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Using a finite-temperature path integral Monte Carlo simula¢PIiC) method and finite-size scaling, we
have investigated the interaction-induced shift of the phase-transition temperature for Bose-Einstein conden-
sation of homogeneous weakly interacting Bose gases in three dimensions, which is given by a proposed
analytical expressiofi,= To{1+c,an'/3+[c} In(an'3) +cj]a?n?3+ O(a®n)}, whereTY is the critical temperature
for an ideal gasa is thes-wave scattering length, antdis the number density. We have used smaller number
densities and more time slices than in the previous PIMC simulafi®@ngeret al, Phys. Rev. Lett.79, 3549
(1997] in order to understand the difference in the value of the coeffidemtetween their results and the
(apparently other reliable results in the literature. Our results show{tﬂw‘ﬁ,t—TS)/Tﬁ}/(an”% depends strongly
on the interaction streng#n®’3 while the previous PIMC results are considerably flatter and smaller than our
results. We obtairc;=1.32+0.14, in agreement with results from recent Monte Carlo methods of three-
dimensional @) scalarg¢* field theory and variational perturbation theory.
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I. INTRODUCTION AT, 13
o —can, 2

Since the recent achievement of experimental observation .

of Bose-Einstein condensatioiBEC) in magnetically ) ) )
trapped atomic vapor§l], these inhomogeneous systemsWheremis the particle massg is the Boltzmann constan,
have attracted considerable interest from experimental an'(§3the number density/(s) is the Riemann zeta function,
theoretical sides. In dilute or weakly interacting gases, thé!3)=2.612, andc; is a numerical coefficient. Additionally,
Gross-Pitaevski(GP) theory, a mean-field theory, for the Holzmannet al. [13] have argued that a logarithmic term
condensate wave function has been enormously successful@ppears at order” in Eq. (2), and they have shown that this
describing the extraordinary properties of the condensatderm is of the formc;a®n?2In(an'’®). They also estimated the
(For a recent review of numerous successful applications ofalue of the numerical coefficiert, using largeNs argu-
mean-field theories in Bose-Einstein condensation in atomighents in the three-dimensionali®) field theory. Later, Ar-
gases, see Reff2].) However, the determination of the effect noldet al.[17] were able to show that the transition tempera-
of repulsive interactions on the transition temperature of dure for a dilute, homogeneous, three-dimensig88l) Bose
homogeneous dilute Bose gas at a fixed density has hadgas can be expressed to leading order as

long and controversial historj8—29. This nontrivial prob- A

lem has been treated by different methods with different re- ATe_ c;an*®+[c; In(ant®) + cjla?n??+ O(a’n), (3)
sults. One of the reasons for the multitude of results and c

methods stems from the fact that the phase transition is sec-

ond order, and perturbation theory typically breaks down for herec; =19.7518 can be calculated perturbatively, whereas

physical quantities sensitve to the collective long- ¢, andcj require nonperturbati_ve techniques. With the help
wavelength modes close to the transition due to infrgied of Monte Carlo data they estimatesj~75.7; however_, a
divergences. Moreover, the interaction, no matter how smalt’ond debate concerns the values of the other numerical co-

changes the universality class of the phase transition frorﬁgg'ﬁgtns’;?gﬁf;ﬁizl ;’nvgltﬁzgssagze&ggg pgi?outselgﬁn\gagés
the Gaussian complex-field model to that of ¥ model. P ques.

In the weak interactiolor dilute) limit, the strength of the ;I;:eelrs;jrii n%?\i;‘:;j;e;tmgtgsé?rtéﬁ Z?;?lﬁtgﬁchéb;ngma”
interatomic interactions can be characterized by sheave g P

. : _ repulsive interaction, and the range of variation of different
scattering lengtia. The shiftAT; = (T~ To) of the BEC tran- predictions is from 0.34Ref. [6]) to 4.66(Ref. [21]); these
sition temperature of a homogeneous Bose gas away from 'F?ave been summarized, for instance, in R§i€,16,30. It
ideal-gas value appears that the most reliable results so far are obtained by

o h%2m 3\ |3 Monte Carlo(MC) simulations of three-dimensional (2)
Te= mkg n/¢ 2 1) scalar ¢* field theory, ¢;=1.29+0.05 determined by
Kashurnikovet al. [24] and ¢;=1.32+0.02 determined by
behaves parametrically as Arnold et al. [16], and by variational perturbation theory
(VPT), ¢,=1.27%0.11 determined by Kastenifig9]. In par-
ticular, Gruteret al. [6] investigated the dependence T,
*Present address: Department of Physics, Washington State Untumerically using path integral Monte Carlo methods. They
versity, Pullman, Washington 99164. obtained the value af;=0.34+0.06 after numerical extrapo-
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lation of the calculation to the limia— 0. This value is

about four times smaller than the above results. Holznenn P(R,PR';BFJ f dR;dR; -+ dRy-1

al. [13] argued that the difference in these results is attribut-

able to a nonanalytic structura? In a, of the transition tem- X p(R,Ry;7) -+ p(Ry-1,PR";7), (6)

perature ina, and that this correction gives rise to a strong
dependence oa, even in the very dilute limit. Arnolet al.
[16] believed that one likely problem with the PIMC simu-
lation of Gruter et al. [6] is inadequate system size.
Kashurnikovet al. [24] stated that the PIMC simulation did
not reach the universality region because the minimal valu
of na® was 10°,

In this paper, we attempt to understand the difference irf , . X
the value of the coefficient; between results from PIMC R.R1,Rz, - Ru-1,PR } using multlevel Monte Carlo-
and the above results. We have used a finite—temperatur‘:’é"lmpllng [31], an extension qf the St?‘”dafd Metropolis
path-integral Monte CarlgPIMC) method[31] to study the method[32].. The PIMC methpd IS es_sentlally ex_act, the only
dependence on interaction strength of the phase-transiti pcessary input being the interparticle potential or equiva-

temperature for Bose-Einstein condensation of weakly inter'c"tly the scattering length. In order to use Monte Carlo

acting Bose gases in three dimensions. Although our PlMéampIing, we must fir.st provide a pair-prodgct form of the
method is the same as that used by Greétenl, we have exact two-bo_dy density matrices for.the high-temperature
! Qensny matrices that appear in the integrand E&). We

used smaller number densities and more time slices than i . L
the previous PIMC simulations, as motivated above. used the hlgh—te;mperature approximation for the hard-sphere
propagator derived by Cao and Berfi&3]. In order to
choose the value dfl, we performed consistency checks by
Il. SIMULATION METHOD AND DEFINITION varyingM to see that the results have converged. We used up
OF THE PHYSICAL QUANTITIES to 15 time sliceyM=15). We performed PIMC in the con-
tinuum. The particles were confined to a cubic box with vol-
}meV and edge length =V/3, to which periodic boundary
conditions were applied. We employed the canonical en-
emble, i.e., in each simulation we fixed the temperalyre
ﬁe number of particleBl, and the dimensionis of the simu-
lation cell. 20 000—-30 000 MC steps are required for equili-
bration depending on the number density. Statistical averages
are collected from 30 000 MC steps after this. In each MC

whereB=1/kgT andr=8/M is the imaginary time step. The
problem of evaluating the density matrix at a low tempera-
ture 87! has been replaced by the problem of multiple inte-
gration of density matrices at a higher temperattre The

um over permutations in E¢) combined with the integra-
ion in Eq.(6) can be evaluated in path integral Monte Carlo
PIMC) by a stochastic sampling of the discrete paths

We wish to study the problem of a quantusaparticle
system in order to compute the phase-transition temperatu
T, for dilute or weakly interacting Bose gases in three di-
mensions. We assume that the interparticle interaction can
described by a positive scattering lengthequivalent to the
interaction of hard spheres of diametr(see, e.g., Refs.
[2,3]). The Hamiltonian for this system may be written as

5 N step, we attempted 50—800 trial moves at each time slice. We
H=- ﬁ_z v+ o(|ri=ri)) (4) performed these calculations partly on IBM SP2 and partly
amiz S Y on PC at the University of Georgia. The smallest-density
simulations took about 350 CPU hours on an IBM SP2.
whereuv(r) is the hard-sphere potential defined by The scaling functions for the condensate density and the
superfluid density are similar and imply that in t(ailute)
v(n) =+ (r<a) interacting 3D Bose gas condensation and superfluidity occur

at precisely the same temperature. Superfluid density can be
=0 (r>a). calculated using the winding numb@f for simulations that
The statistical mechanics of quantum systems is governeldave periodic boundary conditiori84]. Nonzero winding
by the density matrix. For a system Nfbosons at an inverse humbers occur when particles, through a series of permuta-
temperaturgs, the Bose-symmetrized density matrix is given tions, are permuted with periodic images of themselves. The

by winding number is directly related ta, the superfluid den-
sity. The superfluid density is given 4]
1
pe(R.R":8) = -2 p(RPR'; ), (5) ps _ M(W?) @
P p h23pN’

whereR andR’ are two configurations d¥l hard spheres?  where the winding numbew is defined by
denotes a permutation of particle labels among hard spheres, N

andPR is one such permutation. Evaluating the density ma- B (dri(t)
trix for interacting systems at very low temperatures is com- W= 2 dt(T)
plicated by the fact that the kinetic and potential terms in the =t
exponent of the density matrix cannot be separated. We can In order to obtain an estimate of the superfluid transition
avoid this problem by insertinyl —1 intermediate configu- temperatureT,, we perform a finite-size scaling analysis.
rations into Eq(5) to obtain the path-integral formulation of Near the critical temperatur€., the finite-size behavior of
the density matrix: the superfluid density obeys the scaled fdi38]

(8)

0
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FIG. 1. Results for the noninteracting case at a fixed number FIG. 2. Determination of the critical temperatu'rg at a fixed
density n=5x10° (a) The scaled superfluid fraction number densityn=5x 107 for the interacting caséa) The scaled
N*3p(t,N)/p as a function of scaled temperatutdg’®”. The solid  superfluid fractionNY3p(t,N)/p as a function of scaled tempera-
line is a linear fit to Eq(10). The best-fit parameters are the critical turesT/Tg. The four lines cross at the critical temperatuis. Re-
temperature of/T=1.0001) and the correlation length exponent syt of our linear fit(solid straight ling to the data from Eq(10).

of ¥=0.906). (b) The total energy density as a function of the Qur estimated critical temperature T/ To=1.0781).
number of particles with a straight line fit to E@.4). From the fit

we obtain the energy density in the thermodynamic lifhit— o).
V / / ) NY3py(t,N)/p = f(ENY3) = £(0) + foN™*"(T - To)/ T,
(10

ps(t,L)/p =L~ f(tL), (99  where the dimensionless® has replaced the length.
From the fitting, we determined four fitting paramet&(®),
fo, v, andT..

where 7 is the critical exponent of the bulk superfluid frac-
tion, p(t)/p~t™, t=(T-T,)/T,, v is the correlation length
exponent&(t) ~t7*, and the universal functiof(tL*) must The main goal of this paper is to determine the critical
be analytic for finite argument. It is assumed thatv since  temperaturel, of a 3D homogeneous system of hard-sphere
this is indicated by experimeriB6], renormalization-group bosons by path integral Monte Carlo simulations and finite-
calculation[37], and the Josephson hyperscaling relation  size scaling. We have calculated the superfluid fraction
=(d-2)v. In obtaining an estimate of the critical temperaturepT,N)/p for various number densities at a fixed hard-
T., we did not use Eq9) directly because of large statistical sphere diametea.

IIl. SIMULATION RESULTS AND DISCUSSION

errors in our datdsee Fig. 2a)]. Instead we fit our data for In order to check the program carefully, we determined
different temperature§ and several valuedl of the total the critical temperaturé'g and the total energy density at a
number of particles to a linear form fdr fixed number densitp=5x 102 in the noninteracting case,
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FIG. 3. Scaled superfluid fractidd'3py(t,N)/p vs tNY3 at the /!
smallest number densitg=1Xx 1077 we used in this study. Our /
estimated critical temperature Tg/T2:1.006114). 1.08 8
; [ ]
both of which are known exactly. Figure(d shows the ’ e *
scaled superfluid fractioN3p (t,N)/p, scaled temperature _
tN3” and the resulting linear fitsolid line) to Eq. (10) for =
the noninteracting hard sphe%es. The best-fit parameters ar*~ @ Our results |
the critical temperature of./T;=1.00q1) and the correla- -~~~ Linear fit to our data
tion length exponent ob=0.906), in agreement with the — Eq. (3) with Arnold's data
theoretical exact values, namely/T°=1 andv=1.
From the expression for the specific heét,L),
JE(t,L
C(t,L) = ( ) y (11) i 1 1 1
aT 0 0.05 0.1 0.15 0.2
(b) an"®

and a scaling expression for the specific &8,
c(t,L) =c(0,0) + LY"g(tL¥"), (12)

we obtain the energy densif(t,L) by integrating Eq(12)
up to a constant

E(t,L) = c¢(0,0) T + L@ VT DALY, (13

FIG. 4. Our calculated dependence of the interaction-induced
shift of the transition temperature of a dilute homogeneous Bose gas
on the scattering lengtan'3: (a) (AT./T9)/an"’3; (b) T,/ T2. When-
ever not shown, the error bars in our simulation data are smaller
than the symbol sizes. We also plotted the GCL dafgen circle®
and Eqg. (3) using Arnold's results [16] (solid line). (a)
(AT./T9)/an® depends on the interaction strength'’® while the
wheredD(x)/dx=g(x) andg(x) is a universal scaling func- GCL data are considerably flatter and smaller than our regbits.
tion for the specific heat. Fdr— 0 we obtain The linear behavior is seen only at small valuesaof’>. The

E(O,L)=E, + ElL(“"l)/V. (14) dashed straight line is a fit to our four smallest data points. We

found that the slopéc,) is 1.3314).

The result of the fit of the energy density data to Edfl)
is shown in Fig. tb). In the fit we usedx=-1 andv=1 for Gruter, Ceperley, and Lalogg] investigated the depen-
an ideal Bose gas. If we exclude the data corresponding tdence ofAT, numerically using PIMGQto be referred to here
the smallest system, we obtain an estimate for the energgs GCL. In order to compare our estimated critical tempera-
density in the thermodynamic limitN— o) which agrees ture with GCL data, we have calculated the superfluid frac-
with the exactly known value within an error bar. tion ps/p(T,N) for N=27, 64, 125, and 216 as a function of

In the interacting case, we have calculated the superfluitemperaturd/T? at a fixed number density=5x 1073, Fig-
fraction and estimated the critical temperatures for variousgire 2 shows our datgFig. 2@)] and our result of a linear fit
hard-sphere diameteesat a fixed number density. We can (solid straight ling to the datgFig. 2b)] using Eq.(10). Our
see that the critical temperature approacfigsTo as the calculated superfluid fractiong(t,N)/p are significantly
hard-sphere diameter decreagest shown, as expected. larger than GCL datacf. Fig. 1 of Ref.[6]) and our esti-

In order to study the effect of interactions on the transitionmated critical temperature ié'C/Tg:l.O?&l), which is
temparature, we calculated the superfluid fractigit,N)/p  higher than GCL dataTC/T‘C):l.OSKZ) (cf. Fig. 2 of Ref.
and determined the critical temperatufEgn) for various [6]). We do not understand the reason for this large differ-
number densities X 10/<n<5x 1073, ence[39]. In Fig. 3 we also show the scaled data and the
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resulting linear fit at the smallest number densityl  =1.32+0.02(Ref.[16]), and the result by variational pertur-
% 107" we used in this study. Our estimated critical tempera-bation theory(VPT), ¢;=1.27+0.11(Ref. [29]).
ture isTc/T2:1.006114). In summary, we have determined the interaction-induced

The resulting dependence of the transition temperd@re shift of the phase-transition temperature for Bose-Einstein
(AT /TY)/an'® and (b) T,/ T2 on an'® is shown in Fig. 4. condensation of homogeneous weakly interacting Bose gases
Whenever not shown, the error bars in our simulation datan three dimensions using PIMC and finite-size scaling. Our
are smaller than the symbol sizes. We also show comparisornigsults show tha{t(Tc—Tg)/Tg}/(anl’3) depends on the inter-
between our resultsgfilled circles, the GCL data(open action strengttan’® while the previous PIMC resul{$] are
circles, and Eq.(3) using Arnold’s resultg16] (solid line). considerably flatter and smaller than our results. We obtain
We see that théATc/TS)/anl’3 depends on the interaction ¢;=1.32+0.14, in agreement with results from recent Monte
strengthan®’® while the GCL data are considerably flatter Carlo methods of three-dimensional(2Zp scalar ¢* field
and smaller than our resulfsee Fig. 4a)]. Our calculated theory[16,24 and variational perturbation theo[29].
data approach to Arnold’s results. The linear behavior is seen
only at small value ofan'’® [see Fig. 4b)]. Our calculated
data are slightly larger than E@3) using Arnold’s results
[16] (solid line) in the linear region. The dashed straight line  We are greatly indebted to Professor P. Stancil for his
is a fit to our data points for the four smallest valuesmdiVe  critical reading of the manuscript and profound comments
found that the slopéc,) is 1.32+0.14. This is in agreement and Professor D. M. Ceperley, Shan-Ho Tsai, and H. K. Lee
with the recent MC values of three-dimensionalpscalar  for helpful discussions. This work was partially supported by
¢* field theory, ¢;=1.29+0.05 (Ref. [24]) and c¢;  NASA Grant No. NAG8-1771.
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