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Multidimensional solitons in a low-dimensional periodic potential
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Using the variational approximation and direct simulations in real and imaginary time, we find stable
two-dimensional2D) and 3D solitons in the self-attractive Gross-Pitaevskii equai@RE with a potential
which is uniform in one directioiz) and periodic in the otherghowever, the quasi-1D potentials cannot
stabilize 3D solitons The family of solitons includes single- and multiple-peaked ones. The results apply to
Bose-Einstein condensat@®EC’s) in optical latticegOL’s) and to spatial or spatiotemporal solitons in layered
optical media. This is the first prediction ofobile2D and 3D solitons in BEC's, as they keep mobility along
z. Head-on collisions of in-phase solitons lead to their fusion into a collapsing pulse. Slow collisions between
two multiple-peaked solitons whose main peaks are separated by an intermediate channel end up with their
fusion into one single-peaked soliton in the middle chansdl/3 of the original number of atoms being shed
off. Stable localized states in the self-repulsive GPE with the low-dimensional OL combined with a parabolic
trap are found too. Two such pulses in one channel perform recurrent elastic collisions, periodically featuring
sharp interference patterns in the strong-overlap state.
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I. INTRODUCTION realization being much closé¢than in optic$ to the real ex-
Solitons in  multidimensional (multi-D) nonlinear periment in the 3D case. In that case, the characteristic OL

1 ; ; : g : iodicity ~0.5 um implies the soliton’s formation time
Schrodinger equation€NLSE's) with a periodic potential Periodicity pm ( !
have recently attracted considerable interest. In particular; 1 MS. In the OL with the strength 10 recoil energies.
self-trapping of spatial beams in nonlinear photonic crystals, 1 "€ Physical significance of these settings is twofold:

is described by a 2D equation. In this case, simulations re-irs_t’ in the experi_ment _it is much easier_to crea}te IOW'.D
veal robust 2D solitons in the self-focusing modé}. A lattices than full-dimensional ones, both in BEC's and in

similar medium can be created by a grid of laser beams illu®PUcS; hence, they offer the most straightforward way to
minating a photorefractive sampf2] create multi-D solitons. Second, the solitons created this way

Similar 2D and 3D models with a periodic potential de- can freely move in the unconfined direction, which suggests

scribe a Bose-Einstein condense®EC) trapped in an opti- a possibility to study their collisions and to look for their

| lattice (OL). Thi lization i Al i tant bound states. As yet, no other way to create multiabBbile
cal lat ice (OL). IS realization IS especia y Important, as ¢4itons jn BEC's and their bound states, thus making it pos-
experimental techniques for loading BEC'’s into multi-D

X - sible to manipulate the matter-wave pulses, has been pro-
OL's were recently developg]. Stable solitons can be sup- osed. Below, we demonstrate that nontrivial interactions be-

ported by an OL even in self-repulsive BEG4—-6]. In the  tween colliding solitons (matter exchange, collapse,
case of self-attraction, 2D and 3D solitotiscluding 2D interference effects, efcoccur, in BEC's with the above-
vorticeg are stable in the self-focusing model with the OL mentioned values of the physical parameters, in the range of
potential[7], despite the possibility of the collap$e]. velocities ~1 mm/s. This range can be readily altered by
An issue of direct physical relevance, which is the subjecthanging the OL strength.
of the present work, are multi-D solitons in media with pe- It is appropriate to mention essential differences of
riodic potentials of alower dimension(low D)—viz., multi-D solitons in a periodic potential from counterparts in
quasi-1D(Q1D) and Q2D lattices in the 2D and 3D cases, the axially symmetric 3D Gross-Pitaevskii equati@PE
respectively. In optics, the 2D equation in the spatial domairf10,11. Primarily, it concerns the following spatial features:
governs the beam propagation in a layered bulk mediunmulti-D soliton in a periodic potential can have a multihump
along the layers, which extends a 1D multichannel systenstructure, extending itself over several lattice citese Figs.
introduced in Ref[9], with the potential induced by trans- 3(b) and 5. Second, multi-D solitons in a low-D periodic
verse modulation of the refractive ind€Rl). For a typical potential can experience off-center collisigese Figs. 8, 10,
case with the periodicity of the transverse modulationand 17, which is impossible with solitons in the axially sym-
~30 um, the diffraction length of the corresponding spatialmetric 3D models. It is the transverse degree of freedom
soliton is ~1 cm. In the temporal domain, the 2D and 3D which attributes multi-D solitons in a periodic potential truly
equations govern, respectively, the longitudinal propagatiol3D features. With regard to similarities, one can mention the
of spatiotemporal optical solitons in a layered planar waveinelasticity of collisions of multi-D solitons in both models.
guide or in a bulk medium with the RI periodically modu- Again, off-center collisions of multi-D solitons moving in
lated in both transverse directions. The 2D and 3D caseadjasent tracks of the OL can reveal new types of inelastic
directly apply to BEC’s loaded in a Q1D or Q2D lattice, this interactions—e.g., merging of two solitons in the intermedi-
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ate channel by shedding off the excessive niass Fig. 11 Il. MODEL AND VARIATIONAL ANALYSIS

Another common feature of multi-D solitons in both models . oo 04 o self-focusing NLSE with a Q1D pe-
is that they can exist in particular domains of the parametef, ) i« potential of the strength is

spacg11,16. However, the energy band structure due to the
periodic potential imposes specific conditions for the exis- iug+ V2u+[e cog2x) + x|u/?Ju=0, (1)
tence of multi-D solitons and changes the way by which here V2=07xx+07yyv and y=+1 corresponds to the self-

solitons decay when the border of the existence region i . ; o D >
crossed. Specifically, multi-D solitons in a low-D periodic attraction and repulsion. In BECHis time, while in optics it

potential can undergo a delocalizing transition into extende(’tls the pror:jagatlor; distance. For B:jECf or ?panal ?_pilcal SOI"l
Bloch stategin the direction of the O, similarly to solitons ons,x-andy are transverse coordinates, for spatiotempora

in a full-dimensional periodic potentidll6]. Therefore, the optlgald_sollton_s In-a ZIE V!?Ve?ut'.de V,Y'tlh ?rr]\omalotustchfro—
norm (number of atomsof multi-D solitons in a periodic gé(':c Eperlsm_)n,y IS I € ﬁc‘;’} tr:meé n Pi conk(?_x 0
potential is bound not only from above by the onset of col- s, Eq.(1) Is usually called the Gross-Pitaevskil equa-

lapse, but also from below due to the phenomenon of delot-ion' The 3D version of Eq(l) is

calizing transition. Note that the norm of solitons in axially iU+ Au+ {s[cog2x) + cog2y)] + xuZu=0, (2
symmetric 3D GPE with attractive nonlinearity is bound
only from above[10-13. where V2=d,,+ 0, v+, Equations(1) and (2) conserve the

In optics, solitons supported by the low-D periodic struc-norm N=[|u(r)[dr (which is the number of atoms in the
ture may find new applications. Indeed, in an optical mediumBEC or total power and energy of the spatial and spatiotem-
with the full-dimensional periodic potential, transfer of a poral optical solitong the Hamiltonian, and the momentum
trapped beam from one position to another is difficult, as thealong the free direction. The equations are normalized so that
necessary external push strongly disturbs the bi@nin the  the period of the potential is, the control parameters being
low-D potential, the beam can slide along the free directiong andN.
making the transfer easy. In BEC'’s trapped in a low-D OL, Stationary solutions to Eq. (1) are u(x,y,t)
matter-wave solitons can be driven in the free direction by a&=U(x,y)exp(—iut), with a chemical potentiak (alias the

weak laser beam. propagation constant, in optigsvhich leads to an equation
The rest of the paper is organized as follows. In Sec. Il, )
we formulate the 2D and 3D versions of the model and de- pU + Uy + Uy + [& cog2x) + YU JU =0 3)

velop the variational “approximatioth) for the solitons  4ng similar in the 3D case. Multiplication of Eq3) by
based on Gaussigknsatzeln the same section, we compare U(x,y) and integration in the plan&,y) yield the expres-

predictions of the VA with results of direct numerical simu- g,
lations of the GPE in real time. In particular, a finite interval

of values of the normgnumber of atoms, in the case of the 1(” ) 5 4

BEC) in which 2D solitons exist is identified. m= Nf [|'V ul? - & cog2x)|uf* - x|u[*ldxdy.  (4)
Systematic presentation of numerical results is given in -

Sec. lll. In that section, stationary solitons, which may take In the case of very large (tens of recoil energy the Q1D

both single- and multiple-peaked shapes, are found by meapgtential valleys become isolated, splitting the 2D BEC into
of the integration of the GPE in imaginary time. Stable lo-a set of parallel nearly 1D cigar-shaped condensates.
calized pulses are also found in the repulsive model. Then, The first step in the analysis is to apply the VA to Eg).
collisions between the mobile solitons are investigated.  To this purpose, we adopt thnsatze
In the attractive model, collisions between single-peaked
solitons are studied both inside one channel and in adjacent U= Aexp — }(ax2+ by?) (5)
channels. For identical in-phase solitons, the most interesting 2D 2 ’
outcomes of the collision in one and adjacent channels are,
respectively, formation of a collapsing pulse and matter ex- 1
change between colliding solitons. Tweout-of-phase iden- Usp=A exp{— E(a(x2 +y?) + bzz)} ) (6)
tical solitons in one channel, additionally confined by the
external parabolic trap, perform periodic oscillations, eachn the 2D and 3D cases, respectively, with the norms
time bouncing elastically from each other. The slow collision - _
between identical in-phase multiple-peaked solitons, whose Nop = mA?/Nab, Nsp=7?A%(a\b). (7)
central peaks are geparated by_ an |ntermed|ate_char_mel, & Ihe effective Lagrangians corresponding to &), and
sults in the formation of one single-peaked soliton in thetheseAnsatzaare
middle channel,=1/3 of the initial norm being lost with
emitted radiation. In the repulsive model with the parabolic X —
trap, two pulses in the same channel behave as true solitons, ~ Lap=Nop| @+ b= 2u - 2se™ - Z—Vab'\bo :
performing recurrent elastic collisions; at the stage of strong m
overlap between them, a sharp matter-wave interference pat-
tern emerges periodically. - _ 9 _ fealla_
The paper is concluded by Sec. IV. Lap = N3D{Za+ b-2p-4se

X I
(zw)s/za\bNBD] -
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(b) FIG. 1. (a) Parameters of
3.0 12, E stable 2D solitons in the quasi-1D
\Y potential withe =2, as found from
25 10} . numerical simulations of the
“'.‘ Gross-Pitaevskii equatioril) as
a 20 sl . described in the textsolid lineg
& N ‘ and as predicted by the VA for
R L] 33 8 amplitudeA (dotted ling and in-
< verse squared widthesandb (dot-
1.0 4l T, dashed and dashed lines, respec-
tively). (b) The numerically found
0.5 2t 8 (connected squargs and VA-
predicted(dashed linesexistence
005 > U yra—— '1.'0 s 20 25 30 limits for stable 2D solitons in the

Following a known procedurgl3], we derive the varia-

quasi-1D potential.
€

band gagbelow the first bangof the underlying linear prob-

tional equations from these Lagrangians: in the 2D case, thelgm. When the parametei$ and ¢ fall below some critical

are

Nx = (4mla)\a’ - 26X, N=e'" ®)
p=-a-eX(1-3R) 9)

(the subscript 2D is suppressed hewnd in the 3D case,

Ny = 2(2m/a)®?\a? - 2eN, (10)
pu=—al2-eX(2-3h). (11

In either case, the remaining variational equation is
(12

Evidently, solutions to Eqg8) and(10) are only possible
if x>0 (self-attraction. This does not mean that solitons
may not exist withy <0, but rather that th@&nsatzg5) and
(6) are irrelevant in the case of repulsion.

Figure Xa) shows the soliton parametefs a, andb for

b=a-2eN/a.

values, the value ofv predicted by the VA through Eq9)
moves into the allowed band for the linear Bloch states,
which naturally explains the sudden delocalization of the ini-
tial wave form in the simulations.

Solving the 2D variational equatio(8) for a, one can
easily find that the solutions exist in the interval

Niin = 47V —&leg, < N < Nyay = 47 (13
[see Fig. 1b)], if e<e,=€’/8~0.924, and the interval
0<N<d4m, if e>gq. Unlike this, the solutions for the 3D
variational equatior{10) can be found for an\N with any
value ofe. The actual lower limit of the existence region for
the 2D solitons in the Q1D periodic potential, determined
from direct simulations of the 2D GP#&) (at the existence
border, the initial pulse spreads out into a quasilinear delo-
calized Bloch statg is shown in Fig. 1b) by squares. The
corresponding upper limit of the existence region is deter-
mined numerically by slowly increasing the norwia the

the 2D soliton, which were found, as functions of the norm,coefficienty in Eq. (1)] of an established soliton. When the

from the variational equation&’), (8), and (12) and from
direct numerical simulations of the GRIE), starting with the
initial condition taken as the VA-predicted soliton with a
given normN. ParameterdA, a, and b of the established

norm exceeds the valuﬁf;‘;f‘):llj [which is the actual
norm of theTownes solitorj8] and is to be compared to the
VA prediction, N,.,= 47 in Eq. (13)], solitons start to radi-
ate matter wave@wvhich are absorbed on the domain bound-

soliton produced by the simulations were measured by fitting'ies in the numerical algorithm usedVe stress that the

it to the wave form(5). The agreement between the VA and soliton with the norm somewhat exceeding the vahjg"

direct numerical results is reasonable fo& 5. In the simu-

m

does not commence collapsing, as would be the case with the

lations, the VA-predicted solitons with the norm below this 2D NLSE in the free space, but rather relaxes backNto

value (in the OL with the strengtlz=2.0) spread out into
delocalized Bloch statd4 6], which is manifested as a rapid
decrease of the amplitude and inverse width.

Note that, in the direction of the periodic potentigl, the
energy spectrum of the linearized GRB exhibits a usual
band structure. In this sense, the localized nonlinear state

=N"" shedding off the excess norm. Therefore, the Q1D

potential plays a stabilizing role in this case too, preventing
the onset of the collapse.

The above presentation of the VA soliton solutions did not
include the dependence&N). Although w is not a directly
hservable quantity, these dependences are important too, as,

expected to be a gap soliton, which is the main differencgpursuant to the/akhitov-Kolokolo\(VK) criterion [14], so-
from solitons in axially symmetric 3D GPE considered in lution families which meet the conditiotiu/dN<0 may be
[10,17). To check this conjecture, values of the chemical po-stable, while ones withdu/dN>0 should be unstable.

tential u of the stable solitons produced by the direct simu-

lations were evaluated by means of E4). As a result, it

Therefore, these dependences, obtained, in the 2D and 3D
cases, by means of Eq®) and (11), respectively, are dis-

was concluded that indeed belongs to the corresponding played in Fig. 2. As is seen, parts of the families definitely
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2D0inQID | 3D in Q2D

o 8 5 8 10 13 0 13 % 38
N N

FIG. 2. Theu(N) dependences for the 2@) and 3D(b) soli-
tons in the quasi-1D and quasi-2D potentials, respectively, which
make it possible to predict the solitons’ stability on the basis of the
Vakhitov-Kolokolov criterion. This criterion setdu/dN<0 as a
necessary stability condition. In each panel, the solid and dashed
curves show two different branches of the solution family.

FIG. 3. Examples of single- and multiple-peaked stable 2D soli-
tons supported by the quasi-1D potentiaith e=2) in the model

) with attraction. The norm and chemical potential of the soliton are
have a negative sIo_pm/dN; hence, they may correspond to N=2 5, u=-1.541(a) andN=1.57, u=-0.552(b).
stable soliton solutions.

Fig. 3. While Fig. 4 displays only an example of the single-

Il NUMERICAL RESULTS peaked 3D solitons, their multiple-peaked counterparts can
' be easily found too.
A. Stationary solitons The 3D model can also be considered with a Q1D poten-

For the purpose of the comparison with predictions of thdial. In this case, t.he VA p_redict; thatl the solitons are VK
VA, in the previous section soliton solutions were generated!nStable. Accordingly, simulations never produced stable
numerically by means of the direct simulations of Y. In sollto_ns in this case. This feature can be explained by the fa_ct
this case, the VA-predicted wave form inserted as an initiaf@l in the free 2D subspace orthogonal to the OL, the soli-
condition to Eq(1) transforms into a stable soliton, shedding 1N 1S essentially tantamount to the above-mentioned un-
a small amount of radiation which is absorbed on the domairstable Townes soliton. Another relevant remark is that stable
boundaries. A more direct way to generate numerically exac2/ltons with intrinsic vorticity are also possible in the 2D
stationary soliton solutions is based on the solution of thé>PE With the fully dimensional 2D lattic]. Vortices were
GPE in imaginary timé15]. We employed this method, also found in the present 2D model with the Q1D potential too,
starting with the VA-predicted wave forms, to speed up thePut they are always unstable. ~ _
convergence. The propagation in imaginary time was run un- !N the case of the self-repulsiog=-1, the low-D lattice
til the chemical potential of the stationary state, E4), potential cannot support a completely Iocellllzed.pulse. How-
would converge to the accuracy of 20Then, stability of €Ver adding the parabolic trap readily gives rise to stable

the thus found soliton was verified by direct simulations inc_onfigurations which ar_e,_essentially, solitons across_the _Iat-
real time. tice and Thomas-Fermi-like states along the free direction

For the stability test, small initial perturbations were ex-
plicitly added to the soliton, so that it was takenuwg$x,y)
=U(x,y)[1+ou,(x,y)], where U(x,y) is the numerically
found stationary solitong is a small amplitude, and random
functionsu,(x,y) account for the form of the small perturba-
tions. As a result, it was found that the 2D solitons are stable
in their entire existence regigrwhich was shown in Fig.
1(b). In the 3D model, the solitons were found and tested for
the stability in a similar way.

Typical examples of the stable 2D and 3D solitons in the
attractive mode(x=+1) are displayed in Figs. 3 and 4. Note
that the 3D solitons are nearly isotropic in they) plane
and elongated in the free directianAs well as in the model
with the full (rather than low-dimensionapotential[7], the
solitons can be classified intsingle and multiple-peaked
ones, with the matter trapped, respectively, in a single poten-
tial valley or several adjacent ones. The solitons tend to be- FIG. 4. A stable single-peaked 3D soliton, supported by the
come multiply peaked for the smaller norm and/or weakelquasi-2D potential, wititN=27 and £=5.0, in the model with at-
OL. Examples of both types in the 2D model are shown intraction, is shown through itg=0 (a) andy=0 (b) cross sections.
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FIG. 6. Oscillations of twomr-out-of-phase 3D solitons in the
FIG. 5. A stable 3D localized state in the model with repulsion, combined OL and weak-harmonic-trap ~potential/(x,y,z)
including a combination of the periodic quasi-2D potential and=s5[cog2x)+cog2y)]+0.0052 Parameters are the same as in
weak parabolic trapV(x,y,z)=2[cog2x)+cog2y)]-0.01(x2+y?) Fig. 4.
-0.17°. The solution is shown through ir==0 (a) andy=0 (b) cross
sections. The norm of the localized stateNis 44r. =2.0 (in this case, the norm of the 2D solitgrer seis N
=2.5m7); an estimate for the threshold velocity in a typical
(below, it will be demonstrated that @air of moving and BEC setting yields a really large value in physical unitg,
periodically colliding localized pulses, which behave virtu- ~10 cm/s. In the 2D case, the norm of the intermediate
ally like true solitons, can be created in the 2D and 3D repulse alwaysexceedshe critical valueN., [see Eq(13)] ;
pulsive models with the low-D potentjalAn example of a therefore, it quickly collapses, and the same happens in the
stable 3D localized state of this type in the repulsive model i$D case. These are manifestation of the inelasticity of colli-
given in Fig. 5. sions of multi-D solitons. The inelasticity of collisions of 3D
These configurations assume a multiple-peaked or singlesolitons in axially symmetric 3D GPE expressed as an ex-
peaked shape under the action of a weaker or stronger Othange of matter between interacting solitons and their merg-
potential, respectively, which isppositeto what was re- ing was studied in Refs[10,17. Particularly, merging of
ported above fory>0; cf. Fig. 3. An explanation to this neighboring pulses in a soliton traji0,11 was considered
difference is that, in the case of the self-repulsion ar®, in the context of “missing solitons” in the experimeaf].
no solitons exist at alieven unstable ones, like the above- Inthe case ob >v,, the in-phase solitons colliding in one
mentioned Townes soliton channel pass through each other, which is explained by the
fact that, for solitons with the normalized siz€l [see Figs.

B. Collision of solitons in the attractive model

Multidimensional solitons in periodic potentials found so
far in various setting$2,4,5,7,16 are pinned by the lattice,
while it is well known that the most interesting dynamical
properties of ordinary solitons are related to their collisions.
Accordingly, the mobility in the free direction combined
with the possibility off-center collisions in adjasent channels

of the periodic potential is the most essential difference of 10} COM (b)
the present multi-D solitons from those predicted in other st e S
models. A

We have studied the motion of the solitons in the presence
of the parabolic trap. If the 2D or 3D soliton is displaced :Z .
from the central position, it performs harmonic oscillations 0 40 80 120 160 200 240
along the free direction, completely preserving its integrity. !

When ,tWO identical solitons are placed symmetrlca[ly off FIG. 7. Center-of-mass trajectoriés.o.m) and amplitudegA)
center in the same chanrigbtential valley, their interaction ¢ o identical 2D solitons colliding in adjasent tracks of the
crucially depends on the phase difference between them. Igasi-1D potentiale = 2). (a) When the relative velocity at collision
simulations, 2D and 3D in-phase solitofiee ones with the s jarge(induced by a potential,c..=0.00%2 in the free direction
zero phase differengavhich collide head-on with velocities  solitons collide almost elastically with no exchange of matter and
+v (which are actually acquired due to the acceleration in thgyreserving their amplitudeb) As opposed, slow collisionéV,ece
parabolic potentiglmerge into a single intermediate pulse, =0.00003?) are inelastic with strong exchange of metter resulting
provided that the velocity is below a threshold value,,. in different amplitudes and velocities of solitons after the collision.
For instancep,=8.5 for the 2D solitons in the case ef  The parameters of solitons are the same as in K. 3
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t=10 t=25 t=3.0

FIG. 8. Contour plots of two identical single-peak 2D solitons

colliding at velocitiesv=+0.3 (=3 mm/s, in the typical physical FIG. 10. Contour density plots showing a typical example of the
casg in adjacent channels of the quasi-1D potential, with thecollision, with a moderately large velocity, between two multiple-
strengthe=1.5. The norm of each soliton =2 peaked 2D solitons whose central peaks are separated by an inter-

mediate channel, so that only satellite peaks experience the head-on

3(a) and 4, the collision time~1/v becomes smaller than interaction. In this case;=2, the initial norm of each soliton i
the collapse time, which may be estimated as beirigN. :1571 The soIiFons are acceleratgd by the external potensal
Identical r-out-of-phase solitons always bounce back if theyWith y=0.1, which acted temporarily, during the tind=1, and
collide in one channel; as a result, two such solitons in th¥as then switched off.
trap perform indefinitely many stable oscillations with peri-
odic elastic collisions, as shown in Fig. 6.

In the low-D potential, collisions are also possible be-
tween solitons moving iradjacent channelslf the relative
velocity is sufficiently large, such collisiorggcluding recur-

;?chcglg‘:')'r%nfe'tglthglgsrﬁiéggg 2:1 2)gﬁklepg?:p°“%t?g In the case of a moderately large relative velocity, the
y pietely ' P @. collision of this type results in small changes of the solitons’

{\?vlsgxesglﬁfrfslt){afessmlzlée ng;%b:ﬁeﬁ)xgigﬁgnosf er?naettrere t\j\ﬁt hapes due to a weak matter exchange between them. A typi-
P ’ 9 al example of this sort is shown, by means of contour den-

different amplitudes and velocities after the collisifffig. sity plots, in Fig. 10. The small perturbation of the solitons’

;(?;]ét'g}”":‘gmﬁ ?ﬁ;agﬁgriﬁa?ﬂgls'gn g];:yhrizmglr? (;?ﬁitég'?s hapes after the collision confirms that the multiple-peaked
h in detail in Eia. 8. Th it y h b t I.solitons are robust intrinsically coherent objects. The same
shown in getaul in =1g. ©. The matler exchange DEWEEN SOlie | ision follows from simulations of similar collisions be-
tons colliding in adjacent channels is enhanced not only W|tq

the decrease of the relative velocity, but also with the de-"eeN multiple-peaked 3D solitortaot shown herg

s . With a smaller relative velocity of the solitons, the colli-
crease of, as, naturally, the .coupllng between the adjacemSion of the same type between the in-phase multiple-peaked
channels becomes stronger in this case.

Another interesting case is the collision betweenitiple- solitons produces a drastically different result, as shown in
peakedsolitons, such those shown above in Figh)3whose Fig. 11 (the result is altogether different too from what was

central peaks are set in two channels separated by an inter-
mediate one. Obviously, only satellite peaks experience the

tion is shown in Fig. 9. In some cases, the accelerator with a
relatively large strengthy (for instance, y=0.1) was
switched on for a finite timet (typically, At=1), and then

the motion of the solitons in thg direction was completely
free.

head-on interaction in this configuration. This experiment OQO i )
may test the intrinsic cohesion of the multiple-peaked soli- \ ° \ ﬁ@
tons. To set the solitons in motion, they were, as above, H ' v
initially placed at some distance from each other in the pres- \'

ence of the external “accelerator’—i.e., a parabolic potential 240 t=50 t=60

of the formV,...=yy? (recall thaty is the free direction of
the Q1D periodic potential The corresponding configura-

t=65 t=70 t=200

FIG. 11. A typical example of the slow collision between two
identical in-phase multiple-peaked 2D solitons, with their central
10 0 10 peaks originally separated by the intermediate channel. Eventually,
X onesingle-peakedoliton appears, trapped in the middle channel, a
part of the initial norm being lost with radiation. Parameters are the
FIG. 9. (Color onling The initial set of two multiple-peaked 2D same as in Fig. 10 except that the collision velocity is smathes
solitons, each with the norri=1.57, designed for the sideline accelerating potentialyy? with y=0.001, acted during the time
collision between them, after they were accelerated by the parabolitt=10). The norm of the resulting single-peaked soliton Ns
potential. =27, which is 2/3 of the total initial norm.
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X

FIG. 14. Recurrent collisions of two 3D solitons in the repulsive

FIG. 12. The initial set of two 2D localized states in the repul- model, shown through thg=0 cross section. Parameters are the
sive BEC, created at some distance from each other by means Ofﬁme as in Fig. 5.

potential barrier separating them in the directianThe norm of

each soliton isN=4. - . . .
C. Collision of solitons in the repulsive model

observed in collisions of two in-phase single-peaked solitons Recent experiments with repulsive BEC's loaded in mov-
placed in adjacent channels; see Fiy.I8 this case, a large ing OL's offer evidence in favor of the existence of bright
share of matter from the central peaks of both solitons camatter-wave solitons of the gap typ&8]. Modulational in-
tunnel, during the collision, into the middle channel, wherestability and a negative effective mass, which are considered
the satellite peaks experience the head-on collision. Eventue be at the origin of the bright-soliton formation in repulsive
ally, the two multiple-peaked solitons end up forming oneBEC’s with the periodic potential, have been observed too
stable (undercritical, in the 2D cagesingle-peaked solitgn  [19,2Q (the negative effective mass was observed indirectly,
whose norm is smaller than the initial total norm of the con-through an optically induced lensing effgcthese develop-
figuration (for instance, it is 2/3 of the initial norm in the ments suggest the feasibility of the experimental observation
case shown in Fig. 31The loss of the norm is due to emis- of gap-type solitons in repulsive BEC's in the 2D and 3D
sion of linear waves in the course of the collision; this radia-cases too, which justifies theoretical analysis of their dy-
tion is absorbed at edges of the integration domain. namical properties.

>

)
=,
(D)

FIG. 13. (Color online Recur-

rent head-on collisiongin one
channel of the quasi-1D periodic
potentia) of two 2D localized
pulses in the repulsive BEC. The
pulses periodically pass through
each other, with a period=10.
At the moments of the full
overlap—viz.,t=2.5, t=7.5, and
so on (the same picture is ob-
served at=12.5—i.e., each half-
period, sharp interference fringes
are evident(note that the right
panels are enlarged

()
=
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FIG. 15. (Color onling Con-
tour plots illustrating the periodic
collisions of two 3D solitons in
the repulsive model, at the mo-
ment of the full overlap between
them (t=2.5). The panelqa) and
(b) correspond to the cross sec-
tions z=0 andy=0, respectively.

As was pointed out above, the creation of stable localizedocalized states are found too, provided that the model in-
states in the repulsive case in a low-D periodic potentiacludes the parabolic trap. Evolution of their structure is op-
requires confinement in the free direction. An example of gosite to that in the case of the self-attraction: with the in-
3D soliton created in the center of the combined Q2D OLcrease of the strength of the low-D periodic potential, a
and parabolic-trap potentials was displayed in Fig. 5. Thesingle-peaked state is changed by a multiple-peaked one.
creation oftwo such localized states at some distance from These solitons are the first example of mobile multi-D
each other along the free direction is possible by applying apulses predicted in BEC’s, which suggests to study collisions
additional potential barrietfor instance, in the form of a between thengin the 2D setting, the collisions may also be
Gaussian separating them. Then, a collision between therealized in photonic crystalsThe head-on collisions of in-
pulses can be induced by suddenly removing the barrier. Aohase solitons lead to their fusion and collapgeless the
similar techniqgue was employed in the interference experirelative velocity is very large while out-of-phase solitons
ments with two BEC's released from a double-well potentialcollide elastically indefinitely many timegf they are con-
[21]. As a result(see Figs. 12 and 13 which illustrate the 2D fined by the external parabolic traprhe collision between
case, the pulses, which actually behave like true solitons inmultiple-peaked solitons whose central peaks are separated
this situation, emergeainscathedafter periodic collisions, by an intermediate channel may lead to the formation of one
passing through each other in an elastic fashion. A charactesingle-peaked soliton in the middle channel, the excess mat-
istic signature of the collision is a pattern of matter-waveter being shed off. Thus, a fundamental feature dominating
interference fringes, periodically appearing when the solitonsarious types of the collisions in the attractive model is the
overlap. In fact, a similar effect can also be observed inexchange of matter between the solitons. The inelasticity of
head-on collisions between fast solitons in the attractivanulti-D soliton collisions, expressed as a matter exchange
model (otherwise, it is eclipsed by the ensuing collapse between solitons, appears to be similar as in the model with

Collisions between solitons inside one channel were inaxially symmetric 3D GPE10,11].
vestigated in the 3D repulsive model too. As well as in the In the repulsive model, stable localized states of the
2D case, initial pulses were prepared by means of a separatiixed solitonic—-Thomas-Fermi type are supported by the
ing barrier, which was then suddenly lifted. As is seen fromlow-D potential combined with a parabolic trap. Two such
Figs. 14 and 15 pertaining to the 3D model, in this case th@ulses can be created in one channel by means of an extra
collisions also turn out to be periodic and completely elastictransverse potential barrier. After lifting the barrier, the
and a sharp interference pattern is again observed at the ovgmlses perform recurrent elastic collisiofi®., they behave
lap stage. like true solitong, with a sharp interference pattern emerging

when they periodically overlap.

IV. CONCLUSION
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