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Using the variational approximation and direct simulations in real and imaginary time, we find stable
two-dimensional(2D) and 3D solitons in the self-attractive Gross-Pitaevskii equation(GPE) with a potential
which is uniform in one directionszd and periodic in the others(however, the quasi-1D potentials cannot
stabilize 3D solitons). The family of solitons includes single- and multiple-peaked ones. The results apply to
Bose-Einstein condensates(BEC’s) in optical lattices(OL’s) and to spatial or spatiotemporal solitons in layered
optical media. This is the first prediction ofmobile2D and 3D solitons in BEC’s, as they keep mobility along
z. Head-on collisions of in-phase solitons lead to their fusion into a collapsing pulse. Slow collisions between
two multiple-peaked solitons whose main peaks are separated by an intermediate channel end up with their
fusion into one single-peaked soliton in the middle channel,.1/3 of the original number of atoms being shed
off. Stable localized states in the self-repulsive GPE with the low-dimensional OL combined with a parabolic
trap are found too. Two such pulses in one channel perform recurrent elastic collisions, periodically featuring
sharp interference patterns in the strong-overlap state.
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I. INTRODUCTION

Solitons in multidimensional (multi-D) nonlinear
Schrödinger equations(NLSE’s) with a periodic potential
have recently attracted considerable interest. In particular,
self-trapping of spatial beams in nonlinear photonic crystals
is described by a 2D equation. In this case, simulations re-
veal robust 2D solitons in the self-focusing model[1]. A
similar medium can be created by a grid of laser beams illu-
minating a photorefractive sample[2].

Similar 2D and 3D models with a periodic potential de-
scribe a Bose-Einstein condensate(BEC) trapped in an opti-
cal lattice (OL). This realization is especially important, as
experimental techniques for loading BEC’s into multi-D
OL’s were recently developed[3]. Stable solitons can be sup-
ported by an OL even in self-repulsive BEC’s[4–6]. In the
case of self-attraction, 2D and 3D solitons(including 2D
vortices) are stable in the self-focusing model with the OL
potential[7], despite the possibility of the collapse[8].

An issue of direct physical relevance, which is the subject
of the present work, are multi-D solitons in media with pe-
riodic potentials of a lower dimension (low D)—viz.,
quasi-1D(Q1D) and Q2D lattices in the 2D and 3D cases,
respectively. In optics, the 2D equation in the spatial domain
governs the beam propagation in a layered bulk medium
along the layers, which extends a 1D multichannel system
introduced in Ref.[9], with the potential induced by trans-
verse modulation of the refractive index(RI). For a typical
case with the periodicity of the transverse modulation
,30 mm, the diffraction length of the corresponding spatial
soliton is ,1 cm. In the temporal domain, the 2D and 3D
equations govern, respectively, the longitudinal propagation
of spatiotemporal optical solitons in a layered planar wave-
guide or in a bulk medium with the RI periodically modu-
lated in both transverse directions. The 2D and 3D cases
directly apply to BEC’s loaded in a Q1D or Q2D lattice, this

realization being much closer(than in optics) to the real ex-
periment in the 3D case. In that case, the characteristic OL
periodicity ,0.5 mm implies the soliton’s formation time
,1 ms, in the OL with the strength,10 recoil energies.

The physical significance of these settings is twofold:
first, in the experiment it is much easier to create low-D
lattices than full-dimensional ones, both in BEC’s and in
optics; hence, they offer the most straightforward way to
create multi-D solitons. Second, the solitons created this way
can freely move in the unconfined direction, which suggests
a possibility to study their collisions and to look for their
bound states. As yet, no other way to create multi-Dmobile
solitons in BEC’s and their bound states, thus making it pos-
sible to manipulate the matter-wave pulses, has been pro-
posed. Below, we demonstrate that nontrivial interactions be-
tween colliding solitons (matter exchange, collapse,
interference effects, etc.) occur, in BEC’s with the above-
mentioned values of the physical parameters, in the range of
velocities ,1 mm/s. This range can be readily altered by
changing the OL strength.

It is appropriate to mention essential differences of
multi-D solitons in a periodic potential from counterparts in
the axially symmetric 3D Gross-Pitaevskii equation(GPE)
[10,11]. Primarily, it concerns the following spatial features:
multi-D soliton in a periodic potential can have a multihump
structure, extending itself over several lattice cites[see Figs.
3(b) and 5]. Second, multi-D solitons in a low-D periodic
potential can experience off-center collisions[see Figs. 8, 10,
and 11], which is impossible with solitons in the axially sym-
metric 3D models. It is the transverse degree of freedom
which attributes multi-D solitons in a periodic potential truly
3D features. With regard to similarities, one can mention the
inelasticity of collisions of multi-D solitons in both models.
Again, off-center collisions of multi-D solitons moving in
adjasent tracks of the OL can reveal new types of inelastic
interactions—e.g., merging of two solitons in the intermedi-
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ate channel by shedding off the excessive mass(see Fig. 11).
Another common feature of multi-D solitons in both models
is that they can exist in particular domains of the parameter
space[11,16]. However, the energy band structure due to the
periodic potential imposes specific conditions for the exis-
tence of multi-D solitons and changes the way by which
solitons decay when the border of the existence region is
crossed. Specifically, multi-D solitons in a low-D periodic
potential can undergo a delocalizing transition into extended
Bloch states(in the direction of the OL), similarly to solitons
in a full-dimensional periodic potential[16]. Therefore, the
norm (number of atoms) of multi-D solitons in a periodic
potential is bound not only from above by the onset of col-
lapse, but also from below due to the phenomenon of delo-
calizing transition. Note that the norm of solitons in axially
symmetric 3D GPE with attractive nonlinearity is bound
only from above[10–12].

In optics, solitons supported by the low-D periodic struc-
ture may find new applications. Indeed, in an optical medium
with the full-dimensional periodic potential, transfer of a
trapped beam from one position to another is difficult, as the
necessary external push strongly disturbs the beam[9]. In the
low-D potential, the beam can slide along the free direction,
making the transfer easy. In BEC’s trapped in a low-D OL,
matter-wave solitons can be driven in the free direction by a
weak laser beam.

The rest of the paper is organized as follows. In Sec. II,
we formulate the 2D and 3D versions of the model and de-
velop the variational approximation(VA ) for the solitons
based on GaussianAnsätze. In the same section, we compare
predictions of the VA with results of direct numerical simu-
lations of the GPE in real time. In particular, a finite interval
of values of the norm(number of atoms, in the case of the
BEC) in which 2D solitons exist is identified.

Systematic presentation of numerical results is given in
Sec. III. In that section, stationary solitons, which may take
both single- and multiple-peaked shapes, are found by means
of the integration of the GPE in imaginary time. Stable lo-
calized pulses are also found in the repulsive model. Then,
collisions between the mobile solitons are investigated.

In the attractive model, collisions between single-peaked
solitons are studied both inside one channel and in adjacent
channels. For identical in-phase solitons, the most interesting
outcomes of the collision in one and adjacent channels are,
respectively, formation of a collapsing pulse and matter ex-
change between colliding solitons. Twop-out-of-phase iden-
tical solitons in one channel, additionally confined by the
external parabolic trap, perform periodic oscillations, each
time bouncing elastically from each other. The slow collision
between identical in-phase multiple-peaked solitons, whose
central peaks are separated by an intermediate channel, re-
sults in the formation of one single-peaked soliton in the
middle channel,.1/3 of the initial norm being lost with
emitted radiation. In the repulsive model with the parabolic
trap, two pulses in the same channel behave as true solitons,
performing recurrent elastic collisions; at the stage of strong
overlap between them, a sharp matter-wave interference pat-
tern emerges periodically.

The paper is concluded by Sec. IV.

II. MODEL AND VARIATIONAL ANALYSIS

The normalized 2D self-focusing NLSE with a Q1D pe-
riodic potential of the strength« is

iut + ¹2u + f« coss2xd + xuuu2gu = 0, s1d

where ¹2=]xx+]yy, and x= ±1 corresponds to the self-
attraction and repulsion. In BEC’s,t is time, while in optics it
is the propagation distance. For BEC’s or spatial optical soli-
tons,x and y are transverse coordinates; for spatiotemporal
optical solitons in a 2D waveguide with anomalous chro-
matic dispersion,y is the “local time.” In the context of
BEC’s, Eq. (1) is usually called the Gross-Pitaevskii equa-
tion. The 3D version of Eq.(1) is

iut + Du + h«fcoss2xd + coss2ydg + xuuu2ju = 0, s2d

where¹2=]xx+]yy+]zz. Equations(1) and (2) conserve the
norm N=euusr du2dr (which is the number of atoms in the
BEC or total power and energy of the spatial and spatiotem-
poral optical solitons), the Hamiltonian, and the momentum
along the free direction. The equations are normalized so that
the period of the potential isp, the control parameters being
« andN.

Stationary solutions to Eq. (1) are usx,y,td
=Usx,ydexps−imtd, with a chemical potentialm (alias the
propagation constant, in optics), which leads to an equation

mU + Uxx + Uyy + f« coss2xd + xU2gU = 0 s3d

and similar in the 3D case. Multiplication of Eq.(3) by
Usx,yd and integration in the planesx,yd yield the expres-
sion

m =
1

N
E

−`

`

fu ¹ uu2 − « coss2xduuu2 − xuuu4gdxdy. s4d

In the case of very large« (tens of recoil energy), the Q1D
potential valleys become isolated, splitting the 2D BEC into
a set of parallel nearly 1D cigar-shaped condensates.

The first step in the analysis is to apply the VA to Eq.(3).
To this purpose, we adopt theAnsätze

U2D = A expF−
1

2
sax2 + by2dG , s5d

U3D = A expF−
1

2
sasx2 + y2d + bz2dG , s6d

in the 2D and 3D cases, respectively, with the norms

N2D = pA2/Îab, N3D = p3/2A2/saÎbd. s7d

The effective Lagrangians corresponding to Eq.(3) and
theseAnsätzeare

L2D = N2DFa + b − 2m − 2«e−1/a −
x

2p
ÎabN2DG ,

L3D = N3DF2a + b − 2m − 4«e−1/a −
x

s2pd3/2aÎbN3DG .
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Following a known procedure[13], we derive the varia-
tional equations from these Lagrangians: in the 2D case, they
are

Nx = s4p/adÎa2 − 2«:, : ; e−1/a, s8d

m = − a − «:s1 – 3/ad s9d

(the subscript 2D is suppressed here), and in the 3D case,

Nx = 2s2p/ad3/2Îa2 − 2«:, s10d

m = − a/2 − «:s2 – 3/ad. s11d

In either case, the remaining variational equation is

b = a − 2«:/a. s12d

Evidently, solutions to Eqs.(8) and(10) are only possible
if x.0 (self-attraction). This does not mean that solitons
may not exist withx,0, but rather that theAnsätze(5) and
(6) are irrelevant in the case of repulsion.

Figure 1(a) shows the soliton parametersA, a, andb for
the 2D soliton, which were found, as functions of the norm,
from the variational equations(7), (8), and (12) and from
direct numerical simulations of the GPE(1), starting with the
initial condition taken as the VA-predicted soliton with a
given norm N. ParametersA, a, and b of the established
soliton produced by the simulations were measured by fitting
it to the wave form(5). The agreement between the VA and
direct numerical results is reasonable forN*5. In the simu-
lations, the VA-predicted solitons with the norm below this
value (in the OL with the strength«=2.0) spread out into
delocalized Bloch states[16], which is manifested as a rapid
decrease of the amplitude and inverse width.

Note that, in the direction of the periodic potentialsxd, the
energy spectrum of the linearized GPE(1) exhibits a usual
band structure. In this sense, the localized nonlinear state is
expected to be a gap soliton, which is the main difference
from solitons in axially symmetric 3D GPE considered in
[10,11]. To check this conjecture, values of the chemical po-
tential m of the stable solitons produced by the direct simu-
lations were evaluated by means of Eq.(4). As a result, it
was concluded thatm indeed belongs to the corresponding

band gap(below the first band) of the underlying linear prob-
lem. When the parametersN and« fall below some critical
values, the value ofm predicted by the VA through Eq.(9)
moves into the allowed band for the linear Bloch states,
which naturally explains the sudden delocalization of the ini-
tial wave form in the simulations.

Solving the 2D variational equation(8) for a, one can
easily find that the solutions exist in the interval

Nmin ; 4pÎ1 − «/«cr , N , Nmax; 4p s13d

[see Fig. 1(b)], if «,«cr;e2/8<0.924, and the interval
0,N,4p, if «.«cr. Unlike this, the solutions for the 3D
variational equation(10) can be found for anyN with any
value of«. The actual lower limit of the existence region for
the 2D solitons in the Q1D periodic potential, determined
from direct simulations of the 2D GPE(1) (at the existence
border, the initial pulse spreads out into a quasilinear delo-
calized Bloch state), is shown in Fig. 1(b) by squares. The
corresponding upper limit of the existence region is deter-
mined numerically by slowly increasing the norm[via the
coefficientx in Eq. (1)] of an established soliton. When the
norm exceeds the valueNmax

snumd.11.7 [which is the actual
norm of theTownes soliton[8] and is to be compared to the
VA prediction,Nmax;4p in Eq. (13)], solitons start to radi-
ate matter waves(which are absorbed on the domain bound-
aries in the numerical algorithm used). We stress that the
soliton with the norm somewhat exceeding the valueNmax

snumd

does not commence collapsing, as would be the case with the
2D NLSE in the free space, but rather relaxes back toN
=Nmax

snumd, shedding off the excess norm. Therefore, the Q1D
potential plays a stabilizing role in this case too, preventing
the onset of the collapse.

The above presentation of the VA soliton solutions did not
include the dependencesmsNd. Although m is not a directly
observable quantity, these dependences are important too, as,
pursuant to theVakhitov-Kolokolov(VK ) criterion [14], so-
lution families which meet the conditiondm /dN,0 may be
stable, while ones withdm /dN.0 should be unstable.
Therefore, these dependences, obtained, in the 2D and 3D
cases, by means of Eqs.(9) and (11), respectively, are dis-
played in Fig. 2. As is seen, parts of the families definitely

FIG. 1. (a) Parameters of
stable 2D solitons in the quasi-1D
potential with«=2, as found from
numerical simulations of the
Gross-Pitaevskii equation(1) as
described in the text(solid lines)
and as predicted by the VA for
amplitudeA (dotted line) and in-
verse squared widthsa andb (dot-
dashed and dashed lines, respec-
tively). (b) The numerically found
(connected squares) and VA-
predicted(dashed lines) existence
limits for stable 2D solitons in the
quasi-1D potential.
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have a negative slopedm /dN; hence, they may correspond to
stable soliton solutions.

III. NUMERICAL RESULTS

A. Stationary solitons

For the purpose of the comparison with predictions of the
VA, in the previous section soliton solutions were generated
numerically by means of the direct simulations of Eq.(1). In
this case, the VA-predicted wave form inserted as an initial
condition to Eq.(1) transforms into a stable soliton, shedding
a small amount of radiation which is absorbed on the domain
boundaries. A more direct way to generate numerically exact
stationary soliton solutions is based on the solution of the
GPE in imaginary time[15]. We employed this method, also
starting with the VA-predicted wave forms, to speed up the
convergence. The propagation in imaginary time was run un-
til the chemical potential of the stationary state, Eq.(4),
would converge to the accuracy of 10−6. Then, stability of
the thus found soliton was verified by direct simulations in
real time.

For the stability test, small initial perturbations were ex-
plicitly added to the soliton, so that it was taken asu0sx,yd
=Usx,ydf1+supsx,ydg, where Usx,yd is the numerically
found stationary soliton,s is a small amplitude, and random
functionsupsx,yd account for the form of the small perturba-
tions. As a result, it was found that the 2D solitons are stable
in their entire existence region, which was shown in Fig.
1(b). In the 3D model, the solitons were found and tested for
the stability in a similar way.

Typical examples of the stable 2D and 3D solitons in the
attractive modelsx= +1d are displayed in Figs. 3 and 4. Note
that the 3D solitons are nearly isotropic in thesx,yd plane
and elongated in the free directionz. As well as in the model
with the full (rather than low-dimensional) potential[7], the
solitons can be classified intosingle- and multiple-peaked
ones, with the matter trapped, respectively, in a single poten-
tial valley or several adjacent ones. The solitons tend to be-
come multiply peaked for the smaller norm and/or weaker
OL. Examples of both types in the 2D model are shown in

Fig. 3. While Fig. 4 displays only an example of the single-
peaked 3D solitons, their multiple-peaked counterparts can
be easily found too.

The 3D model can also be considered with a Q1D poten-
tial. In this case, the VA predicts thatall the solitons are VK
unstable. Accordingly, simulations never produced stable
solitons in this case. This feature can be explained by the fact
that, in the free 2D subspace orthogonal to the OL, the soli-
ton is essentially tantamount to the above-mentioned un-
stable Townes soliton. Another relevant remark is that stable
solitons with intrinsic vorticity are also possible in the 2D
GPE with the fully dimensional 2D lattice[7]. Vortices were
found in the present 2D model with the Q1D potential too,
but they are always unstable.

In the case of the self-repulsion,x=−1, the low-D lattice
potential cannot support a completely localized pulse. How-
ever, adding the parabolic trap readily gives rise to stable
configurations which are, essentially, solitons across the lat-
tice and Thomas-Fermi-like states along the free direction

FIG. 2. ThemsNd dependences for the 2D(a) and 3D(b) soli-
tons in the quasi-1D and quasi-2D potentials, respectively, which
make it possible to predict the solitons’ stability on the basis of the
Vakhitov-Kolokolov criterion. This criterion setsdm /dN,0 as a
necessary stability condition. In each panel, the solid and dashed
curves show two different branches of the solution family. FIG. 3. Examples of single- and multiple-peaked stable 2D soli-

tons supported by the quasi-1D potential(with «=2) in the model
with attraction. The norm and chemical potential of the soliton are
N=2.5p ,m=−1.541(a) andN=1.5p ,m=−0.552(b).

FIG. 4. A stable single-peaked 3D soliton, supported by the
quasi-2D potential, withN=2p and «=5.0, in the model with at-
traction, is shown through itsz=0 (a) andy=0 (b) cross sections.
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(below, it will be demonstrated that apair of moving and
periodically colliding localized pulses, which behave virtu-
ally like true solitons, can be created in the 2D and 3D re-
pulsive models with the low-D potential). An example of a
stable 3D localized state of this type in the repulsive model is
given in Fig. 5.

These configurations assume a multiple-peaked or single-
peaked shape under the action of a weaker or stronger OL
potential, respectively, which isopposite to what was re-
ported above forx.0; cf. Fig. 3. An explanation to this
difference is that, in the case of the self-repulsion and«=0,
no solitons exist at all(even unstable ones, like the above-
mentioned Townes soliton).

B. Collision of solitons in the attractive model

Multidimensional solitons in periodic potentials found so
far in various settings[2,4,5,7,16] are pinned by the lattice,
while it is well known that the most interesting dynamical
properties of ordinary solitons are related to their collisions.
Accordingly, the mobility in the free direction combined
with the possibility off-center collisions in adjasent channels
of the periodic potential is the most essential difference of
the present multi-D solitons from those predicted in other
models.

We have studied the motion of the solitons in the presence
of the parabolic trap. If the 2D or 3D soliton is displaced
from the central position, it performs harmonic oscillations
along the free direction, completely preserving its integrity.
When two identical solitons are placed symmetrically off
center in the same channel(potential valley), their interaction
crucially depends on the phase difference between them. In
simulations, 2D and 3D in-phase solitons(the ones with the
zero phase difference) which collide head-on with velocities
±v (which are actually acquired due to the acceleration in the
parabolic potential) merge into a single intermediate pulse,
provided that the velocityv is below a threshold valuev0.
For instance,v0=8.5 for the 2D solitons in the case of«

=2.0 (in this case, the norm of the 2D solitonper se is N
=2.5p); an estimate for the threshold velocity in a typical
BEC setting yields a really large value in physical units,v0
,10 cm/s. In the 2D case, the norm of the intermediate
pulse alwaysexceedsthe critical valueNmax [see Eq.(13)] ;
therefore, it quickly collapses, and the same happens in the
3D case. These are manifestation of the inelasticity of colli-
sions of multi-D solitons. The inelasticity of collisions of 3D
solitons in axially symmetric 3D GPE expressed as an ex-
change of matter between interacting solitons and their merg-
ing was studied in Refs.[10,11]. Particularly, merging of
neighboring pulses in a soliton train[10,11] was considered
in the context of “missing solitons” in the experiment[17].

In the case ofv.v0, the in-phase solitons colliding in one
channel pass through each other, which is explained by the
fact that, for solitons with the normalized size,1 [see Figs.

FIG. 5. A stable 3D localized state in the model with repulsion,
including a combination of the periodic quasi-2D potential and
weak parabolic trap,Vsx,y,zd=2fcoss2xd+coss2ydg−0.01sx2+y2d
−0.1z2. The solution is shown through itsz=0 (a) andy=0 (b) cross
sections. The norm of the localized state isN=4p.

FIG. 6. Oscillations of twop-out-of-phase 3D solitons in the
combined OL and weak-harmonic-trap potential,Vsx,y,zd
=5fcoss2xd+coss2ydg+0.005z2. Parameters are the same as in
Fig. 4.

FIG. 7. Center-of-mass trajectories(c.o.m) and amplitudessAd
of two identical 2D solitons colliding in adjasent tracks of the
quasi-1D potentials«=2d. (a) When the relative velocity at collision
is large(induced by a potentialVaccel=0.001y2 in the free direction)
solitons collide almost elastically with no exchange of matter and
preserving their amplitude.(b) As opposed, slow collisionssVaccel

=0.00001y2d are inelastic with strong exchange of metter resulting
in different amplitudes and velocities of solitons after the collision.
The parameters of solitons are the same as in Fig. 3(a).
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3(a) and 4], the collision time,1/v becomes smaller than
the collapse time, which may be estimated as being,1/N.
Identicalp-out-of-phase solitons always bounce back if they
collide in one channel; as a result, two such solitons in the
trap perform indefinitely many stable oscillations with peri-
odic elastic collisions, as shown in Fig. 6.

In the low-D potential, collisions are also possible be-
tween solitons moving inadjacent channels. If the relative
velocity is sufficiently large, such collisions(including recur-
rent collisions in the presence of a weak parabolic trap) are
always completely elastic; see an example in Fig. 7(a). If the
relative velocity is small, notable exchange of matter be-
tween solitons takes place, and the two solitons emerge with
different amplitudes and velocities after the collision[Fig.
7(b)]. At some parameters a collision may result in capturing
a “satellite” in the other channel by each soliton, which is
shown in detail in Fig. 8. The matter exchange between soli-
tons colliding in adjacent channels is enhanced not only with
the decrease of the relative velocity, but also with the de-
crease of«, as, naturally, the coupling between the adjacent
channels becomes stronger in this case.

Another interesting case is the collision betweenmultiple-
peakedsolitons, such those shown above in Fig. 3(b), whose
central peaks are set in two channels separated by an inter-
mediate one. Obviously, only satellite peaks experience the
head-on interaction in this configuration. This experiment
may test the intrinsic cohesion of the multiple-peaked soli-
tons. To set the solitons in motion, they were, as above,
initially placed at some distance from each other in the pres-
ence of the external “accelerator”—i.e., a parabolic potential
of the formVaccel=gy2 (recall thaty is the free direction of
the Q1D periodic potential). The corresponding configura-

tion is shown in Fig. 9. In some cases, the accelerator with a
relatively large strengthg (for instance, g=0.1) was
switched on for a finite timeDt (typically, Dt.1), and then
the motion of the solitons in they direction was completely
free.

In the case of a moderately large relative velocity, the
collision of this type results in small changes of the solitons’
shapes due to a weak matter exchange between them. A typi-
cal example of this sort is shown, by means of contour den-
sity plots, in Fig. 10. The small perturbation of the solitons’
shapes after the collision confirms that the multiple-peaked
solitons are robust intrinsically coherent objects. The same
conclusion follows from simulations of similar collisions be-
tween multiple-peaked 3D solitons(not shown here).

With a smaller relative velocity of the solitons, the colli-
sion of the same type between the in-phase multiple-peaked
solitons produces a drastically different result, as shown in
Fig. 11 (the result is altogether different too from what was

FIG. 8. Contour plots of two identical single-peak 2D solitons
colliding at velocitiesv= ±0.3 (.3 mm/s, in the typical physical
case) in adjacent channels of the quasi-1D potential, with the
strength«=1.5. The norm of each soliton isN=2p.

FIG. 9. (Color online) The initial set of two multiple-peaked 2D
solitons, each with the normN=1.5p, designed for the sideline
collision between them, after they were accelerated by the parabolic
potential.

FIG. 10. Contour density plots showing a typical example of the
collision, with a moderately large velocity, between two multiple-
peaked 2D solitons whose central peaks are separated by an inter-
mediate channel, so that only satellite peaks experience the head-on
interaction. In this case,«=2, the initial norm of each soliton isN
=1.5p. The solitons are accelerated by the external potentialgy2

with g=0.1, which acted temporarily, during the timeDt=1, and
was then switched off.

FIG. 11. A typical example of the slow collision between two
identical in-phase multiple-peaked 2D solitons, with their central
peaks originally separated by the intermediate channel. Eventually,
onesingle-peakedsoliton appears, trapped in the middle channel, a
part of the initial norm being lost with radiation. Parameters are the
same as in Fig. 10 except that the collision velocity is smaller(the
accelerating potential,gy2 with g=0.001, acted during the time
Dt=10). The norm of the resulting single-peaked soliton isN
<2p, which is 2/3 of the total initial norm.
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observed in collisions of two in-phase single-peaked solitons
placed in adjacent channels; see Fig. 8). In this case, a large
share of matter from the central peaks of both solitons can
tunnel, during the collision, into the middle channel, where
the satellite peaks experience the head-on collision. Eventu-
ally, the two multiple-peaked solitons end up forming one
stable (undercritical, in the 2D case) single-peaked soliton,
whose norm is smaller than the initial total norm of the con-
figuration (for instance, it is 2/3 of the initial norm in the
case shown in Fig. 11). The loss of the norm is due to emis-
sion of linear waves in the course of the collision; this radia-
tion is absorbed at edges of the integration domain.

C. Collision of solitons in the repulsive model

Recent experiments with repulsive BEC’s loaded in mov-
ing OL’s offer evidence in favor of the existence of bright
matter-wave solitons of the gap type[18]. Modulational in-
stability and a negative effective mass, which are considered
to be at the origin of the bright-soliton formation in repulsive
BEC’s with the periodic potential, have been observed too
[19,20] (the negative effective mass was observed indirectly,
through an optically induced lensing effect). These develop-
ments suggest the feasibility of the experimental observation
of gap-type solitons in repulsive BEC’s in the 2D and 3D
cases too, which justifies theoretical analysis of their dy-
namical properties.

FIG. 12. The initial set of two 2D localized states in the repul-
sive BEC, created at some distance from each other by means of a
potential barrier separating them in the directiony. The norm of
each soliton isN=4p.

FIG. 13. (Color online) Recur-
rent head-on collisions(in one
channel of the quasi-1D periodic
potential) of two 2D localized
pulses in the repulsive BEC. The
pulses periodically pass through
each other, with a periodT.10.
At the moments of the full
overlap—viz., t=2.5, t=7.5, and
so on (the same picture is ob-
served att=12.5)—i.e., each half-
period, sharp interference fringes
are evident (note that the right
panels are enlarged).

FIG. 14. Recurrent collisions of two 3D solitons in the repulsive
model, shown through they=0 cross section. Parameters are the
same as in Fig. 5.
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As was pointed out above, the creation of stable localized
states in the repulsive case in a low-D periodic potential
requires confinement in the free direction. An example of a
3D soliton created in the center of the combined Q2D OL
and parabolic-trap potentials was displayed in Fig. 5. The
creation oftwo such localized states at some distance from
each other along the free direction is possible by applying an
additional potential barrier(for instance, in the form of a
Gaussian) separating them. Then, a collision between the
pulses can be induced by suddenly removing the barrier. A
similar technique was employed in the interference experi-
ments with two BEC’s released from a double-well potential
[21]. As a result(see Figs. 12 and 13 which illustrate the 2D
case), the pulses, which actually behave like true solitons in
this situation, emergeunscathedafter periodic collisions,
passing through each other in an elastic fashion. A character-
istic signature of the collision is a pattern of matter-wave
interference fringes, periodically appearing when the solitons
overlap. In fact, a similar effect can also be observed in
head-on collisions between fast solitons in the attractive
model (otherwise, it is eclipsed by the ensuing collapse).

Collisions between solitons inside one channel were in-
vestigated in the 3D repulsive model too. As well as in the
2D case, initial pulses were prepared by means of a separat-
ing barrier, which was then suddenly lifted. As is seen from
Figs. 14 and 15 pertaining to the 3D model, in this case the
collisions also turn out to be periodic and completely elastic,
and a sharp interference pattern is again observed at the over-
lap stage.

IV. CONCLUSION

We have demonstrated that periodic potentials whose di-
mension is smaller by 1 than the full spatial dimension can
support stable single- and multiple-peaked solitons in 2D and
3D self-focusing media(while the quasi-1D potential cannot
stabilize 3D solitons), which suggest new settings for experi-
mental search of multidimensional(multi-D) solitons in pho-
tonic crystals and Bose-Einstein condensates. The 2D soli-
tons exist in a finite interval of the values of the norm, which
is predicted by the variational approximation and is borne
out by direct simulations. In the case of self-repulsion, stable

localized states are found too, provided that the model in-
cludes the parabolic trap. Evolution of their structure is op-
posite to that in the case of the self-attraction: with the in-
crease of the strength of the low-D periodic potential, a
single-peaked state is changed by a multiple-peaked one.

These solitons are the first example of mobile multi-D
pulses predicted in BEC’s, which suggests to study collisions
between them(in the 2D setting, the collisions may also be
realized in photonic crystals). The head-on collisions of in-
phase solitons lead to their fusion and collapse(unless the
relative velocity is very large), while out-of-phase solitons
collide elastically indefinitely many times(if they are con-
fined by the external parabolic trap). The collision between
multiple-peaked solitons whose central peaks are separated
by an intermediate channel may lead to the formation of one
single-peaked soliton in the middle channel, the excess mat-
ter being shed off. Thus, a fundamental feature dominating
various types of the collisions in the attractive model is the
exchange of matter between the solitons. The inelasticity of
multi-D soliton collisions, expressed as a matter exchange
between solitons, appears to be similar as in the model with
axially symmetric 3D GPE[10,11].

In the repulsive model, stable localized states of the
mixed solitonic–Thomas-Fermi type are supported by the
low-D potential combined with a parabolic trap. Two such
pulses can be created in one channel by means of an extra
transverse potential barrier. After lifting the barrier, the
pulses perform recurrent elastic collisions(i.e., they behave
like true solitons), with a sharp interference pattern emerging
when they periodically overlap.

ACKNOWLEDGMENTS

We appreciate valuable discussions with Y. S. Kivshar.
B.B. thanks the Department of Physics at the University of
Salerno(Italy) for a research grant. B. M. appreciates the
hospitality of the same department and partial financial sup-
port through Grant No. 8006/03 from the Israel Science
Foundation. M.S. acknowledges partial financial support
from the MIUR, through interuniversity Project No. PRIN-
2003, and from European LOCNET Grant No. HPRN-CT-
1999-00163.

FIG. 15. (Color online) Con-
tour plots illustrating the periodic
collisions of two 3D solitons in
the repulsive model, at the mo-
ment of the full overlap between
them st=2.5d. The panels(a) and
(b) correspond to the cross sec-
tions z=0 andy=0, respectively.
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