing down in a trap by first driving
in the interesting vicinity of the transition layer between the system deep into the Mott insulating region, then kicking
Mott insulator and superfluid in the parabolic trap. There thdt t0 destroy the phase coherence in the remaining superfluid
singularities due to quantum critical behavior are removecdhell. and afterward quickly driving it back into the super-
and replaced by smooth and broad features. fluid. . '

While the behavior of the homogeneous system can give a_Finally, we analyzed the behavior of the momentum dis-
qualitative overview of the phase structure realized locallytribution function, which is accessible experimentally from
inside the parabolic trap, quantitative results can be obtainelpe interference patterns of absorption images taken after free
only by numerical(quantum Monte Carlosimulations of —€xpansion of the atomic gas. We flnd.that the full width gt
realistic systems. Results for realistic 2D parabolic traps of &/alf maximum of the coherence peak in the momentum dis-
size comparable to experiments have been presented here,HBution function, due to its relation to the coherence length
well as an analysis of the 1D situation. Three-dimensional the system, yields valuable information about density re-
simulations have so far been performed only on systems witftructurings inside the trap. In particular, we found an inflec-
linear dimensions 2—3 times smaller than experimental realion pointin its graph upon increasing the lattice depth well
izations, but realistic simulations will be possible in the near@t the threshold for central Mott plateau formation. Since the
future using faster computers and improved algorithms. ~ 9raph becomes flat in this region, detection of such features

An effective ladder model, which quantitatively models "equires high-resolution data taken in the crossover regime.
the realistic trapped system, provides clear evidence for the [N contrast, we found that for flat confinement potentials,
absence of quantum critical behavior in parabolic confinel€alizing closed box systems, both the full width at half
ment potentials. The ladder model allows us to exclude th&haximum as well as the coherence fraction provide clear
randomness imposed on the superfluid ring by the underlyingignals for the Mott transition. Furthermore, in flat trapping
square lattice structure as the source of this absence of quaieometries, quantum critical fluctuations are significantly
tum criticality. Instead, the divergences due to quantum critinore pronouned, and allow the observation of quantum criti-
cal fluctuations are suppressed by the inhomogeneity, and ttf&l behavior already on optical lattices of currently available
coupling to the rest of the system. It will be very interestingSizes. We th_us expect .the_ possmle realization of flat confine-
to develop an effective action for this coupling, which might Ment potential$29] to significantly ease the detection of true
explain the power law behavior observed in R@0]. Fur- ~ quantum criticality and the interpretation of the experimental
thermore, the observed absence of quantum criticality in botfata. . ) o
parabolic traps and ladder models with a gradient in the Performing quantum Monte Carlo studies for realistic sys-
chemical potential connecting different Mott plateau regions€ms Wil be important for interpreting current and future
calls for future investigations, and extension to fermionic®XPeriments on confined Bose gases in optical lattices, and
models. for testing our quantitative understanding of these systems.

The absence of quantum critical behavior of bosons in>Uch understanding will be important, once analog quantum
parabolic confinement potentials also agrees well with th&€omputers build from fermionic atoms are available, for
fast dynamics of the “phase transition” and the observed apWhich Ia_rge scale quantum Monte Carlo simulations will not
sence of “critical slowing down” of the dynamics in experi- b€ possible.
ments[1]. Critical slowing down at a second order phase
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