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We study properties of ultracold bosonic atoms in one-, two-, and three-dimensional optical lattices by large
scale quantum Monte Carlo simulations of the Bose-Hubbard model in parabolic confining potentials. Our
results indicate that local properties of the atoms can be accessed by probing the system’s response to local
potential perturbations. Furthermore, we show how the formation of Mott insulating regions is reflected in the
momentum distribution of the atoms, amenable to experimental detection. We disprove previous claims con-
cerning the relevance of fine structure in the momentum distribution function. Furthermore, we discuss limi-
tations of local density approximations for confined systems, and demonstrate the absence of quantum criti-
cality due to the inhomogenous potential. Instead, we show that quantum critical behavior can be observed in
flat confining potentials. Our results indicate that the experimental detection of the Mott transition in moder-
ately sized optical lattices would be significantly eased in flat confinement potentials.
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I. INTRODUCTION

Experiments on ultracold atomic gases in optical lattices
[1,2] provide the unique opportunity to directly compare the-
oretical studies of strongly correlated many-body quantum
lattice models with near-perfect experimental realizations of
those models[3]. Unlike for other strongly correlated sys-
tems, where often the models simulated numerically are pro-
totype toy modelsfor describing the properties of such ma-
terials, the same models are hererealistic modelsof confined
cold atoms, allowing for quantitative comparisons.

So far, experiments have focused on bosonic atoms[1,2],
which are easier to cool than fermions. A quantitative under-
standing of these bosonic systems will, in the future, allow
correct interpretation of measurements on atomic fermion
gases, which could be used as analog quantum simulators for
strongly correlated fermionic systems[4].

Here we present results of an extensive set of quantum
Monte Carlo simulations performed on one-dimensional
(1D), two-dimensional(2D), and three-dimensional(3D)
systems of confined bosonic atoms in optical lattices, extend-
ing previous work in 1D[5] and 3D[6]. Parts of our results
were already presented elsewhere[7]; here we provide a
more detailed discussion and additional results on confined
Bose gases. Details of the many-body quantum lattice model
used for simulating confined bosons, as well as the employed
quantum Monte Carlo method, are discussed in the following
section.

In the first part of the paper, Sec. III, we focus on simu-
lations of bosons in 2D confinement potentials, and study
various aspects of confined bosons in a realistic setup. In
particular, we(i) identify a local probe for the state at a given
location inside the inhomogeneous trap,(ii ) present a de-

tailed analysis concerning the limitations of local potential
approximations, and(iii ) discuss the nature of spatial corre-
lations inside the trap.

Next, in Sec. IV, we introduce an effective model describ-
ing the inhomogeneous Bose gas inside the confinement po-
tential. This allows us to study the finite size effects arising
from the limited extent of the Bose gas in the trap. Using this
effective model, we discuss the absence of quantum critical
behavior for bosons trapped in confinement potentials.

Then in Sec. V we aim at identifying experimentally ac-
cessible quantities that signal restructurings in the density
distribution of the confined Bose gases. For this purpose, we
monitor the evolution of the momentum distribution function
upon increasing the lattice depth of the optical lattice, similar
to the experimental procedure[1]. We find that a method put
forward recently[6] for identifying the phase structure of the
confined Bose gas is not appropriate. However, by monitor-
ing the evolution of both the coherence fraction and the full
width at half maximum of the coherent part of the momen-
tum distribution function we obtain clear signals for restruc-
turing of the density distributions. Finally, we summarize our
observations in Sec. VI, along with implications for experi-
ments in confined atom systems.

II. MODEL AND NUMERICAL TECHNIQUES

Cold confined atomic Bose gases in an optical lattice are
direct experimental realizations of the inhomogeneous Bose-
Hubbard Hamiltonian[3]
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wherebi
† sbid denotes the creation(destruction) operator for

bosons at lattice sitei, located a distancer i from the center of*Permanent address.
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the trap, andni =bi
†bi is the local density operator. The

nearest-neighbor hopping integralt, the on-site Hubbard re-
pulsion U, and the curvature of the parabolic confinement
potentialV.0 are tunable parameters in experiments.

After evaporative cooling of the atoms, the experiments
are, to a good approximation, performed at constant particle
number. Similarly, the chemical potentialm allows us to con-
trol the filling of the trap in the numerical simulations. For
the discussions below we introduce a local chemical poten-
tial

mi
eff = m − Vri

2, s2d

which decreases upon moving away from the trap center.
Quantum Monte Carlo(QMC) simulations of the Hamil-

tonian Eq. (1) were performed using the stochastic series
expansion method[8,9], with directed loop updates[10–12].
This algorithm requires a cutoffNmax on the local site occu-
pation. Performing simulations at mean densitiesknilø1, a
cutoff Nmax=2 or 3 can be chosen without introducing sig-
nificant errors. The temperature used in the QMC calcula-
tions was chosen low enough for the atoms to be essentially
in the ground state.

All lengths are set in units of the lattice constanta, and
the simulation box is taken large enough to ensure that out-
side its boundary the local densityni vanishes due to depopu-
lation by large negative values ofmi

eff. For the values chosen
in our simulations we needed to keep up to 500-site chains in
1D, 50350 square lattices in 2D, and up to 163-site cubes in
3D.

To distinguish the local phases in the inhomogeneous sys-
tem and to probe for quantum criticality we define thelocal
compressibilityat sitei,

ki
local =

]kNl
]mi

eff =E
0

b

dtfknistdNl − knistdlkNlg, s3d

by the response of the system’s particle numberN to a local
chemical potential change at sitei. Here,b=1/T denotes the
inverse temperature, andnistd=expstHdni exps−tHd the
imaginary-time propagated operator.

Another way of probing for local properties is to measure
local density fluctuations[5], i.e., the variance

Di = kni
2l − knil2. s4d

Note that the varianceDi is not equal to the response func-
tion

ki
onsite=

]knil
]mi

eff =E
0

b

dtfknistdnis0dl − knistdlknis0dlg, s5d

which we denote by the on-site compressibility, and which
quantifies the response of the local density at sitei to a
chemical potential change at this site. We will show in Sec.
III B that the local compressibilityklocal as defined in Eq.(3)
is able to characterize the local state near a given site even in
the inhomogenous case, by making a global measurement.

In addition to measuring local quantities, we measure the
momentum distribution function

nskd =
1

N
o
i,j

eisr i−r jd·kkbi
†bjl, s6d

where N denotes the total number of particles within the
system. This way the momentum distribution is normalized
to unity, and the coherence fraction is given by the height of
the coherence peaknsk =0d.

The momentum distribution functionnskd is directly ac-
cessible in experimental studies of confined atomic gases.
For negligible interparticle interactions during ballistic ex-
pansion of the atomic cloud, it essentially maps onto the
interference pattern of the resulting absorption images[13].
Due to the tight binding approximation of the Bose-Hubbard
model, the numerical momentum distribution functions are
periodic in the extended zone scheme. The finite extent of
the Wannier functions on each site in an optical lattice leads
to a form factor in the momentum distribution[6], resulting
in unequal heights of the higher-order Bragg peaks, as ob-
served in the experimental interference patterns[1].

To further quantify spatial correlations within the trap, we
measure the one-particle density matrix, i.e., the correlation
function

gsi, jd = kbi
†bjl, s7d

between bosons on lattice sitesi and j .

III. SIMULATIONS OF REALISTIC 2D TRAPS

A. Phase coexistence in trapped systems

Trapped inhomogeneous systems can show coexistence of
both superfluid and Mott insulating regions, as has been
clearly identified in experiments[1,2], in mean field investi-
gations [3], in numerical renormalization group[14] and
Gutzwiller ansatz calculations[15], and in numerical simu-
lations in 1D[5,16] and 3D[6]. By simulating large realistic
systems in 2D, we can clearly observe this coexistence. For
large hoppingst the total system is superfluid[Fig. 1(a)].

As the hopping amplitudet is decreased, a Mott insulating
plateau with integer density(hereknil=1) forms in the center
of the trap, as seen in Fig. 1(b). A superfluid ringlike region
with a nonuniform particle density surrounds the central pla-
teau. The typical width of this superfluid ring is 6–8 times
the lattice unit, for the parameters used in our simulations.
Far away from the center, the density isknil=0, which can
also be viewed as a Mott plateau.

The emergence of the Mott plateau and the shrinking of
the superfluid region have been interpreted as a quantum
phase transition[1]. We prefer to view it as a crossover
where the volume fraction of the Mott insulating phase
grows and that of the superfluid phase shrinks. After discuss-
ing the quantitative properties of the two phases and of the
boundary region we will, in Sec. IV C, show that no quan-
tum critical behavior is observed in this system, which sup-
ports our interpretation of this phenomenon as a crossover
instead of a phase transition.

B. Local compressibility

Figure 1 is useful for a qualitative view, but we need a
quantitative probe to distinguish the different phases. This
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probe is given by the compressibility. QMC results for the
local compressibility within the trap of Fig. 1(b) are shown
in Fig. 2. The extent of the superfluid shell is clearly re-
flected by this local probe, which also shows that the com-
pressibility is largest close to the outer regions of the super-
fluid shell.

For a quantitative analysis we plot in Fig. 3 the radial
dependence of both the local densitynsrd and the local com-
pressibility klocalsrd as a function of the distancer from the
center of the trap. We observe two well defined Mott regions
with local densitynsrd=1 and nsrd=0. In these Mott pla-
teaus, the local compressibility vanishes, whereas it is finite
in the intervening superfluid ring with nonintegral density
0,nsrd,1.

More precisely, we observe two well defined peaks in
klocalsrd, signaling an increase in the particle number fluctua-
tions at the boundaries to the Mott regions. While these two
peaks would be of the same height in hard-core boson mod-
els (due to particle-hole symmetry), they are asymmetric in
the soft-core case.

The inset of Fig. 3 shows the radial dependence of the
local density fluctuations of Eq.(4), Dsrd, first used in simu-
lations of 1D confined Bose systems[5], as well as the on-
site compressibilitykon sitesrd of Eq. (5). As opposed to
klocalsrd, both quantities peak in the middle of the superfluid

ring, and do not vanish in the central Mott plateau region.
While density fluctuations are therefore most pronounced in
the middle of the superfluid ring, they remain finite inside the
Mott plateau. Note that this is also the case for a homoge-
neous system in the Mott insulating regime, and is due to
virtual hopping processes. Only whent /U=0 are these fluc-
tuations suppressed by an infinite energy gap.

These results demonstrate that the local compressibility
klocalsrd is a better probe for the existence of superfluid or
Mott regions in the system than the on-site response ex-
pressed byDsrd. Moreover, the response of thetotal system
to a local excitation should be easier to study experimentally
than the local response to a local excitation(for example, by
changing the laser intensity at one specific point).

C. Spatial correlations in the superfluid

In order to gain a better understanding of the extended
superfluid ring, we study the behavior of the one-particle
density matrix Eq.(7) in the trapped system. In Fig. 4, the
spatial dependence ofgsi , jd is shown for a fixed sitej , well
inside the superfluid ring, and all other sitesi in the parabolic
trap. The rapid decay of the correlations toward both the
central Mott plateau region and the outside clearly exhibits

FIG. 1. Spatial dependence of the local density for two-dimensional confined atomic boson systems:(a) in the superfluid phase;(b) at
stronger lattice depths a central Mott insulating region is formed. The simulations were performed for a parabolic trap with curvature
V/U=0.002, atm /U=0.37, forU / t=6.7 (a) and 25(b).

FIG. 2. Spatial dependence of the local compressibilityklocal of
bosons in a two-dimensional parabolic trap with curvatureV/U
=0.002, form /U=0.37 andU / t=25. A superfluid ring surrounding
the n=1 central Mott plateau is clearly resolved.

FIG. 3. Radial dependence of the densityn and local compress-
ibility klocal of bosons in a two-dimensional parabolic trap with
curvatureV/U=0.002, form /U=0.37 andU / t=25, with a super-
fluid ring surrounding then=1 central Mott plateau. The inset
shows the radial dependence of the local density fluctuationsD and
the on-site compressibilitykon-site which remain finite within the
Mott plateau region.
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the ringlike structure of the coherent superfluid.
Inside the superfluid ring the correlation function decays

less rapidly. In order to make a quantitative analysis of its
long distance behavior, we plot in Fig. 5 the dependence of
the correlation functiongsi , jd for site i , j along the ring on
the distanced between the sites, as measured along the ring.
See the left inset of Fig. 5 for an illustration. We find all data
for distancesd/a.5 to follow very closely a finite size ex-
ponential decay,

gsdd = c + b coshSpr − d

j
D , s8d

with a correlation lengthj /a=21.6±0.4, and a finite constant
c=0.033±0.003. Thus, the superfluid ring does not exhibit
quasi-long-ranged correlations, as might have been expected
from the reduced dimensionality of the quasi-1D superfluid
ring. Instead, we find the ring to be wide enough for long
range order, i.e., 2D behavior, to persist inside the superfluid

in spite of the presence of a central Mott plateau.
A rapid decrease of the correlations, as one moves away

from the middle of the superfluid, can be seen from the right
inset of Fig. 5, which shows the radial dependence of the
correlation functiongsdd at the largest distanced=pr. The
correlations are thus most pronounced nearr <12, which
corresponds to the central region of the superfluid ring, and
become suppressed as one moves toward either boundary.
Finally, inside the Mott plateau region, the correlations are
merely short ranged. Even though the coherent part of the
Bose gas is thus confined to a 1D ringlike structure, the
spatial dependence of the correlations inside the ring clearly
exhibit the underlying 2D structure of the trapping potential.

Our findings are related to recent results in 1D systems
[16,17], which show that the presence of a Mott insulating
region does not change the long distance behavior of the
one-particle density matrix in trapped boson systems. A simi-
lar analysis might also apply to 3D confinement potentials,
which would allow for extended 2D superfluid shells sur-
rounding a Mott insulating central region.

D. Local potential approximation

The confinement potentialV enters the Bose-Hubbard
Hamiltonian, Eq.(1), by coupling to the boson density. It
therefore corresponds to a local chemical potential shift, ex-
pressed by the local chemical potentialmeff, defined in Eq.
(2). In Fig. 6, we show the behavior of both the local density
and compressibility as functions of this effective chemical
potential,meff. The observed data collapse in both quantities,
as well as the smooth behavior of these curves for all points
on the lattice, indicate that for the realistic parameters used
for the simulation, a local potential approximation holds, i.e.,
the local density can be determined from the value of the
local chemical potential. The validity of this approximation
is further confirmed by observing that the local compressibil-
ity coincides perfectly with the numerical derivative of the
curvensmeffd, i.e.,

]kNl
]mi

eff =
]knil
]m0

. s9d

FIG. 4. Spatial dependence of the correlation functiongsi , jd
=kbi

†bjl between bosons at siter j =s12.3,0d inside the superfluid
shell, and all other sitesi within a two-dimensional parabolic trap
with curvatureV/U=0.002, atm /U=0.37 andU / t=25.

FIG. 5. Dependence of the correlation functiongsdd=kbi
†bjl on

the distanced between sitesi and j along the superfluid ring for
sites within r /a=12.3±1.2 lattice units from the center of a two-
dimensional parabolic trap with curvatureV/U=0.002, at m /U
=0.37 andU / t=25. For d/a.5 the data fit wellsx2=1.6d to an
exponential decay, with a finite value ofc=0.033±0.003, and cor-
relation lengthj /a=21.6±0.4. The right inset shows the correlation
at the largest distance,gsprd, as a function of the distancer from
the trap center. The left inset illustrates the distanced between two
sitesi , j along a ring of radiusr employed here.

FIG. 6. Local densityn and local compressibilityklocal of
bosons in a two-dimensional parabolic trap with curvatureV/U
=0.002, atm /U=0.37 andU / t=25, as functions ofmeff. The results
for klocal from the density fluctuations, Eq.(3) (circles) agree with
the numerical derivative]n/]meff (triangles).
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It is important to note thatnsmeffd is not a universal func-
tion, but depends on both the confinement geometry as well
as the trap curvatureV. Universal behavior is violated in
particular near the boundary of the superfluid, wherensmeffd
doesnot behave asnsmd for uniform systems, corresponding
to V=0. For example, in the uniform 2D case a cusp devel-
ops whenn approaches 1, as seen in Fig. 7, due to quantum
criticality. This cusp is absent in the confined system, where
n approaches 1 rather smoothly(cf. Fig. 6). While a local
potential approximation in terms of an effective local chemi-
cal potential holds, the value ofnsmeffd thushas to be taken
from simulations in a trap, and not from the uniform system
on the underlying lattice. Approximative schemes such as
those of Ref.[18], which assume that locally the system can
be mapped onto an unconfined system at the local value of
meff, have to be applied with care. Being reasonable in the
bulk of both the superfluid and the Mott plateau region, such
approaches become unreliable near the interfaces between
superfluid and Mott insulating regions, where differences be-
tween the confined and unconfined cases are most pro-
nounced. There QMC simulations are needed in order to ob-
tain nsmeffd for a given trap geometry.

IV. THERMODYNAMIC LIMITS AND QUANTUM
CRITICALITY

In the previous section we found that in the boundary
layer between Mott plateaus and superfluid regions, the con-
fined system does not show cusps in the density profile as the
uniform system does as a function ofm near the quantum
critical points. This is an indication for the absence of quan-
tum criticality in the confined system. It could be argued that
this is simply due to finite size effects, but here we show that
the situation is indeed more subtle. For this purpose, we
introduce an effective ladder model for bosons inside inho-
mogeneous potentials.

A. Effective ladder model for the superfluid ring

A parabolic potential imposed on a regular hypercubic
lattice makes for an irregular form of the superfluid ring
surrounding the Mott insulator[see Fig. 8(a)]. We thus first
investigate whether this structural quenching is the reason

for the apparent absence of quantum critical features by
looking at a “smoother” lattice. Although it cannot be real-
ized in experiments, we consider a polar lattice, such as de-
picted in Fig. 8(b), which is topologically equivalent to the
ladder system in Fig. 8(c). The rotational invariance of the
polar lattice(translation invariance of the ladders along the
leg direction) simplifies the detection of critical behavior by
reducing finite size effects.

While the polar and ladder lattices are not topologically
equivalent to the square lattice, universality of quantum criti-
cal behavior ensures that we study the same effects. Compar-
ing the lattices will be a further check for the validity of a
local potential approximation for the confined system.

The Hamiltonian of the ladder system of sizeLx3Ly is

H = − to
i=1

Lx

o
j=1

Ly

sbi,j
† bi+1,j + bi,j

† bi,j+1 + H.c.d

+
U

2 o
i=1

Lx

o
j=1

Ly

ni,jsni,j − 1d − o
j=1

Ly

ms jdo
i=1

Lx

ni,j , s10d

where the confinement potential is now given by a chemical
potentialms jd which is constant for each legj of the ladder.
The boundary conditions are chosen to be periodic along the
legs of the ladder, and open in the transverse direction.

With these choices, the local densitykni,jl is independent
of i due to translation invariance along a leg of the ladder,
and we denote byns jd the density of particles on thej th leg.
Similarly, the local compressibilityklocals jd is the same for
all sites on thej th leg. The results shown below have been
obtained for a geometry withLx=64 andLy=10.

To simplify simulations, we linearize the quadratic poten-
tial m+Vj2 and set

ms jd = m0 + jDm, s11d

where Dm is the difference in chemical potential between
two neighboring legs. In our simulations we fixDm /U
=0.053 and make sure that the first leg is always in theknl
=0 Mott insulating phase and the last leg in theknl=1 insu-
lating phase. Sweeping the value of the globalm0 allows us
to obtain results for all values of the local chemical poten-

FIG. 7. Densityn and compressibilityk of the Bose-Hubbard
model on the 2D square lattice forU / t=25, as a function ofm. The
data are taken from simulations on as24324d-site square lattice.

FIG. 8. Different lattice topologies and expected superfluid re-
gions(denoted in gray) for a quadratic confining potential for such
topologies:(a) square lattice,(b) polar lattice,(c) ladder lattice.
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tials, and to drive one of the legs across the transition from
the superfluid to the Mott insulating phase. We note that a
similar construction is obtained for 3D traps, by modeling
the superfluid shell as a set of coupled planes with a chemi-
cal potential gradient applied perpendicular to the planes.

B. Results of the ladder model and comparison
to the realistic trap

In Fig. 9 we show the combined results of all simulations
with different values ofm0. We plot both the local density
kns jdl and local compressibilityklocals jd for all legs and all
values of m0 as functions of the local chemical potential.
Note that all data from simulations using different values of
m0 collapse onto a single curve. Due to the equivalence of all
sites on the ladder with the same value of the chemical po-
tential, this data collapse is expected in the ladder model,
where changingm0 by an amount ofDm corresponds to a
shift in the index of each chain in the ladder.

Figure 9 also shows the results obtained for the realistic
trap, as described in the previous section. Both resultscoin-
cide almost perfectly, which is a strong justification for the
validity of the effective model and the applicability of a local
potential approximation.

The small differences can be attributed to the different
shape of the trapping potential which is parabolic for the
realistic trap, but linearized in the ladder model. While dif-
ferences in the densities are small, the compressibility, which
is the derivative of the density, is more sensitive, marking the
lack of universality.

In particular, we find that the ladder model does not show
cusplike features in the boundary regions between the super-
fluid and the Mott plateaus, similar to the realistic 2D trap.
We thus conclude that structural quenching in the rotational
symmetric trap on the square lattice is not the reason for the
apparent absence of quantum criticality since similar behav-
ior is also found on the polar lattice, i.e., in the ladder model.

We expect similar features also to be obtained for 3D traps
using the effective multilayer model.

C. Quantum criticality

Having shown that the ladder model captures important
features of the realistic trap even quantitatively, we now dis-
cuss possible quantum criticality in confined systems.

Performing the thermodynamic limit in the uniform case
does not change the model parameters apart from increasing
the number of lattice sites. On the other hand, standard ther-
modynamic limit definitions for the confined case[19,20]
imply a decrease in the trapping potential’s curvatureV, such
that

N → ` with NÎV/t = const. s12d

Such a procedure locally drives the system toward the uni-
form regime, since for lattice sites with a given value ofmeff,
the gradient in the confinement potential eventually becomes
irrelevant on the scale set by the correlation length in their
neighborhood. Therefore, the state of the uniform system at
the value ofmeff is established there[19].

An example of this approach to the uniform system upon
decreasing the trapping potentialV is given in Fig. 10. It
shows the densityn as a function ofmeff for two different 1D
traps. In the 1D case, we can study larger systems than in
2D, allowing us to decreaseV by a factor of 25, which re-
quires increasing the linear system size by a factor of 5.
While for both traps in Fig. 10 the value of the local density
follows the curvensmd of the uniform 1D system, deviations
are visible in the insets, which focus on the regions close to
the Mott plateaus. In the case of the shallow trap, these de-
viations are clearly reduced, with more pronounced singu-
larities developing at the critical point.

The thermodynamic limiting procedure in Eq.(12) corre-
sponds to the limitDm→0 in the gradient of the effective
ladder model. In this limit, we recover the Bose-Hubbard
model on the 2D square lattice, showing 2D quantum critical
behavior. A finite gradientDm in the ladder model restricts

FIG. 9. Local densityn and local compressibilityklocal for a
two-dimensional parabolic trap on a square lattice and for a ladder,
as functions ofmeff. The parameters for the trapping potential are
V/U=0.002, atm /U=0.37, and the parameters of the ladder model
are chosen to cover the whole superfluid region(see text). The
density profiles within the trap and the ladder coincide almost per-
fectly. Small differences are exhibited by the two different com-
pressibility curves, which nevertheless share the same overall
shape.

FIG. 10. Local densityn for bosons confined in one-dimensional
parabolic confinement potentials of different curvaturesV, as a
function of meff. For comparison, the behavior of the density as a
function of m in the uniform 1D system is also shown. The insets
focus on the regions close ton=0 andn=1, where differences be-
tween the trapped case and the uniform case are most pronounced.
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the correlation length perpendicular to the chains, and does
not allow for 2D quantum critical behavior to be observed.

However, in the opposite limit,Dm→`, we recover a 1D
chain on the lowest leg, which will show 1D critical behav-
ior. In the inset of Fig. 11 the compressibility of the Bose-
Hubbard model is shown on a chain of 64 sites. Already on
such a short chain sharp peaks near the transition are visible,
which diverge with increasing chain length[21].

One might expect this 1D quantum criticality to persist in
the ladder model with a finite gradientDm observed upon
changing the chemical potentialm0 to drive one of the legs
across the phase transition. This is, however, not the case:
While the broad peaks in Fig. 9 are weak remnants of 1D
quantum criticality, they do not diverge as the size of the
ladder model is increased. This is seen from Fig. 11, which
shows the density and local compressibility as functions of
meff for ladders of different lengths.

Therefore, the effective ladder model as well as the real-
istic trapped systemdo not show quantum criticality. The
quantum critical behavior that might have been expected to
occur in the boundary layer between the Mott insulator and
the superfluid is destroyed by the finite gradient in the effec-
tive chemical potential, and the coupling of this layer to the
rest of the system. The absence of quantum criticality in the
realistic 2D parabolic trap is not only due to its finite size,
but is in fact imposed by the inhomogeneity of the confine-
ment potential, as we showed using the effective ladder de-
scription. The Mott transition observed in experiments on
ultracold atoms[1] should not be viewed as a quantum phase
transition, but instead as a crossover with changing volume
fractions of the Mott plateaus and superfluid regions.

In contrast, for flat confinement potentials, corresponding
to V=0, quantum critical behavior can be observed already
on moderate system sizes. For example, the data shown in
Fig. 7 for as24324d-site 2D system, and in the inset of Fig.
11 for a 64-site chain, both clearly reflect the quantum criti-
cality of the uniform 2D and 1D cases.

V. IDENTIFYING MOTT PLATEAU FORMATION
IN TRAPS

While measuring the spatial density distribution and the
local compressibility in QMC simulations allows for the

identification of the different regions inside the trap, such a
local probe is not(yet) available experimentally.

In order to identify changes in the density distribution
inside the trap upon varying control parameters such asV, U,
or t, different strategies have been proposed. In particular, in
Ref. [6] it was claimed that the presence of a Mott plateau in
the trap center is signaled by fine structures in the momen-
tum distribution function, and that these are absent in traps
without Mott plateaus.

Two of the configurations of Ref.[6] are shown in Figs.
12 and 13. Here, we simulated 3D systems in a trap and used
the parameters given in Ref.[6], and plotted the resulting
momentum distribution along the line from k
=s0,0,0d to sp /a,0 ,0d, along thekx axis of momentum
space.

While in Fig. 13, where an extended Mott plateau is
present, additional fine structures innskd are visible, such
structures seem not to exist at first sight for the data shown in
Fig. 12. However, similar fine structures are also present
there, even on a similar scale, as clearly seen from the bot-
tom inset of Fig. 12, which focuses on the tail of the momen-
tum distribution function. These fine structures become in-

FIG. 11. Local densityn and local compressibilityklocal for the
Bose-Hubbard model on ladders with different lengths as a function
of meff. The other parameters of the ladder model are chosen as in
Fig. 9. The inset shows the compressibility for the uniform 1D case
as a function ofm for a chain with 64 sites, for the same value of
U / t as used in the ladder model.

FIG. 12. Momentum distribution function of bosons in a three-
dimensional parabolic trap with curvatureV/U=0.008, along the
line s0,0,0d-sp /a,0 ,0d in momentum space, form /U=−0.2 and
U / t=24, values taken from Ref.[6]. The lower inset exhibits the
presence of satellite peaks in this system, without a Mott plateau, as
seen from the radial density distribution shown in the upper inset.

FIG. 13. Momentum distribution function of bosons in a three-
dimensional parabolic trap with curvatureV/U=0.0122, along the
line s0,0,0d-sp /a,0 ,0d in momentum space, form /U=−0.3125
andU / t=80, values taken from Ref.[6]. The corresponding radial
density distribution is shown in the inset.
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visible on the scale used for the main part of Fig. 12, due to
the presence of a dominant coherence peak. We found in the
simulations discussed below that a simple correspondence as
proposed in Ref.[6] does not hold: The presence of fine
structures is due to the finite extent of the superfluid within
the trap, and emerges also without a Mott plateau being
present in the trap center. Denoting the radial extent of the
superfluid byR, these peaks appear forkx near integer mul-
tiplies of 2p /R, if not masked by the incoherent background,
or rendered almost invisible on the scale of the coherence
peak.

For a more systematic analysis of the experimentally ac-
cessible momentum distribution function we monitor its evo-
lution upon varying experimentally accessible control pa-
rameters of the system. We have performed sets of
simulations that mimic the experimental procedure of in-
creasing the lattice depth of the optical lattice[1], by reduc-
ing the hopping parametert, while keeping all other param-
eters constant. We performed such scans for traps of different
dimensionalities, and begin our discussion of the results for
the 2D case.

A. Homogeneous and closed box 2D systems

In order to better interpret data obtained for inhomoge-
neous traps, we first consider the homogeneous case. To this
end, we set the trap curvatureV=0, using periodic boundary
conditions(PBCs), and also consider a finite square lattice
with open boundary conditions(OBCs), representing an in-
finitely sharp trapping potential, i.e., a closed box system.
We then compare both the closed box and the parabolic trap
to the uniform case.

The phase diagram of the Bose-Hubbard model on the
square lattice in the parameter regime of interest is shown in
the inset of Fig. 14. While the overall phase structure is well
described by mean field theory[22,23], the maximum extent
of the first Mott lobe ofU / t=23.3 is thereby overestimated
by about 32% of the value obtained by a strong coupling
expansionsU / t=17.54d [23,24]. Thus, in order to compare

later the onset of Mott plateau formation in confined systems
with the homogeneous case, we first need to determine the
precise phase boundary within the region of interest.

In the following we consider a path through the phase
diagram along a line of constantm /U=0.37, indicated by the
directed line in the inset of Fig. 14. Moving along this line
through the quantum phase transition, the system undergoes
the generic transition[22] which is mean field in nature. The
transition does not cross over to the special case of the com-
mensurate transition, belonging to the 3DXY universality
class[22].

In order to identify the Mott transition point along this
scan we measured the stiffnessrs, which quantifies the re-
sponse of the system to a twist in the boundary conditions
along the real space directions. This quantity can be calcu-
lated in QMC from the boson winding number fluctuations
[25]. At the quantum critical point finite size scaling theory
[22] predicts it to scale in two dimensions asL−z, wherez
=2 is the dynamical critical exponent for the generic transi-
tion, andL the linear system size of ansN=L2d-site system.

The inset of Fig. 15 showsrs as a function of the inverse
hopping,U / t, for a system of linear sizeL=28, indicating its
increase upon entering the superfluid phase. The main part of
Fig. 15 is a scaling plot ofrsL

2 vs U / t, from which the
critical pointU / t=16.25±0.1 is obtained with sufficient pre-
cision for the purpose of this study. Note that corrections to
scaling are visible already atL=12, in agreement with a
recent study, indicating that large system sizes are needed for
high-precision determinations of the critical point[26]. Mean
field theory[23] predicts a value ofU / t=23.5 which is too
large by more than 40%. Thus in 2D corrections to the mean
field results have to be accounted for already in the uniform
case.

Having established the position of the Mott transition in
the uniform case, we show in Fig. 14 the evolution of the
density n in homogeneous systems with PBCs and OBCs
along the constant-m scan shown in the inset of Fig. 14.
Here, we show data on systems with 24324 lattice sites. In
both cases the onset of the Mott insulating regime is located
close to the critical point obtained from finite size scaling.
Thus already for this moderate system size, the Mott transi-
tion is located rather close to the value in the thermodynamic
limit.

FIG. 14. Densityn as a function ofU / t for bosons along a
constantm /U=0.37 scan, for both periodic(PBC) and open(OBC)
boundary conditions on as24324d-site square lattice, the OBCs
corresponding to an infinitely sharp trapping potential. The Mott
transition in the uniform case is indicated by the dashed line. The
inset locates this constant-m scan within the phase diagram of the
uniform system.

FIG. 15. Scaling plot of the stiffnessrs for the Bose-Hubbard
model on the square lattice for periodic boundary conditions, while
tuning along a constantm /U=0.37 scan. The inset shows the stiff-
nessrs for a s28328d-site system as a function ofU / t.
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Phase coherence is signaled by a pronounced coherence
peak in the momentum distribution functionnsk =0d. This
can be seen from Fig. 16, which showsnskd for the com-
mensurate momenta along thekx axis of momentum space
for different values ofU / t for a s24324d-site system with
PBCs. The evolution ofns0d while tuning through the tran-
sition is shown in Fig. 17. It clearly marks the loss of coher-
ence in the Mott insulator.

While for PBCs a discrete set of commensurate momenta
exists, for OBCs states of arbitrary momenta can be occu-
pied. In the QMC simulations, we measured the momentum
distribution function on a mesh covering 103L momenta in
the first Brillouin zone along thekx axis. The resulting mo-
mentum distribution functions for different values ofU / t are
shown in Fig. 18. Similar to the case of PBCs, the loss of
coherence upon entering the Mott phase is signaled by a
reduction of the coherence fractionns0d, as seen from Fig.
17. Also note the pronounced fine structures innskd for

U / t=10.0, deep in the superfluid regime, and the complete
absence of such structures for larger values ofU / t.

Using an Ornstein-Zernike form for the coherent part for
the momentum distribution function

nskd =
ns0d

1 + k2j2 , s13d

wherej denotes the coherence length, we can obtainj from
the full width at half maximum(FWHM) of the coherence
peak,

FWHM =
2

j
. s14d

In the thermodynamic limit, the coherence length diverges
in the superfluid regime. On a finite system it is bounded
from above by the linear system sizeL, and decreases to zero
deep inside the Mott insulating regime. We thus expect an
increase of the FWHM, from its minimum value of 2/L in
the superfluid regime, upon driving the system through the
Mott transition. This behavior can indeed be seen in Fig. 17,
which shows the FWHM as a function ofU / t for the s24
324d-site closed box. The FWHM is at its lowest value of
about 2/24 left of the Mott transition, and increases due to
loss of coherence beyond this point.

B. Parabolic traps in 2D

After our analysis of the homogeneous system, we are
now in position to discuss the evolution of a confined Bose
gas in a 2D optical lattice while increasing the lattice depth,
i.e., decreasing the hoppingt. In the following, we will take
the system along a path of constant chemical potential
m /U=0.37, in a parabolic trap of curvatureV/U=0.002. An
illustration of the path taken in our simulations is shown in
Fig. 19.

As discussed in Sec. III, we can use a local potential
approximation for a qualitative description of the inhomoge-
neous density profile of the trap, by employing the local

FIG. 16. Momentum distribution function of bosons on as24
324d-site square lattice with periodic boundary conditions(PBC)
for the commensurate momenta along the lines0,0d-sp /a,0d in
momentum space, for different values ofU / t, while tuningt along
the constantm /U=0.37 scan of Fig. 14. The loss of coherence due
to the Mott transition atU / t=16.7 is reflected by the reduced co-
herence peak heightns0,0d.

FIG. 17. Evolution of the coherence fraction, i.e., the height of
the coherence peak,ns0,0d, as a function ofU / t while tuning t
along the constantm /U=0.37 scan of Fig. 14, for bosons on a
s24324d site square lattice for both periodic(PBC) and open
(OBC) boundary conditions. For OBCs the full width at half maxi-
mum (FWHM) of the coherence peak is also shown, clearly signal-
ing the onset of the Mott phase. The Mott transition point is indi-
cated by the vertical dashed line.

FIG. 18. Momentum distribution function of bosons on as24
324d-site square lattice with open boundary conditions, corre-
sponding to an infinitely sharp trapping potential, along the line
s0,0d-sp /a,0d in momentum space, for different values ofU / t,
while tuningt along the constantm /U=0.37 scan of Fig. 14. Within
the superfluid regime satellite peaks appear, which diminish upon
emergence of the Mott phase.
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value of meff. For a given value ofU / t, we can therefore
represent the confined system by a vertical line in the phase
diagram of the Bose-Hubbard model on the square lattice.
This representative vertical line is then shifted toward
smaller values oft, during our constantm scan. While for
large values oft the system will be superfluid, from Fig. 19
we expect the appearance of a central Mott plateau for
smaller hopping amplitudes.

In order to determine accurately the position of the Mott
plateau formation, we monitor the evolution of the density in
the trap center, which is shown in Fig. 20 as a function of the
inverse hoppingU / t.

In accordance with Fig. 19, the trap center has a density
larger than 1 for small values ofU / t. Upon increasingU / t,
the central density decreases, closely following the path of
the homogeneous system. It crosses the value 1 forU / t
<13.13, as expected from Fig. 19, then undergoes a mini-
mum, and reaches 1 forU / t<16.7, where a Mott plateau
starts to form. Apart from the critical region of the homoge-

neous 2D system, the density in the center of the trap closely
follows the behavior in the uniform case along the same
constantm scan. The rather smooth approach towards a cen-
tral density of 1 is in agreement with the observations in Sec.
IV C of the absence of critical fluctuations inside the trap. In
addition to this qualitative difference from the homogeneous
case, the local potential approximation underestimates the
lower value ofU / t for Mott plateau formation by about 6%,
as seen from Fig. 19.

Having determined the value ofU / t for the onset of the
central Mott plateau from measurements of the density dis-
tribution, we turn to a discussion of the momentum distribu-
tion function of bosons inside the parabolic trap and its evo-
lution upon increasing the inverse hoppingU / t.

In Fig. 21 the momentum distribution functionnskd is
shown for different values ofU / t along the constantm /U
=0.37 scan of Fig. 20. From these data it is obvious that the
presence of the fine structure peak nearkxa/p<0.1, reflect-
ing the typical radial extentR<20a of the superfluid region,
is not related to the presence of a central Mott plateau, in
agreement with earlier observations in Sec. V.

Analyzing the data further, we show in Fig. 22 the coher-
ence fractionnsk =0d and the FWHM of the coherence peak
as a function ofU / t. In marked contrast to the uniform case
(Fig. 17), but in agreement with experimental findings[1],
the coherence fraction does not display distinct features upon
emergence of a central Mott plateau, but instead decreases
rather smoothly over a broader range than for the uniform
system. This behavior is expected as it reflects the coexist-
ence of both a Mott plateau region and a surrounding super-
fluid.

Similar broadenings are observed in the evolution of the
FWHM, which becomes rather flat in the region where Mott
plateau formation sets in. Since changes in the FWHM are
thus small near the threshold, care has to be taken when
extrapolating data taken for large values ofU / t down to the
flat region. For example, a linear extrapolation using the last
two data points in Fig. 22 would overestimate the threshold
for Mott plateau formation by more than 60% of its actual
value.

FIG. 19. Variation ofmeff in a two-dimensional parabolic trap
with curvatureV/U=0.002 for three different values ofU / t while
tuning t along a constantm /U=0.37 scan, shown within the phase
diagram of the Bose-Hubbard model on the square lattice. Along
the dash-dotted line the density has a constant value ofn=1.

FIG. 20. Top: Radial density distribution of bosons within a
two-dimensional parabolic trap with curvatureV/U=0.002 for dif-
ferent values ofU / t for m /U=0.37. Bottom: Evolution of the den-
sity in the trap center while tuningt along a constantm /U=0.37
scan. For comparison the density of the uniform system along the
same constant-m scan is shown. The arrow indicates the threshold
for Mott plateau formation within the trap, which deviates by about
6% from the position of the Mott transition in the uniform case
(vertical dashed line).

FIG. 21. Momentum distribution function of bosons in a two-
dimensional parabolic trap with curvatureV/U=0.002 along the
line s0,0d-sp /a,0d in momentum space, for different values ofU / t
while tuning t along the constantm /U=0.37 scan of Fig. 20. Sat-
ellite peaks nearskx,kyd=s0.1p /a,0d appear unrelated to the phase
structure within the trap.
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However, we find that the FWHM starts to increase well
below the threshold for Mott plateau formation. Furthermore,
beyond this point a change in curvature of the graph is ob-
served, with an inflection point located at the threshold point.
In fact, we found the presence of such inflection points in the
FWHM graphs at the transition point to be a generic feature
for different trapping curvatures and dimensionalities, as will
be shown below. This feature thus appears to be a reliable
indication for the onset of Mott plateau formation in confined
Bose systems. Although the FWHM is accessible experimen-
tally [2], limited resolution can make the location of the in-
flection point difficult, as we found the FWHM graphs to be
rather flat in this region.

C. Parabolic traps in 3D

We now present results of QMC simulations of the Bose-
Hubbard model for bosons confined in 3D parabolic traps.
Performing an analysis as in the 2D case, we find that similar
generic features as those obtained in 2D apply to these 3D
systems as well.

In particular, we consider a parabolic trap with curvature
V/U=0.0125, and study the system’s states for different val-
ues oft /U along a line of constantm /U=0.25. For a value of
U / t=20, the system is still deep in the superfluid regime, as
seen in Fig. 23, reflecting the increased strength of the ki-
netic energy, due to the larger dimensionality. Upon decreas-
ing the hoppingt, a Mott plateau forms in the trap center. In
Fig. 23 we trace the boson density in the trap center as a
function of U / t, in order to locate the threshold for emer-
gence of the Mott plateau region, indicated by the vertical
arrow. Similar to the 2D case, the central density approaches
the value of 1 with a flat slope. Within mean field theory
[22,23] and the local potential approximation, the threshold
would be underestimated by about 30%, as indicated by the
dashed vertical line in Fig. 23.

Analyzing the momentum distribution functions shown in
Fig. 24, we observe similar behavior as in the 2D system.(i)
As seen from Fig. 25, at the threshold for Mott plateau for-
mation, the coherence fraction is still about 10% of the over-
all bosonic density and decreases over a rather broad range

of parameters.(ii ) The FWHM of the coherence peak under-
goes a change of curvature with an inflection point being
located at the threshold for Mott plateau formation. The pres-
ence of this inflection point thus provides a robust indication
of density restructuring also inside 3D traps.(iii ) As in 2D,
we find the presence of satellite peaks to be unrelated to the
local density structure, as seen from Fig. 24.(iv) The posi-
tion of the fine structure peak is indicative of the spatial
extent of the bosonic cloud. In fact, the broad peak observed
at kx<0.3p /a in Fig. 24 corresponds well to the radial ex-
tent R<6a of the superfluid region.

D. Parabolic traps in 1D

Finally, we extend our analysis to the case of a 1D para-
bolic trap. Fixing the chemical potential to a value ofm /U
=0.37, similar to the 2D case, we study the system for dif-
ferent values of the hopping amplitudet. In the upper part of

FIG. 22. Evolution of the coherence fraction, i.e., the height
ns0,0d, and of the full width at half maximum(FWHM) of the
coherence peak as a function ofU / t while tuning t along the con-
stantm /U=0.37 scan of Fig. 20 for bosons in a two-dimensional
parabolic trap with curvatureV/U=0.002. The threshold for Mott
plateau formation is indicated by the dashed line.

FIG. 23. Top: Radial density distribution of bosons within a
three-dimensional parabolic trap with curvatureV/U=0.0125 for
different values ofU / t for m /U=0.25. Bottom: Evolution of the
density in the trap center while tuningt along a constantm /U
=0.25 scan. The arrow indicates the threshold for Mott plateau for-
mation within the trap, which deviates by about 30% from the po-
sition of the Mott transition in the uniform case within mean field
theory (vertical dashed line).

FIG. 24. Momentum distribution function of bosons in a three-
dimensional parabolic trap with curvatureV/U=0.0125 along the
line s0,0,0d-sp /a,0 ,0d in momentum space, for different values of
U / t while tuning t along the constantm /U=0.25 scan of Fig. 23.
Satellite peaks neark =s0.3p /a,0 ,0d appear unrelated to the phase
structure within the trap.
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Fig. 26 the spatial density distribution is shown for three
different values ofU / t. The evolution of the density in the
trap center as a function ofU / t is shown in the lower part of
Fig. 26.

For U / t=4.0 the system is in the fully superfluid regime,
with no Mott plateaus present. Upon increasingU / t, there
appears a finite regime, where two Mott plateaus emerge
well outside the center of the trap. These plateaus eventually
merge into an extended Mott plateau at a larger value ofU / t.
The position of these points is marked by the arrows in the
lower part of Fig. 26. This emergence of an intermediate
regime with two well separated Mott plateaus is expected
from the shape of the first Mott lobe in 1D[27], and the
chosen value ofm /U=0.37, and follows using a local poten-
tial approximation, similar to the case of the 2D trap consid-
ered above. The reason why such an intermediate regime is
observed in our 1D simulations, but not for the 2D case, is
that in 1D the largest extent of the first Mott lobe has a
critical value ofm /U<0.10 which is below our chosen value
of m /U=0.37, whereas the critical value ofm /U=0.42 in 2D
is above that value.

The corresponding momentum distribution functions are
shown in Fig. 27. Compared to the higher-dimensional cases,
the momentum distribution functions appear broad, indicat-
ing larger incoherent contributions. This is expected, as in
1D long range coherence cannot develop, even at zero tem-
perature. Similar to the higher-dimensional cases, we ob-
serve broad fine structure peaks innskd, restricted, however,
to U / t below the threshold for Mott plateau formation. At
larger values ofU / t, such fine structure is not resolved due to
the large incoherent contribution.

Analyzing the momentum distribution functions as shown
in Fig. 28, we find that the graph of FWHM as a function of
U / t exhibits two characteristic features: The increase of the
slope forU / t near 5.0 corresponds well to the threshold for
the formation of the two Mott plateaus. The growth of the
two Mott plateaus regions results in the fast decrease of the
coherence length in this regime. BeyondU / t<5.7, the in-
crease in the FWHM is reduced, indicating that the two pla-
teaus have merged into a single plateau, which now grows at
only two ends. TheU / t dependence of the coherence fraction
ns0d also indicates the merging of the two Mott plateaus, by
a reduced decrease inU / t beyondU / t<5.7.

FIG. 25. Evolution of the coherence fraction, i.e., the height
ns0,0,0d, and of the full width at half maximum(FWHM) of the
coherence peak as a function ofU / t while tuning t along the con-
stantm /U=0.25 scan of Fig. 23 for bosons in a three-dimensional
parabolic trap with curvatureV/U=0.0125. The threshold for Mott
plateau formation is indicated by the dashed line.

FIG. 26. Top: spatial density distribution of bosons within a
one-dimensional parabolic trap with curvatureV/U=0.0004 for dif-
ferent values ofU / t, for m /U=0.37. Bottom: evolution of the den-
sity in the trap center while tuningt along a constantm /U=0.37
scan. The threshold for Mott plateaus formation within the trap, and
merging of the two plateaus is indicated by vertical arrows.

FIG. 27. Momentum distribution function of bosons in a one-
dimensional parabolic trap with curvatureV/U=0.0004 along the
line 0-p /a in momentum space, for different values ofU / t while
tuning t along the constantm /U=0.37 scan of Fig. 26.

FIG. 28. Evolution of the coherence fraction, i.e., the height
ns0d, and of the full width at half maximum(FWHM) of the coher-
ence peak as a function ofU / t while tuning t along the constant
m /U=0.37 scan of Fig. 26 for bosons in a one-dimensional para-
bolic trap with curvatureV/U=0.0004. The thresholds for Mott
plateaus formation within the trap and for the collapse of the two
plateaus into a single plateau are indicated by dashed lines.
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Recently Kollathet al. [16] studied the 1D case using the
density matrix renormalization group method. Their results
are in perfect agreement with our observations.

VI. DISCUSSION AND CONCLUSION

Our quantum Monte Carlo simulations provide insight
into the physics of trapped bosonic systems on lattices. The
validity of a local potential approximation, where local quan-
tities such as the local density or compressibility depend
mainly on the value of the local chemical potential, is con-
firmed by an excellent data collapse of local quantities on
single curves. This single curve is, however, not the same as
for the homogeneous bulk system, clearly disproving previ-
ous claims[28]. The differences are particularly pronounced
in the interesting vicinity of the transition layer between
Mott insulator and superfluid in the parabolic trap. There the
singularities due to quantum critical behavior are removed
and replaced by smooth and broad features.

While the behavior of the homogeneous system can give a
qualitative overview of the phase structure realized locally
inside the parabolic trap, quantitative results can be obtained
only by numerical(quantum Monte Carlo) simulations of
realistic systems. Results for realistic 2D parabolic traps of a
size comparable to experiments have been presented here, as
well as an analysis of the 1D situation. Three-dimensional
simulations have so far been performed only on systems with
linear dimensions 2–3 times smaller than experimental real-
izations, but realistic simulations will be possible in the near
future using faster computers and improved algorithms.

An effective ladder model, which quantitatively models
the realistic trapped system, provides clear evidence for the
absence of quantum critical behavior in parabolic confine-
ment potentials. The ladder model allows us to exclude the
randomness imposed on the superfluid ring by the underlying
square lattice structure as the source of this absence of quan-
tum criticality. Instead, the divergences due to quantum criti-
cal fluctuations are suppressed by the inhomogeneity, and the
coupling to the rest of the system. It will be very interesting
to develop an effective action for this coupling, which might
explain the power law behavior observed in Ref.[20]. Fur-
thermore, the observed absence of quantum criticality in both
parabolic traps and ladder models with a gradient in the
chemical potential connecting different Mott plateau regions
calls for future investigations, and extension to fermionic
models.

The absence of quantum critical behavior of bosons in
parabolic confinement potentials also agrees well with the
fast dynamics of the “phase transition” and the observed ab-
sence of “critical slowing down” of the dynamics in experi-
ments [1]. Critical slowing down at a second order phase
transition is caused by the long time scales taken to establish
a uniform order parameter across the whole system. Small
ordered domains, with differently broken U(1) symmetry are
quickly formed, but as these domains grow and merge, the
dynamics to establish the same U(1) symmetry breaking
across neighboring domains slows down as the domains
grow in size. The dynamics of the “quantum phase transi-
tion” in the trapped system is different: driving the system

from the superfluid to the Mott insulator happens by nucle-
ating a small Mott domain inside the trap, which then grows
as the depth of the optical lattice is increased. As the Mott
phase grows in volume and the superfluid phase shrinks the
“quantum phase transition” is observed. This is, however,
better viewed as a crossover with changing volume fractions
of the two phases than as a phase transition: the large Mott
plateau is always surrounded by a shell of coherent super-
fluid. Sweeping back to the superfluid phase by decreasing
the depth of the optical lattice, the Mott insulator melts and
atoms join the superfluid. The dynamics here is not that of
two large domains merging, but that of a single atom joining
the coherent superfluid and there isno critical slowing down
involved in this process. It might be possible to experimen-
tally observe critical slowing down in a trap by first driving
the system deep into the Mott insulating region, then kicking
it to destroy the phase coherence in the remaining superfluid
shell, and afterward quickly driving it back into the super-
fluid.

Finally, we analyzed the behavior of the momentum dis-
tribution function, which is accessible experimentally from
the interference patterns of absorption images taken after free
expansion of the atomic gas. We find that the full width at
half maximum of the coherence peak in the momentum dis-
tribution function, due to its relation to the coherence length
in the system, yields valuable information about density re-
structurings inside the trap. In particular, we found an inflec-
tion point in its graph upon increasing the lattice depth well
at the threshold for central Mott plateau formation. Since the
graph becomes flat in this region, detection of such features
requires high-resolution data taken in the crossover regime.

In contrast, we found that for flat confinement potentials,
realizing closed box systems, both the full width at half
maximum as well as the coherence fraction provide clear
signals for the Mott transition. Furthermore, in flat trapping
geometries, quantum critical fluctuations are significantly
more pronouned, and allow the observation of quantum criti-
cal behavior already on optical lattices of currently available
sizes. We thus expect the possible realization of flat confine-
ment potentials[29] to significantly ease the detection of true
quantum criticality and the interpretation of the experimental
data.

Performing quantum Monte Carlo studies for realistic sys-
tems will be important for interpreting current and future
experiments on confined Bose gases in optical lattices, and
for testing our quantitative understanding of these systems.
Such understanding will be important, once analog quantum
computers build from fermionic atoms are available, for
which large scale quantum Monte Carlo simulations will not
be possible.
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