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Using a finite-temperature path integral Monte Carlo simulation(PIMC) method and finite-size scaling, we
have investigated the interaction-induced shift of the phase-transition temperature for Bose-Einstein conden-
sation of homogeneous weakly interacting Bose gases in three dimensions, which is given by a proposed
analytical expressionTc=Tc

0h1+c1an1/3+fc28 lnsan1/3d+c29ga
2n2/3+Osa3ndj, whereTc

0 is the critical temperature
for an ideal gas,a is thes-wave scattering length, andn is the number density. We have used smaller number
densities and more time slices than in the previous PIMC simulations[Gruteret al., Phys. Rev. Lett.79, 3549
(1997)] in order to understand the difference in the value of the coefficientc1 between their results and the
(apparently) other reliable results in the literature. Our results show thathsTc−Tc

0d /Tc
0j / san1/3d depends strongly

on the interaction strengthan1/3 while the previous PIMC results are considerably flatter and smaller than our
results. We obtainc1=1.32±0.14, in agreement with results from recent Monte Carlo methods of three-
dimensional O(2) scalarf4 field theory and variational perturbation theory.
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I. INTRODUCTION

Since the recent achievement of experimental observation
of Bose-Einstein condensation(BEC) in magnetically
trapped atomic vapors[1], these inhomogeneous systems
have attracted considerable interest from experimental and
theoretical sides. In dilute or weakly interacting gases, the
Gross-Pitaevskii(GP) theory, a mean-field theory, for the
condensate wave function has been enormously successful in
describing the extraordinary properties of the condensate.
(For a recent review of numerous successful applications of
mean-field theories in Bose-Einstein condensation in atomic
gases, see Ref.[2].) However, the determination of the effect
of repulsive interactions on the transition temperature of a
homogeneous dilute Bose gas at a fixed density has had a
long and controversial history[3–29]. This nontrivial prob-
lem has been treated by different methods with different re-
sults. One of the reasons for the multitude of results and
methods stems from the fact that the phase transition is sec-
ond order, and perturbation theory typically breaks down for
physical quantities sensitive to the collective long-
wavelength modes close to the transition due to infrared(IR)
divergences. Moreover, the interaction, no matter how small,
changes the universality class of the phase transition from
the Gaussian complex-field model to that of theXY model.

In the weak interaction(or dilute) limit, the strength of the
interatomic interactions can be characterized by thes-wave
scattering lengtha. The shiftDTc;sTc−Tc

0d of the BEC tran-
sition temperature of a homogeneous Bose gas away from its
ideal-gas value

Tc
0 =

"22p

mkB
Fn/zS3

2
DG2/3

s1d

behaves parametrically as

DTc

Tc
0 → c1an1/3, s2d

wherem is the particle mass,kB is the Boltzmann constant,n
is the number density,zssd is the Riemann zeta function,
zs 3

2
d<2.612, andc1 is a numerical coefficient. Additionally,

Holzmannet al. [13] have argued that a logarithmic term
appears at ordera2 in Eq. (2), and they have shown that this
term is of the formc28a

2n2/3 lnsan1/3d. They also estimated the
value of the numerical coefficientc28 using large-Ns argu-
ments in the three-dimensional OsNsd field theory. Later, Ar-
nold et al. [17] were able to show that the transition tempera-
ture for a dilute, homogeneous, three-dimensional(3D) Bose
gas can be expressed to leading order as

DTc

Tc
0 = c1an1/3 + fc28 lnsan1/3d + c29ga

2n2/3 + Osa3nd, s3d

wherec28.19.7518 can be calculated perturbatively, whereas
c1 and c29 require nonperturbative techniques. With the help
of Monte Carlo data they estimatedc29<75.7; however, a
strong debate concerns the values of the other numerical co-
efficients, especiallyc1 which has been computed using vari-
ous nonperturbative methods and Monte Carlo techniques.
There are numerous estimates for the parameterc1 describing
the leading deviation of the BEC temperature due to a small
repulsive interaction, and the range of variation of different
predictions is from 0.34(Ref. [6]) to 4.66(Ref. [21]); these
have been summarized, for instance, in Refs.[10,16,30]. It
appears that the most reliable results so far are obtained by
Monte Carlo (MC) simulations of three-dimensional O(2)
scalar f4 field theory, c1=1.29±0.05 determined by
Kashurnikovet al. [24] and c1=1.32±0.02 determined by
Arnold et al. [16], and by variational perturbation theory
(VPT), c1=1.27±0.11 determined by Kastening[29]. In par-
ticular, Gruteret al. [6] investigated the dependence ofDTc
numerically using path integral Monte Carlo methods. They
obtained the value ofc1=0.34±0.06 after numerical extrapo-
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lation of the calculation to the limita→0. This value is
about four times smaller than the above results. Holzmannet
al. [13] argued that the difference in these results is attribut-
able to a nonanalytic structure,a2 ln a, of the transition tem-
perature ina, and that this correction gives rise to a strong
dependence ona, even in the very dilute limit. Arnoldet al.
[16] believed that one likely problem with the PIMC simu-
lation of Gruter et al. [6] is inadequate system size.
Kashurnikovet al. [24] stated that the PIMC simulation did
not reach the universality region because the minimal value
of na3 was 10−5.

In this paper, we attempt to understand the difference in
the value of the coefficientc1 between results from PIMC
and the above results. We have used a finite-temperature
path-integral Monte Carlo(PIMC) method[31] to study the
dependence on interaction strength of the phase-transition
temperature for Bose-Einstein condensation of weakly inter-
acting Bose gases in three dimensions. Although our PIMC
method is the same as that used by Gruteret al., we have
used smaller number densities and more time slices than in
the previous PIMC simulations, as motivated above.

II. SIMULATION METHOD AND DEFINITION
OF THE PHYSICAL QUANTITIES

We wish to study the problem of a quantumN-particle
system in order to compute the phase-transition temperature
Tc for dilute or weakly interacting Bose gases in three di-
mensions. We assume that the interparticle interaction can be
described by a positive scattering lengtha, equivalent to the
interaction of hard spheres of diametera (see, e.g., Refs.
[2,3]). The Hamiltonian for this system may be written as

H = −
"2

2m
o
i=1

N

¹i
2 + o

i, j
vsur i − r jud, s4d

wherevsrd is the hard-sphere potential defined by

vsrd = + ` sr , ad

= 0 sr . ad.

The statistical mechanics of quantum systems is governed
by the density matrix. For a system ofN bosons at an inverse
temperatureb, the Bose-symmetrized density matrix is given
by

rBsR,R8;bd =
1

N! oP rsR,PR8;bd, s5d

whereR andR8 are two configurations ofN hard spheres.P
denotes a permutation of particle labels among hard spheres,
andPR is one such permutation. Evaluating the density ma-
trix for interacting systems at very low temperatures is com-
plicated by the fact that the kinetic and potential terms in the
exponent of the density matrix cannot be separated. We can
avoid this problem by insertingM −1 intermediate configu-
rations into Eq.(5) to obtain the path-integral formulation of
the density matrix:

rsR,PR8;bd =E ¯E dR1dR2 ¯ dRM−1

3 rsR,R1;td ¯ rsRM−1,PR8;td, s6d

whereb=1/kBT andt=b /M is the imaginary time step. The
problem of evaluating the density matrix at a low tempera-
ture b−1 has been replaced by the problem of multiple inte-
gration of density matrices at a higher temperaturet−1. The
sum over permutations in Eq.(5) combined with the integra-
tion in Eq.(6) can be evaluated in path integral Monte Carlo
(PIMC) by a stochastic sampling of the discrete paths
hR ,R1,R2, . . . ,RM−1,PR8j using multilevel Monte Carlo
sampling [31], an extension of the standard Metropolis
method[32]. The PIMC method is essentially exact, the only
necessary input being the interparticle potential or equiva-
lently the scattering lengtha. In order to use Monte Carlo
sampling, we must first provide a pair-product form of the
exact two-body density matrices for the high-temperature
density matrices that appear in the integrand Eq.(6). We
used the high-temperature approximation for the hard-sphere
propagator derived by Cao and Berne[33]. In order to
choose the value ofM, we performed consistency checks by
varyingM to see that the results have converged. We used up
to 15 time slicessM =15d. We performed PIMC in the con-
tinuum. The particles were confined to a cubic box with vol-
umeV and edge lengthL=V1/3, to which periodic boundary
conditions were applied. We employed the canonical en-
semble, i.e., in each simulation we fixed the temperatureT,
the number of particlesN, and the dimensionsL of the simu-
lation cell. 20 000–30 000 MC steps are required for equili-
bration depending on the number density. Statistical averages
are collected from 30 000 MC steps after this. In each MC
step, we attempted 50–800 trial moves at each time slice. We
performed these calculations partly on IBM SP2 and partly
on PC at the University of Georgia. The smallest-density
simulations took about 350 CPU hours on an IBM SP2.

The scaling functions for the condensate density and the
superfluid density are similar and imply that in the(dilute)
interacting 3D Bose gas condensation and superfluidity occur
at precisely the same temperature. Superfluid density can be
calculated using the winding numberW for simulations that
have periodic boundary conditions[34]. Nonzero winding
numbers occur when particles, through a series of permuta-
tions, are permuted with periodic images of themselves. The
winding number is directly related tors, the superfluid den-
sity. The superfluid density is given by[34]

rs

r
=

m

"2

kW2l
3bN

, s7d

where the winding numberW is defined by

W = o
i=1

N E
0

b

dtSdr istd
dt

D . s8d

In order to obtain an estimate of the superfluid transition
temperatureTc, we perform a finite-size scaling analysis.
Near the critical temperatureTc, the finite-size behavior of
the superfluid density obeys the scaled form[35]
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rsst,Ld/r = L−p/nfstL1/nd, s9d

wherep is the critical exponent of the bulk superfluid frac-
tion, rsstd /r, tp, t=sT−Tcd /Tc, n is the correlation length
exponent,jstd, t−n, and the universal functionfstL1/nd must
be analytic for finite argument. It is assumed thatp=n since
this is indicated by experiment[36], renormalization-group
calculation[37], and the Josephson hyperscaling relationp
=sd−2dn. In obtaining an estimate of the critical temperature
Tc, we did not use Eq.(9) directly because of large statistical
errors in our data[see Fig. 2(a)]. Instead we fit our data for
different temperaturesT and several valuesN of the total
number of particles to a linear form forf,

N1/3rsst,Nd/r = fstN1/3nd = fs0d + f0N
1/3nsT − Tcd/Tc,

s10d

where the dimensionlessN1/3 has replaced the lengthL.
From the fitting, we determined four fitting parametersfs0d,
f0, n, andTc.

III. SIMULATION RESULTS AND DISCUSSION

The main goal of this paper is to determine the critical
temperatureTc of a 3D homogeneous system of hard-sphere
bosons by path integral Monte Carlo simulations and finite-
size scaling. We have calculated the superfluid fraction
rssT,Nd /r for various number densitiesn at a fixed hard-
sphere diametera.

In order to check the program carefully, we determined
the critical temperatureTc

0 and the total energy density at a
fixed number densityn=5310−3 in the noninteracting case,

FIG. 1. Results for the noninteracting case at a fixed number
density n=5310−3. (a) The scaled superfluid fraction
N1/3rsst ,Nd /r as a function of scaled temperaturestN1/3n. The solid
line is a linear fit to Eq.(10). The best-fit parameters are the critical
temperature ofTc/Tc

0=1.000s1d and the correlation length exponent
of n=0.90s6d. (b) The total energy density as a function of the
number of particles with a straight line fit to Eq.(14). From the fit
we obtain the energy density in the thermodynamic limitsN→`d.

FIG. 2. Determination of the critical temperatureTc at a fixed
number densityn=5310−3 for the interacting case.(a) The scaled
superfluid fractionN1/3rsst ,Nd /r as a function of scaled tempera-
turesT/Tc

0. The four lines cross at the critical temperature.(b) Re-
sult of our linear fit(solid straight line) to the data from Eq.(10).
Our estimated critical temperature isTc/Tc

0=1.078s1d.
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both of which are known exactly. Figure 1(a) shows the
scaled superfluid fractionN1/3rsst ,Nd /r, scaled temperature
tN1/3n, and the resulting linear fit(solid line) to Eq. (10) for
the noninteracting hard spheres. The best-fit parameters are
the critical temperature ofTc/Tc

0=1.000s1d and the correla-
tion length exponent ofn=0.90s6d, in agreement with the
theoretical exact values, namelyTc/Tc

0=1 andn=1.
From the expression for the specific heatcst ,Ld,

cst,Ld =
]Est,Ld

]T
, s11d

and a scaling expression for the specific heat[38],

cst,Ld = cs0,`d + La/ngstL1/nd, s12d

we obtain the energy densityEst ,Ld by integrating Eq.(12)
up to a constant

Est,Ld = cs0,`dT + Lsa−1d/nTcDstL1/nd, s13d

wheredDsxd /dx=gsxd and gsxd is a universal scaling func-
tion for the specific heat. Fort→0 we obtain

Es0,Ld = Ec + E1L
sa−1d/n. s14d

The result of the fit of the energy density data to Eq.(14)
is shown in Fig. 1(b). In the fit we useda=−1 andn=1 for
an ideal Bose gas. If we exclude the data corresponding to
the smallest system, we obtain an estimate for the energy
density in the thermodynamic limitsN→`d which agrees
with the exactly known value within an error bar.

In the interacting case, we have calculated the superfluid
fraction and estimated the critical temperatures for various
hard-sphere diametersa at a fixed number density. We can
see that the critical temperature approachesTc=Tc

0 as the
hard-sphere diameter decreases(not shown), as expected.

In order to study the effect of interactions on the transition
temparature, we calculated the superfluid fractionrsst ,Nd /r
and determined the critical temperaturesTcsnd for various
number densities 1310−7ønø5310−3.

Gruter, Ceperley, and Laloe[6] investigated the depen-
dence ofDTc numerically using PIMC(to be referred to here
as GCL). In order to compare our estimated critical tempera-
ture with GCL data, we have calculated the superfluid frac-
tion rs/rsT,Nd for N=27, 64, 125, and 216 as a function of
temperatureT/Tc

0 at a fixed number densityn=5310−3. Fig-
ure 2 shows our data[Fig. 2(a)] and our result of a linear fit
(solid straight line) to the data[Fig. 2(b)] using Eq.(10). Our
calculated superfluid fractionsrsst ,Nd /r are significantly
larger than GCL data(cf. Fig. 1 of Ref. [6]) and our esti-
mated critical temperature isTc/Tc

0=1.078s1d, which is
higher than GCL data,Tc/Tc

0=1.057s2d (cf. Fig. 2 of Ref.
[6]). We do not understand the reason for this large differ-
ence[39]. In Fig. 3 we also show the scaled data and the

FIG. 3. Scaled superfluid fractionN1/3rsst ,Nd /r vs tN1/3n at the
smallest number densityn=1310−7 we used in this study. Our
estimated critical temperature isTc/Tc

0=1.0061s14d.

FIG. 4. Our calculated dependence of the interaction-induced
shift of the transition temperature of a dilute homogeneous Bose gas
on the scattering lengthan1/3: (a) sDTc/Tc

0d /an1/3; (b) Tc/Tc
0. When-

ever not shown, the error bars in our simulation data are smaller
than the symbol sizes. We also plotted the GCL data(open circles)
and Eq. (3) using Arnold’s results [16] (solid line). (a)
sDTc/Tc

0d /an1/3 depends on the interaction strengthan1/3 while the
GCL data are considerably flatter and smaller than our results.(b)
The linear behavior is seen only at small values ofan1/3. The
dashed straight line is a fit to our four smallest data points. We
found that the slopesc1d is 1.32(14).
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resulting linear fit at the smallest number densityn=1
310−7 we used in this study. Our estimated critical tempera-
ture isTc/Tc

0=1.0061s14d.
The resulting dependence of the transition temperature(a)

sDTc/Tc
0d /an1/3 and (b) Tc/Tc

0 on an1/3 is shown in Fig. 4.
Whenever not shown, the error bars in our simulation data
are smaller than the symbol sizes. We also show comparisons
between our results(filled circles), the GCL data(open
circles), and Eq.(3) using Arnold’s results[16] (solid line).
We see that thesDTc/Tc

0d /an1/3 depends on the interaction
strengthan1/3 while the GCL data are considerably flatter
and smaller than our results[see Fig. 4(a)]. Our calculated
data approach to Arnold’s results. The linear behavior is seen
only at small value ofan1/3 [see Fig. 4(b)]. Our calculated
data are slightly larger than Eq.(3) using Arnold’s results
[16] (solid line) in the linear region. The dashed straight line
is a fit to our data points for the four smallest values ofn. We
found that the slopesc1d is 1.32±0.14. This is in agreement
with the recent MC values of three-dimensional O(2) scalar
f4 field theory, c1=1.29±0.05 (Ref. [24]) and c1

=1.32±0.02(Ref. [16]), and the result by variational pertur-
bation theory(VPT), c1=1.27±0.11(Ref. [29]).

In summary, we have determined the interaction-induced
shift of the phase-transition temperature for Bose-Einstein
condensation of homogeneous weakly interacting Bose gases
in three dimensions using PIMC and finite-size scaling. Our
results show thathsTc−Tc

0d /Tc
0j / san1/3d depends on the inter-

action strengthan1/3 while the previous PIMC results[6] are
considerably flatter and smaller than our results. We obtain
c1=1.32±0.14, in agreement with results from recent Monte
Carlo methods of three-dimensional O(2) scalar f4 field
theory [16,24] and variational perturbation theory[29].
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